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ABSTRACT

We investigate a new approach to identify a multichannel blindly
when the additive noise is no longer considered as white but only
stationary. We consider the case when the multiple FIR channels
are obtained from an array of n antennas and from oversampling
the received signal with a factor m. In this case the covariance
matrix of the stationary noiseis block Toeplitz with r x n blocks,
whereas the covariance matrices of the signal part and the total
received signal are block Toeplitz with mn x mn blocks. In this
paper, we shall mainly concentrate on asubspacemethod based on
an appropriate displacement of the covariance matrix in which the
noise contribution disappears. The technique devel oped appearsto
give acceptable performancefor the channel estimate, comparedto
the Cramer-Rao bound. Furthermore, since the proposed method
is based on a parameterization in terms of the channel impulse
reponse, prior knowledge of the transmission filter can easily be
incorporated [4]. The method mentioned previously can be ex-
tended to exploit this knowledge and henceits performance can be
improved. Simulations are presented to illustrate the performance
of the method.

1. INTRODUCTION

Blind single-user multichannel identification techniques exploit a
multichannel formulation corresponding to a Single Input Multi-
ple Output (SIMO) vector channel. The channel is assumed to
have afinite delay spread NT'. The multiple FIR channelscan be
obtained by oversampling a single received signal, but can also be
obtained as multiple received signals from an array of antennas(in
the context of mobile digital communications [1],[2]) or from a
combination of both. We consider in the sequel an oversampling
factor m and rn antennas. For these mn channelsthe discrete-time
input-output relationship can be written as:

N—-1

y(k) =Y h(Da(k—i) +v(k) = HAx(k) +o(k) (1)
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wherey (k )=[ ( ) Y (), (1) = [AY(3) -
v(k) = [vf (k) -- ()]H,H:[h(N—1)~~~

[a(k—N41)" ... (k)H] and superscript # denotes Hermi-
tiantranspose. LetH(z) = S° M h(i)z " = [HE(z) - -

bethe SIMO channel transfer flunocti on. Consider the symbalsi.i.d.
if required and additive independant (Gaussian if required) noise
v(k) with ryv (k—i) = Ev(k)v(i)". Notethat dueto stationar-
ity the rypw (k) are block Toeplitz with n x n blocks. Assume we
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R(0)], An(k) =

Hinn (2)]7

receive M samples:
Yu(k) = Tar(h) Avyn—a(k) + V (k) @)

where Y ar(k) = [y (k=M4+1) - y™ (k)] and similarly for

wm (k). Tar (h) isablock Toeplitz matrix filled out with the chan-
nel coefficientsgroupedin ko = [ (N—1) --- R (0)]%
We shall simplify the notation in (2) withk = M —1 to

Y = T(h)A+V . )

We assume that mnM > M+ N—1 in which case the channel
convolution matrix 7 (k) has more rows than columns. If the
H:(z), : = 1,..., mn have no zeros in common (the channel is
said irreducible), then 7 (k) hasfull column rank (which we will
henceforth assume). For obvious reasons, the column space of
T (h) iscaledthesignal subspaceand its orthogonal complement
the noise subspace. The signal subspaceis parameterized linearly
by h.

The case of DOA estimation in colored noise was analyzed in
[3], where some methodsand performance boundsare presented to
estimate the directions of signal sources. In the sequel we present
a subspace based approach to estimate the channel in a mobile
communications context where the additive noiseis assumedto be
stationary.

2. THEIDENTIFICATION METHOD

Themainideaisto observe that the covariance matrix Ry v of the
colored noiseis block Toeplitz with blocks of sizen x n. Onthe
other hand, 7(h) Ra4 T () isblock Toeplitz with blocksof size
mn x mn (assuming the transmitted symbolsa . to be stationary
sothat R4 4 isToeplitz). So

Ryy = T(h)RaaT(R)" + Rvv 4

is block Toeplitz with mn x mn blocks. However, we shall con-
sider now the displacement of Ryy at the level of n x n blocks.
This is done by extracting two (mnd —n) x (mnM—n) sub-
matrices R, and Ryy defined asfollows: Ry, and Ryy are
submatricesof Ryy with the last, resp. first, n rows and columns
removed (see Fig. 1). R, ,, and Ry v are defined smilarly w.r.t.
Rvv. Notethat Ry = Rvv.
Thefirst matrix R, ,- can bewritten as

Ry = I(h’) Raa I(h’)H + Ry, (5

where 7 (h) correspondsto the matrix 7 (k) from which we have
omitted the n last rows. Similarly, by considering 7 (k) as the



Ryy n

Figure1: Ryy, Ry and Ryvy

matrix 7 (k) from which we omit the first n rows, Ryy can be
written as

Ryy =T (h) RaaT(R)" + Rvv . 6
Hence the displacement R, — Ryy is given by
Ryy—Ryy = T(h) Raa T(W)"=T(h) Raa T(W)" , (7)

which is parameterized by the channel 2. Consider now the eigen-
decomposition of the matrix Ry ,-—Ryy inwhichtheeigenvalues
are ordered in descending order:

mnM—n

R,y—Ryy = Z AV =veA vl + VoAV

=1

8
where Ay, resp. A_, denote the set of positive, resp. negative,
gigenvaluesof R, —Ryy, and V4, resp. V_, their correspond-
ing eigenvectors. In what follows, we assume R 4 4 to have full
rank and the number of channelsto be at least three: mn > 3.
In that case, R,y — Ryv hasanoise subspacefor M sufficiently
large, the positive signal subspacedimension (sizeof V) isequal
to the full column rank of 7 (h), while the negative signal sub-
space dimension (size of V_) is equa to the full column rank of
T (h), and both positive and negative signal subspaces have the
same dimension. The column space of V4 can be interpreted as
the components of the columnspace of 7 (k) that are orthogonal
to V_ (and similarly for V— and 7 (h)). Thisleadsto the follow-
ing equivalences:

Range {V4+} = Range {P&_I(h)} , ©)

Range {V_} = Range {Pd‘_'_T(h)} ,

where Py = I-X (X7 X) * X# denotesthe projection opera-

tor on the orthogonal complement of Range { X'}. A natural sig-

nal subspacefitting criterion can now be formulated asfollows:
min || Py T(h)=V4T1||% + || P, T(hR)=V-T2||%, (10)
T, T2

wherethe Frobeniusnorm of amatrix Z can be definedin terms of

the trace operator || Z||3 = tr { Z"Z}. After minimization w.r.t.

71,15, the problem in (10) boils down to

min tr {IH(h)Pd'_ Pd__,_Pd__I(h)}
If=1 (12)
+Hr {TH(h)PVL+ Py P&j(h)}

which can be simplified to

I};lll’l tr{T h)Py,T } 4 tr {T PVN )}
[I12)|=1
= min h¥ (A1 + A2) b,

(e

(12)

where V) are the noise subspaceeigenvectors(Pv,, = I — Py, —
Py_), and the matrices A;, A2 can be determined from Py, and
T(h), T(h). The solution for h is the eigenvector correponding
to the minimum eigenvalueof A; + A.. Inthefollowing, we will
discussthe Cramer-Rao boundsin both Gaussianand deterministic
contexts.

3. CRAMER-RAO BOUNDS

Let ¢ be the complex parameter vector to be estimated, and 8 r =

[ Re(6)” Im(6)" ]" the associated real parameters. Thereal
Fisher Information Matrix (FIM) associatedto 6 is:

T
Joror = By o, (aln J;E;QHR)) (81n259};|9R)) , (13)

Y are the observationsand f(Y'|6 r) is their probability densuty
function. Let § z bean unbiased parameter estimate, 6r = 8r—0r
the estimation error and C; ;= L6 rO% the error covariance

matrix. .J; ', isthe Cramer-Reo Bound:

Cs.5, = CRB; = Jg g (14)
As we work with complex quantities, it may be better to consider
complex derivation defined as & = £ (& — j=5) where 6 =
a+ 38. TheFIM J,, for complex parameters ¢, ¢ (partsof 9) is

defined as:

H
JWZ) = EY|9 <8lnafé*Y|6)) (alnafdg*YW)) . (15)

Let us introduce the extended complex parameter vector 8 =
[T 6517, Then Jo6.. containsthe sameinformation as Jo o5,

If Jop+ = 0, the matrix Jyo can be considered as a complex
FIM, and the covariance matrix of the unbiased estimation error
§=6—6isCs; > J;;', the complex CRB. If Jog+ # O (asin
the casesto be cons ideredbelow), J ;' isalsoabound on C'5;, but
not as tight as the actual CRB = C;;_; . > J; ;. The quantity
we are usually interested in isthe MSE =

B|8|* = Ellér|* = —E||9c|| %tr{ Jooect > t{Jgg }-

(16)
In the blind channel estimation application considered here, an
identifiability problem arises since the channel can only beidenti-
fied up to a scalar multiple. Thisleadsto singularity of the FIM.
For the computation of CRBs, we replace the inverses of FIMs
Je‘ o, Dy Moore-Penrose pseudo-inverses J ¢ + For the result-
ing inversestill to beavalid CRB, the unldentlf aﬁlechannel factor
should be adjusted in a particular fashion that will be explainedin
the simulations section (see also [5]).

3.1. TheGaussian case

In the circular Gaussian symbols case, Y ~ A(0, Ryv) with
Ryy = O'QT( )TH( ) + Rvv (SO Raa = 0'3]). Thenegative
log likelihood to be minimized is

L(h,Rvv)=c +Indet Ryy + YIRZLY. (17)
YY

We have to estimate jointly the channel coefficients and the noise
covariance coefficients. Since the covariance matrix Rv v of the



colored noise is block Toeplitz with blocks of size n x n, its pa-
rameters to be estimated are: the elements of the lower or up-
per triangular part of rye (0) and the elementsof then x n ma-
trices ryw(1)...rov (L — 1), where L denotes the length of the
FIR filter used to generate the MA colored noise. One can no-
tice that the diagonal elements of ryv (0) are real and hence we
have a mix of real and complex parameters. We consider the fol-
lowing parameter vector § = [67' Hf]H, in which 8, denotes
the vector obtained by stacking the diagonal elements of r v (0)
and 6, denotes the vector obtained by concatenating the channel
coefficients i and the vector formed by stacking the colums of
the matrix [ r&,(0) riy(1) riw(L—1) 1", where
rop(0) is the strict lower triangular part of ryv (0). Let o =
[of 67 off ]T be the extended complex parameter vector. We
get for the FIM Jo 6.

Joro,  Joje,  Jojez
Jococ = | Jowor  Jose,  Joger (18)
Jore,  Jore,  Jozor

where J, is given by (15) and Jy+ 4+ = J,. Exploiting this
information and the Hermitian symmetry of Js_e., One has to
compute only Jo, ., Jo,6,, Jo,6, and Jo,e:. We are interested

herein the MSE on the channel estimates k. Let P be apermuta
tion matrix such that P = [hZ n5]" where ne represents the
other (nuisance) parameters. Then

J J
PJocec P = hehe hene | (19
nehe nenc
So we get the following CRB
7002 1 22 1 -1 +
BlR|" = SElRell” 2 5t(n b =Theone Tnone uohe)
(20)

3.2. Thedeterministic case

In the deterministic model, both the channel / and the symbols A
are considered as deterministic quantities. The complex parame-
tervector 0 is 9 = [ »¥ nf AT ] " A contains the input
symbols, h the channel coefficientsand r the col ored noise covari-
ance coefficientsto be estimated. The complex probability density
functionis:

B 1 -[Y Y] Rt [Y-YO)]
f(YW) T oamM et vae
(21)
where YY) = T(h)A isthe signal part of Y. The negative log

likelihood to be minimized is

L£(8) = c¢'+Indet Ryv+(Y — T(h)A)Y Ry (Y — T(h)A).

(22)
Following the same reasoning as for the Gaussian case, we can
rewrite § asd = | 9ff ¢¥ ]H in which ¢, denotes the vec-
tor obtained by stacking the diagonal elements of r v (0) and 6
denotes the vector obtained by concatenating the symbols A, the
channel coefficients h and the complex correlations of the colored
noise. We consider again the FIM associated to the extended com-
plex parameter vector §c. Jo e iSagain given by (18), where
the different matrices J,,, are computed by deriving £(¢) defined
in (22). And we are again interested in the MSE on the channel
estimates.

4. TRANSMISSION (TX) FILTER KNOWLEDGE

Sincethe elimination of the stationary noisein the subspacefitting
approach outlined above is based on oversampling and hence on
the exploitation of excessbandwidth, the useof prior knowledge of
the transmission filter (which shapesthe excessbandwidth) should
be useful. In [4], we adressed the exploitation of the Transmis-
sion/Reception (TX/RX) filters knowledge and we presented a set
of blind channel estimation methods that we extended to exploit
the prior knowledge of the TX/RX filters. We shall review the ba-
sic approach. Consider a certain oversampling factor m, and let
the oversampled transfer function H(z) = C(z)G(z) of the over-
all channel be the cascade of the actual oversampled anti-aliasing
filtered channel C(z) and the oversampled combined TX/RX fil-
ter G(z) (the oversampling factor should satisfy the Nyquist cri-
terion for the TX/RX filter). Each of these transfer functions can
be decomposed into its polyphase components at the symbol rate,
eg. H(z) = >.7~" 27"H,(=™). These components can also be

represented in the SIMO form, G(z) = [Gi(z)--- G (2)]" =
ioo 9(k)z~FandC(z) = [Cf/(2) - CR()]T = 37,7 e(h)=™"

with K+ L—1 = N. Therelations between the polyphase compo-
nents can be obtained from

3R = (Zz"“Gk(z’")) (ZZ‘ZCZ(”))

1=0 k=0 =0
(23)
In particular for m = 2 we get
Ho(2) | _ | Go(z) 27'Gi(2) | | Gol2)
Hi(z) | — | Gi(z)  Gol) Ci(2)
_ | Golz) 2TICi(=) || Gol2)
- C1 (Z) Co(Z) Gl (Z)
(24)
or H(z) = G(#)C(z) = C(#)G(#). In thetime domain, we get
Tu(H) = Tu(G) Tt rw-1(C) (25)
where T2, (X) isablock Toeplitz matrix with M block rows and
[X 0px(ar—1)4] asfirst block row, X being considered asablock
row vector with p x g blocks, C issimilar to H and
= [g(K=1)--- _ | w) g(k-1)
&= lgt=0-2O 90 =] Gty o
(26)

and we assume gl(K—l) = 0. The relation between i and ¢
ish = TL (G")c where © denotes transposition of the blocks:
G'=[g"(K-1)---g"(0)].

Inthe case of an array of r antennas, H; ( ) =G(2)Ci(z )for

)

every antennasignal i = 1...n, H(z) = [H{ (). - - HF (2)]7
blockdiag{G(z) - - - G(z)}C(z) where now H( )andC(z) regroup
mn channelsand can be expressed as folllows

H(z) = (In ® G(z)) C(z), 27

where @ denotesthe Kronecker product. (25) becomes

Tu(H) = Tu([ln @ g(K=1) -1, @ g(0)]) Tart -1 (C).
(28)
Prior TX/RX filter knowledge gets exploited by expressing h =

Gc and searchingfor ¢, whereG = T, ([[n@g” (K—1) -+ I, ®



g" (0)]). Sincethe subspaceidentification method discussedabove
isof theformminj, _, A" (A1 + A2)h, weget

min "GP (A + A2)Ge, (29)

which can be solved under the non-trividity constraint ||c|| = 1.
The method thus obtained is a channel identification method With
TX Filter Knowledge (WTXFK).

5. CRAMER-RAO BOUNDSWTXFK

So WTXFK, we obtain i = G¢ from ¢. The FIM for ¢ can be
obtained from the FIM for the unstructured k2 which we found
ealier. From h = Ge¢, we get he = Geoec where G =
, . dln f(Y]8) 9hE dln £(Y9)
lockdiag{G,G"}. H = =
blockdiag{ G, G*}. Hence Der dct.  Oh%
7 0In f(Y]0)
Ge Oh%
Jeec for ec with elimination of the nuisance parameters nc
H —1
becomes Jccc.c .= GC(_JhC}_LC — Jhcnc J"?nC_Jnchc)Gc'
where the matrix in the middleis the one appearing in (20). Now,
c isonly an intermediate quantity in the estimation of k. To find
the FIM for h¢ from the FIM for ¢c, we get from he = Geec
that cc = Gt hc. Asbefore, wecanfind Jy, = GE% Jec.

SinceGcGY, = P, wefinaly get the CRB

which implies e.g. Jep» = nghc¢. Then

~ 1 _
E|lA|* > sHlPe. Unohe = hene Tocnenoho ) Pa 1)
(30)
for the case WTXFK, which should be compared to (20) for the
unstructured h case. The pseudo-inversein (30) indicates that the
ambiguity factor getsfixed at the level of k.

6. SIMULATION RESULTS

We consider aburst length of 100 symbol periods, acomplex chan-
nel H randomly generated, of length N = 4. The number of
antennasisn = 2 and the oversampling factor ism = 2. The
input symbols are drawn from ani.i.d. BPSK sequence. The col-
ored noiseis MA generated by filtering a complex white Gaussian
n x 1 processwith an n x n FIR f filter of length equal to 3.
The SNR is definedas SR = LE/m) o8 [Jf o
(FI2/n) o3 ml|fl?os”
We use a sample covariance matrix Ry y of size M = 20. Blind
estimation gives a channel estimate k with ||| = 1, we adjust
the right scale factor o so that b (ah) = h h, where b, isthe

true channel vector (see [5]): the fina estimateish = ah. The
performance measure is the Normalized MSE: NM SE, averaged
over 100 Monte-Carlo runs and defined as NMSE = E||h —

R|I?/|IR]I?. We simulated the previously described subspace fit-
ting (SSF) method and we evaluated its performance. In Fig. 2, we
plot the NM SE versusthe SNR: it is clear that the method works.
On the same figure we plot the normalized Gaussain CRB com-
puted astr{C R By, }/||h||>. Whereasthe method is a deteministic
one, and since the Gaussian CRB is lower than the deterministic
one, it can be seen than the NM SE curve is not closeto the Gaus-
sian CRB unlessthe SNR is high. This means that potentially a
large gain in performance can be obtained by exploiting the infor-
mation on the second-order statistics of the symbols. In Fig. 3,

we exploit the prior knowledge of the transmission filter and we
measure the NMSE obtained by the SSF WTXFK method. We
consider a burst length of 200 symbol periods, n = 1 antenna,
an oversampling factor of m = 3. The propagation channel is of
length 3 and the transmission filter isalinarized GM SK filter trun-
cated to 4 symbol periods. Our simulation results show that the
purely blind SSF identification method suffers from channel zeros
that are almost in common (due to the limited excess bandwidth),
whereasthe SSF identification approach WTXFK performs well.
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Figure 2: PerformanggRof the SSF method
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Figure 3: Performance of ?NRe SSF WTXFK method
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