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ABSTRACT

We investigate a new approach to identify a multichannel blindly
when the additive noise is no longer considered as white but only
stationary. We consider the case when the multiple FIR channels
are obtained from an array of n antennas and from oversampling
the received signal with a factor m. In this case the covariance
matrix of the stationary noise is block Toeplitz with n� n blocks,
whereas the covariance matrices of the signal part and the total
received signal are block Toeplitz with mn �mn blocks. In this
paper, we shall mainly concentrate on a subspace method based on
an appropriate displacement of the covariance matrix in which the
noise contribution disappears. The technique developed appears to
give acceptable performance for the channel estimate, compared to
the Cramer-Rao bound. Furthermore, since the proposed method
is based on a parameterization in terms of the channel impulse
reponse, prior knowledge of the transmission filter can easily be
incorporated [4]. The method mentioned previously can be ex-
tended to exploit this knowledge and hence its performance can be
improved. Simulations are presented to illustrate the performance
of the method.

1. INTRODUCTION

Blind single-user multichannel identification techniques exploit a
multichannel formulation corresponding to a Single Input Multi-
ple Output (SIMO) vector channel. The channel is assumed to
have a finite delay spread NT . The multiple FIR channels can be
obtained by oversampling a single received signal, but can also be
obtained as multiple received signals from an array of antennas (in
the context of mobile digital communications [1],[2]) or from a
combination of both. We consider in the sequel an oversampling
factor m and n antennas. For thesemn channels the discrete-time
input-output relationship can be written as:

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k) =HAN(k) + v(k) (1)

wherey(k) = [yH1 (k) � � � yHmn(k)]
H
;h(i) =

�
h
H
1 (i) � � �hHmn(i)

�H
,

v(k) = [vH1 (k) � � � vHmn(k)]
H ,H = [h(N�1) � � �h(0)],AN(k) =�

a(k�N+1)H � � �a(k)H
�H

and superscript H denotes Hermi-

tian transpose. Let H(z) =
PN�1

i=0
h(i)z�i = [HH1 (z) � � �HHmn(z)]

H

be the SIMO channel transfer function. Consider the symbols i.i.d.
if required and additive independant (Gaussian if required) noise
v(k) with rvv(k�i) = Ev(k)v(i)H . Note that due to stationar-
ity the rvv(k) are block Toeplitz with n � n blocks. Assume we

receiveM samples:

Y M(k) = TM (h)AM+N�1(k) + V M (k) (2)

where Y M(k) = [yH(k�M+1) � � �yH(k)]H and similarly for
V M(k). TM (h) is a block Toeplitz matrix filled out with the chan-
nel coefficients grouped in h = [hH(N�1) � � � hH(0)]H .

We shall simplify the notation in (2) with k =M�1 to

Y = T (h)A+ V : (3)

We assume that mnM > M+N�1 in which case the channel
convolution matrix T (h) has more rows than columns. If the
Hi(z); i = 1; : : : ;mn have no zeros in common (the channel is
said irreducible), then T (h) has full column rank (which we will
henceforth assume). For obvious reasons, the column space of
T (h) is called the signal subspace and its orthogonal complement
the noise subspace. The signal subspace is parameterized linearly
by h.

The case of DOA estimation in colored noise was analyzed in
[3], where some methods and performance bounds are presented to
estimate the directions of signal sources. In the sequel we present
a subspace based approach to estimate the channel in a mobile
communications context where the additive noise is assumed to be
stationary.

2. THE IDENTIFICATION METHOD

The main idea is to observe that the covariance matrix RV V of the
colored noise is block Toeplitz with blocks of size n� n. On the
other hand, T (h)RAAT

H(h) is block Toeplitz with blocks of size
mn�mn (assuming the transmitted symbols ak to be stationary
so that RAA is Toeplitz). So

RY Y = T (h)RAAT (h)H + RV V (4)

is block Toeplitz with mn�mn blocks. However, we shall con-
sider now the displacement of RY Y at the level of n � n blocks.
This is done by extracting two (mnM�n) � (mnM�n) sub-
matrices RY Y and RY Y defined as follows: RY Y and RY Y are
submatrices of RY Y with the last, resp. first, n rows and columns
removed (see Fig. 1). RV V and RV V are defined similarly w.r.t.
RV V . Note that RV V = RV V .

The first matrix RY Y can be written as

RY Y = T (h)RAA T (h)H +RV V ; (5)

where T (h) corresponds to the matrix T (h) from which we have
omitted the n last rows. Similarly, by considering T (h) as the
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Figure 1: RY Y , RY Y andRY Y

matrix T (h) from which we omit the first n rows, RY Y can be
written as

RY Y = T (h)RAA T (h)H +RV V : (6)

Hence the displacementRY Y
�RY Y is given by

R
Y Y

�RY Y = T (h)RAA T (h)H�T (h)RAA T (h)H ; (7)

which is parameterized by the channelh. Consider now the eigen-
decomposition of the matrixRY Y�RY Y in which the eigenvalues
are ordered in descending order:

RY Y�RY Y =

mnM�nX
i=1

�iViV
H
i = V+�+V

H
+ + V���V

H
� ;

(8)
where �+, resp. ��, denote the set of positive, resp. negative,
eigenvalues of RY Y �RY Y , and V+, resp. V�, their correspond-
ing eigenvectors. In what follows, we assume RAA to have full
rank and the number of channels to be at least three: mn � 3.
In that case, RY Y�RY Y has a noise subspace for M sufficiently
large, the positive signal subspace dimension (size of V+) is equal
to the full column rank of T (h), while the negative signal sub-
space dimension (size of V�) is equal to the full column rank of
T (h), and both positive and negative signal subspaces have the
same dimension. The column space of V+ can be interpreted as
the components of the columnspace of T (h) that are orthogonal
to V� (and similarly for V� and T (h)). This leads to the follow-
ing equivalences:

Range fV+g = Range

�
P
?

V
�

T (h)
	
;

Range fV�g = Range

�
P
?

V+
T (h)

	
;

(9)

where P?X = I�X
�
X
H
X

�+
X
H denotes the projection opera-

tor on the orthogonal complement of Range fXg. A natural sig-
nal subspace fitting criterion can now be formulated as follows:

min
h;T1 ;T2

kP
?

V
�

T (h)�V+T1k
2
F + kP

?

V+T (h)�V�T2k
2
F ; (10)

where the Frobenius norm of a matrix Z can be defined in terms of
the trace operator kZk2F = tr

�
Z
H
Z

	
. After minimization w.r.t.

T1 ,T2 , the problem in (10) boils down to

min
khk=1

tr
�
T
H(h)P?V

�

P
?

V+
P
?

V
�

T (h)
	

+tr
n
T
H
(h)P?V+P

?

V
�

P
?

V+
T (h)

o (11)

which can be simplified to

min
khk=1

tr
�
T
H(h)PV

N

T (h)
	
+ tr

n
T
H
(h)PV

N

T (h)
o

= min
khk=1

h
H (A1 +A2)h;

(12)

where VN are the noise subspace eigenvectors (PV
N

= I�PV+�

PV
�

), and the matrices A1, A2 can be determined from PV
N

and
T (h), T (h). The solution for h is the eigenvector correponding
to the minimum eigenvalue of A1 + A2. In the following, we will
discuss the Cramer-Rao bounds in both Gaussian and deterministic
contexts.

3. CRAMER-RAO BOUNDS

Let � be the complex parameter vector to be estimated, and �R =�
Re(�)H Im(�)H

�H
the associated real parameters. The real

Fisher Information Matrix (FIM) associated to �R is:

J�R�R = E
Y j�R

�
@ ln f(Y j�R)

@�R

��
@ ln f(Y j�R)

@�R

�T
; (13)

Y are the observations and f(Y j�R) is their probability density
function. Let �̂R be an unbiased parameter estimate, ~�R = �R��̂R

the estimation error and C~�R
~�R

= E~�R ~�HR the error covariance

matrix. J�1
�R�R

is the Cramer-Rao Bound:

C~�R
~�R

� CRB�̂R
= J

�1
�R�R

: (14)

As we work with complex quantities, it may be better to consider
complex derivation defined as @

@�
= 1

2

�
@

@�
� j

@

@�

�
where � =

�+ j�. The FIM J' for complex parameters ',  (parts of �) is
defined as:

J' = EY j�

�
@ ln f(Y j�)

@'�

��
@ ln f(Y j�)

@ �

�H
: (15)

Let us introduce the extended complex parameter vector �C =
[�T �H ]T . Then J�C�C contains the same information as J�R�R .

If J��� = 0, the matrix J�� can be considered as a complex
FIM, and the covariance matrix of the unbiased estimation error
~� = � � �̂ is C~�~� � J

�1
��

, the complex CRB. If J��� 6= 0 (as in
the cases to be considered below), J �1�� is also a bound onC ~�~�, but
not as tight as the actual CRB = C~�C

~�C
� J

�1
�C�C

. The quantity
we are usually interested in is the MSE =

Ek~�k2 = Ek~�Rk
2 =

1

2
Ek~�Ck

2
�

1

2
trfJ�1�C�Cg � trfJ�1�� g:

(16)
In the blind channel estimation application considered here, an
identifiability problem arises since the channel can only be identi-
fied up to a scalar multiple. This leads to singularity of the FIM.
For the computation of CRBs, we replace the inverses of FIMs
J
�1
�C�C

by Moore-Penrose pseudo-inverses J +
�C�C

. For the result-
ing inverse still to be a valid CRB, the unidentifiable channel factor
should be adjusted in a particular fashion that will be explained in
the simulations section (see also [5]).

3.1. The Gaussian case

In the circular Gaussian symbols case, Y � N (0;RY Y ) with
RY Y = �

2
aT (h)T H(h) + RV V (so RAA = �

2
aI). The negative

log likelihood to be minimized is

L(h;RV V ) = c
t + ln detRY Y + Y

H
R
�1
Y Y Y : (17)

We have to estimate jointly the channel coefficients and the noise
covariance coefficients. Since the covariance matrix RV V of the



colored noise is block Toeplitz with blocks of size n � n, its pa-
rameters to be estimated are: the elements of the lower or up-
per triangular part of rvv(0) and the elements of the n � n ma-
trices rvv(1):::rvv(L � 1), where L denotes the length of the
FIR filter used to generate the MA colored noise. One can no-
tice that the diagonal elements of rvv(0) are real and hence we
have a mix of real and complex parameters. We consider the fol-

lowing parameter vector � =
�
�
H
1 �

H
2

�H
, in which �1 denotes

the vector obtained by stacking the diagonal elements of rvv(0)
and �2 denotes the vector obtained by concatenating the channel
coefficients h and the vector formed by stacking the colums of

the matrix
�
r
H
vv(0) r

H
vv(1) � � � r

H
vv(L� 1)

�H
, where

rvv(0) is the strict lower triangular part of rvv(0). Let �C =�
�
T
1 �

T
2 �

H
2

�T
be the extended complex parameter vector. We

get for the FIM J�C�C

J�C�C =

24 J�1�1 J�1�2 J�1�
�

2

J�2�1 J�2�2 J�2�
�

2

J��
2
�1 J��

2
�2 J��

2
��
2

35 (18)

where J' is given by (15) and J'� � = J
�

' . Exploiting this
information and the Hermitian symmetry of J�C�C , one has to
compute only J�1�1 , J�1�2 , J�2�2 and J�2��2 . We are interested

here in the MSE on the channel estimates bh. Let P be a permuta-
tion matrix such that P�C = [hTC �

T
C ]
T where �C represents the

other (nuisance) parameters. Then

PJ�C�CP
H =

�
J
hChC

J
hC�C

J
�ChC

J�C�C

�
: (19)

So we get the following CRB

Ek~hk2 =
1

2
Ek~hCk

2
�

1

2
trf(J

hChC
�J
hC�C

J
�1
�C�C

J
�ChC

)+g:

(20)

3.2. The deterministic case

In the deterministic model, both the channel h and the symbolsA
are considered as deterministic quantities. The complex parame-

ter vector � is: � =
�
r
H

h
H

A
H
�H

. A contains the input
symbols,h the channel coefficients and r the colored noise covari-
ance coefficients to be estimated. The complex probability density
function is:

f(Y j�) =
1

�mM detRV V
e
�

�
Y �Y

(S)
�
H

R
�1
V V

�
Y �Y

(S)
�
(21)

where Y (S) = T (h)A is the signal part of Y . The negative log
likelihood to be minimized is

L(�) = c
t+ln detRV V+(Y � T (h)A)H R�1V V (Y � T (h)A) :

(22)
Following the same reasoning as for the Gaussian case, we can

rewrite � as � =
�
�
H
1 �

H
2

�H
, in which �1 denotes the vec-

tor obtained by stacking the diagonal elements of rvv(0) and �2
denotes the vector obtained by concatenating the symbols A, the
channel coefficientsh and the complex correlations of the colored
noise. We consider again the FIM associated to the extended com-
plex parameter vector �C . J�C�C is again given by (18), where
the different matrices J' are computed by deriving L(�) defined
in (22). And we are again interested in the MSE on the channel
estimates.

4. TRANSMISSION (TX) FILTER KNOWLEDGE

Since the elimination of the stationary noise in the subspace fitting
approach outlined above is based on oversampling and hence on
the exploitation of excess bandwidth, the use of prior knowledge of
the transmission filter (which shapes the excess bandwidth) should
be useful. In [4], we adressed the exploitation of the Transmis-
sion/Reception (TX/RX) filters knowledge and we presented a set
of blind channel estimation methods that we extended to exploit
the prior knowledge of the TX/RX filters. We shall review the ba-
sic approach. Consider a certain oversampling factor m, and let
the oversampled transfer function H(z) = C(z)G(z) of the over-
all channel be the cascade of the actual oversampled anti-aliasing
filtered channel C(z) and the oversampled combined TX/RX fil-
ter G(z) (the oversampling factor should satisfy the Nyquist cri-
terion for the TX/RX filter). Each of these transfer functions can
be decomposed into its polyphase components at the symbol rate,
e.g. H(z) =

Pm�1

i=0
z
�iHi(zm). These components can also be

represented in the SIMO form, G(z) = [GH1 (z) � � �GHm(z)]H =PK�1

k=0
g(k)z�k and C(z) = [CH1 (z) � � �CHm(z)]H =

PL�1

k=0
c(k)z�k

with K+L�1 = N . The relations between the polyphase compo-
nents can be obtained from

m�1X
i=0

z
�iHi(z

m) =

 
m�1X
k=0

z
�kGk(z

m)

! 
m�1X
l=0

z
�lCl(z

m)

!
(23)

In particular for m = 2 we get�
H0(z)
H1(z)

�
=

�
G0(z) z

�1G1(z)
G1(z) G0(z)

��
C0(z)
C1(z)

�
=

�
C0(z) z

�1C1(z)
C1(z) C0(z)

� �
G0(z)
G1(z)

�
(24)

or H(z) = G(z)C(z) = C(z)G(z). In the time domain, we get

TM(H) = TM (G)TM+K�1(C) (25)

where TM (X) is a block Toeplitz matrix with M block rows and
[X 0p�(M�1)q] as first block row,X being considered as a block
row vector with p� q blocks,C is similar to H and

G =
�
g(K�1) � � �g(0)

�
; g(k) =

�
g0(k) g1(k� 1)
g1(k) g0(k)

�
(26)

and we assume g1(K�1) = 0. The relation between h and c
is h = T

T
L (Gt)c where t denotes transposition of the blocks:

G
t =
�
g
T (K�1) � � �gT (0)

�
.

In the case of an array of n antennas, Hi(z) = G(z)Ci(z) for
every antenna signal i = 1 : : : n, H(z) = [HH

1 (z) � � �HH
n (z)]H =

blockdiagfG(z) � � �G(z)gC(z)where now H(z) and C(z) regroup
mn channels and can be expressed as folllows

H(z) = (In 
G(z))C(z); (27)

where
 denotes the Kronecker product. (25) becomes

TM(H) = TM ([In 
 g(K�1) � � � In 
 g(0)])TM+K�1(C):
(28)

Prior TX/RX filter knowledge gets exploited by expressing h =
Gc and searching for c, whereG = T

T
L ([In
g

T (K�1) � � � In




g
T (0)]). Since the subspaceidentification method discussedabove

is of the form min
khk=1

h
H(A1 + A2)h, we get

min
c
c
H
G
H(A1 +A2)Gc; (29)

which can be solved under the non-triviality constraint kck = 1.
The method thus obtained is a channel identification method With
TX Filter Knowledge (WTXFK).

5. CRAMER-RAO BOUNDS WTXFK

So WTXFK, we obtain bh = Gbc from bc. The FIM for c can be
obtained from the FIM for the unstructured h which we found
earlier. From h = Gc, we get hC = GCcC where GC =

blockdiagfG;G�
g. Hence

@ ln f(Y j�)

@c
�

C

=
@h

H
C

@c
�

C

@ ln f(Y j�)

@h
�

C

=

G
H
C

@ ln f(Y j�)

@h
�

C

which implies e.g. JcC' = G
H
C JhC'

. Then

JcCcC for cC with elimination of the nuisance parameters �C
becomes JcCcC = G

H
C (J

hChC
� J

hC�C
J
�1
�C�C

J
�ChC

)GC .
where the matrix in the middle is the one appearing in (20). Now,
c is only an intermediate quantity in the estimation of h. To find
the FIM for hC from the FIM for cC , we get from hC = GCcC

that cC = G
+
ChC . As before, we can find J

hC'
= G

+H
C JcC'.

SinceGCG
+
C = P

GC

, we finally get the CRB

Ek~hk2 �
1

2
trf[P

GC

(J
hChC

�J
hC�C

J
�1
�C�C

J
�ChC

)P
GC

]+g

(30)
for the case WTXFK, which should be compared to (20) for the
unstructured h case. The pseudo-inverse in (30) indicates that the
ambiguity factor gets fixed at the level of bh.

6. SIMULATION RESULTS

We consider a burst length of 100 symbol periods, a complex chan-
nel H randomly generated, of length N = 4. The number of
antennas is n = 2 and the oversampling factor is m = 2. The
input symbols are drawn from an i.i.d. BPSK sequence. The col-
ored noise is MA generated by filtering a complex white Gaussian
n � 1 process with an n � n FIR f filter of length equal to 3.

The SNR is defined as SNR =

�
khk

2
=mn

�
�
2
a

(kfk2=n) �2v
=

khk
2
�
2
a

mkfk2�2v
:

We use a sample covariance matrix bRY Y of size M = 20. Blind

estimation gives a channel estimate �̂h with k�̂hk = 1, we adjust

the right scale factor � so that hHo (� �̂h) = h
H
o ho where ho is the

true channel vector (see [5]): the final estimate is bh = � �̂h. The
performance measure is the Normalized MSE: NMSE, averaged
over 100 Monte-Carlo runs and defined as NMSE = Ekh �bhk2=khk2 . We simulated the previously described subspace fit-
ting (SSF) method and we evaluated its performance. In Fig. 2, we
plot the NMSE versus the SNR: it is clear that the method works.
On the same figure we plot the normalized Gaussain CRB com-
puted as trfCRB

h
g=khk

2. Whereas the method is a deteministic
one, and since the Gaussian CRB is lower than the deterministic
one, it can be seen than the NMSE curve is not close to the Gaus-
sian CRB unless the SNR is high. This means that potentially a
large gain in performance can be obtained by exploiting the infor-
mation on the second-order statistics of the symbols. In Fig. 3,

we exploit the prior knowledge of the transmission filter and we
measure the NMSE obtained by the SSF WTXFK method. We
consider a burst length of 200 symbol periods, n = 1 antenna,
an oversampling factor of m = 3. The propagation channel is of
length 3 and the transmission filter is a linarized GMSK filter trun-
cated to 4 symbol periods. Our simulation results show that the
purely blind SSF identification method suffers from channel zeros
that are almost in common (due to the limited excess bandwidth),
whereas the SSF identification approach WTXFK performs well.
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Figure 2: Performance of the SSF method

10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

N
M

S
E

SSF Method

SSF Method WTXFK

Figure 3: Performance of the SSF WTXFK method
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