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ABSTRACT

Blind audio source separation (BASS) arises in a number of appli-
cations in speech and music processing such as speech enhance-
ment, speaker diarization, automated music transcriptionetc. Gen-
erally, BASS methods consider multichannel signal capture. The
single microphone case is the most difficult underdetermined case,
but it often arises in practice. In the approach considered here,
the main source identifiability comes from exploiting the presumed
quasi-periodic nature of the sources via long-term autoregressive
(AR) modeling. Indeed, musical note signals are quasi-periodic and
so is voiced speech, which constitutes the most energetic part of
speech signals. We furthermore exploit (e.g. speaker or instrument
related) prior information in the spectral envelope of the source sig-
nals via short-term AR modeling. We present an iterative method
based on the minimization of the (weighted) Itakura-Saito distance
for estimating the source parameters directly from the mixture using
frame based processing.

1. INTRODUCTION

The need for Blind Audio Source Separation (BASS) arises with
various real-world signals, including speech enhancement, speaker
diarization, automated music transcription etc.. Generally, BASS
methods consider multichannel signal capture. The topic has been
dealt with extensively in the literature. In the (over) determined case
the source separation can be performed satisfactorily, especially in
a clean environment, for example by using Independent Component
Analysis (ICA) [1, 2]. For underdetermined BSS (UBSS) and espe-
cially for the single sensor case considered here, the problem is ill-
defined and its solution requires some additional assumptions. Ex-
isting approaches to this problem are generally based on learning,
using Factorial Vector Quantization [3], Gaussian (Scaled) Mixture
Model [4], or a Hidden Markov Model [5]. In the approach consid-
ered here, the sound is modeled as a sum of Auto-Regressive (AR)
processes with an additive white noise. Each source is assumed to
have a quasi-periodic nature wich makes its parameters identifiable.
By quasi-periodic we mean that the source is not exactly periodic
but the signal in consecutive periods is almost the same. Theeasiest
way to model such small variations is with a sochastic signalmodel,
the simplest one being a (zero mean) Gaussian Long-Term (LT)AR
process. We furthermore superpose a Short-Term (ST) AR aspect to
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capture the spectral envelope [6, 7]. Such ST+LT AR source models
are frequently used in speech encoding algorithms like CELPand
LPC [8]. The LT AR part allows to model the quasi-periodic nature
of the source. The ST AR model allows to model its spectral en-
velope, which renders strongly overlapping harmonics of different
sources separable.

In [9] we have presented a separation algorithm for such signal
model in which the sources and their parameters are estimated jointly
via an EM style approach. Due to the Gaussian model, the source ex-
traction consists of Wiener filtering, which gives good results when
the model parameters are well estimated. In the EM approach,the
AR source parameters are estimated by linear prediction on the re-
constructed source correlations, which are the sum of the sample
correlations of the estimated source plus the correlation of the source
estimation error (orthogonality property of LMMSE estimation). In
this paper, we focus on direct estimation of the source parameters
from the mixture (sample correlation or sample spectrum), assum-
ing again the number of sources known.
This paper is organized as follow. In section 2 we present thesignal
model. In section 3 we present the method to estimate the parame-
ters for all sources jointly, while in section 4 we provide a per source
approach. Then, in section 5, we provide some simulation results.

2. MODEL

2.1. Signal Model

The model for the sumyt of short plus long-term autoregressive
(AR) Gaussian sourcesxk,t plus Gaussian white noisevt (all in-
dependent) is :

yt =
K

∑

k=1

xk,t + vt, (1)

xk,t = −

pk
∑

n=1

ak,n xk,t−n + x̃k,t (2)

x̃k,t = bk x̃k,t−τk
+ ek,t (3)

wheret denotes discrete time,K is the number of sourcesxk,t, vt

has varianceσ2
v, ek,t is the excitation signal of sourcek and is also

assumed to be white Gaussian with varianceσ2
k. For each source

xk, τk is the period (its fractional part can be implemented by lin-
ear interpolation or even by rounding to the nearest sample if the
sampling frequency is high enough),bk its long-term prediction co-
efficient and the short-term prediction, of orderpk, uses coefficients
ak,n.

If we introduce the short-term and long-term prediction error
transfer functions



Ak(f) =

pk
∑

n=0

ak,n e
−j2πfn (4)

Bk(f) = 1 − bk e
−j2πfτk (5)

with ak,0 = 1, the spectra of the sources can be written as:

Sk(f ; θk) =
σ2

k

|Ak(f) Bk(f)|2
, k = 1, . . . , K (6)

S0(f ; θ0) = σ
2
v = σ

2
0 (7)

The additive noise can be considered as a (short-term) AR model of
order0 and included in the signal set (extension to a more general
AR model is immediate).

The source separation algorithm is based on the assumption that
the sources can be extracted from the mixture using the knowledge of
the parameters, which requires good estimates of these parameters.

2.2. Parameter Subsets

If the parameters can be considered constant during a short time
segment we can use a frame based method (lengthN ). The short
and long-term aspects of the signals being different by nature, it
may seem natural to separate their estimation. The parameters be-
ing source-related, we group them by source; this naturallyleads to
alternating the parameter estimation by source. The overall set of
parameters contains the following subsets (short term and long term
parameters):

θ = [θT
1 · · · θT

k ]T , θk = [ ak ϕk]T (8)

ak = [ak,1 · · · ak,pk
]T , ϕk = [ bk τk σ

2
k ]T . (9)

For the estimation of a given subset of parameters of a given source
we consider that the other sources are constant and also the other
subset of the current source.

3. JOINT ITAKURA-SAITO DISTANCE MINIMIZATION

Many approaches can be used for estimating the AR coefficients
from a mixture. Here we propose to minimize the Itakura-Saito (IS)
distance, which allows joint spectrum estimation and approximation.
The operations being in the spectral domain, low complexityimple-
mentations are possible.

3.1. Itakura-Saito Distance

Consider the IS distance between the periodogramY (f) = 1
N

|y(f)|2

and the parametric spectrumS(f ; θ)

IS =

∫

df

[

Y (f)

S(f ; θ)
− ln

(

Y (f)

S(f ; θ)

)

− 1

]

(10)

where S(f ; θ) =
∑K

k=0 Sk(f ; θk) =
∑

k
σ2

kS′

k(f ; θk) with
Sk(f ; θk) the parametric spectrum of the sourcek, defined in (6)
(S′

0(f ; θ0) = 1). If we consider the gradient of IS with respect to
(w.r.t.) parameterθi, we obtain:

∂

∂θi

∫

df

[

Y (f)

S(f ; θ)
− ln

(

Y (f)

S(f ; θ)

)

− 1

]

=

∫

df
1

S(f ; θ)2
[S(f ; θ) − Y (f)]

∂Si(f ; θi)

∂θi

(11)

3.2. Weighted Spectrum Matching

It turns out that the IS gradient is the same as that of Optimally
Weighted Spectrum Matching. Indeed, at high window lengthN ,
the periodogramY (f) has as mean the spectrumS(f ; θ) and as vari-
anceS(f ; θ)2 (with trueθ). Hence the optimally weighted spectrum
matching criterion becomes

∫

df
1

S(f ; θ)2
[Y (f) − S(f ; θ)]2 (12)

Taking the gradient w.r.t. a parameterθi in the parametric spectrum
S(f ; θ) (and ignoring the dependence of the weighting1

S(f ;θ)2
on

θi) leads to the same gradient as for the IS distance. The weight-
ing involves the true spectrumS(f ; θ), but can asymptotically be
replaced by a consistent spectrum estimator such as appropriate ver-
sions of the averaged or smoothed periodogram. In our simulations
we just use the periodogram itself.

3.3. Gaussian Maximum Likelihood

For sufficiently long window length, Maximum Likelihood (ML)
can be expressed in the frequency domain and the negative Gaussian
log likelihood ofy(f), which has zero mean and varianceN S(f ; θ),
becomes

∫

df

[

Y (f)

S(f ; θ)
+ ln (S(f ; θ))

]

(13)

which obviously will again give the same gradient as the IS distance.
This connection with Gaussian ML provides the right angle ofattack
for introducing a window in the data.

3.4. Short-term AR Parameters Estimation

We provide here the detailed derivations for the case of a short-term
AR model only (θk = ak). We obtain for sourcek:

∂Sk(f ; θk)

∂A∗

k

= − Sk(f ; θk)
Ak(f)

|Ak(f)|2
. (14)

This leads to a Yule-Walker like equation with a non zero Right Hand
Side (RHS), which needs to be solved iteratively:

T
(

rk,(0,··· ,pk−1)

)

ak = gk,(1,··· ,pk) − rk,(1,··· ,pk) (15)

whereT is a symmetric Toeplitz matrix, here filled with the firstpk

elements ofrk, ak are the short term AR coefficients (9),rk andgk

are defined by:

rk = F
−1

(

Y (f)

S(f ; θ)

Sk(f ; θk)

S(f ; θ)

1

|Ak|2

)

(16)

gk = F
−1

(

Sk(f ; θk)

S(f ; θ)

1

A∗

k

)

(17)

whereF is the Discrete Fourier Transform matrix (we approximate
the frequency domain integrals by DFT domain sums).

3.5. Source Power Estimation

Consider equivalently the weighted least squares spectrummatch-
ing, weighted by the inverse squared periodogram. We obtain:

∫

df
1

Y (f)2

[

K
∑

k=0

σ
2
kS

′

k(f ; θk) − Y (f)

]2

. (18)



The minimization with respect toσ2 = [ σ2
v σ2

1 ...σ2
K ]T leads to

solving the systemG σ2 = d, with:

Gik =

∫

df
S′

i(f ; θi) S′

k(f ; θk)

Y (f)2
, di =

∫

df
S′

i(f ; θi)

Y (f)
(19)

3.6. Overall iterative process

Since therk andgk are bothAk dependent, an iterative algorithm is
required, which can be summarized as:

• For all the sourcesk,

• constructrk andgk using (16) and (17);

• estimateak by solving (15), constructSk(f ; θk) andgk using
(6) and (17), updateS(f ; θ) andσ2;

• stop condition onrk, gk.

The procedure is stopped if the variation between two consecutive
estimated correlations is lower than a threshold or if the number of
iterations is greater than a maximum number.

4. PER SOURCE WEIGHTED ITAKURA-SAITO
DISTANCE MINIMIZATION

In order to find good initial estimates for the joint approach, we shall
consider the minimization of a weighted Itakura-Saito distance for
the spectrum of one sourcek, in which the weightingCk(f) focuses
on the harmonics where the source spectrum is much stronger than
that of the rest of the signal. The weighted Itakura Saito distance for
sourcek is:

∫

df Ck(f)

[

Yw(f)

Sk(f ; θk)
− 1 − ln

(

Yw(f)

Sk(f ; θk)

)]

. (20)

At this point we acknowledge the effect of a window in the frame
processing. The effect of a window on the spectrum of a short+long
term AR model is roughly equivalent to the effect of the long-term
correlation coefficientb. Hence, when the long-term correlation is
mainly limited by the window, we shall takeb arbitrarily close to 1,
but incorporate the effect of the window on the spectrum. Thesource
spectrum becomes a sum of harmonic peaks with a fundamental fre-
quencyf0, convolved with the squared Fourier transformW (f) of
the (properly normalized) analysis windowwt :

Ŝk(f) =
∑

n

αn W (f − n f0) (21)

where the summation range can go up to⌊ 0.5
f0

⌋ (wheref0 is as-
sumed to be expressed relative to the sampling frequency) orthis
initial spectral analysis may be limited to a limited frequency
range. The spectral peak magnitudesαn can be seen to be the
samples (at frequenciesn f0) of the spectral envelope which can
be modeled as (short-term) AR. Theαn can be estimated by a
least-squares fit between̂Sk(f) and Yw(f) = 1

N
|yw(f)|2, the

periodogram of the windowed signalwtyt. The spectrum of the
other signals in the mixture can be obtained as the residual spectrum
Ek(f) = max(Yw(f) − Ŝk(f ; θk), σ̂2

n). To improve the spectral
estimate w.r.t. a simple residual, we floor the residual at the noise
level. The (white) noise level can be estimated from the sorted pe-
riodogram valuesYw(f) (after some experimenting, we have taken
the value at 20% from the minimum).

4.1. Pitch Estimation

The estimation of theαn by a least-squares fit between̂Sk(f) and
Yw(f) mentioned above leads to theαn estimates as simple (scaled)
samples ofŜk(f) ∗ W̆ (f) (convolution) atf = n f0. The funda-
mental frequency estimate is then obtained from

f̂0,k = arg max
f

∫

df
Ŝk(f)

Ek(f)
. (22)

In other words, only the spectral peaks of a source that are less per-
turbed by the rest of the signal mixture are accounted for. The pitch
estimation requires an exhaustive search over the useful frequency
range. It can be carried out on a limited range of the spectrum. Mul-
tiple pitches are obtained if the cost function (22) shows multiple
maxima.

4.2. AR coefficients estimation

An estimate of the short term AR spectral envelope model of source
k can be obtained from (20) using the following weighting function:

Ck(f) =
Yw(f)

Ek(f)
. (23)

This weighting focuses the IS distance on frequencies wherea single
source model is valid. It is assumed though that the resulting sub-
set of frequencies is sufficient to determine the AR spectralenvelope
correctly, although the estimation quality of the short-term param-
eters is less critical than that of the long-term parameters(mainly
pitch). Minimizing the weighted IS distance leads to an algorithm
similar to the one presented in section 3.6 but now bothgk andrk

involve the weighting function.
In the case of an appropriately chosen window (see [9]), the win-

dowing can be expected to dominate the long-term correlation, lead-
ing to the following modification of the short-long term AR model

Sk(f)=
σ2

k

|Ak(f)|2|Bk(f)|2
→ Sk(f)=

σ2
k

|Ak(f)|2

∑

n

W (f−nf0,k).

(24)
So in this case the source parameters are limited tof0,k, ak andσ2

k.

5. SIMULATIONS

5.1. Synthetic data

The first simulation consists of applying the algorithm of section
3.6 on a synthetic spectrum, defined asY (f) =

∑

k
Sk(f ; θk) +

σ2
n in which we know perfectly the long term parameters (f0,k and

bk). The Short Term AR coefficients and the variances are initialized
using the per source approach. The spectral shapes have beenchosen
to have the same formant frequencies, which is the most difficult
case. The result is shown in Fig 1. As the signal is synthetic,and
corresponds to the model, the result is almost perfect.

5.2. Real Speech Segment

The next simulation involves a frame of two english speakers, a man
and a woman. The lenght of the segment is64 ms at 8 KHz, the
(equal power) mixture is artificially made and the signal to noise
ratio (SNR) is fixed to20 dB, the periods are estimated using the
per source pitch estimator. We use the ensuing parameter estimates
for performing the separation (as in [9]), we compare the obtained
sources to the original sources and the sources extracted using the
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Fig. 1. Spectrum of a synthetic mixture, noise spectrum, true source
spectra, true source spectral envelopes, estimated sources spectral
envelopes.

parameters estimated on the individual source signals (before the
mixing process). The separation algorithm from [9] extracts win-
dowed source frames. The waveform of the decomposition is shown
in Fig 2. The difference between the two source extraction versions
is small. Note that the speech segments are well voiced.

6. CONCLUSIONS

In this paper we have proposed an algorithm, based on the minimiza-
tion of the Itakura-Saito (IS) distance, for estimating theshort+long
term AR parameters of several sources and also the additive noise
variance from a mixture. The minimization of IS leads to an it-
erative algorithm involving Yule-Walker like equations for the AR
aspect and weighted least-squares spectrum matching for the esti-
mation of the powers of the sources. We have also presented an
algorithm based on the Weighted Itakura-Saito distance forthe initi-
zalition of the parameters in which we provide algorithms for source
pitch and AR spectral envelope estimation on a windowed version
of the data. Simulations on synthetic and real data are very encour-
aging. The estimated parameters lead to separation resultsthat are
close to the separation obtained by using the parameters estimated
on the individual sources. Future work will include the integration
of the window in the joint algorithm.
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