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ABSTRACT

Blind audio source separation (BASS) arises in a number pli-ap

cations in speech and music processing such as speech enhan

ment, speaker diarization, automated music transcrifgton Gen-
erally, BASS methods consider multichannel signal captufae

single microphone case is the most difficult underdeterchirese,
but it often arises in practice. In the approach considere,h
the main source identifiability comes from exploiting thegurmed
quasi-periodic nature of the sources via long-term autessive

(AR) modeling. Indeed, musical note signals are quasiepéiand

so is voiced speech, which constitutes the most energeticopa
speech signals. We furthermore exploit (e.g. speaker tnuiment

related) prior information in the spectral envelope of tharse sig-

nals via short-term AR modeling. We present an iterativehogt
based on the minimization of the (weighted) Itakura-Saistathce

for estimating the source parameters directly from the unéxtising

frame based processing.

1. INTRODUCTION

The need for Blind Audio Source Separation (BASS) arise$ wit
various real-world signals, including speech enhancenspaaker
diarization, automated music transcription etc.. Gehgr&8ASS
methods consider multichannel signal capture. The topschiesn
dealt with extensively in the literature. In the (over) datmed case
the source separation can be performed satisfactorilgcéfy in
a clean environment, for example by using Independent Casmio
Analysis (ICA) [1, 2]. For underdetermined BSS (UBSS) angkes
cially for the single sensor case considered here, the @moks ill-
defined and its solution requires some additional assumgti&x-
isting approaches to this problem are generally based anihegn
using Factorial Vector Quantization [3], Gaussian (ScaMixture
Model [4], or a Hidden Markov Model [5]. In the approach cahsi
ered here, the sound is modeled as a sum of Auto-RegressRie (A
processes with an additive white noise. Each source is asbstmn
have a quasi-periodic nature wich makes its parametersfidéte.
By quasi-periodic we mean that the source is not exactlyopari
but the signal in consecutive periods is almost the same e@biest
way to model such small variations is with a sochastic sigmadiel,
the simplest one being a (zero mean) Gaussian Long-TermART)
process. We furthermore superpose a Short-Term (ST) AR &Rgpe
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capture the spectral envelope [6, 7]. Such ST+LT AR sourcaatso
are frequently used in speech encoding algorithms like CahdP
LPC [8]. The LT AR part allows to model the quasi-periodicurat

Gf the source. The ST AR model allows to model its spectral en-
velope, which renders strongly overlapping harmonics &edint
sources separable.

In [9] we have presented a separation algorithm for suchasign
model in which the sources and their parameters are estirjoately
via an EM style approach. Due to the Gaussian model, the sexrc
traction consists of Wiener filtering, which gives good teswhen
the model parameters are well estimated. In the EM apprdheh,
AR source parameters are estimated by linear predictiomemne:-
constructed source correlations, which are the sum of thelea
correlations of the estimated source plus the correlatitimsosource
estimation error (orthogonality property of LMMSE estiioaf. In
this paper, we focus on direct estimation of the source patens
from the mixture (sample correlation or sample spectrursum-
ing again the number of sources known.

This paper is organized as follow. In section 2 we presensiteal
model. In section 3 we present the method to estimate thengara
ters for all sources jointly, while in section 4 we provideea pource
approach. Then, in section 5, we provide some simulatiauntses

2. MODEL

2.1. Signal Model

The model for the sumy: of short plus long-term autoregressive
(AR) Gaussian sourcesy, ; plus Gaussian white noise (all in-
dependent) is :
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wheret denotes discrete timéy is the number of sources; ;, v¢
has variance?, e ; is the excitation signal of sourdeand is also
assumed to be white Gaussian with variang¢e For each source
xk, T IS the period (its fractional part can be implemented by lin-
ear interpolation or even by rounding to the nearest sanfigleei
sampling frequency is high enouglh), its long-term prediction co-
efficient and the short-term prediction, of ordggr, uses coefficients
Ak.n-

If we introduce the short-term and long-term predictiornoerr
transfer functions
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with a0 = 1, the spectra of the sources can be written as:
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The additive noise can be considered as a (short-term) ARhodd

order0 and included in the signal set (extension to a more gener

AR model is immediate).

The source separation algorithm is based on the assump#tion t
the sources can be extracted from the mixture using the laumel of
the parameters, which requires good estimates of thesmptaes.

2.2. Parameter Subsets

If the parameters can be considered constant during a shuet t
segment we can use a frame based method (leNgthThe short
and long-term aspects of the signals being different by reatit
may seem natural to separate their estimation. The paresrizte
ing source-related, we group them by source; this natuledigis to
alternating the parameter estimation by source. The dvesalof
parameters contains the following subsets (short termamgiterm
parameters):

0 =
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For the estimation of a given subset of parameters of a givarce

we consider that the other sources are constant and alsdhee o
subset of the current source.

ak,pk]T7 ok =[brmon]".

3. JOINT ITAKURA-SAITO DISTANCE MINIMIZATION

aj(f; 0) (and ignoring the dependence of the weighti

3.2. Weighted Spectrum Matching

It turns out that the IS gradient is the same as that of Oplymal
Weighted Spectrum Matching. Indeed, at high window lenth
the periodograny (f) has as mean the spectruif; 6) and as vari-
anceS(f;0)* (with trued). Hence the optimally weighted spectrum
matching criterion becomes

. 1 -
[ 55 () = s(s:0) (12)
Taking the gradient w.r.t. a parametkrin the parametric spectrum
L on
2

;) leads to the same gradient as for the IS distance. The weight
ing involves the true spectrurfi( f; ), but can asymptotically be
replaced by a consistent spectrum estimator such as ajgisoper-
sions of the averaged or smoothed periodogram. In our stiona
we just use the periodogram itself.

3.3. Gaussian Maximum Likelihood

For sufficiently long window length, Maximum Likelihood (ML

can be expressed in the frequency domain and the negativssi@au

log likelihood ofy( f), which has zero mean and variange5( f; ),
Y (f)

becomes
fo |55+

which obviously will again give the same gradient as the Esatice.
This connection with Gaussian ML provides the right anglattdck
for introducing a window in the data.

+1In(5(f;9)) (13)

3.4. Short-term AR Parameters Estimation

We provide here the detailed derivations for the case of &-$éiom
AR model only 0, = a;). We obtain for sourcé:

9Sk(f10k) _ Ar(f)

Sa =~ S0 (14)

Many approaches can be used for estimating the AR coefficientrhijs leads to a Yule-Walker like equation with a non zero Rigénd

from a mixture. Here we propose to minimize the Itakura<s@B)
distance, which allows joint spectrum estimation and axipmation.
The operations being in the spectral domain, low complérityle-
mentations are possible.

3.1. Itakura-Saito Distance
Consider the IS distance between the periodogrdif) = = |y(f)|*
and the parametric spectrusf{ f; )
Y (/)
1S = /d { () ln( ) - 1} 10
st " \swi0 4o

where S(f;0) = S5, Sk(f;6r) S, 02 Sk(f;0k) with
Sk(f;0r) the parametric spectrum of the sourcedefined in (6)
(So(f;00) = 1). If we consider the gradient of IS with respect to

(w.r.t.) paramete#,, we obtain:
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Side (RHS), which needs to be solved iteratively:
T (Tkﬁ(o,... D

whereT is a symmetric Toeplitz matrix, here filled with the figst
elements of, a;, are the short term AR coefficients (9), andgx.
are defined by:

s1)) Bk = k(L) — Tho(Les o) (15)
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whereF' is the Discrete Fourier Transform matrix (we approximate
the frequency domain integrals by DFT domain sums).

3.5. Source Power Estimation

Consider equivalently the weighted least squares speatnaish-
ing, weighted by the inverse squared periodogram. We abtain

[ 5
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The minimization with respect to? = % |* leads to

solving the systenty o® = d, with:

)Sé(f;9k)
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Y (29)

3.6. Overall iterative process

Since ther;, andgy, are bothA; dependent, an iterative algorithm is

required, which can be summarized as:
e For all the sources,
e constructry andgy using (16) and (17);

e estimatea, by solving (15), construct ( f; 6x) andgy, using
(6) and (17), updatd( f; 9) anda?;

e stop condition on, g.
The procedure is stopped if the variation between two cansec

estimated correlations is lower than a threshold or if thelper of
iterations is greater than a maximum number.

4. PER SOURCE WEIGHTED ITAKURA-SAITO
DISTANCE MINIMIZATION

In order to find good initial estimates for the joint approaesk shall
consider the minimization of a weighted Itakura-Saito atise for
the spectrum of one sourégin which the weighting” (/) focuses

on the harmonics where the source spectrum is much stronger t

that of the rest of the signal. The weighted Itakura Saittadise for

sourcek is:
Yolf) 4 (%)} '
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At this point we acknowledge the effect of a window in the feam
processing. The effect of a window on the spectrum of a shart+ Se(f)=

term AR model is roughly equivalent to the effect of the Idegm

correlation coefficienb. Hence, when the long-term correlation is

mainly limited by the window, we shall takearbitrarily close to 1,
butincorporate the effect of the window on the spectrum. Sthece

spectrum becomes a sum of harmonic peaks with a fundamestal f

quency fo, convolved with the squared Fourier transfol#( f) of
the (properly normalized) analysis windaw :

- Tew

where the summation range can go upLQﬁ?J (where f, is as-
sumed to be expressed relative to the sampling frequencthisor
initial spectral analysis may be limited to a limited frequg
range. The spectral peak magnitudes can be seen to be the

(f = nfo) (21)

samples (at frequencies fy) of the spectral envelope which can

be modeled as (short-term) AR. The, can be estimated by a
least-squares fit betwee$i.(f) and Y, (f) = + lyw(f)?, the
periodogram of the windowed signal;y:. The spectrum of the
other signals in the mixture can be obtained as the resigeabisim
Ex(f) = max(Yw(f) — Sk(f;0k),62). To improve the spectral
estimate w.r.t. a simple residual, we floor the residual atrthise
level. The (white) noise level can be estimated from theesbpte-

4.1. Pitch Estimation

The estimation of they,, by a least-squares fit betweéh(f) and
Y. (f) mentioned above leads to the estimates as simple (scaled)
samples of5;.(f) * W (f) (convolution) atf = n fo. The funda-
mental frequency estimate is then obtained from

for = (22)

In other words, only the spectral peaks of a source that asefer-
turbed by the rest of the signal mixture are accounted foe fitch
estimation requires an exhaustive search over the usefgliéncy
range. It can be carried out on a limited range of the spectiuat
tiple pitches are obtained if the cost function (22) showsdtiple
maxima.

4.2. AR coefficients estimation

An estimate of the short term AR spectral envelope model ofce
k can be obtained from (20) using the following weighting fiiow:

Yu(f)
En(f)

This weighting focuses the IS distance on frequencies wéeiegle
source model is valid. It is assumed though that the reguftirb-
set of frequencies is sufficient to determine the AR speetra¢lope
correctly, although the estimation quality of the shortrteparam-
eters is less critical than that of the long-term parameteanly
pitch). Minimizing the weighted IS distance leads to an athm
similar to the one presented in section 3.6 but now katland r
involve the weighting function.

In the case of an appropriately chosen window (see [9]), the w
dowing can be expected to dominate the long-term correlaliéad-
ing to the following modification of the short-long term AR el

Cr(f) (23)
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So in this case the source parameters are limitefd 19 a, ando?.

5. SIMULATIONS

5.1. Synthetic data

The first simulation consists of applying the algorithm o€t
3. 6 on a synthetic spectrum, definedYaéf) = >, Sk(f;6k) +

o2 in which we know perfectly the long term parametefs  and
br). The Short Term AR coefficients and the variances are lizide
using the per source approach. The spectral shapes havehesam
to have the same formant frequencies, which is the most uliffic
case. The result is shown in Fig 1. As the signal is synthatid,
corresponds to the model, the result is almost perfect.

5.2. Real Speech Segment

The next simulation involves a frame of two english spegkerean
and a woman. The lenght of the segmenédsms at8 K H z, the
(equal power) mixture is artificially made and the signal tise
ratio (SNR) is fixed t@20 dB, the periods are estimated using the
per source pitch estimator. We use the ensuing parameteradss

riodogram value¥’,,(f) (after some experimenting, we have taken for performing the separation (as in [9]), we compare theioled

the value at 20% from the minimum).

sources to the original sources and the sources extractegl tie
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Fig. 1. Spectrum of a synthetic mixture, noise spectrum, truecgour
spectra, true source spectral envelopes, estimated sospeetral
envelopes.

parameters estimated on the individual source signaloi®dhe
mixing process). The separation algorithm from [9] exsaetn-
dowed source frames. The waveform of the decompositionasish
in Fig 2. The difference between the two source extractiosivas
is small. Note that the speech segments are well voiced.
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Fig. 2. Waveform of the mixture, male and female speech sources
and estimated sources. The sources are extracted withrdmagters

determined from the mixture or from the source.

6. CONCLUSIONS

In this paper we have proposed an algorithm, based on thenaaui
tion of the Itakura-Saito (IS) distance, for estimating shert+long
term AR parameters of several sources and also the additige n
variance from a mixture. The minimization of IS leads to an it
erative algorithm involving Yule-Walker like equationsrfihe AR
aspect and weighted least-squares spectrum matchingefastit
mation of the powers of the sources. We have also presented an
algorithm based on the Weighted ltakura-Saito distancthfmiti-
zalition of the parameters in which we provide algorithmssiource  [5]
pitch and AR spectral envelope estimation on a windowedivers
of the data. Simulations on synthetic and real data are veyLe-
aging. The estimated parameters lead to separation réisattare
close to the separation obtained by using the parameténsagst!
on the individual sources. Future work will include the griaion
of the window in the joint algorithm.

(3]

7. REFERENCES

[1] A. Hyvarinen, “Survey on independent component analysi
1999, Neural Computing Surveys.

[2] P. Comon and C. Jutten, “Handbook of blind source sefmarat

[6] A Schutz and D.T.M Slock,

Independent component analysis and applications,” 20ta; A
demic Press.

S.T. Roweis, “One microphone source separation Adumances
in Neural Information Processing Systems, 2000.

[4] A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval, “Asa

tation of bayesian models for single-channel source sépara
and its application to voice/music separation in populaigsg
|EEE Trans. on Audio, Speech Language Processing, 2007.

L. Benaroya and F. Bimbot, “Wiener based source separati
with HMM/GMM using a single sensor,” ilCAQO3, Nara, Japan.
“Blind audio source separation

using short+long term AR source models and iterative itakur
saito distance minimization,” iWWAENC, 2010.

[7] S Bensaid, A Schutz, and D.T.M Slock, “Single Microphone

Blind Audio Source Separation Using EM-Kalman Filter and
Short+Long Term AR Modeling,” i VA, 2010.

[8] W.C. Chu, Speech coding algorithms-foundation and evolution

of standardized coders, John Wiley and Sons, NewYork, 2003.

[9] A Schutz and D.T.M Slock, “Single-microphone blind aodi

source separation via Gaussian Short+Long Term AR Models,”
in ISCCSP, 2010.



