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Abstract thogonality property between the noise subspace of the
covariance matrix and the convolution matrix of the chan-
Subspace fitting has become a well known method feel. Recent papers [1, 9, 7, 13] provide performance anal-
identify FIR Single Input Multiple Output (SIMO) sys- ysis of these methods. The huge majority of algorithms
tems, only resorting to second-order statistics. The maiecently proposed to perform subspace fitting resort to
drawback of this method is its computational cost, dugVvD (singular value decomposition), which make them
to the eigendecomposition of the sample covariance mef little use for real-time implementations.
trix. We propose a scheme that solves the subspace fit- Recently, using the circularity property of the noise in
ting problem without using the eigendecomposition of thg, real symbol constellation based communication system,
cited matrix. The approach is based on the observatig}istensson, Ottersten and Slock proposed in [8] an alter-
that the signal subspace is also the column space of thgtive subspace fitting algorithm. In this paper, we show
noise-free covariance matrix. We suggest a two-step prgiat this method can be used in the general case, leading
cedure. In the first step, the column space is generatggy consistent estimate, and that the performance is sim-
by arbitrary combinations of the columns. In the secongay to that of the usual subspace fitting algorithms. Our
step, this column space estimate is refined by optimalijethod does not require the eigendecomposition of the
combining the columns using the channel estimate resultyyariance matrix. Nevertheless, as in the usual subspace
ing from the first step. Using recent results on Weightesitting method, the computation of a projection matrix is
Subspace Fitting, we are able to incorporate the Optim?équired which may remain computationally demanding.
weighting in the second step. For the unweighted siga study of the displacement rank of the matrices involved,
nal subspace fitting, our method only requires computgmg the use of fast convolution algorithms, leads us to de-
tion of two eigenvectors of a small matrix and of tWOyelop a fast algorithm.
projection matrices, although yielding the same perfor- |, s naner we consider the channel identification

mance as thg usual sqbspace fitting. Furthermore, a ?ﬁbblem, but the ideas presented here apply to any sub-
tailed analysis of the displacement structure of the VarEpace fitting problem

ous matrices involved leads to a fast algorithm. Further-

more, detailing the expressions of the criteria leads us to

draw equivalences between various blind identifications

schemes, namely SRM (Subchannel Response Matching), Data M odel

DML (Deterministic Maximum Likelihood) and linear

prediction approaches. We consider a communication system with one emitter
and a receiver consisting of an array/dfantennas. The

. received signals are oversampled by a factow.r.t. the

1 Introduction symbol rate. We furthermore consider linear digital mod-

ulation over a linear channel with additive noise, so that

Subspace fitting algorithms have been applied to thge received signaj(t) = [y1(t) ... ya (t)]" has the fol-
multi-channel identification problem. In [11], it was lowing form

shown that oversampled and/or multiple antenna received
signals may be modeled as low rank process.e's and thus y(t) = Zh(t — kT)a(k) + v(t)
lend themselves to subspace methods, exploiting the or- ’

*The work of Luc Deneire is supported by the EC by a Marie-Curie Fellowship (TMR program) under contract No ERBFMBICT950155



. . ~H
wherea(k) are the transmitted symbol, is the symbol  plock matrix. Under the constraifife|| = 1, k" is then

period andh(t) = [1(t) ... hay(t)]" is the channel im-  the eigenvector corresponding to the minimum eigenvalue

pulse response. The channel is assumed to be FIR Withihe matrix between the brackets. One can lower the
durationN'T'. If the received signals are oversampled a&omputational burden by using* > N + I, loosing
the rate’, the discrete input-output relationship can be '

some performance (see a.o. [10],[12]).

written as : : ee s ) |

— Obviously, the projection on the noise subspace satis-

y(k) = > h(i)a(k — i) + v(k) = hAx (k) + v(k) fies :
1=0

Pvy =Py, =1—Py, =1 Vs(VIVs) VI
where

y(k) = D) y(kT + ZT)7 . .y(kT + ==2T)"1", \yhich leads to the equivalent maximization :
h(k) = [R(KET)"h(kT + £T)7 . (kT + ==LT)"]",

v(k) = kD) P o(kT + LT)7 . v(kT + 217715,

h = [h(0),...,h(N—1)] and max h'
An(k) = [a(kT) .. .a((k=N+1)T)], superscript! de- h
noting conjugate transpose. So we get a SIMO system

with Mm channels. We consider additive temporally3 » Alternative Signal Subspace Fitting
and spatially white Gaussian circular noisék) with

roo(k — i) = E{v(k)v())?} = 02Iyméri. Assume Themethod Inthe absence of noise, we have :
we receivel, samples :

i=1

DL-1
Ej‘nwmﬂw7ﬁ«me]th

Ryy = R=HRaaH" = Vs AgVEH + Vg A Vil
Yi(k)=To(h)ALyn-1(k) + VL(k)
, _ _ whereAs = As — 02/ andA ), = 0. From this expres-
where 7. (h) is the convolution matrix of, ¥z (k) = sion, we observe that the column spaceg{adnd R are

H H H i
[y (k)_' Yy (k=LA 1)] gnd S|m|I§rIy forv,, (k). In _the same, leading us to introduce the following subspace
an obvious shorthand notation, we will use the foIIowmqti,[ting criterion :

expression :
Y=#A+V. min|[H — RBQ||} (1)
We assume thatwML > L + N — 1, so that the con- h.q
vo:ut|on mal'inx?:]}sh ;[alldar;d :?]/e assu??gl t?fhat\){ﬁtfull where||.||r denotes Frobenius norm antis a consistent
cg.umn rank (which leads .0 € usuall eq MABIIY CON-astimate ofk. The matrixB has the same dimensions as
ditions [10, 12]). The covariance matrix &f is e . . .
H and is fixed; we will see later how its ch0|cg influences
Ryy = E{yyH} — HRAAHT + 21 the performgnce. Note thaF the rangefof= RB pro-
vides an estimate for the signal subspace. We can take
RasR = Ryy — 35[ = Ryy — A\nin (Ryy)[ where

3 Signal Subspace Fitting (SSF) Amin (.) denotes the minimum eigenvalue (a rank reveal-
ing decomposition 0ftyy — Apsn (Ryy ) would lead to
3.1 Classical SSF a better estimate aR). We note that the simulations be-

. . » _low show that even simplyz = Ryy can work well also.
One can write the eigendecomposition of the covarianGg,q criterion (1) is separable i and Q. Minimizing

matrix Ryy = E{YYH} = VsAsViT +VvAN Vi in it first yields
which Vs has the same dimensionsHsandAy = o21.

The signal subspace can be expressed as: Q= (Fr)~'Fiy .
rangg Vs } = range(#} Substitutionin (1) yields :

We can then formulate the classical subspace fitting prob- min ||PE#|[% = min trace {%HP#%} .

lem: h

min ||H — V. Z
i I sQllp With the constraint|h|| = 1, we get:

SinceV)ys spans the noise subspace, this leads to

h = arg minlth:l trace{%HP#”H}
LMm .
mink’ | 3 Ta (VIO TH (V) | T = argmingp_, h' By (P )By (Pir) b
h i=DL =F

whereV; is columni of V = [VsVy], DY = N + Land whereP} = [P5(0),-- -, Pr(L—1)], Pr(r) areMmL x
superscript denotes the transposition of the blocks of al/m matrices formindz, andBy (P) is a block Toeplitz



Optimality of B = # Let R = R + AR, then using

matrix with first block column[ P ] The solution is . i ;
0 the eigendecomposition @, we get up to first order

thus Vi, (F), the eigenvector ofF corresponding to

Amaz (F). Given thatR = HR44H™, notevery choice ~ AR = AVs Ag VE + Vs AN VE + Vs Ag AVH
for B is acceptable. For instance, if the columnsif — +AVy Ay VI + Ve AN VI + Vi Ay AVY

are in the noise subspace, théh = 0 for R = R.

Intuitively, the best choice fo3 should beB = ¥, LetB = VsBs + VyBy where we assumé&s non-
which corresponds to matched filteridg with % (post-  Singular. Then using’ = R5 leads to

multiplication of B with a square non-singular matrix

does not change anything since that matrix can be ab&Pr =2 Sym (PVN {AVSAS + Vv ANy By By }
sorbed in@Q). These considerations lead to the following (MAVs) Ry (M)~ 1)

two-step procedure: ) . .
This shows thaBy = 0 is optimal.

step 1 atfirstp is chosen to be a fairly arbitrary selection

matrix. The first step yields a consistent channe,l\symptot,c equivalence of the two SSF Usmgp —
estimate (if#"’ B is non-singular). (Ryy — Amin(Ryy)I)H with Ryy and? consistent

estimates, one can show thaPr is the same as with
step 2 in this step, the consistent channel estimate of tffe— V.. Hence we get up to first order

first step is used to forri{ and we solve (1) again,
but now withB = 7‘[ P(Ryy—Am,n(Ryy)I)’;[\ = P(Ryy—aﬁ[)’}-[ = PVS .

For the first step, for instance the choig€ = [/ 0]leads This shows that the alternative signal subspace fitting
to sqmethmgthat is quite closely related to the “rectangumethod gives asymptotically exactly the same perfor-
lar Pisarenko” method of Fuchs [5]. We found howevemance as the original SSF method. Furthermore, as long
that aB of the same block ToeplitZ form a& but filled as consistent estimates are usedjﬁ)and/}.l, the corre-
with a randomly generated channel works fairly well (thissponding estimation errors have no influence up to first

choice will be the one used in the simulations). order.
then we get

Asymptotically, R = R. We getF = RB =
HRAaH" B. AssumingR44 > 0, thenif#” Bisnon- APr = )
singular, we get 2Sym(Pvy (AVs + AH(VIH) ' AwAS") V)

Pr =Py =Py, . (2) The use ofRyy instead ofR leads to the appearance of
the second term, the relative importance of which is pro-

I furthermore we have a consistent channel estimate, theartional toA y A5 '. Hence this term is negligible at high
we can take asymptoticallip = #. In that case, the SNR.
use ofR = Ryy and hencel’ = RyyH also leads to
(2). Pursuing this issue further, and applying a perturbag 5 \y/gj ghted SSF
tion analysis similar to the one hereunder, we will have
a consistent estimate of the channel with= Ryy as Gorokhov has shown [1] that the optimal weighting ma-

SNR— . trix for the weighted signal subspace fitting, correspond-
ing to:
3.4 Perturbation analysis h = arg min R B (PLYW By (PE)R
[1h]]=1

For the first step of the algorithm, we get a consistent

channel estimate #* B is non-singular. We can further- is W, = X# where# denotes the pseudo inverse and

more pursue the following asymptotic (first order perturo2Y is the covariance matrix @y (Py,, )", which can

bation) analysis.This analysis is based on the perturbati®¢ expressed in terms Bf,,,, Raa andhAMoreover b

analysis of a projection matrix. I = ' + AF, thenup can be replaced by its consistent estimateithout any

to first order inAF, P = Pr + APy where influence on the asymptotic accuracy. Following these
facts, a straightforward manner of doing Weighted SSF

APp = 2Sym (PE AF (FA )= ™) (3) isto compute the weighting matrix after the first step (as

we have consistent estimates ferand Py, we can do

where2Sym(X) = X4+XH it) and take it into account in the second step.



3.6 Fast Algorithm domain is7* (h') which spans the orthogonal comple-

: . : ment of7 (k) and satisfie§ (h*)7 (h) = 0. Form > 2,
The computational efficiency of the new elgendecomposb-IOCking equalizersi*' (=) can be constructed by consid-

trllon irse:upsptgce f|tt|tn% m;”;?f,;“'!i[ge'y depetnc:js 0vgring the channels in pairs. The choicehdf'(z) is far
ow the Projection matrix— '( ) IS COMPULed, ¢ unigue. To begin with, the number of pairs to be

other computation optimizations (e.g. fast Convomuonsionsidered, which is the number of rowsti (=), is not

being identical to the classical algorithms. This can bﬁnique. The minimum numberis—1 whereas the maxi-

done using fast algorithms for near-Toeplitz matrices (se um numberi n}_@{n;—l) . We shall calh*(z) balanced if

[6] and related papers). trace{h*(z)h* ()} = ah!(2)h(z) for some real scalar

a andh'(z) = h#(1/2*). People usually take the max-
imum number of rows, which corresponds to a balanced
h*T(z). The minimum number of rows ih*'(>) to be

Lemmal The displacement rank of /' = RB isat most
equal to 3Mm, i.e,, rank(Azarm 713 F) = 3Mm where

Aggrinm gy F = F — ZMmp 71T balanced isn. We get for instance
where Z* isa shift matrix of %ppropriatesize, Zero every- —hy(2) hi(z) --- 0
where except for 1'son the it subdiagonal. hLt (z) = . .
Proof: From the properties of Toeplitz and near- —hn(z) 0 o hi(2)
Toeplitz matrices, we know that the displacement rank hJ‘T(z) _
of ' = RB is the displacement rank ot = bal 4)
. From rankA zvm zumyR) = 2Mm .
fo o 0 —hy(s) ha(2)
and rankA;zvm z11B) = Mm, it is easily seen that ) _ _
rank A zarmg zvim zaimg 713 M) < 3Mm where A @ : £ £ 0
hy, (2) 0 e 0 —hi(2)

B= [ jg ;_)3 ],which completes the proof.

Continuing with thish -1 (z), its it row can be written as

Lemma2 The displacement rank of P is at most equal
to 6Mm.

rip pH ] thale(Z) =hT(2)P;, P; = CP;—1CH

F 1
it is easily seen that raf ;14 z0m 714 70my M) < -1 0
6Mm. P is the Schur complement of # F in M Pr=1
and thus has the same displacement rank with respect to .

Following these lemmas, one can construct a fast 10 - 0
algorithm [6] requiring O((6Mm)3 K log®(K)) flops,
whereK is the size ofR:. 0

Constructing the matrixM = [

4 Noise Subspace Fitting

4.1 Noise Subspace Linear Parameteriza- 42 Two Blind Channel Estimation Meth-
tions ods Using NSLP

In this section, we focus our attention on different Noise

Subspace Linear Parameterizations (NSLP) in term &tbchannel Response Matching (SRM)  Since for the
. . T

sub-channel blocking equalizers. Consider the case Bise-free signalwe gét(h™)Y = S the SRM method

two channelsMm = 2. One can observe that for noise-minimizes the criterior‘HT(hL)YH . The counterpart

free signals, we have.fx)y: (k) —hi (2)y2 (k) = 0, which 2

can be writtenina matrix form gh, (z) —hy(2)] y(k) = . .

bt () (k) = 0. The matrixh™! (») is parameterized by The SRM method is always proposedzusinigw(z). For

the channel impulse response and sati$figgz)h(z) = Ny (2), the SRM criterionHT(hL)YHz can be written

0. The counterpart of this parameterization in the timeas the minimization w.r.th of

formulation of this criterion in the domain use#i* (z).



N — Sinceh(z) = Q(z)h =
trace{7 (h")YY"T"(h™)} [[m co pmN= (N ]h the mini-

_ wace(nt ( sz_:l YN(k)Yﬁ(k’)) WY () mization problem given in (9) can be written as
F=N-1 iy o1 HAt B S dz
= (M-N+1l)trace{h~Ryvh~ "} H;;Il% h™Q'(2)P (z)P(z)Q(,z)h7
where the!l row of bt ishi = hTS;, Si=Ivo P = winpd (i- ?{ QT(z)ﬁT(z)ﬁ(z)Q(z)%) h
and® denotes Kronecker product. Hence the SRM crite- h 2mj z

rion in (6) becomes
© which is again of the forrmr;lin h! Ah and hence, the so-

min h" Bh  whereB = S:RyySf . (7) lutionisViin(A).

i=1

It is expected that the use oftg} () with more rows 4.3 NSF Without Eigendecomposition
leads to improved performance.

If the exact Ryy is used, then the noise contribu-The classical NSF Approach A natural NSF problem
tion to the criterion (7) i2c2 ||h||” (and here the mo- is based on the eigendecomposition of the covariance ma-
tivation for Choosing a balancdd* (Z) becomes appar- trix of the received Signal which leads to signal and noise
ent). Hence the minimization of (7) subject|th|| = 1  subspace contributions:
leads to the consistent SRM estimdie = Vi, (B),
at least if the channel length is chosen correctly. Since Ryy = EYY™ = VsAsVE + VieAnVE  (12)

02 = Anin(Ryy), the minimum eigenvalue d®y v, the

noise contribution can be eliminated by replaciRg,  Similarly to Vs which spans the signal subspadey

by Ryy — /\mm(}?yy)[ or, even better, by replacing  spans the noise subspace aiﬁ’é(hL) spans most of it.
by A = B — A\nin (B)I (the former choice doesn’t make Hence, the following noise subspace fitting can be intro-
B singular with a finite amount of data). With this modi- duced:

fication, the criterion in (7) becomes (asymptotically) in- min
sensitive to the noise contribution and any normalization hr
of h will lead to a consistent estimate.

‘TH(hL)—VNTHF (12)

After optimization w.r.t.7', we obtainmin”h”F1 of

Determination of h(z) from P(z) = h*7(0)P(z)
This method uses a NLSP that is not linear in terms of
the channel respons@((z) proposed in [12]). We shall
review the derivation of this technique. L&(z) =
S, p(i) 2~ with p(0) = I,,, be the MMSE multivari-
ate prediction error filter of ordet for the noise-free re- The Alternative NSF Approach An alternative NSF
ceived signaly(k). If L > L = [2=1], then it can be formulation that dooes not use the eigendecomposition of
shown [12] that the covariance matrix is the following one:

P(z)h(z) = h(0). (8)

trace{7 (h*)Py T#(h*)} = K" Ah  (13)

for some matrixA.

min |7 (h*) R ||7 (14)
From (8) it is clear thah(z) andP(z), h(0) are equiva- h
lent parameterizations. Consider the full rank (m—1)
matrix - (0) defined such thab* (0)h(0) = 0, then
(8) implies thatP(z) = h*7 (0)P(z) isa(m — 1) x m
polynomial that satisfies

where the matrix square root is of the formz =

VSA;%Q for some unitary matrig) (7 (h)RaaTH (h) =

VsAsVE + Ve AV with Ay = As—o2T andA)y =

0). Equivalence between classical NSF and eigendecom-
P(z)h(z) = 0. position free NSF can be proved by a similar scheme as

_ for the SSF. We established in [2] that the NSF prob-

P(z) or equivalentlyP(z) and h(0) can be estimated |em without eigendecomposition given by (14) is nearly

using linear prediction or Iterative Quadratic DML equivalent to the SRM problem apart from a weighting
(IQDML). If P(2) is estimated in a way that is robust to atrix.

order overestimation, then the orderdt) is known and
h(z) can be estimated straightforwardly fra). If not,
then we can consider the following problem

Another equivalence is the following one

Theorem 1 Assumethat h*1(z) = P(z), then the Eigen-
?{ hi(z B(:)h( )dz ©) decomposition Free NSF (EFNSF) problem given by (14)

mm i A is equivalent to the linear prediction criterion.

2wy



Proof: Consider now the NSF problem given by (14)

3 P\RE in|| 7 (ht)RZ|?
min |7 (h*)R¥|]* = min||7 (P)R?|] mnIT DRI

- mm trace {T RLRETH(_)}
_ : 1 » . > H 1
= mm trace {7 (P RTH( )} = m trace{T(h J(Ryy = Amin(Ryy)) T (R )}

H
= mm trace{ ( ) } _
k=N-1 -

= min(M - N+ )trace PRyy P }
P

trace{hLH 0 PRYYPHhL(O)}

M-1
min trace h* | > w YN (k)Y (k) | BT
h k=N-1

— i (R ) [}
= min trace{T(hL)WYYHTH(hL)}
= minIIT(hL)YII%v
This coincides with the linear prediction normal equations N N _
given by Since the noise in7 (h~)Y is 7(h~)V with co-
variance matrix 027 (h*)7H(h*); the optimally

weighted LS problem corresponding to the criterion

in [P(0: L) Ryy [P(0: L)

P(1:L)

#
[I P(1:L) |Ryy = [ 0 - 0 n;linYHTH(hL) ThHTERY| T(hh)Y
minh*" (0)o2h™(0) = h(O)—Vmax(Uf%) o o . :
h(o) Y This minimization problem coincides with the DML cri-
terion given by (17).
whereV,,q,(A) denotes the eigenvector corresponding to

the maximum eigenvalue of. Corollary 1 The DML criterion parameterized by P(z)
is equivalent to an optimally weighted linear prediction

N ] problem.
Theorem 2 For any choice of h*f(z), the optimal

weighted EFNSF problem is equivalent to the Determin-
istic Maximum Likelihood (DML) parameterized by the
same ht1(z).

Proof:

Corollary 2 The optimal weighted NS~ problemgiven by
(14) is asymptotically insensitive to the used noise sub-
space parameterization.

5 Equivalences

In the DML case, maximizing the likelihood reduces to
min||Y — 7 (h)A||*. This minimization problem is sep- Following the previous section, we can draw the follow-
Ah ing equivalences where = denotes algebraic equivalence

arable: for a fixedh, the optimal transmitted symbol esti- ) ] ,
P y and~ denotes asymptotical equivalence. Note that equiv-

mates are alences for WLP depend,on the sQemflc parameterization.
= (T T Y, () & &0’ v N
AN\ *‘
eliminatingA in terms ofh, we get WSSF || =]~ |~ |~|~|~
WEFSSF S~~~ ]~
mmYHP;(h)Y. (16) WNSF =~~~
h WEFNSF ===~
SincePt, ~ P Hence, we getmm of DML il
Tihy T PRty hl=1 WSRM = [ ~
WLP =
YHPTH(hL)Y WSSF : Weighted Signal Subspace Fitting
= YHETHRY[T(RYTH (RH#T(RYY WEFSSF: Weighted Eigendecomposition Free SSF
H (vH LrH (1L (17)  WNSF:  Weighted Noise Subspace Fitting
= h (y [T(hZ)T (R )]#y) I WEFNSF:  Wei i iti
= : eighted Eigendecomposition Free NSF
= h7Ah DML : Deterministic Maximum Likelihood
WSRM:  Weighted Subchannel Response Matching
where7 (b)Y = Yh for some). WLP : Weighted Linear Prediction



6 Simulation Results

6.1 Noise Subspace Fitting

with eigendecomposition (even slightly better at low
SNR, but this is not relevant). It is to note that we made
the simulation usingRyy and Ryy — Amin(Ryv)I,

In order to compare the performance of the NSF with-

out eigendecomposition to the one of the natural approac’ .
&

given by (13), the considered performance measure is tl
Normalized MSE (NMSE) which is computed over 300
Monte Carlo runs as

300

1
NMSE = — S w7 PL. h/||h|?
300; 0 /||

NRMSE in dB

!
N
=]

whereh PAh = min, ||ah — h||2. We use a randomly

generated complex chanrfelwith N = 3, M = 3 and

m = 1. The symbols are i.i.d. BPSK, and the data lengtl

is L = 210. The SNR is defined ag/h|[*c2)/(mMa2).

In Figure 1, we compare the SRM performance (sinc

SRM and NSF without eigendecomposition are equiva

lent criteria) to the NSF one. The two corresponding
curves are close which confirms that NSF and NSF with-

Channel NRMSE with estimated covariance matrix

which gives the same performance.
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out eigendecomposition lead to the same asymptotic per-
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Figure 1: Performance of NSF and NSF without

eigendecomposition (SRM)

6.2 Signal Subspace Fitting

In these simulations, we use a randomly generated real
channel of length 6T, an oversampling factormaf= 1

30

Figure 2: Subspace Fitting performance

Furthermore, we also include the NRMSE of channel
estimate when using a perfect estimated covariance for
the two steps. Comparison of the two graphs illustrates
the preponderance of the covariance estimation error on
the channel estimation error.

Channel NRMSE with Perfect estimation of the covariance matrix

O T T T T T

NRMSE in dB

-80 o : first step —

-90- +: second step

~100 L L L I I
-5 0 5 10 15 20 25
SNR

Figure 3: Subspace Fitting performance

andM = 3 antennas. We draw the NRMSE of the chan?  Conclusions

nel estimate.

The correlation matrix is calculated from a burst ofWe have proposed a new two-step algorithm for solving
100 QAM-4 symbols. For these simulations, we used 10e signal subspace fitting problem, in the channel identi-

Monte-Carlo runs.

fication context, which is computationally less demanding

We draw the NRMSE for the first step of the algo-than the usual algorithms. Perturbation analysis shows the
rithm, the second step and the subspace fitting with eigeasymptotic equivalence of the eigendecomposition-free

decomposition.

approach to the original method. This equivalence was

These curves show that the proposed algorithm yielaonfirmed by simulation results. Fast algorithms for the
the same performance as the subspace fitting algorithoalculation of the projection matrix have been explored.



The NSF without eigendecomposition introduced in
[3] was analyzed in this paper. Two main results were
established. The first concerns the case when we pa-

rameterize the noise subspace wRifx), we proved that
the minimization problem formulated is identical to the

[5]

linear prediction criterion. The second result elaborates
a weighted least squares approach to the NSF without

eigendecomposition. In this context, we proved that thejg] j. chun. Fast Array Algorithmsfor Sructured Ma-
optimally weighted NSF problem parameterized by a spe-

cific h*T(z) coincides with the DML criterion formulated

with this same parameterization. An immediate conse-
quence of these two results is the following: since the[7]

NSF criterion parameterized with(z) is the linear pre-

diction approach and since the optimally weighted NSF

is DML, the DML criterion parameterized b(z) is a
weighted version of the linear prediction approach.

was established in a previous work [2], that the DM

It
L 18]

optimization problem is asymptotically insensitive to the
noise subspace parameterization used. According to The-
orem 2, this result holds also to the optimally weighted

NSF without eigendecomposition.
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