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Abstract

Subspace fitting has become a well known method to
identify FIR Single Input Multiple Output (SIMO) sys-
tems, only resorting to second-order statistics. The main
drawback of this method is its computational cost, due
to the eigendecomposition of the sample covariance ma-
trix. We propose a scheme that solves the subspace fit-
ting problem without using the eigendecomposition of the
cited matrix. The approach is based on the observation
that the signal subspace is also the column space of the
noise-free covariance matrix. We suggest a two-step pro-
cedure. In the first step, the column space is generated
by arbitrary combinations of the columns. In the second
step, this column space estimate is refined by optimally
combining the columns using the channel estimate result-
ing from the first step. Using recent results on Weighted
Subspace Fitting, we are able to incorporate the optimal
weighting in the second step. For the unweighted sig-
nal subspace fitting, our method only requires computa-
tion of two eigenvectors of a small matrix and of two
projection matrices, although yielding the same perfor-
mance as the usual subspace fitting. Furthermore, a de-
tailed analysis of the displacement structure of the vari-
ous matrices involved leads to a fast algorithm. Further-
more, detailing the expressions of the criteria leads us to
draw equivalences between various blind identifications
schemes, namely SRM (Subchannel Response Matching),
DML (Deterministic Maximum Likelihood) and linear
prediction approaches.

1 Introduction

Subspace fitting algorithms have been applied to the
multi-channel identification problem. In [11], it was
shown that oversampled and/or multiple antenna received
signals may be modeled as low rank processes and thus
lend themselves to subspace methods, exploiting the or-

thogonality property between the noise subspace of the
covariance matrix and the convolution matrix of the chan-
nel. Recent papers [1, 9, 7, 13] provide performance anal-
ysis of these methods. The huge majority of algorithms
recently proposed to perform subspace fitting resort to
SVD (singular value decomposition), which make them
of little use for real-time implementations.

Recently, using the circularity property of the noise in
a real symbol constellation based communication system,
Kristensson, Ottersten and Slock proposed in [8] an alter-
native subspace fitting algorithm. In this paper, we show
that this method can be used in the general case, leading
to a consistent estimate, and that the performance is sim-
ilar to that of the usual subspace fitting algorithms. Our
method does not require the eigendecomposition of the
covariance matrix. Nevertheless, as in the usual subspace
fitting method, the computation of a projection matrix is
required which may remain computationally demanding.
A study of the displacement rank of the matrices involved,
and the use of fast convolution algorithms, leads us to de-
velop a fast algorithm.

In this paper, we consider the channel identification
problem, but the ideas presented here apply to any sub-
space fitting problem.

2 Data Model

We consider a communication system with one emitter
and a receiver consisting of an array ofM antennas. The
received signals are oversampled by a factorm w.r.t. the
symbol rate. We furthermore consider linear digital mod-
ulation over a linear channel with additive noise, so that
the received signaly(t) = [y1(t) : : : yM (t)]T has the fol-
lowing form

y(t) =
X
k

h(t� kT )a(k) + v(t)
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wherea(k) are the transmitted symbols,T is the symbol
period andh(t) = [h1(t) : : : hM(t)]T is the channel im-
pulse response. The channel is assumed to be FIR with
durationNT . If the received signals are oversampled at
the ratem

T
, the discrete input-output relationship can be

written as :

y(k) =

N�1X
i=0

h(i)a(k � i) + v(k) = hAN (k) + v(k)

where
y(k) = [y(kT )Hy(kT + 1

m
T )H : : :y(kT + m�1

m
T )H ]H ,

h(k) = [h(kT )Hh(kT + 1

m
T )H : : :h(kT + m�1

m
T )H ]H ,

v(k) = [v(kT )Hv(kT + 1

m
T )H : : :v(kT + m�1

m
T )H ]H;

h = [h(0); : : : ;h(N�1)] and
AN (k) = [a(kT ) : : :a((k�N+1)T )], superscriptH de-
noting conjugate transpose. So we get a SIMO system
with Mm channels. We consider additive temporally
and spatially white Gaussian circular noisev(k) with
rvv(k � i) = E

�
v(k)v(i)H

	
= �2vIMm�ki. Assume

we receiveL samples :

Y L(k) = TL(h)AL+N�1(k) + V L(k)

whereTL(h) is the convolution matrix ofh, Y L(k) =
[yH (k) � � �yH (k�L+1)]H and similarly forV L(k). In
an obvious shorthand notation, we will use the following
expression :

Y = HA + V :

We assume thatmML > L + N � 1, so that the con-
volution matrixH is “tall” and we assumeH to have full
column rank (which leads to the usual identifiability con-
ditions [10, 12]). The covariance matrix ofY is

RYY = E
n
Y Y

H
o
= HRAAH

H + �2vI:

3 Signal Subspace Fitting (SSF)

3.1 Classical SSF

One can write the eigendecomposition of the covariance

matrixRYY = E
n
Y Y

H
o
= VS�SV

H
S

+VN�NV
H
N

in

whichVS has the same dimensions asH and�N = �2vI.
The signal subspace can be expressed as:

rangefVSg = rangefHg

We can then formulate the classical subspace fitting prob-
lem :

min
h;Q

jjH � VSQjj
2
F

SinceVN spans the noise subspace, this leads to

min
h

h
t

"
LMmX
i=D?

TN (V Ht
i )T H

N (V Ht
i )

#
h
Ht

whereVi is columni of V = [VSVN ],D? = N + L and
superscriptt denotes the transposition of the blocks of a

block matrix. Under the constraintjjhjj = 1, bhHt is then
the eigenvector corresponding to the minimum eigenvalue
of the matrix between the brackets. One can lower the
computational burden by usingD? > N + L, loosing
some performance (see a.o. [10],[12]).

Obviously, the projection on the noise subspace satis-
fies :

PVN = P?VS = I � PVS = I � VS(V
H
S
VS )

�1V H
S

which leads to the equivalent maximization :

max
h

h
t

24D?
�1X

i=1

TN (V
Ht
i )T H

N (V Ht
i )

35hHt

3.2 Alternative Signal Subspace Fitting

The method In the absence of noise, we have :

RY Y = R = HRAAH
H = VS�

0

S
V H
S

+ VN�
0

N
V H
N

where�
0

S
= �S � �2vI and�

0

N
= 0. From this expres-

sion, we observe that the column spaces ofH andR are
the same, leading us to introduce the following subspace
fitting criterion :

min
h;Q

jjH � R̂BQjj2F (1)

wherejj:jjF denotes Frobenius norm and̂R is a consistent
estimate ofR. The matrixB has the same dimensions as
H and is fixed; we will see later how its choice influences
the performance. Note that the range ofF = R̂B pro-
vides an estimate for the signal subspace. We can take
R̂ asR̂ = R̂YY � b�2vI = R̂Y Y � �min(R̂YY )I where
�min(:) denotes the minimum eigenvalue (a rank reveal-
ing decomposition of̂RY Y ��min(R̂Y Y )I would lead to
a better estimate ofR). We note that the simulations be-
low show that even simplŷR = R̂Y Y can work well also.
The criterion (1) is separable inh andQ. Minimizing
w.r.t.Q first yields

Q = (FHF )�1FH
H :

Substitution in (1) yields :

min
h

jjP?FHjj
2
F = min

h

trace
�
H
HP?FH

	
:

With the constraintjjhjj = 1, we get:

bh = argmin
jjhjj=1

trace
�
H
HP?FH

	
= argmin

jjhjj=1
h
t
B
H
N (P?F )BN (P?F )| {z }

=F

h
Ht

whereP?F = [P?F (0); � � � ;P
?

F (L�1)];P
?

F (� ) areMmL�

Mmmatrices formingP?F , andBN (P) is a block Toeplitz



matrix with first block column

�
P
0

�
. The solution is

thus Vmax(F), the eigenvector ofF corresponding to
�max(F). Given thatR = HRAAH

H , not every choice
for B is acceptable. For instance, if the columns ofB

are in the noise subspace, thenF = 0 for R̂ = R.
Intuitively, the best choice forB should beB = H,
which corresponds to matched filteringHH withH (post-
multiplication of B with a square non-singular matrix
does not change anything since that matrix can be ab-
sorbed inQ). These considerations lead to the following
two-step procedure:

step 1 at first,B is chosen to be a fairly arbitrary selection
matrix. The first step yields a consistent channel
estimate (ifHHB is non-singular).

step 2 in this step, the consistent channel estimate of the
first step is used to formbH and we solve (1) again,
but now withB = bH.

For the first step, for instance the choiceBH = [I 0] leads
to something that is quite closely related to the “rectangu-
lar Pisarenko” method of Fuchs [5]. We found however
that aB of the same block Toeplitz form asH but filled
with a randomly generated channel works fairly well (this
choice will be the one used in the simulations).

3.3 Asymptotics: exact estimation

Asymptotically, R̂ = R. We get F = RB =
HRAAH

HB. AssumingRAA > 0, then ifHHB is non-
singular, we get

PF = PH = PVS : (2)

If furthermore we have a consistent channel estimate, then
we can take asymptoticallyB = H. In that case, the
use ofR = RYY and henceF = RYYH also leads to
(2). Pursuing this issue further, and applying a perturba-
tion analysis similar to the one hereunder, we will have
a consistent estimate of the channel withR̂ = R̂YY as
SNR!1.

3.4 Perturbation analysis

For the first step of the algorithm, we get a consistent
channel estimate ifHHB is non-singular. We can further-
more pursue the following asymptotic (first order pertur-
bation) analysis.This analysis is based on the perturbation
analysis of a projection matrix. If̂F = F +�F , then up
to first order in�F , PF̂ = PF +�PF where

�PF = 2Sym
�

P?F �F (FHF )�1FH
�

(3)

where2Sym(X) = X+XH .

Optimality of B = H Let R̂ = R + �R, then using
the eigendecomposition ofR, we get up to first order

�R = �VS �
0

S
V H
S

+ VS ��
0

S
V H
S

+ VS �
0

S
�V H

S

+�VN �
0

N
V H
N

+ VN ��
0

N
V H
N

+ VN �
0

N
�V H

N

Let B = VSBS + VNBN where we assumeBS non-
singular. Then usinĝF = R̂B leads to

�PF = 2Sym
�

PVN
h
�VS�

0

S
+ VN ��

0

N
BNB

�1
S

i
(HHVS )�1R

�1
AA(H

H
H)�1HH

�
This shows thatBN = 0 is optimal.

Asymptotic equivalence of the two SSF Using F̂ =
(R̂YY � �min(R̂YY )I) bH with R̂YY and bH consistent
estimates, one can show that�PF is the same as with
F̂ = V̂S . Hence we get up to first order

P
(R̂Y Y ��min(R̂Y Y )I)bH = P(R̂Y Y ��2vI)H

= PV̂S :

This shows that the alternative signal subspace fitting
method gives asymptotically exactly the same perfor-
mance as the original SSF method. Furthermore, as long
as consistent estimates are used for�2v andH, the corre-
sponding estimation errors have no influence up to first
order.

Simplified method When we use simplŷF = R̂Y Y bH,
then we get

�PF =

2Sym(PVN
�
�VS +�H(V H

S
H)�1�N��1

S

�
V H
S
)

The use ofR̂YY instead ofR̂ leads to the appearance of
the second term, the relative importance of which is pro-
portional to�N��1

S
. Hence this term is negligible at high

SNR.

3.5 Weighted SSF

Gorokhov has shown [1] that the optimal weighting ma-
trix for the weighted signal subspace fitting, correspond-
ing to:

bh = arg min
jjhjj=1

h
t
B
H
N (P?F )WBN (P?F )h

Ht

is Wo = �# where# denotes the pseudo-inverse and
�2v� is the covariance matrix ofBN (PVN )h

Ht, which can
be expressed in terms ofPVN ; RAA andh. Moreover,�
can be replaced by its consistent estimateb� without any
influence on the asymptotic accuracy. Following these
facts, a straightforward manner of doing Weighted SSF
is to compute the weighting matrix after the first step (as
we have consistent estimates forh andPVN , we can do
it) and take it into account in the second step.



3.6 Fast Algorithm

The computational efficiency of the new eigendecomposi-
tion free subspace fitting method still largely depends on
how the Projection matrixI�F (FHF )�1F is computed,
other computation optimizations (e.g. fast convolutions)
being identical to the classical algorithms. This can be
done using fast algorithms for near-Toeplitz matrices (see
[6] and related papers).

Lemma 1 The displacement rank of F = RB is at most
equal to 3Mm, i.e., rank(�fZMm;Z1gF ) = 3Mm where

�fZMm;Z1gF = F � ZMmFZ1T

where Zi is a shift matrix of appropriate size, zero every-
where except for 1’s on the ith subdiagonal.

Proof: From the properties of Toeplitz and near-
Toeplitz matrices, we know that the displacement rank
of F = RB is the displacement rank ofM =�
I B

R 0

�
. From rank(�fZMm;ZMm

gR) = 2Mm

and rank(�fZMm;Z1gB) = Mm, it is easily seen that
rank(�fZMm�ZMm;ZMm�Z1gM) � 3Mm whereA �

B =

�
A 0

0 B

�
, which completes the proof.

}

Lemma 2 The displacement rank of P?F is at most equal
to 6Mm.

Constructing the matrixM =

�
FHF FH

F I

�
,

it is easily seen that rank(�
fZ1

�ZMm;Z1
�ZMm

g
M) �

6Mm. P?F is the Schur complement ofFHF in M

and thus has the same displacement rank with respect to
fZMm; ZMm

g.
}

Following these lemmas, one can construct a fast
algorithm [6] requiringO((6Mm)3K log2(K)) flops,
whereK is the size ofR̂.

4 Noise Subspace Fitting

4.1 Noise Subspace Linear Parameteriza-
tions

In this section, we focus our attention on different Noise
Subspace Linear Parameterizations (NSLP) in term of
sub-channel blocking equalizers. Consider the case of
two channels:Mm = 2. One can observe that for noise-
free signals, we have h2(z)y1(k)�h1(z)y2(k) = 0, which
can be written in a matrix form as[h2(z) �h1(z)]y(k) =
h?y(z)y(k) = 0. The matrixh?y(z) is parameterized by
the channel impulse response and satisfiesh?y(z)h(z) =
0. The counterpart of this parameterization in the time

domain isT H (h?) which spans the orthogonal comple-
ment ofT (h) and satisfiesT (h?)T (h) = 0. Form > 2,
blocking equalizersh?y(z) can be constructed by consid-
ering the channels in pairs. The choice ofh?y(z) is far
from unique. To begin with, the number of pairs to be
considered, which is the number of rows inh?y(z), is not
unique. The minimum number ism�1 whereas the maxi-
mum number ism(m�1)

2
. We shall callh?y(z) balanced if

tracefh?y(z)h?(z)g = �hy(z)h(z) for some real scalar
� andhy(z) = hH(1=z�). People usually take the max-
imum number of rows, which corresponds to a balanced
h?y(z). The minimum number of rows inh?y(z) to be
balanced ism. We get for instance

h?ymin(z) =

264 �h2(z) h1(z) � � � 0
...

...
...

...
�hm(z) 0 � � � h1(z)

375
h?ybal(z) =266664
�h2(z) h1(z) 0 � � � 0

0 �h3(z) h2(z) � � �

...
...

...
... 0

hm(z) 0 � � � 0 �h1(z)

377775
(4)

Continuing with thish?ybal(z), its ith row can be written as

h?y
bal;i(z) = hT (z)Pi;Pi = CPi�1C

H

P1 =

266664
0 1 0 � � �

�1 0 � � �

0
...

...
...

377775

C =

266664
0 � � � 0 1
1 0 � � � 0

0
...

...
... 0 1 0

377775

(5)

4.2 Two Blind Channel Estimation Meth-
ods Using NSLP

Subchannel Response Matching (SRM) Since for the
noise-free signal we getT (h?)Y = 0, the SRM method

minimizes the criterion



T (h?)Y 


2

2
. The counterpart

formulation of this criterion in thez domain usesh?(z).
The SRM method is always proposed usingh?max(z). For

h?ybal(z), the SRM criterion



T (h?)Y 


2

2
can be written

as the minimization w.r.t.h of



tracefT (h?)Y Y H
T
H(h?)g

= tracefh?
 

M�1X
k=N�1

Y N (k)Y H
N (k)

!
h
?H
g

= (M�N+1) tracefh?R̂Y Yh
?H

g

(6)

where theith row of h? ish?i = h
T
Si ; Si = IN 
 Pi

and
 denotes Kronecker product. Hence the SRM crite-
rion in (6) becomes

min
h

h
H B h ; whereB =

mX
i=1

SiR̂
�

YY S
H
i : (7)

It is expected that the use of ah?y
bal(z) with more rows

leads to improved performance.
If the exactRYY is used, then the noise contribu-

tion to the criterion (7) is2�2v khk
2 (and here the mo-

tivation for choosing a balancedh?(z) becomes appar-
ent). Hence the minimization of (7) subject tokhk = 1
leads to the consistent SRM estimateh = Vmin(B),
at least if the channel length is chosen correctly. Since
�2v = �min(RY Y ), the minimum eigenvalue ofRY Y , the
noise contribution can be eliminated by replacingR̂YY
by R̂YY � �min(R̂YY )I or, even better, by replacingB
byA = B � �min(B)I (the former choice doesn’t make
B singular with a finite amount of data). With this modi-
fication, the criterion in (7) becomes (asymptotically) in-
sensitive to the noise contribution and any normalization
of h will lead to a consistent estimate.

Determination of h(z) from P(z) = h
?H(0)P(z)

This method uses a NLSP that is not linear in terms of
the channel response (P(z) proposed in [12]). We shall
review the derivation of this technique. LetP(z) =PL

i=0 p(i) z
�i with p(0) = Im be the MMSE multivari-

ate prediction error filter of orderL for the noise-free re-
ceived signaly(k). If L � L = d

N�1
m�1

e, then it can be
shown [12] that

P(z)h(z) = h(0) : (8)

From (8) it is clear thath(z) andP(z);h(0) are equiva-
lent parameterizations. Consider the full rankm�(m�1)
matrixh?(0) defined such thath?H(0)h(0) = 0, then
(8) implies thatP(z) = h

?H(0)P(z) is a (m � 1) � m

polynomial that satisfies

P(z)h(z) = 0:

P(z) or equivalentlyP(z) and h(0) can be estimated
using linear prediction or Iterative Quadratic DML
(IQDML). If P(z) is estimated in a way that is robust to
order overestimation, then the order ofh(z) is known and
h(z) can be estimated straightforwardly fromP(z). If not,
then we can consider the following problem

min
h

1

2�j

I
hy(z)P

y

(z)P(z)h(z)
dz

z
(9)

Sinceh(z) = Q(z)h =�
Im � � � z�(N�2)Im z�(N�1)Im

�
h, the mini-

mization problem given in (9) can be written as

min
h

1

2�j

I
h
HQy(z)P

y

(z)P(z)Q(z)h
dz

z

= min
h

h
H

�
1

2�j

I
Qy(z)P

y

(z)P(z)Q(z)
dz

z

�
h

(10)
which is again of the formmin

h

h
HAh and hence, the so-

lution isVmin(A).

4.3 NSF Without Eigendecomposition

The classical NSF Approach A natural NSF problem
is based on the eigendecomposition of the covariance ma-
trix of the received signal which leads to signal and noise
subspace contributions:

RYY = EY Y H = VS�SV
H
S

+ VN�NV
H
N

(11)

Similarly to VS which spans the signal subspace,VN
spans the noise subspace andTH (h?) spans most of it.
Hence, the following noise subspace fitting can be intro-
duced:

min
h;T




T H (h?)�VNT




F

(12)

After optimization w.r.t.T , we obtainmin
khk2=1

of

tracefT (h?)P?VN T
H (h?)g = h

HAh (13)

for some matrixA.

The Alternative NSF Approach An alternative NSF
formulation that dooes not use the eigendecomposition of
the covariance matrix is the following one:

min
h

kT (h?)R
1
2 k

2
F (14)

where the matrix square root is of the formR
1
2 =

VS�
0
1
2

S
Q for some unitary matrixQ (T (h)RAAT

H(h) =
VS�0SV

H
S

+ VN�0
N
V H
N

with�0S = �S��2vI and�0
N

=
0). Equivalence between classical NSF and eigendecom-
position free NSF can be proved by a similar scheme as
for the SSF. We established in [2] that the NSF prob-
lem without eigendecomposition given by (14) is nearly
equivalent to the SRM problem apart from a weighting
matrix.

Another equivalence is the following one

Theorem 1 Assume that h?y(z) = P(z), then the Eigen-
decomposition Free NSF (EFNSF) problem given by (14)
is equivalent to the linear prediction criterion.



Proof:

min
h

kT (h?)R
1
2 k

2 = min
P

kT (P )R
1
2 k

2

= min
P

trace
n
T (P )R

1
2R

H

2 T
H(P )

o
= min

P

trace
�
T (P )RT H(P )

	
= min

P

trace

(
P

 
M�1X
k=N�1

R(k)

!
P
H

)
= min

P

(M �N + 1) trace
n
PR̂YY P

H
o

= min
P

(M �N + 1)

trace
n
h
?H (0)PR̂YY PH

h
?(0)

o
This coincides with the linear prediction normal equations
given by

min
P (1:L)

[P (0 : L)] R̂Y Y [P (0 : L)]H )

8<:
�
I P (1 : L)

�
R̂Y Y =

h
�2ey 0 � � � 0

i
min
h(0)

h
?H(0)�2eyh?(0)) h(0) = Vmax(�

2ey)
whereVmax(A) denotes the eigenvector corresponding to
the maximum eigenvalue ofA.

Theorem 2 For any choice of h?y(z), the optimal
weighted EFNSF problem is equivalent to the Determin-
istic Maximum Likelihood (DML) parameterized by the
same h?y(z).

Proof:
In the DML case, maximizing the likelihood reduces to
min
A;h

kY � T (h)Ak2. This minimization problem is sep-

arable: for a fixedh, the optimal transmitted symbol esti-
mates are

A =
�
T
H (h)T (h)

��1
T
H(h)Y ; (15)

eliminatingA in terms ofh, we get

min
h

Y
HP?

T (h)
Y : (16)

SinceP?

T (h)
� P

T
H(h

?

)
. Hence, we getmin

khk=1

of

Y
HP

T H (h
?

)
Y

= Y
H
T
H (h?)[T (h?)T H (h?)]#T (h?)Y

= h
H
�
Y
H [T (h?)T H (h?)]#Y

�
h

= h
HAh

(17)

whereT (h?)Y = Yh for someY.

Consider now the NSF problem given by (14)

min
h

kT (h?)R̂
1
2 k

2

= min
h

trace
n
T (h?)R̂T H(h?)

o
= min

h

trace
n
T (h?)(R̂YY � �min(R̂YY ))T

H (h?)
o

= min
h

trace

(
h
?

 
M�1X
k=N�1

wkY N (k)Y H
N (k)

!
h
?H

���min(R̂YY )jjhjj
2
o

= min
h

trace
n
T (h?)WY Y

H
T
H(h?)

o
= min

h

kT (h?)Y k2W

Since the noise inT (h?)Y is T (h?)V with co-
variance matrix �2vT (h

?)T H(h?); the optimally
weighted LS problem corresponding to the criterion
min
h

kT (h?)Y k2W is given by

min
h

Y
H
T
H(h?)

h
T (h?)T H (h?)

i#
T (h?)Y

This minimization problem coincides with the DML cri-
terion given by (17).

Corollary 1 The DML criterion parameterized by P(z)
is equivalent to an optimally weighted linear prediction
problem.

Corollary 2 The optimal weighted NSF problem given by
(14) is asymptotically insensitive to the used noise sub-
space parameterization.

5 Equivalences

Following the previous section, we can draw the follow-
ing equivalences where = denotes algebraic equivalence
and� denotes asymptotical equivalence. Note that equiv-
alences for WLP depend on the specific parameterization.

W
SSF

W
EFSSF

W
NSF

W
EFNSF

DM
L

W
SRM

W
LP

WSSF = � � � � �

WEFSSF = � � � �

WNSF = � � � �

WEFNSF = = = �

DML = = �

WSRM = �

WLP =

WSSF : Weighted Signal Subspace Fitting
WEFSSF: Weighted Eigendecomposition Free SSF
WNSF : Weighted Noise Subspace Fitting
WEFNSF: Weighted Eigendecomposition Free NSF
DML : Deterministic Maximum Likelihood
WSRM : Weighted Subchannel Response Matching
WLP : Weighted Linear Prediction



6 Simulation Results

6.1 Noise Subspace Fitting

In order to compare the performance of the NSF with-
out eigendecomposition to the one of the natural approach
given by (13), the considered performance measure is the
Normalized MSE (NMSE) which is computed over 300
Monte Carlo runs as

NMSE =
1

300

300X
i=1

h
HP?bh(i)h=khk

2

wherehHP?bhh = min� k�bh� hk
2. We use a randomly

generated complex channelh with N = 3, M = 3 and
m = 1. The symbols are i.i.d. BPSK, and the data length
is L = 210. The SNR is defined as(khk2�2a)=(mM�2v).
In Figure 1, we compare the SRM performance (since
SRM and NSF without eigendecomposition are equiva-
lent criteria) to the NSF one. The two corresponding
curves are close which confirms that NSF and NSF with-
out eigendecomposition lead to the same asymptotic per-
formance.
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Figure 1: Performance of NSF and NSF without
eigendecomposition (SRM)

6.2 Signal Subspace Fitting

In these simulations, we use a randomly generated real
channel of length 6T, an oversampling factor ofm = 1
andM = 3 antennas. We draw the NRMSE of the chan-
nel estimate.

The correlation matrix is calculated from a burst of
100 QAM-4 symbols. For these simulations, we used 100
Monte-Carlo runs.

We draw the NRMSE for the first step of the algo-
rithm, the second step and the subspace fitting with eigen-
decomposition.

These curves show that the proposed algorithm yields
the same performance as the subspace fitting algorithm

with eigendecomposition (even slightly better at low
SNR, but this is not relevant). It is to note that we made
the simulation usingR̂YY and R̂YY � �min(R̂YY )I,
which gives the same performance.
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Figure 2: Subspace Fitting performance

Furthermore, we also include the NRMSE of channel
estimate when using a perfect estimated covariance for
the two steps. Comparison of the two graphs illustrates
the preponderance of the covariance estimation error on
the channel estimation error.
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Figure 3: Subspace Fitting performance

7 Conclusions

We have proposed a new two-step algorithm for solving
the signal subspace fitting problem, in the channel identi-
fication context, which is computationally less demanding
than the usual algorithms. Perturbation analysis shows the
asymptotic equivalence of the eigendecomposition-free
approach to the original method. This equivalence was
confirmed by simulation results. Fast algorithms for the
calculation of the projection matrix have been explored.



The NSF without eigendecomposition introduced in
[3] was analyzed in this paper. Two main results were
established. The first concerns the case when we pa-
rameterize the noise subspace withP(z), we proved that
the minimization problem formulated is identical to the
linear prediction criterion. The second result elaborates
a weighted least squares approach to the NSF without
eigendecomposition. In this context, we proved that the
optimally weighted NSF problem parameterized by a spe-
cific h?y(z) coincides with the DML criterion formulated
with this same parameterization. An immediate conse-
quence of these two results is the following: since the
NSF criterion parameterized withP(z) is the linear pre-
diction approach and since the optimally weighted NSF
is DML, the DML criterion parameterized byP(z) is a
weighted version of the linear prediction approach. It
was established in a previous work [2], that the DML
optimization problem is asymptotically insensitive to the
noise subspace parameterization used. According to The-
orem 2, this result holds also to the optimally weighted
NSF without eigendecomposition.
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