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Hardware Optimized
Sample Rate Conversion for
Software Defined Radio
Carina Schmidt-Knorreck, Raymond Knopp, and Renaud Pacalet

Abstract – The evolution towards applications with increasing functionalities leads to the need of high
flexible systems that support a high number of different standards while decreasing the required hardware
space. Therefore a high configurable platform being able to handle a multitude of standards is needed. One
main issue is the tradeoff between performance and space consumption. We present a generic, flexible,
fractional and hardware optimized SRC architecture in the context of SDR, providing one architecture to
process up to 8 different complex channels. The solution is based on bandlimited interpolation and allows
processing by supporting a 1Hz resolution of the sampling rates.

Index Terms – SDR, SRC, Hardware Architecture, Open Platforms for Multistandard Support, Baseband
Processing, HW Accelerators

1 Introduction

In the past years, the number of different standards used in
wireless communications (GSM, OFDM, WCDMA etc) has
grown rapidly. New products deliver more functionality to the
users and merge already existing ones in only one device. This
evolution leads to the need of high flexible systems that
support a high number of different standards while decreasing
the required hardware space. Developing these systems is a
challenging task as the needed architecture differs from
standard to standard; due to different carrier frequencies,
channel bandwidths and modulation schemes. The solution
can be found in the concept of Software Defined Radio
(SDR). By definition, SDR is a reconfigurable radio commu-
nication system that can be tuned to any frequency band and
that can handle all the modulation schemes in a wide
frequency range [6].

The digital baseband processing platform being developed
by Eurecom and Telecom ParisTech is a generic prototype
architecture for SDR applications [3]. Its multimodal design
supports almost all existing standards and allows an easy
adaptation of future technologies without changing the HW/
SW architecture. The partitioning between HW and SW
follows a general cost-and-complexity versus speed trade-off.
One of the main objectives in design is to find the most flexible
solution with highest performance and minimal space con-
sumption. Furthermore the design has to meet the throughput
and the latency requirements of the computationally most
intensive task. The relevant parameters may differ between
the standards and are managed by the software part that
synchronizes the different processes on the platform.

One of the critical processing blocks in terms of perform-
ance and space consumption is the preprocessor that connects
the external radio front end with the entire platform. In the
context of this paper we focus on its most demanding element
– the fractional Sample Rate Converter (SRC). First the
different requirements are listed in section 2, before a short
overview of the preprocessor is given in section 3. Different
existing solutions are examined in section 4 and evaluated in
terms of performance and space consumption. An architec-
ture based on one of those algorithms is presented in section 5
and the performance results are part of section 6. At the end
possible extensions of the filter design are summed up in
section 7.

2 Requirements

The requirements can be divided into two different groups.
First the non-functional requirements due to the platform
design, and second, the functional requirements related to
sample rate conversion. From the platform perspective, the
general architecture of the preprocessor is the same like for
the other blocks for the digital baseband processing (Frontend
Processor, Channel Decoder, etc). The standardized IP shell
that can be seen in Figure 1 allows the reuse of most of the
control and communication logic and an easy upgrading or
replacement of the block in the future. In contrast to the
DMA, the VCI Interface and the Micro-Controller, the
architecture of the IP Core and the Memory Subsystem (MSS)
depends on the functionality of each block.

Another requirement results from the target architecture, a
Xilinx Virtex 5 LX330FF1760 FPGA. During synthesis, so
called Extreme DSPs (DSP48E slices) are invoked whenever
possible. These elements speed up the design significantly and
are not only used by the preprocessor but also by the frontend
processor for instance. In order to minimize the required
hardware space, the SRC has to be as simple as possible. This

Fig. 1: Standardized IP Shell
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task is not that simple as due to the high bandwidth of the
signal coming from the A/D converters the data rate will be
very high. This leads easily to a higher hardware complexity
and a higher power consumption and thus results in a high
number of DSP48E slices and accordingly to a cost intensive
application. Therefore a generic design performing fractional
up- and downsampling using the same underlying architecture
is preferred. The whole design has to be configurable using a
set of parameters that is handled by the SW control of the
platform. The same SRC module shall be used for three
different modes: only reception (RX), only transmission (TX)
and reception and transmission at the same time. From the
platform perspective, the different channels processed by the
SRC are executed in parallel. Because of that is important that
the SRC is able to process samples continuously, without
loosing time when switching between two channels. To
decrease the jitter one fixed master clock with low jitter is
provided to the preprocessor. Thus the difference between the
sampling rates has to be managed by the SRC itself. Perform-
ance has to be high and aliasing should be avoided.

3 Preprocessor Block

The preprocessor connects the external radio front end with
the digital baseband processing platform. It has to ensure
among others that the incoming and outgoing sample streams
are modified in order to provide the data format and the
sampling rate of the connected device as well as the sampling
rate of the processed standard.

Apart from the interface with the external A/D and D/A
converters, the preprocessor possesses a basic signal process-
ing unit, a dual-port swing buffer, timing functions for framing
and resynchronization and a sample synchronous interrupt
generator. The signal processing unit is responsible for
filtering, sample rate conversion and carrier frequency adjust-
ment. Figure 2 gives an overview about the architecture of the
preprocessor.

The incoming and outgoing samples are stored in FIFOs
(interface A/D, D/A converters) and in the memory subsys-
tem (interface entire platform). Up to 8 complex channels can
be processed in parallel, each possessing a different set of
parameters. The switch between two channels occurs after a
fixed number of generated output samples and can be handled
flexibly. The continuous processing of the preprocessor has to
be guaranteed in order to to avoid a huge delay. This requires a
control structure that stores / loads intermediate values into /
from local RAMs. The necessary operations are performed in
parallel to the main processing. The minimum number of
samples processed per channel results from the time needed
to perform a context switch.

4 Sample Rate Conversion from a Hardware
Perspective

4.1 Comparison of Existing Solutions

In the architecture of SDR systems, SRCs are one of the
critical and most demanding elements [1]. Compared to the
other blocks on the baseband processing platform, the SRC is
the most DSP heavy block that requires around 50 % of the
available DSP48E slices. In the past years, lots of different
solutions for efficient SRC have already been presented, like
for instance in [2], [5] or [9]. [12] has shown, that a solution
based on polynomial interpolation in combination with CIC
filters is the most efficient one in terms of performance. But
the question in this context is, if the required space con-
sumption justifies the obtained performance. For an efficient
implementation three factors must be considered: the length
of the lowpass filter that is used to avoid aliasing and thus the
number of multiplications, the amount of computation
involved in the calculation of each new filter coefficient and
the control structure.

The simplest SRC solution is the sample-and-hold method.
The analog signal is sampled and the obtained value is hold
afterwards. This solution is easy to implement and does not
need many resources. But the obtained performance is too low
to use it in SDR applications. Alternatively one could think
about first increasing the sampling rate by zero insertion and
then to decimate it. No fine interpolation stage is necessary;
all effective filtering can be done in one filter at a low sampling
rate. Unfortunately this solution requires a high space
consumption as interpolation and decimation stage are not
merged and as the filter grows for higher decimation factors.
Fixing the size of the filter would be no feasible solution as
aliasing effects occur and as inherent redundancy is removed.
A combination of a lowpass filter and A/D, D/A converters
like presented in [10] is not appropriate for our design, either.
This is due to the limited resources on the board and the
choice of one single master clock to reduce the jitter and the
phase noise respectively.

Remains the approach of interpolation in combination with
the window method where an interpolation filter to calculate
missing output samples or filter coefficients is combined with
a lowpass filter to avoid aliasing ([8]). The performance
depends on the number of stored filter coefficients and on the
interpolation method. Using a higher order polynomial
requires a higher computational effort and thus a higher
space consumption. Calculating the filter coefficients in a
recursive way would be an option. But to do so, the latency
increases and further resources to calculate them are needed.
To interpolate, different solutions are possible. The easiest
solution is the nearest-neighbor interpolation. The corre-
sponding hardware structure is quite simple but the efficiency
is very low. Using linear interpolation leads to a better
performance with low space consumption. Good filter char-
acteristics are possible but the filter coefficients need to be
precomputed and stored in memory. A generalization of
linear interpolation is the polynomial interpolation, which
possesses a high efficiency ([7]). Compared to linear inter-
polation, the calculation of the interpolating polynomial is
computationally expensive. Another disadvantage is Runge�s
phenomenon, which shows that the interpolation polynomial
may oscillate wildly between the data points for higher order
ones. The most hardware consuming interpolation methods
are the Spline interpolation which avoids Runge�s phenom-
enon by using piecewise defined polynomials and the
Whittaker-Shannon interpolation which is only working for
infinite signals. As a mixture between linear interpolation and
Whittaker-Shannon interpolation, [13] has introduced the
concept of bandlimited interpolation. This method is easilyFig. 2: Preprocessor Architecture
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implementable and can highly be optimized by minimizing the
required hardware space. The same algorithm can be used for
upsampling and downsampling. The filter coefficients have to
be precomputed and stored in the memory subsystem.

4.2 Presentation of the chosen Algorithm

The solution that has been chosen is the above mentioned
bandlimited interpolation where the filter is a combination of
a FIR lowpass filter and a linear interpolation filter. To obtain
the result, the incoming samples are shifted under a windowed
sinc function. This represents a linear combination of the
signal samples or of the corresponding filter coefficients,
respectively. The number of multiplications depends on the
size of the lowpass filter and can be decreased by applying a
polyphase filter structure. As it will be shown, the linear
interpolation requires only three additional multiplications.
For more detailed information please refer to [13].

Having a look at the downsampling case (similar derivation
for the upsampling case), the sampling rate at the input,

denoted F1 ¼
1

T1
, is decreased to a sampling rate F2 ¼

1
T2

.

Having a sampled signal xðnT1Þ at the input of the SRC, its
corresponding analog signal can be computed by

xðtÞ ¼
P

n
xðnT1Þgðt � nT1Þ (1)

where gðtÞ is a sinc function multiplied with the Kaiser
window. To get the same signal at a different sampling rate this
analog signal is expressed from its samples with timing T2,
namely

xðkT2Þ ¼
P

n
xðnT1ÞgðkT2 � nT1Þ (2)

T1 and T2have no specific relationship a priori. The
sampling rate of the filter is T3, so that the real filter function
has to be expressed as gðnT3Þ. For the downsampling case, the
following term is valid: T1 ¼MT3 with M as the oversampling
factor for the sampled representation of the basis waveform
gðtÞ.

xðkT2Þ ¼
P

n
xðnT1ÞgðkT2 � nMT3Þ (3)

As not all necessary filter coefficients are available right at
the beginning a parameter k0 has to be defined such that

k0T3 � kT2 < ðk0 þ 1ÞT3, or equivalently k0 ¼ k
T2

T3

� �

. k0 rep-

resents an existing filter coefficient while k represents a filter
coefficient that has to be computed via linear interpolation. So
(3) can be approximated as

xðkT2Þ �
P

n
xðnT1Þ

1� akð Þg k0 � nMð ÞT3ð Þ
þ akg k0 � nM þ 1ð ÞT3ð Þ

" #

(4)

with ak ¼ k
T2

T3
� k0.

To optimize the filter structure and to minimize the
necessary hardware resources it is useful to have a polyphase
representation of (4). One first has to define

k0 ¼ k00M þ lk (5)

where lk ¼ k0 mod M and

glkðnÞ ¼ g nM þ lkð ÞT3ð Þ; lk ¼ 0; 1; :::;M � 1 (6)

with glkðnÞas the polyphase representation of the prototype
filter gðtÞ and Mas the number of FIR filters processing in
parallel. The approximation in (4) can now be written more
simply as

xðkT2Þ �
P

n
xðnT1Þ

1� akð Þglk k00 � nð Þ þ akgðlkþ1ÞmodM

k00 � nþ I lk ¼M � 1ð Þð Þ

" #

(7)

with Ið:Þas the unit-valued indicator function.

5 SRC Architecture

A simplified overview of the resulting hardware structure can
be seen in Figure 3.

The input samples are complex while the filter coefficients
of the FIR filter are real. The filter coefficients are stored in
the MSS and are first read in and then stored in local registers
before processing. The connection between these coefficients
and the FIR filters is established by the module Select
Coefficients, which provides only the coefficients that are
needed for the computation of the current output sample. The
information about which filter to use is computed by the
Interpolation Control (IPC) which also calculates the inter-
polation factors. All modules are working with the same clock.
The difference between the sampling rate of the input samples
and the sampling rate of the output samples has been realized
using the module Sample Computation which signals when a
sample has to be written in the Registerbank and when an
output sample has to be computed.

Hardware resources are saved in different ways: It has been
shown in the previous section, that for the computation of one
output sample, two filters of the polyphase filter bank are
needed. Thus, only four filters of the filter bank are
implemented, two for the real and two for the imaginary
part. Apart from that the filter coefficients are highly
optimized. In Figure 4 some ideal filter coefficients and
their distribution over a polyphase filter bank using four filters
is shown. Per filter processing, two consecutive filters are
used. Normally the input samples of the two filters are the
same, except for the case when the fourth and the first filter
are used. In this case, the input samples of filter one have to be
right shifted by one sample. Considering an implementation in
hardware this would introduce a complexity that can be
avoided. Having a look at the filter coefficients one can see
that the coefficients of filter one are composed of one 1 and
zeros otherwise. Thus it is sufficient to change only the value
of two filter coefficients to produce a shift of the coefficients to
the left. These two values can be hard coded in the
architecture. Furthermore a periodicity can be observed that
reduces the number of coefficients that have to be stored in
memory by almost 71 %.

8 complex channels can be processed at the same time (4 in
RX and 4 in TX). For the purpose of not loosing any
information when switching between them, the context of all
SRC registers has to be stored in two local RAMs. To do so,
two register sets are described. When a switch has to be
performed, the old values are stored starting from a given
address in the local RAM before the next channel to be
processed is loaded.

Another critical issue is the handling of the different
sampling frequencies. In the system of the SRC one can
distinguish between three different time domains: the time
distance between the input samples (T1), the time distance
between the output samples (T2) and the time distance
between the filter coefficients. The relation of these times
depends on the mode. When upsampling, more output
samples are computed than input samples exist while for
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downsampling the relation is the other way around. All time
values are represented using 70 bit, which results from the
required 1Hz resolution of the sampling frequencies for the
frequency range 3 MHz � f � 61.44 MHz and from the
assumption that latest after 1000 computed output samples,
T2 is a multiple of T1 (corresponds to a counter reinitializa-
tion in Sample Computation).

The maximum possible size of the filter is M = 8 filters in the
polyphase filter bank, each with 19 filter coefficients a 16 bit.
The bit size could be increased to 25 bit without increasing the
number of DSP48E slices, but simulations have shown, that
the performance gain is negligible. Possible degrees of free-
dom are the calculation of the filter coefficients or M, which
could be easily increased to 16 or 32 bit. For all other
parameters the space consumption would increase signifi-
cantly.

5.1 Example: Processing of Four Channels Simultaneously

In this example four different channels are processed in
parallel. The distribution could be 2 channels in TX and 2
channels in RX but one could also imagine 4 channels in TX or
RX. The channels are processed one after another. If one of
them is executed for the first time, the modules of the SRC
have to be synchronized: first the filter coefficients are loaded
and stored in local registers. Then the blocks IPC and
Registerbank are enabled till they produce their first result.
Afterwards the whole SRC is activated. In Figure 5 the
scheduling is described. When for instance CH2 is executed,
the context of the previous channel, CH1, is stored in a local
RAM and the context of the next channel, CH3, is loaded. As
soon as the load process is finished a channel switch can be
performed and CH3 is executed without any delay.

6 Results

6.1 Performance Results

The maximum possible SINR is limited by the A/D and D/A
converter performance. In TX / RX the resolution is 14 / 12 bit
which corresponds to a maximum SINR of 86.04 dB / 74 dB
[4]. Tests with different sinusoidal and sweep signals have
shown that this performance can easily be reached with a filter
size of 8 times 19 filter coefficients if no interpolation is
needed. In case of interpolation, the SINR depends on the
ratio between the sampling frequencies, the oversampling
factor of the input signal and the input signal itself. For an

Fig. 3: Global Architecture of the SRC

Fig. 4: Filter Coefficient Distribution for an Ideal Lowpass Filter

Fig. 5: Channel Scheduling
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exemplary sinusoidal signal defined as:

yðxÞ ¼ 1
4

sinðx0Þ þ sin
x0

3

� �

þ sin
x0

2

� �

þ cosðx0Þ

with x0 ¼ 2pfx the following results are obtained:

Table 1:

Mode factor SINR

upsampling 1.45 80.12 dB

upsampling 2 86 dB

downsampling 4.3 73.8 dB

downsampling 5 74 dB

When a white Gaussian noise signal is used as input signal, the
SINR can be obtained by evaluating the Power Spectral
Density (PDS). Before processing the SRC, the input signal
has to be lowpass filtered and oversampled. The SINR of the
resulting signal has to be higher than the limiting factor by the
A/D and D/A converters. Upsampling by a factor of 2.5 for
instance results in a SINR of around 82 dB while the SINR is
very close to the maximum if no interpolation is needed.

Apart from the number of filters in the polyphase filter
bank the only adjustable parameter is the calculation of the
filter coefficients. Different SINR values for the same basis
waveform are obtained by changing the b parameter of the
Kaiser window. Figure 6 shows how the SINR changes for
different values of b. The input signal is a simple sinusoid.

6.2 Synthesis Results

In the following, synthesis results for a filter size of 8 x 19 filter
coefficients are given. The target architecture is a Xilinx
Virtex 5 LX330FF1760 (speed grade -2). For a reference clock
frequency of 250MHz, the frequency of the SRC is 167.73
MHz. The results were obtained using the tool Precision
Synthesis, Version 2009a.

Table 2:

Resource Used Avail Utilization

Function Generators 31801 207350 15.34 %

CLB 7951 51840 15.34 %

DFFs 20017 209760 9.54 %

Block RAMs 4 288 1.39 %

DSP48Es 82 192 42.71 %

7 Extensions of the Current Design

The performance of the proposed SRC is the higher, the
higher the sampling frequency of the incoming signal samples
and the smaller the ratio between the sampling rates. For
higher ratios, different extensions of the current design are
possible. When upsampling, one common way is to add CIC
filters to upsample the integer part before the fractional one
[14]. Thanks to the proposed SRC the final size of the
resulting architecture would still be suitable for the target
technology. Alternatively the presented SRC could be
processed several times, but the introduced delay would be
too high so that the continuous processing of the incoming and
outgoing samples is no longer guaranteed.

When downsampling one possible solution is a registerbank
in which each register is addressable. Thanks to this structure a
small program could be used to write the signal samples for
the next processing into the registerbank. The latency of such
a system would be smaller than the latency of a system where
the samples are shifted one after another into the registerbank
till the next output sample can be computed.

8 Conclusion

In this article we have proposed a simple reconfigurable
architecture for a fractional sample rate converter, that is able
to deal with almost all existing wireless communication
standards. An analysis of existing solution has been accom-
plished from a hardware point of view. Our main concern was
to find the algorithm with the highest performance but given a
limited space consumption. As a result, a solution based on
bandlimited interpolation in combination with Whittaker-
Shannon interpolation has been presented.

The obtained algorithm performs resampling at a frequency
of 167.73 MHz and supports a 1Hz resolution of the sampling
frequencies. Furthermore possible extensions to the current
filter design have been presented. Determining in detail their
performance differences is part of our future work.

Fig. 6: SINR Performance for Changing Beta
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