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ABSTRACT 
 

Peer-to-peer (P2P) has proven as a most successful way to produce 
large scale, reliable, and cost-effective applications, as illustrated for file 
sharing or VoIP. P2P storage is an emerging field of application which 
allows peers to collectively leverage their resources towards ensuring the 
reliability and availability of user data. Providing assurances in both 
domains requires not only ensuring the confidentiality and privacy of the 
data storage process, but also thwarting peer misbehavior through the 
introduction of proper security and cooperation enforcement mechanisms. 
Misbehavior may consist in data destruction or corruption by malicious 
or free-riding peers. Additionally, a new form of man-in-the-middle 
attack may make it possible for a malicious peer to pretend to be storing 
data without using any local disk space. New forms of collusion also may 
occur whereby replica holders would collude to store a single replica of 
some data, thereby defeating the requirement of data redundancy. Finally, 
Sybil attackers may create a large number of identities and use them to 
gain a disproportionate personal advantage.The continuous observation of 
peer behavior and monitoring of the storage process is an important 
requirement to secure a storage system. Observing peer misbehavior 
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requires appropriate primitives like proofs of data possession, a form of 
proof of knowledge whereby the holder interactively tries to convince the 
verifier that it possesses the very data without actually retrieving them or 
copying them at verifier’s memory. We present a survey of such 
techniques and discuss their suitability for assessing remote data storage.  

 
 

Cooperation is key to deploying P2P storage solutions, yet peers in such 
applications are confronted to an inherent social dilemma: should they 
contribute to the collective welfare or misbehave for their individual welfare? 
We review several incentive mechanisms that have been proposed to stimulate 
cooperation towards achieving a resilient storage.  

The effectiveness of such incentive mechanisms must be validated for a 
large-scale system. We describe how this can be assessed with game 
theoretical techniques. In this approach, cooperation incentive mechanisms are 
proven to be effective if it is demonstrated that any rational peer will always 
choose to follow mechanism directives whenever it interacts with another 
peer. We finally illustrate the validation of cooperation incentives with one-
stage and repeated cooperative and non cooperative games and evolutionary 
games. 
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1. INTRODUCTION 
 
Self-organization has first emerged, in the late 90’s, as specialized systems 

and protocols to support peer-to-peer (P2P) file sharing. It became very 
popular thanks to services like Napster [70], Gnutella [34], KaZaA [46] and 
Morpheus [66], and particularly to the legal controversy regarding their 
copyrighted contents. Since then, the popularity of P2P systems has continued 
to grow such that self-organization is now regarded as a general-purpose and 
practical approach that can be applied to designing applications for resource 
sharing. Resources in this context may include the exchange of information, 
processing cycles, packet forwarding and routing, as well as cache and disk 
storage. In this sense, self-organization, as revealed in P2P, is being 
increasingly used in several application domains ranging from P2P telephony 
or audio/video streaming to ad hoc networks or nomadic computing. P2P 
storage services have more recently been suggested as a new technique to 
make use of the vast and untapped storage resources available on personal 
computers. P2P data storage services like Wuala [97], AllMyData Tahoe [3], 
and UbiStorage [93] have received some highlight. In all of these, data is 
outsourced from the data owner place to several heterogonous storage sites in 
the network, in order to increase data availability and fault-tolerance, to reduce 
storage maintenance costs, and to achieve a high scalability of the system. 

 
 

A. A Case for P2P Storage 
 
Innovation and advancement in information technology has spurred a 

tremendous growth in the amount of data available and generated. This has 
generated new challenges regarding scalable storage management that must be 
addressed by implementing storage applications in a self-organized and 
cooperative form. In such storage applications, peers can store their personal 
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data in one or multiple copies (replication) at other peers. The latter, called 
holders, should store data until the owner retrieves them. Such P2P storage 
aims at maintaining a reliable storage without a single point of failure, 
although without the need for an expensive and energy-consuming storage 
infrastructure as offered by data centers. Peers volunteer for holding data 
within their own storage space on a long term basis while they expect a 
reciprocal behavior from other peers.  

P2P storage has been presented as a solution for data backup ([49] and 
[55]) as well as for a new generation of distributed file systems ([81], [44], and 
[86]). P2P storage aims at a free and more importantly more resilient 
alternative to centralized storage, in particular to address the fact that storage 
can still be considered as a single point of failure. Additionally, P2P storage 
may also be attractive in wireless ad-hoc networks or delay-tolerant networks 
(DTNs), notably since mobility introduces a store-carry-and-forward paradigm 
([96]) to deliver packets despite frequent and extended network partitions. The 
cooperative storage of other nodes’ messages until their delivery to their 
destination thus might become an important feature of such networks. 
Context- or location-based services may also benefit from P2P storage. 
Desktop teleporting ([28], [90]) for instance aims at the dynamic mapping of 
the desktop of a user onto a specific location. Teleporting may make use of the 
storage offered by surrounding nodes at the new user location. Location-aware 
information delivery ([71], [5], [6], [57]) is another context-aware application. 
Each reminder message is created with a location, and when the intended 
recipient arrives at that location, the message is delivered. The remainder 
message may be stored at nodes situated nearby the location context rather 
than at the mobile node.  

Though the self-organization introduced by P2P storage promises to 
produce large scale, reliable, and cost-effective applications, it exposes the 
stored data to new threats. In particular, P2P systems and, even more so, P2P 
storage systems may be subject to selfishness, a misbehavior whereby peers 
may discard some data they promised to store for other peers in order to 
optimize their resource usage. Maliciousness in the P2P context woult simply 
consist in peers destroying the data they store in order to reduce the quality of 
service of the system. Because of the high churn and dynamics of peers, 
checking that some data have been stored somewhere is quite more complex 
than checking that a route has been established with another node in multi-hop 
MANETs for instance. In addition, such verifications cannot be instantaneous 
but have to be repeatedly performed. All these problems contribute to the 
difficulty of properly determining the actual availability of data stored onto 
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unknown peers. Countermeasures that take into account the fact that users 
have full authority on their devices should be crafted to prevent them from 
cheating the system in order to maximize the benefit they can obtain out of 
peer cooperation. 

 
 
 
 
 

B. Security Objectives 
 
A P2P storage application takes advantage of the existing and spare disk 

space at peers allowing the latter to leverage their collective power for the 
common good. While the fundamental premise of this is voluntary storage 
resource sharing among individual peers, there is an inherent tension between 
individual rationality and collective welfare that threatens the viability of these 
applications. This behavior, termed free riding, is the result of a social 
dilemma that all peers confront and may lead to system collapse in the tragedy 
of the commons [29]: the dilemma for each peer is to either contribute to the 
common good, or to free ride (shirk).  

Achieving secure and trusted P2P storage presents a particular challenge 
in that context due to the open, autonomous, and highly dynamic nature of P2P 
networks. We argue that any effort to protect the P2P storage system should 
ensure the following goals. 

 
Confidentiality and Integrity of Data 

Most storage applications deal with personal (or group) data that are 
stored somewhere in the network at peers that are not especially trusted. Data 
must thus be protected while transmitted to and stored at some peer. Typically, 
the confidentiality and the integrity of stored data are ensured using usual 
cryptographic means such as encryption methods and checksums.    

 
Anonymity 

Anonymity can be a requirement for some type of storage applications 
that aim at preventing information censorship for instance; however it may not 
be a targeted objective for all of them. Anonymity may refer to the data owner 
identity, the data holder identity, or the detail of their interaction. Anonymity 
permits to avoid attacks whereby the data of a given user are specifically 
targeted in order to destroy them from the system. Systems that seek to 
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provide anonymity often employ infrastructures for providing anonymous 
connection layers, e.g., onion routing [18]. 

 
Identification 

Within a distributed environment like P2P, it is possible for the same 
physical entity to appear under different identities, particularly in systems with 
highly transient populations of peers. This problem may lead to attacks called 
“Sybil attacks” [45], and may also threaten mechanisms such as data 
replication that rely on the existence of independent peers with different 
identities. Solutions to these attacks may rely on the deployment of a trusted 
third party acting as a central certification authority, yet this approach may 
limit anonymity. Alternatively, P2P storage may be operated by some 
authority controlling the network through the payment of membership fees to 
limit the introduction of fake identities. However, that approach reduces the 
decentralized nature of P2P systems and introduces a single point of failure or 
slows the bootstrap of the system if payment involves real money. Without a 
trusted third party, another option is to bootstrap the system through penalties 
imposed on all newcomers: an insider peer may only probabilistically 
cooperate with newcomers (like in the P2P file sharing application BitTorrent 
[58]), or peers may join the system only if an insider peer with limited 
invitation tickets invites them [26]. The acceptable operations for a peer may 
also be limited if the connection of too many ephemeral and untrustworthy 
identities is observed [37]. This option however seems to be detrimental to the 
scalability of the system and it has even been shown that this degrades the total 
social welfare [59]. Social networks may also partially solve the identification 
issue. 

 
Access Control 

Encryption is a basic mechanism to enforce access control with respect to 
read operations. The lack of authentication can be overcome by the 
distribution of the keys necessary for accessing the stored data to a subset of 
privileged peers. Access control lists can also be assigned to data by their 
original owners through the use of signed certificates. Capability-based access 
control can be also employed like in [67]. Delete operations have to be 
especially controlled because of their potentially devastating end result. 

 
Scalability 

The system should be able to scale to a large population of peers. Since 
most of the important functions of the system are performed by peers, the 
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system should then be able to handle growing amounts of control messages for 
peer and storage resource management and an increased complexity in a 
graceful manner. The system may also be clustered into small groups with 
homogeneous storage needs which may reduce the load over peers. 

 
Data Reliability 

The common technique to achieve data reliability relies on data 
redundancy at several locations in the network. The data may be simply 
replicated at a given redundancy factor. The redundancy factor should be 
maintained during the entire duration of the data storage. The rejuvenation of 
the data may be carried out either in a periodic or event-driven fashion. For 
instance, in the latter approach, one or multiple new replicas should be 
generated whenever a certain number of replicas have been detected as 
destroyed or corrupted. Other redundancy schemes may be used instead of 
merely replicating the data into identical copies; for instance erasure coding 
provides the same level of data reliability with much lower storage costs. 

 
Long-Term Data Survivability 

The durability of storage in some applications like backup is very critical. 
The system must ensure that the data will be permanently conserved (until 
their retrieval by the owner). Techniques such as data replication or erasure 
coding improve the durability of data conservation but these techniques must 
be regularly adjusted to maximize the capacity of the system to tolerate 
failures. Generally, the employed adaptation method is based on frequent 
checks over the data stored to test whether the various fragments of a data are 
held by separate holders. Moreover, cooperation incentive techniques must be 
used to encourage holders to preserve the data they store as long as they can. 

 
Data Availability 

Any storage system must ensure that stored data are accessible and 
useable upon demand by an authorized peer. Data checks at holders allow the 
regular verification of this property. The intermittent connectivity of holders 
can be tolerated by applying a “grace period” through which the verifiers 
tolerate no response from the checked holder for a given number of challenges 
before declaring it non cooperative. 

The rest of this chapter especially details how to achieve the last three 
objectives above: high reliability, availability, and long-term durability of data 
storage in the context of a large scale P2P storage system. These three 
objectives are often ignored in P2P file sharing applications which rather 
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follow best effort approaches. Performing periodic cryptographic verifications 
makes it possible to evaluate the security status of data stored in the system 
and to design an adapted cooperation incentive framework for securing data 
storage in the long run. 

 
 
 
 
 

II. TRUST ESTABLISHMENT 
 
In P2P systems, peers often must interact with unknown or unfamiliar 

peers without the help of trusted third parties or authorities to mediate the 
interactions. As a result, peers trying to establish trust towards other peers 
generally rely on cooperation as evaluated on some period of time. The 
rationale behind such trust is that peers have confidence if the other peers 
cooperate by joining their efforts and actions for a common benefit. P2P 
systems are inherently large scale, highly churned out, and relatively 
anonymous systems; volunteer cooperation is thus hardly achievable. Building 
trust in such systems is the key step towards the adoption of this kind of 
systems and relies on providing some assurance on the effective cooperative 
behavior of peers.  

Trust between peers can be achieved in two essential ways that depend on 
the type and extent of trust relationships among peers and that reflect the 
models and trends in P2P systems (the used taxonomy is depicted in Figure 1). 
Static trust based schemes rely on stable and preexisting relationships between 
peers, while dynamic trust is relying on a realtime assessment of peer 
behavior. 

Other taxonomies have been proposed. [82] classifies cooperation 
enforcement mechanisms into trust-based patterns and trade-based patterns. 
Obreiter et al. distinguish between static trust, thereby referring to pre-
established trust between peers, and dynamic trust, by which they refer to 
reputation-based trust. They analyze trade-based patterns as being based either 
on immediate or on deferred remuneration. Other authors describe cooperation 
in self-organized systems only in terms of reputation based and remuneration 
based approaches. Trust establishment, a further step in many protocols, easily 
maps to reputation but may rely on remuneration as well. In this work, we 
adhere to the existing classification of cooperation incentives in distinguishing 
between reputation-based and remuneration-based approaches. 
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Figure 1. Trust taxonomy. 

 
A. Static Trust 

 
Peers may have prior trust relationships based for example on existing 

social relationships or a common authority. In friend-to-friend (F2F) networks, 
peers only interact and make direct connections with people they know. 
Passwords or digital signatures can be used to establish secure connections. 
The shared secrets needed for this are agreed-upon by out-of-band means. 
Turtle [14] is an anonymous information sharing system that builds a P2P 
overlay on top of pre-existent friendship relations among peers. All direct 
interactions occur between peers who are assumed to trust and respect each 
other as friends. Friendship relations are defined as commutative, but not 
transitive.  
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[43] proposes a F2F storage system where peers choose their storage sites 
among peers that they trust instead of randomly. Compared to an open P2P 
storage system, the proposed approach reduces the replication rate of the 
stored data since peers are only prone to failure not to departure or 
misbehavior. However, the approach is more applicable to certain types of 
storage systems like backup since it provides data durability not generally data 
availability: peers may not often leave the system but they me be offline.  F2F-
based approaches ensures the cooperation of peers which results in enhanced 
system stability and reduces administrative overhead; even though these 
approaches does not help to build large scale systems with large reserve of 
resources. 

 
 

B. Dynamic Trust 
 
The P2P storage system may rely on the cooperation of peers without any 

prior trust relationships. The trust is then established during peer interactions 
through cooperation incentive mechanisms. Peers trust each other either 
gradually based on reputation or explicitly through bartered resources or 
payment incentives. The lack of prior trust between peers allows building open 
large scale systems that are accessible to the public. Storage systems with 
cooperation incentives perhaps result in more overhead than with prior trust 
based approaches; but however the reliability of the stored data is increased 
since data will be generally stored in multiple copies at different worldwide 
locations rather than confined at one or limited number of locations.  

Peers choose to contribute or not to the storage system. The evaluation of 
each peer behavior allows determining the just incentives to stimulate its 
cooperation. In their turn, such incentives guide the peer in adapting its 
contribution level. The peer chooses the best strategy that maximizes its utility 
gained from the system: it compensates the cost incurred due to its potential 
contribution with the incentives received in support for its cooperation. With 
such a cyclic process, the system dynamically reaches the status of “full” 
cooperation between peers (thus resembling a system with static trust).  
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Figure 2. The feedback loop of dynamic trust. 

Figure 2 depicts the feedback loop illustrating the correlation between 
peer assessment, cooperation incentives, and peer strategies. 

 
 

1. Peer Assessment 
 
Inciting peers to cooperate can only be achieved provided peer behavior is 

correctly assessed. Therefore, cooperation incentive mechanisms should 
comprise verification methods that measure the effective peer contributions in 
the P2P system.   

An evaluation of the peer behavior can be performed at different 
timescales. An immediate evaluation of the peer behavior is only possible if 
the peer contribution occurs atomically like in packet forwarding application 
([85] and [52]). Otherwise, peer evaluation is deferred to the completion of the 
peer contribution as in data storage. This constitutes a problem for storage 
applications where misbehaviong peers are left with an extensive period of 
time during which they can pretend to be storing some data they have in fact 
destroyed.  

Periodic peer evaluation can be achieved through proof of knowledge 
protocols that have been called interchangeably remote data possession 
verifications, remote integrity verifications, proofs of data possession [33], or 
proofs of retrievability [8]. Such protocols are used as an interactive proof 
between the holder and the verifier or possibly the owner, in which the holder 
tries to convince the verifier that it possesses these very data without actually 
retrieving them. Interaction is based on challenge-response messages 
exchanged between the holder and the verifier. Verification of the holder’s 
response is permitted through some information kept at the verifier side. 
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2. Cooperation Incentives 
 
Peer behavior assessment forms the basis of an efficient cooperation 

incentive mechanism. From such evaluation, well-behaved peers will be 
rewarded with incentives while ill-behaved peers will be punished. Incentives 
may consist in exchanging identical resources (Barter), or in conferring good 
reputation to the well behaved peer, or in providing well behaved peers a 
financial counterpart for their cooperation. 

Barter based approaches do not require the interacting peers to have any 
preset trust relationships. They rather rely on a simultaneous and reciprocal 
behavior. The exchange of resources takes place if both peers cooperate with 
each other; otherwise there is no exchange. 

Reputation relies on the evaluation of the past behavior of a peer for 
deciding whether to cooperate with it. Reputation then builds a long-term trust 
between peers based on a statistical history of their past interactions. This 
allows going beyond barter-based approaches (direct reciprocity) by 
permitting to several peers to indirectly reciprocate to the behavior of the 
observed peer. 

In contrast to reputation-based approaches, payment-based incentives 
constitute an explicit and discrete counterpart for cooperation and provide 
means to enforce a more immediate form of penalty for misconduct. Payment 
based approaches make it possible to secure short-term interactions between 
peers without relying neither on prior trust nor on some long-term history. 

 
 

III. REMOTE DATA POSSESSION 
VERIFICATION 

 
Self-organizing data storage must ensure data availability on a long term 

basis. This objective requires developing appropriate primitives for detecting 
dishonest peers free riding on the self-organizing storage infrastructure. 
Assessing such a behavior is the objective of data possession verification 
protocols. In contrast with simple integrity checks, which make sense only 
with respect to a potentially defective yet trusted server, verifying the remote 
data possession aims at detecting voluntary data destructions by a remote peer. 
These primitives have to be efficient: in particular, verifying the presence of 
these data remotely should not require transferring them back in their entirety; 
it should neither make it necessary to store the entire data at the verifier. The 
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latter requirement simply forbids the use of plain message integrity codes as a 
protection measure since it prevents the construction of time-variant 
challenges based on such primitives.  

 
 

A. Requirements 
 
We consider a self-organizing storage application in which a peer, called 

the data owner, replicates its data by storing them at several peers, called data 
holders. The latter entities agree to keep data for a predefined period of time 
negotiated with the owner.  

Peer behavior might be evaluated through the adoption of a routine check 
through which the holder should be periodically prompted to respond to a 
time-variant challenge as a proof that it holds its promise. Enforcing such a 
periodic verification of the data holder has implications on the performance 
and security of the storage protocol, which must fulfill requirements reviewed 
under the following two subsections. 

 
 

1. Efficiency 
 
The costs of verifying the proper storage of some data should be 

considered for the two parties that take part in the verification process, namely 
the verifier and the holder.  

 
Storage Usage 

The verifier must store a meta-information that makes it possible to 
generate a time-variant challenge based on the proof of knowledge protocol 
mentioned above for the verification of the stored data. The size of this meta-
information must be reduced as much as possible even though the data being 
verified is very large. The effectiveness of storage at holder must also be 
optimized. The holder should store the minimum extra information in addition 
to the data itself. 

 
Communication Overhead 

The size of challenge response messages must be optimized. Still, the fact 
that the proof of knowledge has to be significantly smaller than the data whose 
knowledge is proven should not significantly reduce the security of the proof. 

 



Peer-to-Peer Storage 15 

CPU Usage 
Response verification and its checking during the verification process 

respectively at the holder and at the verifier should not be computationally 
expensive. 

 
 

2. Security 
 
The verification mechanism must address the following potential attacks 

which the data storage protocol is exposed to: 
 
 
 
 

Detection of Data Destruction 
The destruction of data stored at a holder must be detected as soon as 

possible. Destruction may be due to generic data corruption or to a faulty or 
dishonest holder.  

 
Collusion-Resistance 

Collusion attacks aim at taking unfair advantage of the storage 
application. There is one possible attack: replica holders may collude so that 
only one of them stores data, thereby defeating the purpose of replication to 
their sole profit. 

 
Denial-of-Service (Dos) Prevention 

DoS attacks aim at disrupting the storage application. DoS attacks may 
consist of flooding attacks, whereby the holder may be flooded by verification 
requests. The verifier may also be subject to similar attacks. They may also 
consist of Replay attacks, whereby a valid challenge or response message is 
maliciously or fraudulently repeated or delayed so as to disrupt the 
verification. 

 
Man-in-the-Middle Attack Prevention 

The attacker may pretend to be storing data to an owner without using any 
local disk space. The attacker simply steps between the owner and the actual 
holder and passes challenge-response messages back and forth, leaving the 
owner to believe the attacker is storing its data, when in fact another peer, the 
actual holder, stores the owner’s data. The replication may again be disrupted 
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with this attack: since the owner may run the risk of storing the data in two 
replicas at the same holder. 

 
 

B. Verification Protocols 
 
The verification protocol is an interactive check that may be formulated as 

a proof of knowledge [2] in which the holder attempts to convince a verifier 
that it possesses some data, which is demonstrated by correctly responding to 
queries that require computing on the very data. 

The security of P2P storage applications has been increasingly addressed 
in recent years, which has resulted in various approaches to the design of 
storage verification primitives. The literature distinguishes two main 
categories of verification schemes: probabilistic ones that rely on the random 
checking of portions of stored data and deterministic ones that check the 
conservation of a remote data in a single, although potentially more expensive 
operation. Additionally, some schemes may authorize only a bounded number 
of verification operations conducted over the remote storage; yet the majority 
of schemes are designed to overcome this limitation. 

 
Memory Checking 

A potential premise of probabilistic verification schemes originates from 
memory checking protocols. A memory checker aims at detecting any error in 
the behavior of an unreliable data structure while performing the user’s 
operations. The checker steps between the user and the data structure. It 
receives the input user sequence of “store” and “retrieve” operations over data 
symbols that are stored at the data structure. The checker checks the 
correctness of the output sequence from the structure using its reliable memory 
(noninvasive checker) or the data structure (invasive checker) so that any error 
in the output operation will be detected by the checker with high probability. 
In [54], the checker stores hash values of the user data symbols at its reliable 
memory. Whenever, the user requests to store or retrieve a symbol, the 
checker computes the hash of the response of the data structure and compares 
it with the hash value stored, and it updates the stored hash value if the user 
requested to store a symbol. The job of the memory checker is to recover and 
to check responses originating from an unreliable memory, not to check the 
correctness of the whole stored data. With the checker, it is possible to detect 
corruption of one symbol (usually one bit) per user operation.  
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Authenticator 
The work of [65] better comprehends the remote data possession problem. 

It extends the memory checker model by making the verifier checks the 
consistency of the entire document in encoded version in order to detect if the 
document has been corrupted beyond recovery. The authenticator encodes a 
large document that will be stored at the unreliable memory and constructs a 
small fingerprint that will be stored at the reliable memory. Using the 
fingerprint, the authenticator verifies whether from the encoding it is possible 
to recover the document without actually decoding it. The authors of [65] 
propose a construction of the authenticator where there is a public encoding of 
the document consisting of index tags of this form: ti=fseed(i o yi) for each 
encoded value bit yi having fseed a pseudorandom function with seed taken as 
secret encoding. The authenticator is repeatedly used to verify for a selection 
of random indices if the tags correspond to the encoding values. The detection 
of document corruption is then probabilistic but improved with the encoding 
process of the document. Moreover, the query complexity is proportional to 
the number of indices requested. [77] proposes a similar solution to [65] but 
that achieves open verifiability i.e., the task of verifying data can be handed 
out to the public. The index tags are formulated as chunk signatures that the 
verifier keeps their corresponding public key. Signatures are indeed generated 
by the data owner; though the role of the verifier can be carried out by this 
latter or any peer that possesses the public key. 

 
Provable Data Possession 

The PDP (Provable Data Possession) scheme in [33] improves the 
authenticator model by presenting a new form of fingerprints ti=(hash(v||i) . 
gyi)d mod N, where hash is a one-way function, v a secret random number, N 
an RSA modulus with d being a signature key, and g a generator of the cyclic 
group of N

*. With such homomorphic verifiable tags, any number of tags 
chosen randomly can be compressed into just one value by far smaller in size 
than the entire set, which means that communication complexity is 
independent of the number of indices requested per verification. 

 
Proof of Retrievability 

The POR protocol (Proof of Retrievability) in [8] explicitly expresses the 
question of data recovery in the authenticator problem: if the unreliable data 
passes the verification, the user is able to recover the original data with high 
probability. The protocol is based on verification of sentinels which are 
random values independent of the owner’s data. These sentinels are disguised 
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among owner’s data blocks. The verification is probabilistic with the number 
of verification operations allowed being limited to the number of sentinels. 

 
Compact Proofs of Retrievability 

[39] improves the POR protocol by considering compact tags (comparable 
to PDP) that are associated with each data chunk yi having the following form: 
ti = αyi + si where α and si are random numbers. The verifier requests random 
chunks from the unreliable memory and obtains a compact form of the chunks 
and their associated tags such that it is able to check the correctness of these 
tags just using α and the set {s1, s2, …} that are kept secret.  

 
Remote Integrity Check 

Remote Integrity Check of [22] alleviates the issue of data recovery and 
rather focuses on the repetitive verification of the integrity of the very data. 
The authors described several schemes some of them being hybrid 
construction of the existing schemes that fulfill the later requirement. For 
instance, the unreliable memory may store the data along with a signature of 
the data based on redactable signature schemes. With these schemes, it is 
possible to derive the signature of a chunk from the signature of the whole 
data, thus allowing the unreliable memory to compute the signature of any 
chunk requested by the verifier.  

 
Data Chunk Recovery 

The majority of the probabilistic verification schemes require the recovery 
of one or multiple (in plain or compacted form) data chunks. For example, in 
the solution of [55], the owner periodically challenges its holders by 
requesting a block out of the stored data. The response is checked by 
comparing it with the valid block stored at the owner’s disk space. Another 
approach using Merkle trees is proposed by Wagner and reported in [84]. The 
data stored at the holder is expanded with a Merkle hash tree on data chunks 
and the root of the tree is kept by the verifier. It is not required from the 
verifier to store the data, on the contrary of [55]. The verification process 
checks the possession of one data chunk chosen randomly by the verifier that 
also requests a full path in the hash tree from the root to this random chunk.  

 
Algebraic Signatures 

The scheme proposed in [92] relies on algebraic signatures. The verifier 
requests algebraic signatures of data blocks stored at holders, and then 
compares the parity of these signatures with the signature of the parity blocks 
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stored at holders too. The main drawback of the approach is that if the parity 
blocks does not match, it is difficult (depends on the number of used parity 
blocks) and computationally expensive to recognize the faulty holder.  

 
Incremental Cryptography 

First step toward a solution to the deterministic verification problem 
comes from incremental cryptographic algorithms that detect changes made to 
a document using a tag, a small secret stored at a reliable memory that relates 
to the complete stored document and that is quickly updatable if the user 
makes modifications. [63] proposes several incremental schemes where the tag 
is either an XORed sum of randomized document symbols or a leaf in a search 
tree as a result of message authentication algorithm applied to each symbol. 
These schemes provide tamper-proof security of the user document in its 
entirety; although they require recovering the whole data which is not practical 
for remote data verification because of the high communication overhead. 

 
Deterministic Remote Integrity Check 

The first solution described in [98] allows the checking of the integrity of 
the remote data, with low storage and communication overhead. It requires 
pre-computed results of challenges to be stored at the verifier, where a 
challenge corresponds to the hashing of the data concatenated with a random 
number. The protocol requires small storage at the verifier, yet they allow only 
a fixed number of challenges to be performed. Another simple deterministic 
approach with unlimited number of challenges is proposed in [32] where the 
verifier like the holder is storing the data. In this approach, the holder has to 
send the MAC of data as the response to the challenge message. The verifier 
sends a fresh nonce (a unique and randomly chosen value) as the key for the 
message authentication code: this is to prevent the holder peer from storing 
only the result of the hashing of the data.  

 
Storage Enforcing Commitment 

The SEC (Storage Enforcing Commitment) scheme in [84] aims at 
allowing the verifier to check whether the data holder is storing the data with 
storage overhead and communication complexity that are independent of the 
length of the data. Their deterministic verification approach uses the following 
tags that are kept at the holder along with the data: PK=(gx, gx2

, gx3
, …, gxn

) 
where PK is the public key (stored at the holder) and x is the secret key (stored 
at the verifier). The tags are independent of the stored data, but their number is 
equal to two times the number of data chunks. The verifier chooses a random 
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value that will be used to shift the indexes of tags to be associated with the 
data chunks when constructing the response by the holder.  

 
Homomorphic Hash Functions 

The second solution described in [98] requires little storage at the verifier 
side and no additional storage overhead at the holder side; yet makes it 
possible to generate an unlimited number of challenges. The proposed solution 
(inspired from RSA) has been also proposed by Filho and Barreto in [19]. It 
makes use of a key-based homomorphic hash function H. A construction of H 
is also presented as H(m)=gm mod N where N is an RSA modulus and such 
that the size of the message m is larger than the size of N. In each challenge of 
this solution, a nonce is generated by the verifier which the prover combines 
with the data using H to prove the freshness of the answer. The prover’s 
response will be compared by the verifier with a value computed over H(data) 
only, since the secret key of the verifier allows the following operation (d for 
data, and r for nonce): H(d + r) = H(d) × H(r). The exponentiation operation 
used in the RSA solution makes the whole data as an exponent. To reduce the 
computing time of verification, Sebé et al. in [25] propose to trade off the 
computing time required at the prover against the storage required at the 
verifier. The data is split in a number m of chunks {di}1≤i≤m, the verifier holds 
{H(di)}1≤i≤m and asks the prover to compute a sum function of the data chunks 
{di}1≤i≤m and m random numbers {ri}1≤i≤m generated from a new seed handed 
by the verifier for every challenge.  Here again, the secret key kept by the 
verifier allows this operation: ∑1≤i≤m H(di + ri)= ∑1≤i≤m H(di) × H(ri). The index 
m is the ratio of tradeoff between the storage kept by the verifier and the 
computation performed by the prover. Furthermore, the basic solution can be 
still improved as described in [22]; though the verification method is 
probabilistic. The holder will be storing tags of ti = gyi+si where si is a random 
number kept secret by the verifier. The holder periodically constructs compact 
forms of the data chunks and corresponding tags using time-variant challenge 
sent by the verifier. The authors of [22] argue that this solution achieves a 
good performance. 

 
 

C. DELEGABLE VERIFICATION PROTOCOL 
 
Self-organization addresses highly dynamic environments like P2P 

networks in which peers frequently join and leave the system: this assumption 
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implies the need for the owner to delegate data storage evaluation to third 
parties, termed verifiers thereafter, to ensure a periodic evaluation of holders 
after his leave. The need for scalability also pleads for distributing the 
verification function, in particular to balance verification costs among several 
entities. Last but not least, ensuring fault tolerance means preventing the 
system from presenting any single point of failure: to this end, data 
verification should be distributed to multiple peers as much as possible; data 
should also be replicated to ensure their high availability, which can only be 
maintained at a given level if it is possible to detect storage defection. 

 
 

1. Delegability  
 
The authenticator and the memory checker perform verifications on behalf 

of the user; though they are considered as trusted entities within the user’s 
platform. None of the presented schemes considers distributing the verification 
task to other untrusted peers; they instead rely on the sole data owner to 
perform such verifications. In a P2P setting, it is important that the owner 
delegates the verification to other peers in the network in order to tolerate the 
intermittent connection of peers and even the fact that a single point of 
verification constitutes a single point of failure. Some of the schemes 
presented above may allow delegating verification provided that the verifier is 
not storing any secret information because it may otherwise collude with the 
holder. Additionally, the amortized storage overhead and communication 
complexity should be minimized for this purpose. To our knowledge, [78] is 
the first work to suggest delegating the verification task to multiple peers 
selected and appointed by the data owner. This approach relies on elliptic 
curve cryptography primitives., The owner derives from the data to be stored a 
public and condensed verification information expressed as (d  mod Nn)×P 
where Nn is the order of the elliptic curve and P is a generator. The interactive 
proof of knowledge exchange between the verifier and the holder is based on 
the hardness of the elliptic curve discrete logarithm problem [72]. Such a 
verification protocol can be further refined by considering data chunks instead 
of a data bulk in analogy to [25]. The objective in this case is to limit the 
computation overhead required from the holder. A revised verification 
protocol is described in more detail in the following sub-section. 

The main characteristics of the discussed verification protocols are 
summarized in Table 1. 
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Table 1. Comparison of existing verification protocols (variable n and m 
respectively correspond to data size and the number of chunks). 

 

 Detection Delegation 

Efficiency 

Storage at 
verifier 

CPU at 
holder 

Communication 
overhead 

[8]: POR Probabilistic 

Bounded  
No O(1) O(1) hash 

transformation O(1) 

 
Table 2. Continued. 

 

[54]: Memory 
checker 

Probabilistic 

Unbounded 
No O(m) O(n/m) chunk 

fetching O(n/m) 

[65]: 
Authenticator  

Probabilistic 

Unbounded 
No O(1) O(n/m) chunk 

fetching O(n/m) 

[77]: based on 
signatures 

Probabilistic 

Unbounded 
Yes O(1) O(n/m) chunk 

fetching O(n/m) 

[33]: PDP Probabilistic 

Unbounded 
Possible O(1) O(n/m) 

exponentiation O(1) 

[39]: Compact 
proofs of 

retrievability 

Probabilistic 

Unbounded No O(1) O(n/m) 
exponentiation O(1) 

[22]: based on 
redactable 
signatures 

Probabilistic 

Unbounded Possible O(1) 
O(log(n)) 
signature 

construction 
O(log(n)) 

[22]: RSAh 
solution 

Probabilistic 

Unbounded 
No O(1) O(n/m) 

exponentiation O(1) 

[55]: Data 
chunk 

recovery 

Probabilistic 

Unbounded No O(n) O(1) simple 
comparison O(1) 

Wagner in 
[84]: based on 

Merkle-hash 
tree  

Probabilistic 

Unbounded Possible O(1) O(log(n)) hash 
transformation O(log(n)) 

[92]: based on 
algebraic 

signatures 

Probabilistic 

Unbounded Possible O(1) O(n/m) signature 
validation O(1) 
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[98]: pre-
computed 

challenges 

Deterministic 

Bounded No O(1) O(n) hash 
transformation O(1) 

[63]: 
Incremental 

cryptography 

Deterministic 

Unbounded Possible O(1) O(n) fetching O(n) 

[32]: MAC 
based 

Deterministic 

Unbounded 
No O(n) O(n) hash 

transformation O(1) 

[84]: SEC Deterministic 

Unbounded 
No O(1) O(n/m) 

exponentiation O(1) 

 
 

Table 3. Continued.  
 

[98], [19]: 
RSA solution 

Deterministic 

Unbounded 
Possible O(1) O(n) 

exponentiation O(1) 

[25]: RSA 
solution with 

data chunks 

Deterministic 

Unbounded 
Possible O(m) O(n/m) 

exponentiation O(1) 

[78]: ECC 
based 

Deterministic 

Unbounded 
Yes O(m) O(n/m) point 

multiplication O(1) 

 
 

2. Example  
 
The following presents a secure and self-organizing verification protocol 

exhibiting a low resource overhead. This protocol was designed with 
scalability as an essential objective: it enables generating an unlimited number 
of verification challenges from the same small-sized security metadata.  

 
a. Security Background 

The deterministic verification protocol relies on elliptic curve 
cryptography ([72], [94]). The security of the protocol is based on two 
different hard problems. First, given some required conditions, it is hard to 
find the order of an elliptic curve. Furthermore, one of the most common 
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problems in elliptic curve cryptography is the Elliptic Curve discrete logarithm 
problem denoted by ECDLP.  

Thanks to the hardness of these two problems, the deterministic 
verification protocol ensures that the holder must use the whole data to 
compute the response for each challenge. In this section, we formalize these 
two problems in order t rther describe the security primitives that rely on 
them.  

o fu

Elliptic Curves over n. Let n be an odd composite square free integer and 
let a, b be two integers in n such that gcd a3 + 27b2, n) = 1 (“gcd” means 

ommon divisor).  
(4

greatest c
An elliptic curve En(a, b) over the ring n is the set of the points (x, y) ∈ 

n× n satisfying the equation: y2 =  x3 + ax + b, together with the point at 
infinity denoted On. 

 
Solving the Order of Elliptic Curves 

The order of an elliptic curve over the ring n where n=pq is defined in 
[47] as Nn = lcm(#Ep(a, b), #Eq(a, b)) (“lcm” for least common multiple, “#” 
means order of ). Nn is the order of the curve, i.e., for any P ∈ En(a, b) and any 
integer k, (k×Nn + 1)P = P. 

If (a = 0 and p ≡ q ≡ 2 mod 3) or (b = 0 and p ≡ q ≡ 3 mod 4), the order of 
En(a, b) is equal to Nn=lcm(p+1, q+1). We will consider for the remainder of 
the paper the case where a = 0 and p ≡ q ≡ 2 mod 3. As proven in [47], given 
Nn = lcm(#Ep(a, b), #Eq(a, b)) = lcm(p + 1, q + 1), solving Nn is 
computationally equivalent to factoring the composite number n. 

 
The Elliptic Curve Discrete Logarithm Problem 

Consider K a finite field and E(K) an elliptic curve defined over K. 
ECDLP in K is defined as: given two elements P and Q ∈ K, find an integer r, 
such that Q = rP whenever such an integer exists.  

 
 

b. Protocol Description 
 
This sub-section introduces an improved version of the protocol described 

in [78] whereby the computation complexity at the holder is reduced. In the 
proposed version and in comparison to the version of [78], the data is split into 
m chunks, denoted {d’i}1≤i≤m, and the verifier stores the corresponding elliptic 
curve points {Ti = d’iP}1≤i≤m. We assume that the size of each data chunk is 
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much larger than 4k where k is the security parameter that specifies the size of 
p and q and thus also the size of an elliptic curve point in n (n=pq), because 
the verifier must keep less information than the full data. 

The verification protocol is specified by four phases (see Figure 3): Setup, 
Storage, Delegation, and Verification. The owner communicates the data to 
the holder at the storage phase and the meta-information to the verifier at the 
delegation phase. At the verification phase, the verifier checks the holder’s 
possession of data by invoking an interactive process. This process may be 
executed an unlimited number of times. 

 
- Setup: The phase is performed by the owner. From a chosen security 

parameter k (k > 512 bits), the owner generates two large primes p and 
q of size k both congruent to 2 modulo 3, and computes their product 
n = pq. Then, it considers an elliptic curve over the ring n denoted by 
En(0, b) where b is an integer such that gcd(b, n)=1, to compute a 
generator P of En(0, b). The order of En(0, b) is Nn = lcm(p+1, q+1). 
The parameters b, P, and n are published and the order Nn is kept 
secret by the owner. 

 
 



Nouha Oualha and Yves Roudier 26 

 
Owner  Holder 

Storage 

Compute d'=fs(d) 

Split d’ in m chunks: {d’i}1≤i≤m 

send {d’i}1≤i≤m 

 

 

{d’i}1≤i

≤m 

 

 

 

Store {d’i}1≤i≤m 

Owner  Verifier 

Delegati
on 

Compute for each i in [1, m]: Ti=(d’i 
mod Nn)P 

send {Ti}1≤i≤m 

 

{Ti}1≤i≤

m 

 

 

Store {Ti}1≤i≤m 

Verifier  Holder 

Verificat
ion 

Generate a random number r and 
seed c 

Compute Q = rP 

Send c, Q 

Generate {ci}1≤i≤m from seed c 

 

 

If R = r(∑1≤i≤m ciTi) then “accept” 
else “reject” 

 

 

c, Q 

 

 

R 

 

 

 

Generate {ci}1≤i≤m from 
seed c 

Compute R = ∑1≤i≤m 
cid’iQ 

Send R 

 

Figure 3. Delegable verification protocol. 

- Storage: The owner personalizes the data d for its intended holder 
using a keyed encryption function fs, then splits the personalized data 
d’= fs(d) into m chunks of the same size (the last chunk is padded with 
zeroes): {d’i}1≤i≤m. The data chunks are then sent to the holder. 

- Delegation: The owner generates meta-information to be used by the 
verifier for verifying the data possession of one holder. The owner 
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generates the curve points {Ti = d’iP ∈ En(0, b)}1≤i≤m sent to the 
verifier.  

- Verification: The verifier generates a random number r and a random 
seed c (size of c > 128 bits). Then, it sends Q=rP and the seed c to the 
holder. Upon reception of this, the holder generates m random 
numbers {ci}1≤i≤m from the seed c (it is possible to generate the 
random numbers as ci=ci for each i, or using a random number 
generator function). Then, it computes the point R = ∑1≤i≤m cid’iQ that 
is sent to the verifier. To decide whether holder’s proof is accepted or 
rejected, the verifier generates the same m random numbers {ci}1≤i≤m 
from the seed c and checks if R is equal to r(∑1≤i≤m ciTi). 

 
 

c. Security Analysis  
 
This section analyzes the completeness and the soundness of the 

deterministic protocol that are the two essential properties of a proof of 
knowledge protocol [2]: a protocol is complete if, given an honest claimant 
and an honest verifier, the protocol succeeds with overwhelming probability, 
i.e., the verifier accepts the claimant’s proof; a protocol is sound if, given a 
dishonest claimant, the protocol fails, i.e. the claimant’s proof is rejected by 
the verifier, except with a small probability.  

 
Theorem 1- The proposed protocol is complete: if the verifier and the 

holder correctly follow the proposed protocol, the verifier always accepts the 
proof as valid. 

 
Proof: Thanks to the commutative property of point multiplication in an 

elliptic curve, we have for each i in [1, m]: d’irP= rd’iP. Thus, the equation: 
∑1≤i≤m cid’irP = r(∑1≤i≤m cid’iP). □ 

 
Theorem 2- The proposed protocol is sound: if the claimant does not store 

the data, then the verifier will not accept the proof as valid.  
 
Proof: If the holder does not store the data chunks {d’i}1≤i≤m, it may try 

first to collude with other holders storing the same data. However, this option 
is not feasible since data stored at each holder is securely personalized during 
the storage phase. Since fs is a keyed encryption function and the key s is 
secret, no peer except the owner can retrieve the original data d from d’. The 
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other way to generate a correct response without storing the data relies on only 
storing {d’iP}1≤i≤m (which is much smaller than the full data size) and 
retrieving r from the challenge rP in order to compute the correct response. 
Finding r is hard based on ECDLP. The last option for the holder to cheat is to 
keep {d’i mod Nn}1≤i≤m instead of d’ (whose size is very large). The holder 
cannot compute Nn based on the hardness of solving the order of En(0, b). 
Thus, if the response is correct then the holder keeps the data correctly. □ 

 
 

d. Performance Analysis 
 
In the proposed protocol, challenge-response messages mainly each 

consist of an elliptic curve point in n
2. Message size is thus a function of the 

security factor k (size of n≈2k). Reducing communication overhead then 
means decreasing the security parameter. 

The verification protocol requires the verifier to store a set of elliptic 
curve points that allows producing on demand challenges for the verification. 
Finally, the creation of proof and its verification rely on point multiplication 
operations.  

The number of data chunks m can be used to fine tune the ratio between 
the storage required at the verifier and the computation expected from the 
holder: when increasing m, the verifier is required to keep more information 
for the verification task, but at the same time the holder is required to perform 
one point multiplication operation using much smaller scalars.  

Assessing the actual state of storage in a P2P storage application 
represents the first step towards efficiently reacting to misbehavior and 
cooperation incentives rely on peer evaluations. The use of verification 
protocols should make it possible to detect and isolate selfish and malicious 
peers, and ultimately punish these peers through cooperation incentive 
mechanisms.  
 
 
Table 4. Summary of resource usage of the delegable verification protocol 

(variable n and m respectively correspond to data size and the  
number of chunks). 

 

 Storage usage Computation 
complexity 

Communication 
overhead 
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At holder O(n) O(n/m) (upstream) O(1) 

At verifier O(m) O(1) (upstream) O(1) 

 
 
 

IV. COOPERATION INCENTIVES 
 
Cooperation enforcement is a central feature of P2P systems, and even 

more so self-organizing systems, to compensate for the lack of a dedicated and 
trusted coordinator and still get some work done. However, cooperation to 
achieve some functionality is not necessarily an objective of peers that are not 
under the control of any authority and that may try to maximize the benefits 
they get from the P2P system. Cooperation incentive schemes have been 
introduced to stimulate the cooperation of such self-interested peers. They are 
diverse not only in terms of the applications which they protect, but also in 
terms of the features they implement, the type of reward and punishment used, 
and their operation over time. Cooperation incentives are classically classified 
into barter-based, reputation-based, and remuneration-based approaches. 

 
 

A. Bartering 
 
Cooperation incentives may be cheaply built on a tit-for-tat (TFT) strategy 

(“give and ye shall receive”). The peer initially cooperates, and then responds 
likewise to the opponent's previous action: if the opponent previously 
cooperated, the peer cooperates; otherwise, the peer defects. TFT is 
demonstrated to be an evolutionary stable strategy (ESS) in game theory 
jargon: this strategy cannot be invaded (or dominated) by any alternative yet 
initially rare strategy.  

In the Cooperative Internet Backup Scheme [55], each peer has a set of 
geographically-separated partner peers that collectively hold its backed up 
data. In return, the peer backs up a part of its partners’ data. To detect free-
riding, each peer periodically evaluates its remote data. If it detects that one of 
its partners dropped the data, the peer establishes a backup contract with a 
different partner. Since the scheme relies on identical and immediate resource 
exchanges, peers must be able to choose partners that match their needs and 
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their capabilities and that ensure similar uptimes. To this end, a central server 
tracks peers and their partners. Decentralized methods of finding partners in a 
Gnutella-like flooding approach are also suggested although not evaluated in 
[55]. 

However, TFT is not perfect as illustrated by the P2P file sharing protocol 
BitTorrent [13]. In BitTorrent, unchoking a peer means that the peer is 
accepted to upload files for it. Peers follow a TFT strategy by unchoking peers 
that provide the highest throughput for them, and besides that they use an 
optimistic unchoking strategy to discover potentially better trading peers. 
However this strategy of (probabilistically) cooperating with newcomers 
blindly can be exploited by whitewashers (peers that repeatedly join the 
network under new identities to avoid the penalty imposed on free-riders). [58] 
describes the design of BitTyrant, a selfish client that demonstrates that 
BitTorrent incentives don’t build robustness. The reason is that TFT is no 
longer an evolutionary stable strategy in the presence of whitewashers. 

 
 
 

B. Reputation 
 
Reputation relies on the evaluation of a peer’s past behavior for deciding 

whether to cooperate with the peer. Cooperation may be reciprocated even in 
the absence of its beneficiary and evaluator (indirect reciprocity).  

 
Direct Vs. Indirect Reputation 

Reputation generally only relies on a partial assessment of the behavior of 
peers, which might delay the detection of free-riders. This situation is rendered 
even worse in P2P storage applications, since storage is not an instantaneous 
operation and data are vulnerable throughout their entire storage lifetime. 
Group-based architecture have been suggested (e.g., [75]) as a way to enable 
peers to quickly know the behavior of their group fellows. The analytical 
model in [75] compares direct reputation whereby peers use only the results of 
verifications they perform themselves using direct observations to compute 
reputation with indirect reputation where these results are disseminated. This 
model demonstrates that the direct reputation approach for observing peer 
behavior outperforms indirect reputation in terms of correctness and exposure 
if the group of peers is of modest size. However, indirect reputation is more 
effective in an open system with a large population of peers that have 
asymmetric interests as shown in [61]. 
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The direct reputation approach does not require propagating any 
information as opposed to indirect reputation which generates communication 
overhead and may even require centralization. However, it is possible to 
implement a decentralized indirect reputation for example on top of a 
distributed-hash-table (DHT) or by disseminating information to other peers 
similarly to routing protocols. 

 
Resistance to Bashing 

Another challenging issue in dynamic systems like P2P is the vulnerability 
of a reputation system to peer bashing. Reputation bashing is made possible 
with two types of attacks: peer collusion and Sybil attacks. Peers may collude 
in order to advertise their quality more than their real values (“ballot stuffing”) 
thus increasing their reputation at other peers. Such an objective can also be 
achieved through a Sybil attack: if peers are able to generate new identities at 
will, they may use some of them to increase the reputation of the rest of their 
made-up identities.  

Techniques to completely eliminate Sybil attacks can only be provided by 
trusted certification as proven by Douceur [45]. In this way, trusted devices 
associated in a secure fashion to peers can be used to eliminate such attacks (as 
discussed in [88]). However, an attacker may still buy multiple devices and 
then acquire multiple identities although at a high cost. Without a trusted 
infrastructure, Sybil attacks can only be mitigated.  

To overcome the collusion problem, [31] proposes to add a “reliability” 
measure to the estimate of the reputation. The rating measure L becomes: 

L = α×R + (1 - α)×(1 - G) 
where R is the estimated reputation, G is the Gini coefficient that 

describes the amount of inequality in the distribution of transactions among a 
peer’s entire partner set, α being a weight parameter. The Gini coefficient 
illustrates the idea that a reputation estimate is considered as less reliable if a 
significant fraction of transactions are performed with a small subset of the 
peer’s partner set. 

[61] addresses the same problem of peer collusion throught the application 
of the maxflow algorithm on the graph constructed from peers considered as 
vertices and the services they receive as directed edges. The maxflow 
algorithm gives the maximum feasible flow from a source peer to a destination 
peer. The cost of the maxflow algorithm increases with the number of peers 
examined in the graph.  

The two approaches above are still trading off the number of peers 
examined in the algorithms with the efficiency of the detection. Sybil 
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mitigation can also be achieved by making the newcomer pay with 
computational or bandwidth or storage abilities, such as for example crypto-
puzzles [95] or testing peer IP address. Other techniques like SybilGuard [37] 
rely on prior trust relationships, e.g., real-world friendship between peers to 
detect Sybil attackers. [26] even enhances the SybilGuard approach by 
controlling the number of peer invitations that a group member possesses. In a 
similar fashion, [76] suggests that peers taking part in any transaction be 
simply chosen in a random fashion. Peer service requests are directed to a 
randomly chosen peers although the latter can choose to cooperate with the 
requesters based on their reputation. 

In most of the approaches above, the costs are only paid once by Sybil 
attackers and can be then amortized during the rest of the system operation. As 
discussed in [15], such costs can be periodically paid by repeatedly performing 
resource testing on peers thus confining the potential return on investment of 
Sybil attackers to a limited time slot. It should be noted though that all these 
approaches, which aim at limiting Sybil attacks without trusted infrastructure, 
are scalable compared with certification-based approaches. Still, they incur a 
huge cost overhead not only on Sybil attackers but also on honest newcomers, 
which may undermine their practicality and adoption in P2P applications. 
Furthermore, [60] shows that imposing a penalty on all newcomers 
significantly degrades system performance when the peer churn rate is high. 

 
 

C. Payment 
 
Payment is a way to foster cooperation in exchange of some token that can 

be exchanged later on for some service. This approach introduces economic 
mechanisms that can regulate the usage of storage or bandwidth related 
resources, for instance. Payment brings up new requirements regarding the 
fairness of payment itself [68], which in general translate to a more complex 
and costly implementation than for reputation mechanisms. In particular, 
payment schemes require a trusted environment including trusted entities such 
as banks. These entities may be involved in the transaction, in which case the 
payment scheme can be deemed centralized. On the contrary, some schemes 
are decentralized and require banks to be contacted only to resolve payment 
litigations. The latter approach is more appropriate to ensure the maximum 
degree of self-organization to the P2P network. 
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Fair Exchange and Payment 
Achieving an effective implementation of payment-based mechanism 

depends upon the realization of a protocol that enforces the fair exchange of 
the payment (credits) against some task: according to [69], “a fair exchange 
protocol can then be defined as a protocol that ensures that no player in an 
electronic commerce transaction can gain an advantage over the other player 
by misbehaving, misrepresenting or by prematurely aborting the protocol”. 
Fair exchange may be enforced through a trusted third party (TTP) that may be 
used online or opportunistically. Tamperproof modules (TPMs), secure 
operating systems, or smart cards may also be employed to carry out a fair 
exchange protocol in a distributed fashion. 

In a P2P network, TTPs may be represented as super-peers that play the 
same role as an online TTP but in a distributed fashion. FastTrack [42]is an 
example of such an architecture which is used in P2P networks like KaZaA 
[46], Grokster [36], and iMesh [40]. These networks have two-tier hierarchy 
consisting of ordinary nodes (ONs) in the lower tier and super-nodes (SNs) in 
the upper tier. In P2P file sharing networks, SNs keep track of ONs and other 
SNs and act as directory servers during the search phase of files. One way of 
implementing a payment scheme is to use super-peers distributed within the 
P2P network. These super-peers then provide neutral platforms for performing 
an optimistic fair exchange protocol. The use of such an infrastructure of 
trusted peers, that would not necessarily need to be related with the payment 
authority, may be rendered feasible by the deployment of other infrastructures 
like content distribution networks (CDNs) (e.g., [1]). Such networks involve 
the deployment of managed workstations all over the Internet, thereby 
providing a nice platform for payment related functionalities.  

The Wuala storage system ensures fair exchange through a system of 
quota that directly depends on the measure of the uptime of a peer. Fair 
exchange in this system is ensured by a central authority that keeps track of 
exchanges between peers. In contrast, P2P storage systems may have no 
dedicated authority tracking all exchanges. In that case, ensuring the 
scalability of the system makes it necessary to resort to a type of fair exchange 
protocol called optimistic [68] in which the TTP does not necessarily take part 
in peer interactions, but may be contacted to arbitrate litigations. In the 
cooperative backup system of [55], a central server considered as a TTP tracks 
the partners of each peer participating in the backup system. Each peer takes 
note of its direct experience with a partner, and if this partner does not 
cooperate voluntarily or not beyond some threshold, the peer may decide to 
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establish a backup contract with a different partner that is obtained through the 
central server. 

Smart cards have been used in the P2P storage system PAST [81] to 
ensure the fairness of peer contributions. Smart cards issued by a third party 
are held by each PAST peer to support a quota system that balances supply 
and demand of storage space in the system. Peers cannot use more remote 
storage than they are providing locally. With fixed quotas and expiration dates, 
peers are only allowed to use as much storage as they contribute. 

If data storage should be achieved in a large-scale and open P2P system, 
deploying designs based on trusted environments may be infeasible. In that 
case, implementing the optimistic fair exchange protocol would have to be 
done by relying solely on peers. [69] describes design rules for such 
cryptographic protocols making it possible to implement appropriate fair-
exchange protocols. For instance, the distribution of the banking function to 
multiple peers may make the realization of a scalable system easier. In the 
KARMA framework [95], the exchange of some payment against some 
resource is supported by multiple peers that collaborate to provide a fair 
exchange. A fair exchange system for P2P storage system might be 
implemented using that framework in which the bank (trusted authority) is 
replaced by a set of peers, termed the bank-set, randomly assigned for each 
peer. The karma values, which is the name of the currency, are maintained for 
each peer by its bank-set who is collectively responsible for continuously 
updating the karma value as the peer contributes and consumes resources from 
the P2P system. The bank-sets independently track the credits belonging to 
their assigned peers, and periodically agree on a given balance of credits with 
a majority rule. Even if there were inconsistencies in peers’ balances, 
transactions among peers correspond to tiny micropayments and thus do not 
produce considerable gains or losses to peers. The fair exchange protocol in 
KARMA is similar to an online TTP-based exchange but with additional 
features for guaranteeing the consistence and synchronization of balances.  

 
Payments by Installment 

A payment scheme for a file sharing application as described in [95] 
cannot be assimilated to P2P storage since in the former case payments are 
immediately charged after the exchange of the file, whereas in the latter case 
payments for storage are by installment i.e., they are billed at a due date that 
corresponds to the confirmation (after a verification) of the cooperative 
behavior of the holder. A payment scheme should thus be supplemented by an 
escrowing mechanism to guarantee the effective payment of credits promised 
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by the peers towards a cooperative holder. Before interacting with others, a 
peer must escrow, i.e., set aside and store in a trusted repository, the amount of 
credits it agrees to pay at the end of the interaction upon defined conditions. 
The escrowing is an additional mechanism required for implementing fair-
exchange in P2P storage systems since the misbehavior of a peer and a related 
compensation may not be determined immediately, but only at a later time 
when the peer in question might have left the network or would not respond. 
Escrowed credits thus  form a commitment for future payments.  Here again, 
trusted environments like TPMs or smartcards may prove helpful to implement 
the escrowing feature. Otherwise, third parties have to be used in every 
protocol that might imply some form of monetary compensation. 

 
Preventing Starvation 

Payment-based schemes generally suffer from starvation, e.g., see [9]. In a 
P2P storage system, starvation means the inability of a peer to store data in the 
system because it cannot commit money for potential compensation. Auctions 
provide a solution for mitigating that starvation phenomenon. Since auctioning 
reveals the real preferences of bidders, a solution is to make it necessary for 
peers left with a small number of credits to contribute more to the system. 
These peers would offer lower prices for storing the same amount of data in 
order to attract data owners in priority. First-price or second-price auctions 
(Vickrey auction) are equally possible. 

 
 

V. VALIDATION BASED ON GAME THEORY 
 
Cooperation incentives prevent selfish behaviors whereby peers free-ride 

the storage system, that is, they store data onto other peers without 
contributing to the storage infrastructure. Remote data verification protocols 
are required to implement the auditing mechanism needed by any efficient 
cooperation incentive mechanism. In general, a cooperation incentive 
mechanism is proven to be effective if it is demonstrated that any rational peer 
will always choose to cooperate whenever it interacts with another cooperative 
peer. One-stage games or repeated games have been mostly used to validate 
cooperation incentives that describe individual strategies; in addition, the use 
of evolutionary dynamics can help describe the evolution of strategies within 
large populations.  
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A. Definitions 
 
Game theory is a branch of applied mathematics that models interactions 

among individuals making decisions. It attempts to mathematically capture 
individual rational behavior in strategic situations where individuals’ decisions 
are based on their preferences and also depend on the other individuals’ 
choices. It then provides a language to describe, analyze, and understand 
strategic scenarios [91]. 

 
1. Game 

A game consists of: 
- A set of players {p1, …, pn} which are the individuals who make 

decisions 
- A set of strategies i.e., moves for each player Si, i=1, …, n 
- A specification of each player’s payoffs which are the numeric values 

assigned to the outcomes produced by the various combinations of 
strategies. Payoffs represent the preference ordering of players over 
the outcomes. Payoffs are expressed using player’s utility function Ui: 

Ui: S1×S2× …×Sn → ℜ 
The game assumes that all players are rational; this means that they will 

always choose the strategy that maximizes their payoffs. Players are then 
participants in the game with the goal of choosing the actions that produce 
their most preferred outcomes. 

 
2. Game Types 

A game can be one of two types: non-cooperative or cooperative. In the 
first type, players are selfish and are only concerned with maximizing their 
own benefit. In the second type, some players cooperate and form a coalition 
in order to achieve a common goal, and then the coalition and the rest of 
players play non-cooperatively the game.  

A game can be a repeated game that consists in a finite or infinite number 
of iterations of some one-stage game. In such one-stage game, players’ choices 
are referred to as actions rather than strategies (a term reserved to the repeated 
game) and these actions take into account their impact on the future actions of 
other players.  

Evolutionary game theory also provides a dynamic framework for 
analyzing repeated interactions. In such games, randomly chosen players 
interact with each other, then the player with the lower payoff switches to the 
strategy of the player with the higher payoff i.e., players reproduce 
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proportionally to their payoffs. Hence, strategies with poor payoffs eventually 
die off, while well-performing strategies thrive.  

 
3. Game Equilibria 

Finding a solution to a game equates to finding equilibria in the game. At 
the equilibrium, each player of the game has adopted a strategy that they are 
unlikely to change. Many equilibrium related concepts have been developed in 
an attempt to capture this idea. The most famous is the Nash equilibrium. A 
Nash Equilibrium is the set of players’ strategy choices such that no player can 
benefit by changing its strategy while the other players keep their strategies 
unchanged. So, it is a set of strategies {σ1 ∈ S1, …, σn ∈ Sn}, such that: 

Ui(σ1, …, σi, …, σn) ≥ Ui(σ1, …, σ’i, …, σn),   i ∈ {1, …, n} and σ’i ∈ Si 

An Evolutionary stable strategy (ESS) defines strategies conducting to a 
Nash equilibrium and such that, if adopted by a population of players, cannot 
be invaded by any alternative strategy that is initially rare. For a two-player 
game with a strategy space S  a strategy σ  is an ESS if and only if for any σ’ ≠ 
σ , either on  of the followi g two con itions holds:  

,

a
e n d

b) U(σ , σ ) = U(σ’, σ ) and U(σ , σ’) > U(σ’, σ’) 
) U(σ , σ ) > U(σ’, σ ) 

Here, U(., .) is the payoff function of the associated two-player game. 
 
To achieve a socially optimal equilibrium for a self-organizing system 

with autonomous peers, different incentive mechanisms have been proposed in 
the literature. These incentives include providing virtual or real payment 
incentives or establishing and maintaining a reputation index for every peer in 
the network. 

 
 
 

B. Reputation Incentive Modeling 
 
The cooperation enforcement property of reputation schemes can be 

proven with game theoretical tools. The modeling may operate with static 
games that consider interaction between peers that have persistent strategies. 
On the other hand, dynamic games involve peers that constantly change their 
strategy. The following reviews static and dynamic game models that describe 
several features of reputation approaches. 
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1. Static games 
Reputation schemes have received a great deal of attention for enforcing 

node cooperation in mobile ad hoc networks. Notably, [85] proposed CORE as 
a collaborative reputation mechanism motivating nodes to forward packets, 
and used a game theoretical approach to assess the features and validate the 
mechanism. This work relies on a cooperative game that uses a two-period 
structure: players first decide whether or not to join a coalition, and then both 
the coalition and the remaining players choose their behavior non-
cooperatively. Additionally, the model employs a preferential structure as 
suggested by the ERC-theory [30]. A player i's utility is based on the absolute 
payoff yi and on the relative payoff: 

 
The ERC utility function is derived then as: 

) 
where  and  are parameters describing the preferences of the nodes.  
The study of the model demonstrates that there is a Nash equilibrium 

where at least half of the total number of nodes cooperate. Nodes may also 
have a continuous strategy space where they may choose their cooperation 
levels instead of discretely choosing just between cooperation and defection. 
The study reveals that for identical ERC preferences and for a sufficiently 
small ratio α/β (i.e., nodes are interested enough in being close to the equal 
share), then the grand coalition is stable, i.e., no player has an incentive to 
leave the coalition. Still, the assumption that the nodes will be much interested 
in their relative payoff (small α/β) may not be met in practice.  

 
2. Dynamic games 

In contrast to [85] that addresses a specific mechanism, [16] introduces a 
general game theoretical framework to model and analyze cooperation 
incentive policies, and to more specifically focus on their dynamics. In the 
proposed model, peer strategies are expressed using an n×n generosity matrix 
G with Gij being the probability that a peer of strategy si will provide service 
for peer of strategy sj. The expected payoff of a peer of strategy si at time t is 
derived as: 
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where  denotes the fraction of peers with strategy sj in the peer 

population at time t, α > 0 is the gain of a peer receiving a service from 
another peer, while it loses β (normalized payoff with β = 1) when it provides 
a service to another peer. Thus, the total expected performance of the system 
is: 

 
with the vector x = (x1, x2,… , xn).  
Instead of game equilibria, the model studies the game dynamics where 

strategies change according to two learning models: the current-best (CBLM) 
and the opportunistic (OLM) learning models. In CBLM, each peer may 
switch to another strategy with probability γa (adapting rate). The peer chooses 
the strategy sh that has the highest payoff. The peer of strategy si will switch to 
strategy sh with probability , where γs represents the 
sensitivity rate to the performance gap. System dynamics are then expressed 
by the following equations: 

 

 (learning rate) 
In the second learning model OLM, each peer randomly chooses another 

peer as its teacher with probability γa. If the teacher has a better payoff than 
the peer, the latter adapts to the teacher’s strategy with sensitivity γs to their 
performance gap. OLM is similar to evolutionary game concepts where the so-
called teacher is the co-player of the peer. For this reason, the evolution of the 
system with OLM follows the replicator dynamics (the payoff is in number of 
offsprings): 

 
The main parameter of comparison between these learning models is 

robustness: a system is robust if it stays at a high contribution level despite 
perturbations such as peer arrivals or departures from the network. The 
mathematical analysis demonstrates that a system with CBLM is less robust 
than with OLM, the latter being akin to a typical evolutionary game model. 
Moreover, the analysis allows comparing two incentive policies. The first 
considered policy is the mirror incentive policy under which a peer provides 
service with the same probability as the requester serves other peers in the 
system. On the other hand, in a second policy named the proportional 
incentive policy, the peer serves the requester with a probability equal to the 
requester’s contribution to consumption ratio. The study shows that the mirror 
incentive policy may lead to a complete system collapse, while the 
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proportional incentive policy can lead to a robust system. This result is quite 
interesting because it demonstrates that a policy motivating fairness in terms 
of contributions and consumptions of resources achieves better stability than 
participatory incentives. 

Another reputation technique to support cooperative behavior in a P2P 
system, named reciprocative strategy, is proposed in [61]. In this strategy, a 
peer j cooperates with another peer i depending on its normalized generosity 
value: 

 
where peer i’s generosity g(i) = pi/ci, and pi and ci are respectively the 

services the peer i has provided and consumed. The reputation technique 
resembles the proportional incentive policy of [16], though the normalization 
overcomes the system bootstrapping problem. 

To validate the reputation technique while taking into account several 
challenging issues of P2P systems such as their large populations, high 
turnover, asymmetry of interest of peers, and zero-cost identities, the authors 
propose a dynamic and asymmetric game model based on the generalized 
Prisoner’s Dilemma (GPD). The dynamic model is composed of multiple 
rounds. In each round, every player plays a client role in one game, then a 
server role in another game. Every such player may subsequently either mutate 
by switching to a randomly picked strategy, or learn by switching to a strategy 
with a higher score determined by reputation, or turnover by leaving the 
system, or finally stay with the same strategy.  

[48] also opted for an evolutionary study of applications in P2P systems. 
The authors proposed a model that they call a generalized form of the 
Evolutionary Prisoner’s Dilemma (EPD). Though the model is very similar to 
the traditional EPD, they argue that the new model permits asymmetric 
transactions between a client peer and a server peer. The proposed model 
consists of several generations of rounds. At the end of a generation, the 
history of other players’ actions is cleared and players evolve according to ri

t+1 

= ri
t × si

t, where ri
t+1 is the frequency of peers playing strategy i at the (t+1)th 

generation, and ri
t at the tth generation. si

t is their average score obtained after 
the tth generation. Peers decide whether to cooperate based on a reciprocative 
decision function that sets the probability to cooperate with a given peer X to 
the ratio (rounded to a value in [0, 1]): 
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Such a function is comparable to the proportional incentive policy of [16] 
in which EPD is simulated under various situations. This work shows that 
techniques relying only on private history, where solely peer experiences are 
taken into account, fail in stimulating cooperation among peers as the 
population size increases. However, techniques based on a shared history scale 
better to large populations.  

The evolutionary game proposed in [74] attempts to validate a large scale 
P2P storage system that is based on private history to estimate reputation. The 
reputation scheme relies on a verification routine to detect selfish behavior. 
Thus, peers may play several roles throughout the game: owner, holder, or 
verifier. In the proposed game inspired from the donor-recipient model of [38], 
the owner is considered a recipient, the r holders and m verifiers are donors. 
The owner gains b if at least one holder donates at a cost –c; however if no 
holder donates then the owner gains βb if at least one verifier donates at a cost 
–αc (α≤1) for each verifier. The latter case corresponds to the situation where 
the cooperative verifier informs the owner of the data destruction, and then the 
owner may replicate its data elsewhere in the network thus maintaining the 
security properties of the stored data (e.g., the replication rate of the data).  

Holders and verifiers have the choice between cooperating and defecting. 
The following peer strategies are specifically studied: altruistic peers that 
always donate, defectors that never donate and discriminators that donate 
under conditions. If the discriminator does not know its co-player, it will 
always donate; however, if it had previously played with its co-player, it will 
only donate if its co-player donates in the previous game. This strategy 
resembles Tit-For-Tat but differs from it in that both the owner (the donor) and 
its verifiers may decide to stop cooperating with the holder in the future. 

The evolution of these strategies is analyzed using the replicator 
dynamics. The basic concept of replicator dynamics is that the growth rate of 
peers taking a strategy is proportional to the fitness acquired by the strategy. 
Thus, the strategy that yields more fitness than average for the whole system 
increases, and vice versa.  

The study of the convergence of the system to equilibrium proves that 
there exist parameter values for which discriminators may win against free-
riding defectors. Discriminators are not hopeless when confronting defectors, 
even if the latter may dominate altruists. At the equilibrium of the game, both 
discriminators and defectors may coexist if there is some churn in the system, 
otherwise discriminators will dominate. The number of verifiers increases the 
frequency of discriminators at the equilibrium whereas a costly storage or an 
increase of the replication rate reduce this frequency. 
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3. Whitewashing Problem 

An inherent problem to a cooperation incentive mechanism implemented 
in a dynamic system where peers may join or leave at any time is the 
whitewashing problem. Whitewashers are peers that repeatedly misbehave 
then leave the storage system and come back with new identities thus escaping 
the punishment imposed by the incentive mechanism. The whitewashing 
problem is essentially due to the presence of free or cheap pseudonyms for 
peers. Therefore, countering the whitewashing attacks demands either the use 
of irreplaceable pseudonyms, e.g., through the assignment of strong identities 
by a central trusted authority, or requires imposing a penalty on all 
newcomers. The first solution reduces the decentralized nature of P2P systems 
and introduces a single point of failure. The second option requires defining 
the right penalty parameter for the system. The penalty corresponds to the best 
tradeoff for restricting whitewashers while encouraging newcomers to 
participate. 

The simulation results of [48] demonstrate that cooperation with strangers 
fails to encourage cooperation in the presence of whitewashers. The authors 
thus propose an adaptive policy in which the probability of cooperation with 
strangers becomes equal to pC

t+1 = (1-μ)×pC
t + μ×Ct at time t+1, where Ct=1 if 

the last stranger cooperated and equal to 0 otherwise. Simulations validate the 
adaptive policy by demonstrating that incentives based on such a policy make 
the system converge to higher levels of cooperation. 

[60] studies in more detail the whitewashing problem in P2P systems 
using a game theoretical model that particularly takes into account the 
heterogeneity of user behaviors. Indeed, each user is characterized by a type 
that reflects its willingness to contribute resources (its generosity level): users 
of type ti will contribute if and only if ti > 1/x where x is the fraction of 
contributing users. The fraction of contributors is then determined by the 
solution to: 

x = Probability(ti > 1/x) 
In order to sustain the system when the societal generosity is low (low x), 

punishment mechanisms against free-riding users are required. The proposed 
punishment mechanism consists in imposing a penalty on free-riding behavior 
with probability (1-p). The optimal value for the probability p is defined by the 
maximum performance obtained from the system. The authors express such a 
performance as: 

Wsystem = (αxβ – 1) (x + (1 – x)(1 – p)); α>0 and 0<β≤1 
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where Q = αxβ is the maximum benefit received by each user, an 
increasing function of the number of contributors with diminishing returns. 
The performance of the system is maximized with p = p* ≥ 1/α. Still, such a 
mechanism can be undermined by the availability of cheap pseudonyms 
through which a free-rider may choose to whitewash. To measure the effect of 
a whitewashing behavior, the authors compute the system performance at p = 
p* considering the cases of permanent identities and free identities, in addition 
to different turnover rates that represent user arrival and departure rates 
(arrivals and departures are assumed to be type-neutral, i.e., they do not alter 
the type distribution). This study demonstrates that the penalty mechanism is 
effective when both the societal generosity and the turnover rate are low; 
otherwise a notable societal cost due to whitewashing is experienced. 

[73] studies the penalty mechanism described in [60] with the 
evolutionary game model of [74] by changing the strategy of discriminators 
such that the latter only cooperate probabilistically with strangers and also 
introducing whitewashers into the game. The study of the game equilibrium 
convergence demonstrates that discriminators are not hopeless in front of 
whitewashers and that they may even win over them provided system 
parameters are chosen sensibly. The fraction of discriminators in the system 
should in particular not be null initially, and the replication rate and the churn 
sensed in the system should not be too high.  

The simulation results also show that there is an optimal probability p for 
the penalty mechanism that achieves a high social welfare for the whole P2P 
storage system. However, a non-zero welfare is only obtained if the 
whitewashing phenomena is restricted to a given fraction of defectors. For 
instance, if all defectors are whitewashing, discriminators are entirely 
eliminated and the system collapses. This result motivates the requirement to 
supplement the proposed penalty mechanism with other means that prevent or 
at least limit the whitewashing behavior such as controlling the peers that join 
the system using a cryptographic puzzle [95] or the payment of a membership 
fee. Another solution is to force or motivate peers to stay online a minimum 
amount of time in the system like in Wuala [97] (1/w is then increased) 
because peer connection time must be taken into consideration. 

The penalty mechanism adopted with strangers can be adaptive. The 
probability that a peer cooperates with a stranger is defined in [61] as ps/cs 
where ps and cs are respectively the number of services that strangers have 
provided and consumed. The results of the simulation of the dynamic game 
model show that a system with this strategy can ensure the cooperation of 
peers with a sufficiently low turnover.  
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c. Payment Incentive Modeling 
 
One of the first studies that considered payment schemes in P2P systems 

is [83], which uses a game theoretical model to study the potential benefits of 
introducing micro-payment methods into centralized P2P file-sharing systems 
such as Napster. In such systems, the strategies have two independent actions 
in order to catch the asymmetric aspect of interactions between peers, which 
are also called agents: sharing, i.e., providing the service, and downloading, 
i.e., acquiring the service. Agent actions and other several considerations are 
put together into one utility function that is defined for each agent ai as: 

Ui = (fi
AD(AD) + fi

NV(NV) + fi
AL(AL)) – (fi

DS(DS) + fi
BW(BW)) – FT 

where variables AD, NV, AL, DS, BW, and FT respectively denote the 
amount of files the agent desires to download, the number of options from 
where the agent may download, the altruism derived from contributing to the 
system, the disk space used, the bandwidth used, and the financial transfer for 
using the system. Concerning functions f, they are arbitrary functions: each of 
them maps a variable to its financial value conferred by the agent. Relying on 
this theoretical model, the authors have analyzed the equilibrium solution for 
multiple situations. Without considering any incentives (FT=0) as it is the case 
with Napster and disregarding the altruism variable of agents’ utility functions 
(fi

AL(AL)=0), the outcome of the equilibrium analysis results in an unique 
equilibrium where nothing is shared and nothing can be downloaded. With 
some level of altruism in the system, all agents, both altruistic and free-rider, 
are unrestrained from downloading, the whole cost then weighing over the 
small number of altruistic agents. Therefore, the authors propose alternatives 
based on payment to overcome the free-riding problem. The first proposed 
payment scheme consists in charging agents for every download, and 
rewarding them for every upload. The result of the equilibrium analysis of the 
model with the payment scheme shows that there is one unique and strict 
equilibrium where agents are extensively sharing and downloading files. This 
result validates the payment scheme; still, the analysis does not take into 
account the fact that agents share diverse files and some of them may store 
files that are sufficiently rare thus unfairly receiving a large fraction of all the 
download requests for these files. For that reason, the authors propose a 
second payment-based alternative that continues to penalize downloads, but 
rewards agents in proportion to the amount of material they share rather than 
the number of uploads they provide. The equilibrium analysis of the model 
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shows that two strict equilibria may be reached through either full file sharing 
or no sharing at all; in contrast, simulation experiments of the model 
demonstrate that the system converges to an equilibrium where all agents 
cooperate by sharing files.  

[51] takes a different direction for defining peer utility function that relies 
on payment more than the model of [83] does. The authors of [51] model a 
P2P backup service as a non-cooperative game using an economic model that 
relies on the following user utility:  

 
where  is the capacity of data to be stored in the system and  is the 

capacity of the offered disk space.  gives the price the user is willing to pay 
and  gives the price it is willing to be paid for. The monetary compensation 
is denoted : 

 
where  and  are unit prices. The authors define demand and supply 

functions,  and , as: 
 and  

These functions follow a chosen common form: 
 and  

The parameters,  and , associated with the demand and supply 
functions and characterizing the profile of each user, turn out to be playing a 
crucial role on justifying the use of a pricing scheme or imposed symmetry 
with respect to the optimal situation of the service that is maximizing the 
social welfare defined as: 

 
Indeed, the theoretical study of the economic model shows that if users are 

homogeneous in terms of  and , then it is better to opt for imposed 
symmetric user contributions rather than a pricing scheme. However, for a 
heterogeneous user population, which is the general case in P2P networks, the 
use of a pricing scheme by which a monopoly is introduced to fix unit prices 
for buying and selling storage resources is validated. Still the involvement of 
the operator in fixing prices for a P2P backup reduces the social welfare of the 
system by ¼ times its maximum.   

A P2P storage system purely self-organized that uses a probabilistic 
verification routine to detect selfish holders and that relies on a payment 
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scheme to punish these holders is modeled as a Bayesian game in [79]. In this 
game, the information about the characteristics of other players is incomplete 
because the verification protocol allows only probabilistic detection; thus, 
nature is introduced as a player for modeling uncertainty. The owner is not 
informed about the holder’s type, which may be either cooperative or selfish. 
Such situations that cannot be discriminated belong to the same so-called “set 
of information”. The owner still can probabilistically determine the holder’s 
type based on its prior beliefs: with every verification operation performed, it 
updates its beliefs according to Bayes’ formula.  

The one-stage game produces a Nash equilibrium in which the owner and 
the holder are not cooperative. However, the perfect Bayesian equilibrium 
results in the cooperation of both players for some defined conditions. The 
study of the repeated Bayesian game proves that the iteration of the game 
favors the cooperativeness of the holder as well as that of the owner. The study 
also identifies which actions the owner must follow for a given initial belief 
about the cooperativeness of the holder. Finally, the study reveals the 
expressions that parameters of the payment scheme (e.g., reward, punishment) 
should verify. [79] approaches the definition of payment parameters from a 
design theory point of view rather than a game theory approach in that it 
endeavors to design a game in which the behavior of strategic players results 
in the socially desired outcome.  

 
 

VI. CONCLUSION 
 
Peer-to-Peer (P2P) systems have emerged as an important paradigm for 

distributed storage in that they aim at efficiently exploiting untapped storage 
resources available in a wide base of peers. Data are outsourced to several 
heterogonous storage sites in the network, the major expected outcome being 
an increased data availability and reliability, while also achieving reduced 
storage maintenance costs, and high scalability. Addressing security issues in 
such P2P storage applications represents an indispensable part of the solution 
satisfying these requirements.  Security relies on low level cryptographic 
primitives, remote data possession verification protocols, for observing 
malicious and selfish behaviors. Such an assessment of peer behavior is crucial 
to the more complex enforcement of cooperation, which is necessary due to 
the self-organized nature of P2P networks. It is also crucial to address open 
issues, such as how to mitigate denial of service attempts to the long-term 
storage as well as to the security and storage maintenance functions.  
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