

Chapter 1

PEER-TO-PEER STORAGE: SECURITY
AND PROTOCOLS

Nouha Oualha and Yves Roudier∗
EURECOM, Sophia Antipolis, France

ABSTRACT

Peer-to-peer (P2P) has proven as a most successful way to produce
large scale, reliable, and cost-effective applications, as illustrated for file
sharing or VoIP. P2P storage is an emerging field of application which
allows peers to collectively leverage their resources towards ensuring the
reliability and availability of user data. Providing assurances in both
domains requires not only ensuring the confidentiality and privacy of the
data storage process, but also thwarting peer misbehavior through the
introduction of proper security and cooperation enforcement mechanisms.
Misbehavior may consist in data destruction or corruption by malicious
or free-riding peers. Additionally, a new form of man-in-the-middle
attack may make it possible for a malicious peer to pretend to be storing
data without using any local disk space. New forms of collusion also may
occur whereby replica holders would collude to store a single replica of
some data, thereby defeating the requirement of data redundancy. Finally,
Sybil attackers may create a large number of identities and use them to
gain a disproportionate personal advantage.The continuous observation of
peer behavior and monitoring of the storage process is an important
requirement to secure a storage system. Observing peer misbehavior

∗ {oualha, roudier}@eurecom.fr.

mailto:roudier%7D@eurecom.fr

Nouha Oualha and Yves Roudier 2

requires appropriate primitives like proofs of data possession, a form of
proof of knowledge whereby the holder interactively tries to convince the
verifier that it possesses the very data without actually retrieving them or
copying them at verifier’s memory. We present a survey of such
techniques and discuss their suitability for assessing remote data storage.

Cooperation is key to deploying P2P storage solutions, yet peers in such
applications are confronted to an inherent social dilemma: should they
contribute to the collective welfare or misbehave for their individual welfare?
We review several incentive mechanisms that have been proposed to stimulate
cooperation towards achieving a resilient storage.

The effectiveness of such incentive mechanisms must be validated for a
large-scale system. We describe how this can be assessed with game
theoretical techniques. In this approach, cooperation incentive mechanisms are
proven to be effective if it is demonstrated that any rational peer will always
choose to follow mechanism directives whenever it interacts with another
peer. We finally illustrate the validation of cooperation incentives with one-
stage and repeated cooperative and non cooperative games and evolutionary
games.

Peer-to-Peer Storage 3

TABLE OF CONTENTS

Abstract…………………………………………………………………..……1
I. Introduction……………………………………………………….…..4

A. case for P2P storage……………………………………………….….4
B. Security objectives……………………………………………….…...6

II. Trust establishment…………………………………………….……..9
A. Static

trust……………………………………………………….……10
B. Dynamic

trust…………………………………………………….…..11
1. Peer

assessment……………………………………..………12
2. Cooperation

incentives……………………………..……….12
III. Remote Data Possession
Verification………………………………..13

A.
 Requirements…………………………………………………………1
3

1.
 Efficiency…………..………………………………………..14

2.
 Security……………………..……………………………….14

B. Verification Protocols……………………………………………….15
C. Delegable verification protocol……………………………………..20

1. Delegability………………..………………………………21
2. Example………………………..…………………………..23

IV. Cooperation incentives………………………………………………28
A. Bartering…………………………………………………………….28
B. Reputation…………………………………………………………...29
C. Payment……………………………………………………………..31

V. Validation based on game theory……………………………………34
A. Definitions…………………………………………………………..35

1. Game………………………………..……………………..35
2. Game types………………………………..……………….35
3. Game equilibria………………………..…………………..36

B. Reputation incentive modeling……………………………………...37
1. Static games…………………………………..……………37

Nouha Oualha and Yves Roudier 4

2. Dynamic games…………………………………..………..38
3. Whitewashing problem…………………………..………..41

C. Payment incentive modeling………………………………………..43
VI. Conclusion…………………………………………………………..45
References...………………………………………………………………….46

1. INTRODUCTION

Self-organization has first emerged, in the late 90’s, as specialized systems

and protocols to support peer-to-peer (P2P) file sharing. It became very
popular thanks to services like Napster [70], Gnutella [34], KaZaA [46] and
Morpheus [66], and particularly to the legal controversy regarding their
copyrighted contents. Since then, the popularity of P2P systems has continued
to grow such that self-organization is now regarded as a general-purpose and
practical approach that can be applied to designing applications for resource
sharing. Resources in this context may include the exchange of information,
processing cycles, packet forwarding and routing, as well as cache and disk
storage. In this sense, self-organization, as revealed in P2P, is being
increasingly used in several application domains ranging from P2P telephony
or audio/video streaming to ad hoc networks or nomadic computing. P2P
storage services have more recently been suggested as a new technique to
make use of the vast and untapped storage resources available on personal
computers. P2P data storage services like Wuala [97], AllMyData Tahoe [3],
and UbiStorage [93] have received some highlight. In all of these, data is
outsourced from the data owner place to several heterogonous storage sites in
the network, in order to increase data availability and fault-tolerance, to reduce
storage maintenance costs, and to achieve a high scalability of the system.

A. A Case for P2P Storage

Innovation and advancement in information technology has spurred a

tremendous growth in the amount of data available and generated. This has
generated new challenges regarding scalable storage management that must be
addressed by implementing storage applications in a self-organized and
cooperative form. In such storage applications, peers can store their personal

Peer-to-Peer Storage 5

data in one or multiple copies (replication) at other peers. The latter, called
holders, should store data until the owner retrieves them. Such P2P storage
aims at maintaining a reliable storage without a single point of failure,
although without the need for an expensive and energy-consuming storage
infrastructure as offered by data centers. Peers volunteer for holding data
within their own storage space on a long term basis while they expect a
reciprocal behavior from other peers.

P2P storage has been presented as a solution for data backup ([49] and
[55]) as well as for a new generation of distributed file systems ([81], [44], and
[86]). P2P storage aims at a free and more importantly more resilient
alternative to centralized storage, in particular to address the fact that storage
can still be considered as a single point of failure. Additionally, P2P storage
may also be attractive in wireless ad-hoc networks or delay-tolerant networks
(DTNs), notably since mobility introduces a store-carry-and-forward paradigm
([96]) to deliver packets despite frequent and extended network partitions. The
cooperative storage of other nodes’ messages until their delivery to their
destination thus might become an important feature of such networks.
Context- or location-based services may also benefit from P2P storage.
Desktop teleporting ([28], [90]) for instance aims at the dynamic mapping of
the desktop of a user onto a specific location. Teleporting may make use of the
storage offered by surrounding nodes at the new user location. Location-aware
information delivery ([71], [5], [6], [57]) is another context-aware application.
Each reminder message is created with a location, and when the intended
recipient arrives at that location, the message is delivered. The remainder
message may be stored at nodes situated nearby the location context rather
than at the mobile node.

Though the self-organization introduced by P2P storage promises to
produce large scale, reliable, and cost-effective applications, it exposes the
stored data to new threats. In particular, P2P systems and, even more so, P2P
storage systems may be subject to selfishness, a misbehavior whereby peers
may discard some data they promised to store for other peers in order to
optimize their resource usage. Maliciousness in the P2P context woult simply
consist in peers destroying the data they store in order to reduce the quality of
service of the system. Because of the high churn and dynamics of peers,
checking that some data have been stored somewhere is quite more complex
than checking that a route has been established with another node in multi-hop
MANETs for instance. In addition, such verifications cannot be instantaneous
but have to be repeatedly performed. All these problems contribute to the
difficulty of properly determining the actual availability of data stored onto

Nouha Oualha and Yves Roudier 6

unknown peers. Countermeasures that take into account the fact that users
have full authority on their devices should be crafted to prevent them from
cheating the system in order to maximize the benefit they can obtain out of
peer cooperation.

B. Security Objectives

A P2P storage application takes advantage of the existing and spare disk

space at peers allowing the latter to leverage their collective power for the
common good. While the fundamental premise of this is voluntary storage
resource sharing among individual peers, there is an inherent tension between
individual rationality and collective welfare that threatens the viability of these
applications. This behavior, termed free riding, is the result of a social
dilemma that all peers confront and may lead to system collapse in the tragedy
of the commons [29]: the dilemma for each peer is to either contribute to the
common good, or to free ride (shirk).

Achieving secure and trusted P2P storage presents a particular challenge
in that context due to the open, autonomous, and highly dynamic nature of P2P
networks. We argue that any effort to protect the P2P storage system should
ensure the following goals.

Confidentiality and Integrity of Data

Most storage applications deal with personal (or group) data that are
stored somewhere in the network at peers that are not especially trusted. Data
must thus be protected while transmitted to and stored at some peer. Typically,
the confidentiality and the integrity of stored data are ensured using usual
cryptographic means such as encryption methods and checksums.

Anonymity

Anonymity can be a requirement for some type of storage applications
that aim at preventing information censorship for instance; however it may not
be a targeted objective for all of them. Anonymity may refer to the data owner
identity, the data holder identity, or the detail of their interaction. Anonymity
permits to avoid attacks whereby the data of a given user are specifically
targeted in order to destroy them from the system. Systems that seek to

Peer-to-Peer Storage 7

provide anonymity often employ infrastructures for providing anonymous
connection layers, e.g., onion routing [18].

Identification

Within a distributed environment like P2P, it is possible for the same
physical entity to appear under different identities, particularly in systems with
highly transient populations of peers. This problem may lead to attacks called
“Sybil attacks” [45], and may also threaten mechanisms such as data
replication that rely on the existence of independent peers with different
identities. Solutions to these attacks may rely on the deployment of a trusted
third party acting as a central certification authority, yet this approach may
limit anonymity. Alternatively, P2P storage may be operated by some
authority controlling the network through the payment of membership fees to
limit the introduction of fake identities. However, that approach reduces the
decentralized nature of P2P systems and introduces a single point of failure or
slows the bootstrap of the system if payment involves real money. Without a
trusted third party, another option is to bootstrap the system through penalties
imposed on all newcomers: an insider peer may only probabilistically
cooperate with newcomers (like in the P2P file sharing application BitTorrent
[58]), or peers may join the system only if an insider peer with limited
invitation tickets invites them [26]. The acceptable operations for a peer may
also be limited if the connection of too many ephemeral and untrustworthy
identities is observed [37]. This option however seems to be detrimental to the
scalability of the system and it has even been shown that this degrades the total
social welfare [59]. Social networks may also partially solve the identification
issue.

Access Control

Encryption is a basic mechanism to enforce access control with respect to
read operations. The lack of authentication can be overcome by the
distribution of the keys necessary for accessing the stored data to a subset of
privileged peers. Access control lists can also be assigned to data by their
original owners through the use of signed certificates. Capability-based access
control can be also employed like in [67]. Delete operations have to be
especially controlled because of their potentially devastating end result.

Scalability

The system should be able to scale to a large population of peers. Since
most of the important functions of the system are performed by peers, the

Nouha Oualha and Yves Roudier 8

system should then be able to handle growing amounts of control messages for
peer and storage resource management and an increased complexity in a
graceful manner. The system may also be clustered into small groups with
homogeneous storage needs which may reduce the load over peers.

Data Reliability

The common technique to achieve data reliability relies on data
redundancy at several locations in the network. The data may be simply
replicated at a given redundancy factor. The redundancy factor should be
maintained during the entire duration of the data storage. The rejuvenation of
the data may be carried out either in a periodic or event-driven fashion. For
instance, in the latter approach, one or multiple new replicas should be
generated whenever a certain number of replicas have been detected as
destroyed or corrupted. Other redundancy schemes may be used instead of
merely replicating the data into identical copies; for instance erasure coding
provides the same level of data reliability with much lower storage costs.

Long-Term Data Survivability

The durability of storage in some applications like backup is very critical.
The system must ensure that the data will be permanently conserved (until
their retrieval by the owner). Techniques such as data replication or erasure
coding improve the durability of data conservation but these techniques must
be regularly adjusted to maximize the capacity of the system to tolerate
failures. Generally, the employed adaptation method is based on frequent
checks over the data stored to test whether the various fragments of a data are
held by separate holders. Moreover, cooperation incentive techniques must be
used to encourage holders to preserve the data they store as long as they can.

Data Availability

Any storage system must ensure that stored data are accessible and
useable upon demand by an authorized peer. Data checks at holders allow the
regular verification of this property. The intermittent connectivity of holders
can be tolerated by applying a “grace period” through which the verifiers
tolerate no response from the checked holder for a given number of challenges
before declaring it non cooperative.

The rest of this chapter especially details how to achieve the last three
objectives above: high reliability, availability, and long-term durability of data
storage in the context of a large scale P2P storage system. These three
objectives are often ignored in P2P file sharing applications which rather

Peer-to-Peer Storage 9

follow best effort approaches. Performing periodic cryptographic verifications
makes it possible to evaluate the security status of data stored in the system
and to design an adapted cooperation incentive framework for securing data
storage in the long run.

II. TRUST ESTABLISHMENT

In P2P systems, peers often must interact with unknown or unfamiliar

peers without the help of trusted third parties or authorities to mediate the
interactions. As a result, peers trying to establish trust towards other peers
generally rely on cooperation as evaluated on some period of time. The
rationale behind such trust is that peers have confidence if the other peers
cooperate by joining their efforts and actions for a common benefit. P2P
systems are inherently large scale, highly churned out, and relatively
anonymous systems; volunteer cooperation is thus hardly achievable. Building
trust in such systems is the key step towards the adoption of this kind of
systems and relies on providing some assurance on the effective cooperative
behavior of peers.

Trust between peers can be achieved in two essential ways that depend on
the type and extent of trust relationships among peers and that reflect the
models and trends in P2P systems (the used taxonomy is depicted in Figure 1).
Static trust based schemes rely on stable and preexisting relationships between
peers, while dynamic trust is relying on a realtime assessment of peer
behavior.

Other taxonomies have been proposed. [82] classifies cooperation
enforcement mechanisms into trust-based patterns and trade-based patterns.
Obreiter et al. distinguish between static trust, thereby referring to pre-
established trust between peers, and dynamic trust, by which they refer to
reputation-based trust. They analyze trade-based patterns as being based either
on immediate or on deferred remuneration. Other authors describe cooperation
in self-organized systems only in terms of reputation based and remuneration
based approaches. Trust establishment, a further step in many protocols, easily
maps to reputation but may rely on remuneration as well. In this work, we
adhere to the existing classification of cooperation incentives in distinguishing
between reputation-based and remuneration-based approaches.

Nouha Oualha and Yves Roudier 10

 Trust

Static trust
(Prior trust)

Dynamic trust
(No prior trust)

Long-term trust
(A posteriori trust)

Reputation

Short-term trust
(No a posteriori trust)

Barter Payment
Cooperation
incentives

Figure 1. Trust taxonomy.

A. Static Trust

Peers may have prior trust relationships based for example on existing

social relationships or a common authority. In friend-to-friend (F2F) networks,
peers only interact and make direct connections with people they know.
Passwords or digital signatures can be used to establish secure connections.
The shared secrets needed for this are agreed-upon by out-of-band means.
Turtle [14] is an anonymous information sharing system that builds a P2P
overlay on top of pre-existent friendship relations among peers. All direct
interactions occur between peers who are assumed to trust and respect each
other as friends. Friendship relations are defined as commutative, but not
transitive.

Peer-to-Peer Storage 11

[43] proposes a F2F storage system where peers choose their storage sites
among peers that they trust instead of randomly. Compared to an open P2P
storage system, the proposed approach reduces the replication rate of the
stored data since peers are only prone to failure not to departure or
misbehavior. However, the approach is more applicable to certain types of
storage systems like backup since it provides data durability not generally data
availability: peers may not often leave the system but they me be offline. F2F-
based approaches ensures the cooperation of peers which results in enhanced
system stability and reduces administrative overhead; even though these
approaches does not help to build large scale systems with large reserve of
resources.

B. Dynamic Trust

The P2P storage system may rely on the cooperation of peers without any

prior trust relationships. The trust is then established during peer interactions
through cooperation incentive mechanisms. Peers trust each other either
gradually based on reputation or explicitly through bartered resources or
payment incentives. The lack of prior trust between peers allows building open
large scale systems that are accessible to the public. Storage systems with
cooperation incentives perhaps result in more overhead than with prior trust
based approaches; but however the reliability of the stored data is increased
since data will be generally stored in multiple copies at different worldwide
locations rather than confined at one or limited number of locations.

Peers choose to contribute or not to the storage system. The evaluation of
each peer behavior allows determining the just incentives to stimulate its
cooperation. In their turn, such incentives guide the peer in adapting its
contribution level. The peer chooses the best strategy that maximizes its utility
gained from the system: it compensates the cost incurred due to its potential
contribution with the incentives received in support for its cooperation. With
such a cyclic process, the system dynamically reaches the status of “full”
cooperation between peers (thus resembling a system with static trust).

Nouha Oualha and Yves Roudier 12

Cooperation incentives
(e.g., reputation, payment)

Peer assessment
(remote data possession

verification)
Peer strategies

Coo
pe

rat
or

or
de

fec
tor

 ? Reward or punish ?

Contribute or not ?

Figure 2. The feedback loop of dynamic trust.

Figure 2 depicts the feedback loop illustrating the correlation between
peer assessment, cooperation incentives, and peer strategies.

1. Peer Assessment

Inciting peers to cooperate can only be achieved provided peer behavior is

correctly assessed. Therefore, cooperation incentive mechanisms should
comprise verification methods that measure the effective peer contributions in
the P2P system.

An evaluation of the peer behavior can be performed at different
timescales. An immediate evaluation of the peer behavior is only possible if
the peer contribution occurs atomically like in packet forwarding application
([85] and [52]). Otherwise, peer evaluation is deferred to the completion of the
peer contribution as in data storage. This constitutes a problem for storage
applications where misbehaviong peers are left with an extensive period of
time during which they can pretend to be storing some data they have in fact
destroyed.

Periodic peer evaluation can be achieved through proof of knowledge
protocols that have been called interchangeably remote data possession
verifications, remote integrity verifications, proofs of data possession [33], or
proofs of retrievability [8]. Such protocols are used as an interactive proof
between the holder and the verifier or possibly the owner, in which the holder
tries to convince the verifier that it possesses these very data without actually
retrieving them. Interaction is based on challenge-response messages
exchanged between the holder and the verifier. Verification of the holder’s
response is permitted through some information kept at the verifier side.

Peer-to-Peer Storage 13

2. Cooperation Incentives

Peer behavior assessment forms the basis of an efficient cooperation

incentive mechanism. From such evaluation, well-behaved peers will be
rewarded with incentives while ill-behaved peers will be punished. Incentives
may consist in exchanging identical resources (Barter), or in conferring good
reputation to the well behaved peer, or in providing well behaved peers a
financial counterpart for their cooperation.

Barter based approaches do not require the interacting peers to have any
preset trust relationships. They rather rely on a simultaneous and reciprocal
behavior. The exchange of resources takes place if both peers cooperate with
each other; otherwise there is no exchange.

Reputation relies on the evaluation of the past behavior of a peer for
deciding whether to cooperate with it. Reputation then builds a long-term trust
between peers based on a statistical history of their past interactions. This
allows going beyond barter-based approaches (direct reciprocity) by
permitting to several peers to indirectly reciprocate to the behavior of the
observed peer.

In contrast to reputation-based approaches, payment-based incentives
constitute an explicit and discrete counterpart for cooperation and provide
means to enforce a more immediate form of penalty for misconduct. Payment
based approaches make it possible to secure short-term interactions between
peers without relying neither on prior trust nor on some long-term history.

III. REMOTE DATA POSSESSION
VERIFICATION

Self-organizing data storage must ensure data availability on a long term

basis. This objective requires developing appropriate primitives for detecting
dishonest peers free riding on the self-organizing storage infrastructure.
Assessing such a behavior is the objective of data possession verification
protocols. In contrast with simple integrity checks, which make sense only
with respect to a potentially defective yet trusted server, verifying the remote
data possession aims at detecting voluntary data destructions by a remote peer.
These primitives have to be efficient: in particular, verifying the presence of
these data remotely should not require transferring them back in their entirety;
it should neither make it necessary to store the entire data at the verifier. The

Nouha Oualha and Yves Roudier 14

latter requirement simply forbids the use of plain message integrity codes as a
protection measure since it prevents the construction of time-variant
challenges based on such primitives.

A. Requirements

We consider a self-organizing storage application in which a peer, called

the data owner, replicates its data by storing them at several peers, called data
holders. The latter entities agree to keep data for a predefined period of time
negotiated with the owner.

Peer behavior might be evaluated through the adoption of a routine check
through which the holder should be periodically prompted to respond to a
time-variant challenge as a proof that it holds its promise. Enforcing such a
periodic verification of the data holder has implications on the performance
and security of the storage protocol, which must fulfill requirements reviewed
under the following two subsections.

1. Efficiency

The costs of verifying the proper storage of some data should be

considered for the two parties that take part in the verification process, namely
the verifier and the holder.

Storage Usage

The verifier must store a meta-information that makes it possible to
generate a time-variant challenge based on the proof of knowledge protocol
mentioned above for the verification of the stored data. The size of this meta-
information must be reduced as much as possible even though the data being
verified is very large. The effectiveness of storage at holder must also be
optimized. The holder should store the minimum extra information in addition
to the data itself.

Communication Overhead

The size of challenge response messages must be optimized. Still, the fact
that the proof of knowledge has to be significantly smaller than the data whose
knowledge is proven should not significantly reduce the security of the proof.

Peer-to-Peer Storage 15

CPU Usage
Response verification and its checking during the verification process

respectively at the holder and at the verifier should not be computationally
expensive.

2. Security

The verification mechanism must address the following potential attacks

which the data storage protocol is exposed to:

Detection of Data Destruction
The destruction of data stored at a holder must be detected as soon as

possible. Destruction may be due to generic data corruption or to a faulty or
dishonest holder.

Collusion-Resistance

Collusion attacks aim at taking unfair advantage of the storage
application. There is one possible attack: replica holders may collude so that
only one of them stores data, thereby defeating the purpose of replication to
their sole profit.

Denial-of-Service (Dos) Prevention

DoS attacks aim at disrupting the storage application. DoS attacks may
consist of flooding attacks, whereby the holder may be flooded by verification
requests. The verifier may also be subject to similar attacks. They may also
consist of Replay attacks, whereby a valid challenge or response message is
maliciously or fraudulently repeated or delayed so as to disrupt the
verification.

Man-in-the-Middle Attack Prevention

The attacker may pretend to be storing data to an owner without using any
local disk space. The attacker simply steps between the owner and the actual
holder and passes challenge-response messages back and forth, leaving the
owner to believe the attacker is storing its data, when in fact another peer, the
actual holder, stores the owner’s data. The replication may again be disrupted

Nouha Oualha and Yves Roudier 16

with this attack: since the owner may run the risk of storing the data in two
replicas at the same holder.

B. Verification Protocols

The verification protocol is an interactive check that may be formulated as

a proof of knowledge [2] in which the holder attempts to convince a verifier
that it possesses some data, which is demonstrated by correctly responding to
queries that require computing on the very data.

The security of P2P storage applications has been increasingly addressed
in recent years, which has resulted in various approaches to the design of
storage verification primitives. The literature distinguishes two main
categories of verification schemes: probabilistic ones that rely on the random
checking of portions of stored data and deterministic ones that check the
conservation of a remote data in a single, although potentially more expensive
operation. Additionally, some schemes may authorize only a bounded number
of verification operations conducted over the remote storage; yet the majority
of schemes are designed to overcome this limitation.

Memory Checking

A potential premise of probabilistic verification schemes originates from
memory checking protocols. A memory checker aims at detecting any error in
the behavior of an unreliable data structure while performing the user’s
operations. The checker steps between the user and the data structure. It
receives the input user sequence of “store” and “retrieve” operations over data
symbols that are stored at the data structure. The checker checks the
correctness of the output sequence from the structure using its reliable memory
(noninvasive checker) or the data structure (invasive checker) so that any error
in the output operation will be detected by the checker with high probability.
In [54], the checker stores hash values of the user data symbols at its reliable
memory. Whenever, the user requests to store or retrieve a symbol, the
checker computes the hash of the response of the data structure and compares
it with the hash value stored, and it updates the stored hash value if the user
requested to store a symbol. The job of the memory checker is to recover and
to check responses originating from an unreliable memory, not to check the
correctness of the whole stored data. With the checker, it is possible to detect
corruption of one symbol (usually one bit) per user operation.

Peer-to-Peer Storage 17

Authenticator
The work of [65] better comprehends the remote data possession problem.

It extends the memory checker model by making the verifier checks the
consistency of the entire document in encoded version in order to detect if the
document has been corrupted beyond recovery. The authenticator encodes a
large document that will be stored at the unreliable memory and constructs a
small fingerprint that will be stored at the reliable memory. Using the
fingerprint, the authenticator verifies whether from the encoding it is possible
to recover the document without actually decoding it. The authors of [65]
propose a construction of the authenticator where there is a public encoding of
the document consisting of index tags of this form: ti=fseed(i o yi) for each
encoded value bit yi having fseed a pseudorandom function with seed taken as
secret encoding. The authenticator is repeatedly used to verify for a selection
of random indices if the tags correspond to the encoding values. The detection
of document corruption is then probabilistic but improved with the encoding
process of the document. Moreover, the query complexity is proportional to
the number of indices requested. [77] proposes a similar solution to [65] but
that achieves open verifiability i.e., the task of verifying data can be handed
out to the public. The index tags are formulated as chunk signatures that the
verifier keeps their corresponding public key. Signatures are indeed generated
by the data owner; though the role of the verifier can be carried out by this
latter or any peer that possesses the public key.

Provable Data Possession

The PDP (Provable Data Possession) scheme in [33] improves the
authenticator model by presenting a new form of fingerprints ti=(hash(v||i) .
gyi)d mod N, where hash is a one-way function, v a secret random number, N
an RSA modulus with d being a signature key, and g a generator of the cyclic
group of N

*. With such homomorphic verifiable tags, any number of tags
chosen randomly can be compressed into just one value by far smaller in size
than the entire set, which means that communication complexity is
independent of the number of indices requested per verification.

Proof of Retrievability

The POR protocol (Proof of Retrievability) in [8] explicitly expresses the
question of data recovery in the authenticator problem: if the unreliable data
passes the verification, the user is able to recover the original data with high
probability. The protocol is based on verification of sentinels which are
random values independent of the owner’s data. These sentinels are disguised

Nouha Oualha and Yves Roudier 18

among owner’s data blocks. The verification is probabilistic with the number
of verification operations allowed being limited to the number of sentinels.

Compact Proofs of Retrievability

[39] improves the POR protocol by considering compact tags (comparable
to PDP) that are associated with each data chunk yi having the following form:
ti = αyi + si where α and si are random numbers. The verifier requests random
chunks from the unreliable memory and obtains a compact form of the chunks
and their associated tags such that it is able to check the correctness of these
tags just using α and the set {s1, s2, …} that are kept secret.

Remote Integrity Check

Remote Integrity Check of [22] alleviates the issue of data recovery and
rather focuses on the repetitive verification of the integrity of the very data.
The authors described several schemes some of them being hybrid
construction of the existing schemes that fulfill the later requirement. For
instance, the unreliable memory may store the data along with a signature of
the data based on redactable signature schemes. With these schemes, it is
possible to derive the signature of a chunk from the signature of the whole
data, thus allowing the unreliable memory to compute the signature of any
chunk requested by the verifier.

Data Chunk Recovery

The majority of the probabilistic verification schemes require the recovery
of one or multiple (in plain or compacted form) data chunks. For example, in
the solution of [55], the owner periodically challenges its holders by
requesting a block out of the stored data. The response is checked by
comparing it with the valid block stored at the owner’s disk space. Another
approach using Merkle trees is proposed by Wagner and reported in [84]. The
data stored at the holder is expanded with a Merkle hash tree on data chunks
and the root of the tree is kept by the verifier. It is not required from the
verifier to store the data, on the contrary of [55]. The verification process
checks the possession of one data chunk chosen randomly by the verifier that
also requests a full path in the hash tree from the root to this random chunk.

Algebraic Signatures

The scheme proposed in [92] relies on algebraic signatures. The verifier
requests algebraic signatures of data blocks stored at holders, and then
compares the parity of these signatures with the signature of the parity blocks

Peer-to-Peer Storage 19

stored at holders too. The main drawback of the approach is that if the parity
blocks does not match, it is difficult (depends on the number of used parity
blocks) and computationally expensive to recognize the faulty holder.

Incremental Cryptography

First step toward a solution to the deterministic verification problem
comes from incremental cryptographic algorithms that detect changes made to
a document using a tag, a small secret stored at a reliable memory that relates
to the complete stored document and that is quickly updatable if the user
makes modifications. [63] proposes several incremental schemes where the tag
is either an XORed sum of randomized document symbols or a leaf in a search
tree as a result of message authentication algorithm applied to each symbol.
These schemes provide tamper-proof security of the user document in its
entirety; although they require recovering the whole data which is not practical
for remote data verification because of the high communication overhead.

Deterministic Remote Integrity Check

The first solution described in [98] allows the checking of the integrity of
the remote data, with low storage and communication overhead. It requires
pre-computed results of challenges to be stored at the verifier, where a
challenge corresponds to the hashing of the data concatenated with a random
number. The protocol requires small storage at the verifier, yet they allow only
a fixed number of challenges to be performed. Another simple deterministic
approach with unlimited number of challenges is proposed in [32] where the
verifier like the holder is storing the data. In this approach, the holder has to
send the MAC of data as the response to the challenge message. The verifier
sends a fresh nonce (a unique and randomly chosen value) as the key for the
message authentication code: this is to prevent the holder peer from storing
only the result of the hashing of the data.

Storage Enforcing Commitment

The SEC (Storage Enforcing Commitment) scheme in [84] aims at
allowing the verifier to check whether the data holder is storing the data with
storage overhead and communication complexity that are independent of the
length of the data. Their deterministic verification approach uses the following
tags that are kept at the holder along with the data: PK=(gx, gx2

, gx3
, …, gxn

)
where PK is the public key (stored at the holder) and x is the secret key (stored
at the verifier). The tags are independent of the stored data, but their number is
equal to two times the number of data chunks. The verifier chooses a random

Nouha Oualha and Yves Roudier 20

value that will be used to shift the indexes of tags to be associated with the
data chunks when constructing the response by the holder.

Homomorphic Hash Functions

The second solution described in [98] requires little storage at the verifier
side and no additional storage overhead at the holder side; yet makes it
possible to generate an unlimited number of challenges. The proposed solution
(inspired from RSA) has been also proposed by Filho and Barreto in [19]. It
makes use of a key-based homomorphic hash function H. A construction of H
is also presented as H(m)=gm mod N where N is an RSA modulus and such
that the size of the message m is larger than the size of N. In each challenge of
this solution, a nonce is generated by the verifier which the prover combines
with the data using H to prove the freshness of the answer. The prover’s
response will be compared by the verifier with a value computed over H(data)
only, since the secret key of the verifier allows the following operation (d for
data, and r for nonce): H(d + r) = H(d) × H(r). The exponentiation operation
used in the RSA solution makes the whole data as an exponent. To reduce the
computing time of verification, Sebé et al. in [25] propose to trade off the
computing time required at the prover against the storage required at the
verifier. The data is split in a number m of chunks {di}1≤i≤m, the verifier holds
{H(di)}1≤i≤m and asks the prover to compute a sum function of the data chunks
{di}1≤i≤m and m random numbers {ri}1≤i≤m generated from a new seed handed
by the verifier for every challenge. Here again, the secret key kept by the
verifier allows this operation: ∑1≤i≤m H(di + ri)= ∑1≤i≤m H(di) × H(ri). The index
m is the ratio of tradeoff between the storage kept by the verifier and the
computation performed by the prover. Furthermore, the basic solution can be
still improved as described in [22]; though the verification method is
probabilistic. The holder will be storing tags of ti = gyi+si where si is a random
number kept secret by the verifier. The holder periodically constructs compact
forms of the data chunks and corresponding tags using time-variant challenge
sent by the verifier. The authors of [22] argue that this solution achieves a
good performance.

C. DELEGABLE VERIFICATION PROTOCOL

Self-organization addresses highly dynamic environments like P2P

networks in which peers frequently join and leave the system: this assumption

Peer-to-Peer Storage 21

implies the need for the owner to delegate data storage evaluation to third
parties, termed verifiers thereafter, to ensure a periodic evaluation of holders
after his leave. The need for scalability also pleads for distributing the
verification function, in particular to balance verification costs among several
entities. Last but not least, ensuring fault tolerance means preventing the
system from presenting any single point of failure: to this end, data
verification should be distributed to multiple peers as much as possible; data
should also be replicated to ensure their high availability, which can only be
maintained at a given level if it is possible to detect storage defection.

1. Delegability

The authenticator and the memory checker perform verifications on behalf

of the user; though they are considered as trusted entities within the user’s
platform. None of the presented schemes considers distributing the verification
task to other untrusted peers; they instead rely on the sole data owner to
perform such verifications. In a P2P setting, it is important that the owner
delegates the verification to other peers in the network in order to tolerate the
intermittent connection of peers and even the fact that a single point of
verification constitutes a single point of failure. Some of the schemes
presented above may allow delegating verification provided that the verifier is
not storing any secret information because it may otherwise collude with the
holder. Additionally, the amortized storage overhead and communication
complexity should be minimized for this purpose. To our knowledge, [78] is
the first work to suggest delegating the verification task to multiple peers
selected and appointed by the data owner. This approach relies on elliptic
curve cryptography primitives., The owner derives from the data to be stored a
public and condensed verification information expressed as (d mod Nn)×P
where Nn is the order of the elliptic curve and P is a generator. The interactive
proof of knowledge exchange between the verifier and the holder is based on
the hardness of the elliptic curve discrete logarithm problem [72]. Such a
verification protocol can be further refined by considering data chunks instead
of a data bulk in analogy to [25]. The objective in this case is to limit the
computation overhead required from the holder. A revised verification
protocol is described in more detail in the following sub-section.

The main characteristics of the discussed verification protocols are
summarized in Table 1.

Nouha Oualha and Yves Roudier 22

Table 1. Comparison of existing verification protocols (variable n and m
respectively correspond to data size and the number of chunks).

 Detection Delegation

Efficiency

Storage at
verifier

CPU at
holder

Communication
overhead

[8]: POR Probabilistic

Bounded
No O(1) O(1) hash

transformation O(1)

Table 2. Continued.

[54]: Memory
checker

Probabilistic

Unbounded
No O(m) O(n/m) chunk

fetching O(n/m)

[65]:
Authenticator

Probabilistic

Unbounded
No O(1) O(n/m) chunk

fetching O(n/m)

[77]: based on
signatures

Probabilistic

Unbounded
Yes O(1) O(n/m) chunk

fetching O(n/m)

[33]: PDP Probabilistic

Unbounded
Possible O(1) O(n/m)

exponentiation O(1)

[39]: Compact
proofs of

retrievability

Probabilistic

Unbounded No O(1) O(n/m)
exponentiation O(1)

[22]: based on
redactable
signatures

Probabilistic

Unbounded Possible O(1)
O(log(n))
signature

construction
O(log(n))

[22]: RSAh
solution

Probabilistic

Unbounded
No O(1) O(n/m)

exponentiation O(1)

[55]: Data
chunk

recovery

Probabilistic

Unbounded No O(n) O(1) simple
comparison O(1)

Wagner in
[84]: based on

Merkle-hash
tree

Probabilistic

Unbounded Possible O(1) O(log(n)) hash
transformation O(log(n))

[92]: based on
algebraic

signatures

Probabilistic

Unbounded Possible O(1) O(n/m) signature
validation O(1)

Peer-to-Peer Storage 23

[98]: pre-
computed

challenges

Deterministic

Bounded No O(1) O(n) hash
transformation O(1)

[63]:
Incremental

cryptography

Deterministic

Unbounded Possible O(1) O(n) fetching O(n)

[32]: MAC
based

Deterministic

Unbounded
No O(n) O(n) hash

transformation O(1)

[84]: SEC Deterministic

Unbounded
No O(1) O(n/m)

exponentiation O(1)

Table 3. Continued.

[98], [19]:
RSA solution

Deterministic

Unbounded
Possible O(1) O(n)

exponentiation O(1)

[25]: RSA
solution with

data chunks

Deterministic

Unbounded
Possible O(m) O(n/m)

exponentiation O(1)

[78]: ECC
based

Deterministic

Unbounded
Yes O(m) O(n/m) point

multiplication O(1)

2. Example

The following presents a secure and self-organizing verification protocol

exhibiting a low resource overhead. This protocol was designed with
scalability as an essential objective: it enables generating an unlimited number
of verification challenges from the same small-sized security metadata.

a. Security Background

The deterministic verification protocol relies on elliptic curve
cryptography ([72], [94]). The security of the protocol is based on two
different hard problems. First, given some required conditions, it is hard to
find the order of an elliptic curve. Furthermore, one of the most common

Nouha Oualha and Yves Roudier 24

problems in elliptic curve cryptography is the Elliptic Curve discrete logarithm
problem denoted by ECDLP.

Thanks to the hardness of these two problems, the deterministic
verification protocol ensures that the holder must use the whole data to
compute the response for each challenge. In this section, we formalize these
two problems in order t rther describe the security primitives that rely on
them.

o fu

Elliptic Curves over n. Let n be an odd composite square free integer and
let a, b be two integers in n such that gcd a3 + 27b2, n) = 1 (“gcd” means

ommon divisor).
(4

greatest c
An elliptic curve En(a, b) over the ring n is the set of the points (x, y) ∈

n× n satisfying the equation: y2 = x3 + ax + b, together with the point at
infinity denoted On.

Solving the Order of Elliptic Curves

The order of an elliptic curve over the ring n where n=pq is defined in
[47] as Nn = lcm(#Ep(a, b), #Eq(a, b)) (“lcm” for least common multiple, “#”
means order of). Nn is the order of the curve, i.e., for any P ∈ En(a, b) and any
integer k, (k×Nn + 1)P = P.

If (a = 0 and p ≡ q ≡ 2 mod 3) or (b = 0 and p ≡ q ≡ 3 mod 4), the order of
En(a, b) is equal to Nn=lcm(p+1, q+1). We will consider for the remainder of
the paper the case where a = 0 and p ≡ q ≡ 2 mod 3. As proven in [47], given
Nn = lcm(#Ep(a, b), #Eq(a, b)) = lcm(p + 1, q + 1), solving Nn is
computationally equivalent to factoring the composite number n.

The Elliptic Curve Discrete Logarithm Problem

Consider K a finite field and E(K) an elliptic curve defined over K.
ECDLP in K is defined as: given two elements P and Q ∈ K, find an integer r,
such that Q = rP whenever such an integer exists.

b. Protocol Description

This sub-section introduces an improved version of the protocol described

in [78] whereby the computation complexity at the holder is reduced. In the
proposed version and in comparison to the version of [78], the data is split into
m chunks, denoted {d’i}1≤i≤m, and the verifier stores the corresponding elliptic
curve points {Ti = d’iP}1≤i≤m. We assume that the size of each data chunk is

Peer-to-Peer Storage 25

much larger than 4k where k is the security parameter that specifies the size of
p and q and thus also the size of an elliptic curve point in n (n=pq), because
the verifier must keep less information than the full data.

The verification protocol is specified by four phases (see Figure 3): Setup,
Storage, Delegation, and Verification. The owner communicates the data to
the holder at the storage phase and the meta-information to the verifier at the
delegation phase. At the verification phase, the verifier checks the holder’s
possession of data by invoking an interactive process. This process may be
executed an unlimited number of times.

- Setup: The phase is performed by the owner. From a chosen security

parameter k (k > 512 bits), the owner generates two large primes p and
q of size k both congruent to 2 modulo 3, and computes their product
n = pq. Then, it considers an elliptic curve over the ring n denoted by
En(0, b) where b is an integer such that gcd(b, n)=1, to compute a
generator P of En(0, b). The order of En(0, b) is Nn = lcm(p+1, q+1).
The parameters b, P, and n are published and the order Nn is kept
secret by the owner.

Nouha Oualha and Yves Roudier 26

Owner Holder

Storage

Compute d'=fs(d)

Split d’ in m chunks: {d’i}1≤i≤m

send {d’i}1≤i≤m

{d’i}1≤i

≤m

Store {d’i}1≤i≤m

Owner Verifier

Delegati
on

Compute for each i in [1, m]: Ti=(d’i
mod Nn)P

send {Ti}1≤i≤m

{Ti}1≤i≤

m

Store {Ti}1≤i≤m

Verifier Holder

Verificat
ion

Generate a random number r and
seed c

Compute Q = rP

Send c, Q

Generate {ci}1≤i≤m from seed c

If R = r(∑1≤i≤m ciTi) then “accept”
else “reject”

c, Q

R

Generate {ci}1≤i≤m from
seed c

Compute R = ∑1≤i≤m
cid’iQ

Send R

Figure 3. Delegable verification protocol.

- Storage: The owner personalizes the data d for its intended holder
using a keyed encryption function fs, then splits the personalized data
d’= fs(d) into m chunks of the same size (the last chunk is padded with
zeroes): {d’i}1≤i≤m. The data chunks are then sent to the holder.

- Delegation: The owner generates meta-information to be used by the
verifier for verifying the data possession of one holder. The owner

Peer-to-Peer Storage 27

generates the curve points {Ti = d’iP ∈ En(0, b)}1≤i≤m sent to the
verifier.

- Verification: The verifier generates a random number r and a random
seed c (size of c > 128 bits). Then, it sends Q=rP and the seed c to the
holder. Upon reception of this, the holder generates m random
numbers {ci}1≤i≤m from the seed c (it is possible to generate the
random numbers as ci=ci for each i, or using a random number
generator function). Then, it computes the point R = ∑1≤i≤m cid’iQ that
is sent to the verifier. To decide whether holder’s proof is accepted or
rejected, the verifier generates the same m random numbers {ci}1≤i≤m
from the seed c and checks if R is equal to r(∑1≤i≤m ciTi).

c. Security Analysis

This section analyzes the completeness and the soundness of the

deterministic protocol that are the two essential properties of a proof of
knowledge protocol [2]: a protocol is complete if, given an honest claimant
and an honest verifier, the protocol succeeds with overwhelming probability,
i.e., the verifier accepts the claimant’s proof; a protocol is sound if, given a
dishonest claimant, the protocol fails, i.e. the claimant’s proof is rejected by
the verifier, except with a small probability.

Theorem 1- The proposed protocol is complete: if the verifier and the

holder correctly follow the proposed protocol, the verifier always accepts the
proof as valid.

Proof: Thanks to the commutative property of point multiplication in an

elliptic curve, we have for each i in [1, m]: d’irP= rd’iP. Thus, the equation:
∑1≤i≤m cid’irP = r(∑1≤i≤m cid’iP). □

Theorem 2- The proposed protocol is sound: if the claimant does not store

the data, then the verifier will not accept the proof as valid.

Proof: If the holder does not store the data chunks {d’i}1≤i≤m, it may try

first to collude with other holders storing the same data. However, this option
is not feasible since data stored at each holder is securely personalized during
the storage phase. Since fs is a keyed encryption function and the key s is
secret, no peer except the owner can retrieve the original data d from d’. The

Nouha Oualha and Yves Roudier 28

other way to generate a correct response without storing the data relies on only
storing {d’iP}1≤i≤m (which is much smaller than the full data size) and
retrieving r from the challenge rP in order to compute the correct response.
Finding r is hard based on ECDLP. The last option for the holder to cheat is to
keep {d’i mod Nn}1≤i≤m instead of d’ (whose size is very large). The holder
cannot compute Nn based on the hardness of solving the order of En(0, b).
Thus, if the response is correct then the holder keeps the data correctly. □

d. Performance Analysis

In the proposed protocol, challenge-response messages mainly each

consist of an elliptic curve point in n
2. Message size is thus a function of the

security factor k (size of n≈2k). Reducing communication overhead then
means decreasing the security parameter.

The verification protocol requires the verifier to store a set of elliptic
curve points that allows producing on demand challenges for the verification.
Finally, the creation of proof and its verification rely on point multiplication
operations.

The number of data chunks m can be used to fine tune the ratio between
the storage required at the verifier and the computation expected from the
holder: when increasing m, the verifier is required to keep more information
for the verification task, but at the same time the holder is required to perform
one point multiplication operation using much smaller scalars.

Assessing the actual state of storage in a P2P storage application
represents the first step towards efficiently reacting to misbehavior and
cooperation incentives rely on peer evaluations. The use of verification
protocols should make it possible to detect and isolate selfish and malicious
peers, and ultimately punish these peers through cooperation incentive
mechanisms.

Table 4. Summary of resource usage of the delegable verification protocol

(variable n and m respectively correspond to data size and the
number of chunks).

 Storage usage Computation
complexity

Communication
overhead

Peer-to-Peer Storage 29

At holder O(n) O(n/m) (upstream) O(1)

At verifier O(m) O(1) (upstream) O(1)

IV. COOPERATION INCENTIVES

Cooperation enforcement is a central feature of P2P systems, and even

more so self-organizing systems, to compensate for the lack of a dedicated and
trusted coordinator and still get some work done. However, cooperation to
achieve some functionality is not necessarily an objective of peers that are not
under the control of any authority and that may try to maximize the benefits
they get from the P2P system. Cooperation incentive schemes have been
introduced to stimulate the cooperation of such self-interested peers. They are
diverse not only in terms of the applications which they protect, but also in
terms of the features they implement, the type of reward and punishment used,
and their operation over time. Cooperation incentives are classically classified
into barter-based, reputation-based, and remuneration-based approaches.

A. Bartering

Cooperation incentives may be cheaply built on a tit-for-tat (TFT) strategy

(“give and ye shall receive”). The peer initially cooperates, and then responds
likewise to the opponent's previous action: if the opponent previously
cooperated, the peer cooperates; otherwise, the peer defects. TFT is
demonstrated to be an evolutionary stable strategy (ESS) in game theory
jargon: this strategy cannot be invaded (or dominated) by any alternative yet
initially rare strategy.

In the Cooperative Internet Backup Scheme [55], each peer has a set of
geographically-separated partner peers that collectively hold its backed up
data. In return, the peer backs up a part of its partners’ data. To detect free-
riding, each peer periodically evaluates its remote data. If it detects that one of
its partners dropped the data, the peer establishes a backup contract with a
different partner. Since the scheme relies on identical and immediate resource
exchanges, peers must be able to choose partners that match their needs and

Nouha Oualha and Yves Roudier 30

their capabilities and that ensure similar uptimes. To this end, a central server
tracks peers and their partners. Decentralized methods of finding partners in a
Gnutella-like flooding approach are also suggested although not evaluated in
[55].

However, TFT is not perfect as illustrated by the P2P file sharing protocol
BitTorrent [13]. In BitTorrent, unchoking a peer means that the peer is
accepted to upload files for it. Peers follow a TFT strategy by unchoking peers
that provide the highest throughput for them, and besides that they use an
optimistic unchoking strategy to discover potentially better trading peers.
However this strategy of (probabilistically) cooperating with newcomers
blindly can be exploited by whitewashers (peers that repeatedly join the
network under new identities to avoid the penalty imposed on free-riders). [58]
describes the design of BitTyrant, a selfish client that demonstrates that
BitTorrent incentives don’t build robustness. The reason is that TFT is no
longer an evolutionary stable strategy in the presence of whitewashers.

B. Reputation

Reputation relies on the evaluation of a peer’s past behavior for deciding

whether to cooperate with the peer. Cooperation may be reciprocated even in
the absence of its beneficiary and evaluator (indirect reciprocity).

Direct Vs. Indirect Reputation

Reputation generally only relies on a partial assessment of the behavior of
peers, which might delay the detection of free-riders. This situation is rendered
even worse in P2P storage applications, since storage is not an instantaneous
operation and data are vulnerable throughout their entire storage lifetime.
Group-based architecture have been suggested (e.g., [75]) as a way to enable
peers to quickly know the behavior of their group fellows. The analytical
model in [75] compares direct reputation whereby peers use only the results of
verifications they perform themselves using direct observations to compute
reputation with indirect reputation where these results are disseminated. This
model demonstrates that the direct reputation approach for observing peer
behavior outperforms indirect reputation in terms of correctness and exposure
if the group of peers is of modest size. However, indirect reputation is more
effective in an open system with a large population of peers that have
asymmetric interests as shown in [61].

Peer-to-Peer Storage 31

The direct reputation approach does not require propagating any
information as opposed to indirect reputation which generates communication
overhead and may even require centralization. However, it is possible to
implement a decentralized indirect reputation for example on top of a
distributed-hash-table (DHT) or by disseminating information to other peers
similarly to routing protocols.

Resistance to Bashing

Another challenging issue in dynamic systems like P2P is the vulnerability
of a reputation system to peer bashing. Reputation bashing is made possible
with two types of attacks: peer collusion and Sybil attacks. Peers may collude
in order to advertise their quality more than their real values (“ballot stuffing”)
thus increasing their reputation at other peers. Such an objective can also be
achieved through a Sybil attack: if peers are able to generate new identities at
will, they may use some of them to increase the reputation of the rest of their
made-up identities.

Techniques to completely eliminate Sybil attacks can only be provided by
trusted certification as proven by Douceur [45]. In this way, trusted devices
associated in a secure fashion to peers can be used to eliminate such attacks (as
discussed in [88]). However, an attacker may still buy multiple devices and
then acquire multiple identities although at a high cost. Without a trusted
infrastructure, Sybil attacks can only be mitigated.

To overcome the collusion problem, [31] proposes to add a “reliability”
measure to the estimate of the reputation. The rating measure L becomes:

L = α×R + (1 - α)×(1 - G)
where R is the estimated reputation, G is the Gini coefficient that

describes the amount of inequality in the distribution of transactions among a
peer’s entire partner set, α being a weight parameter. The Gini coefficient
illustrates the idea that a reputation estimate is considered as less reliable if a
significant fraction of transactions are performed with a small subset of the
peer’s partner set.

[61] addresses the same problem of peer collusion throught the application
of the maxflow algorithm on the graph constructed from peers considered as
vertices and the services they receive as directed edges. The maxflow
algorithm gives the maximum feasible flow from a source peer to a destination
peer. The cost of the maxflow algorithm increases with the number of peers
examined in the graph.

The two approaches above are still trading off the number of peers
examined in the algorithms with the efficiency of the detection. Sybil

Nouha Oualha and Yves Roudier 32

mitigation can also be achieved by making the newcomer pay with
computational or bandwidth or storage abilities, such as for example crypto-
puzzles [95] or testing peer IP address. Other techniques like SybilGuard [37]
rely on prior trust relationships, e.g., real-world friendship between peers to
detect Sybil attackers. [26] even enhances the SybilGuard approach by
controlling the number of peer invitations that a group member possesses. In a
similar fashion, [76] suggests that peers taking part in any transaction be
simply chosen in a random fashion. Peer service requests are directed to a
randomly chosen peers although the latter can choose to cooperate with the
requesters based on their reputation.

In most of the approaches above, the costs are only paid once by Sybil
attackers and can be then amortized during the rest of the system operation. As
discussed in [15], such costs can be periodically paid by repeatedly performing
resource testing on peers thus confining the potential return on investment of
Sybil attackers to a limited time slot. It should be noted though that all these
approaches, which aim at limiting Sybil attacks without trusted infrastructure,
are scalable compared with certification-based approaches. Still, they incur a
huge cost overhead not only on Sybil attackers but also on honest newcomers,
which may undermine their practicality and adoption in P2P applications.
Furthermore, [60] shows that imposing a penalty on all newcomers
significantly degrades system performance when the peer churn rate is high.

C. Payment

Payment is a way to foster cooperation in exchange of some token that can

be exchanged later on for some service. This approach introduces economic
mechanisms that can regulate the usage of storage or bandwidth related
resources, for instance. Payment brings up new requirements regarding the
fairness of payment itself [68], which in general translate to a more complex
and costly implementation than for reputation mechanisms. In particular,
payment schemes require a trusted environment including trusted entities such
as banks. These entities may be involved in the transaction, in which case the
payment scheme can be deemed centralized. On the contrary, some schemes
are decentralized and require banks to be contacted only to resolve payment
litigations. The latter approach is more appropriate to ensure the maximum
degree of self-organization to the P2P network.

Peer-to-Peer Storage 33

Fair Exchange and Payment
Achieving an effective implementation of payment-based mechanism

depends upon the realization of a protocol that enforces the fair exchange of
the payment (credits) against some task: according to [69], “a fair exchange
protocol can then be defined as a protocol that ensures that no player in an
electronic commerce transaction can gain an advantage over the other player
by misbehaving, misrepresenting or by prematurely aborting the protocol”.
Fair exchange may be enforced through a trusted third party (TTP) that may be
used online or opportunistically. Tamperproof modules (TPMs), secure
operating systems, or smart cards may also be employed to carry out a fair
exchange protocol in a distributed fashion.

In a P2P network, TTPs may be represented as super-peers that play the
same role as an online TTP but in a distributed fashion. FastTrack [42]is an
example of such an architecture which is used in P2P networks like KaZaA
[46], Grokster [36], and iMesh [40]. These networks have two-tier hierarchy
consisting of ordinary nodes (ONs) in the lower tier and super-nodes (SNs) in
the upper tier. In P2P file sharing networks, SNs keep track of ONs and other
SNs and act as directory servers during the search phase of files. One way of
implementing a payment scheme is to use super-peers distributed within the
P2P network. These super-peers then provide neutral platforms for performing
an optimistic fair exchange protocol. The use of such an infrastructure of
trusted peers, that would not necessarily need to be related with the payment
authority, may be rendered feasible by the deployment of other infrastructures
like content distribution networks (CDNs) (e.g., [1]). Such networks involve
the deployment of managed workstations all over the Internet, thereby
providing a nice platform for payment related functionalities.

The Wuala storage system ensures fair exchange through a system of
quota that directly depends on the measure of the uptime of a peer. Fair
exchange in this system is ensured by a central authority that keeps track of
exchanges between peers. In contrast, P2P storage systems may have no
dedicated authority tracking all exchanges. In that case, ensuring the
scalability of the system makes it necessary to resort to a type of fair exchange
protocol called optimistic [68] in which the TTP does not necessarily take part
in peer interactions, but may be contacted to arbitrate litigations. In the
cooperative backup system of [55], a central server considered as a TTP tracks
the partners of each peer participating in the backup system. Each peer takes
note of its direct experience with a partner, and if this partner does not
cooperate voluntarily or not beyond some threshold, the peer may decide to

Nouha Oualha and Yves Roudier 34

establish a backup contract with a different partner that is obtained through the
central server.

Smart cards have been used in the P2P storage system PAST [81] to
ensure the fairness of peer contributions. Smart cards issued by a third party
are held by each PAST peer to support a quota system that balances supply
and demand of storage space in the system. Peers cannot use more remote
storage than they are providing locally. With fixed quotas and expiration dates,
peers are only allowed to use as much storage as they contribute.

If data storage should be achieved in a large-scale and open P2P system,
deploying designs based on trusted environments may be infeasible. In that
case, implementing the optimistic fair exchange protocol would have to be
done by relying solely on peers. [69] describes design rules for such
cryptographic protocols making it possible to implement appropriate fair-
exchange protocols. For instance, the distribution of the banking function to
multiple peers may make the realization of a scalable system easier. In the
KARMA framework [95], the exchange of some payment against some
resource is supported by multiple peers that collaborate to provide a fair
exchange. A fair exchange system for P2P storage system might be
implemented using that framework in which the bank (trusted authority) is
replaced by a set of peers, termed the bank-set, randomly assigned for each
peer. The karma values, which is the name of the currency, are maintained for
each peer by its bank-set who is collectively responsible for continuously
updating the karma value as the peer contributes and consumes resources from
the P2P system. The bank-sets independently track the credits belonging to
their assigned peers, and periodically agree on a given balance of credits with
a majority rule. Even if there were inconsistencies in peers’ balances,
transactions among peers correspond to tiny micropayments and thus do not
produce considerable gains or losses to peers. The fair exchange protocol in
KARMA is similar to an online TTP-based exchange but with additional
features for guaranteeing the consistence and synchronization of balances.

Payments by Installment

A payment scheme for a file sharing application as described in [95]
cannot be assimilated to P2P storage since in the former case payments are
immediately charged after the exchange of the file, whereas in the latter case
payments for storage are by installment i.e., they are billed at a due date that
corresponds to the confirmation (after a verification) of the cooperative
behavior of the holder. A payment scheme should thus be supplemented by an
escrowing mechanism to guarantee the effective payment of credits promised

Peer-to-Peer Storage 35

by the peers towards a cooperative holder. Before interacting with others, a
peer must escrow, i.e., set aside and store in a trusted repository, the amount of
credits it agrees to pay at the end of the interaction upon defined conditions.
The escrowing is an additional mechanism required for implementing fair-
exchange in P2P storage systems since the misbehavior of a peer and a related
compensation may not be determined immediately, but only at a later time
when the peer in question might have left the network or would not respond.
Escrowed credits thus form a commitment for future payments. Here again,
trusted environments like TPMs or smartcards may prove helpful to implement
the escrowing feature. Otherwise, third parties have to be used in every
protocol that might imply some form of monetary compensation.

Preventing Starvation

Payment-based schemes generally suffer from starvation, e.g., see [9]. In a
P2P storage system, starvation means the inability of a peer to store data in the
system because it cannot commit money for potential compensation. Auctions
provide a solution for mitigating that starvation phenomenon. Since auctioning
reveals the real preferences of bidders, a solution is to make it necessary for
peers left with a small number of credits to contribute more to the system.
These peers would offer lower prices for storing the same amount of data in
order to attract data owners in priority. First-price or second-price auctions
(Vickrey auction) are equally possible.

V. VALIDATION BASED ON GAME THEORY

Cooperation incentives prevent selfish behaviors whereby peers free-ride

the storage system, that is, they store data onto other peers without
contributing to the storage infrastructure. Remote data verification protocols
are required to implement the auditing mechanism needed by any efficient
cooperation incentive mechanism. In general, a cooperation incentive
mechanism is proven to be effective if it is demonstrated that any rational peer
will always choose to cooperate whenever it interacts with another cooperative
peer. One-stage games or repeated games have been mostly used to validate
cooperation incentives that describe individual strategies; in addition, the use
of evolutionary dynamics can help describe the evolution of strategies within
large populations.

Nouha Oualha and Yves Roudier 36

A. Definitions

Game theory is a branch of applied mathematics that models interactions

among individuals making decisions. It attempts to mathematically capture
individual rational behavior in strategic situations where individuals’ decisions
are based on their preferences and also depend on the other individuals’
choices. It then provides a language to describe, analyze, and understand
strategic scenarios [91].

1. Game

A game consists of:
- A set of players {p1, …, pn} which are the individuals who make

decisions
- A set of strategies i.e., moves for each player Si, i=1, …, n
- A specification of each player’s payoffs which are the numeric values

assigned to the outcomes produced by the various combinations of
strategies. Payoffs represent the preference ordering of players over
the outcomes. Payoffs are expressed using player’s utility function Ui:

Ui: S1×S2× …×Sn → ℜ
The game assumes that all players are rational; this means that they will

always choose the strategy that maximizes their payoffs. Players are then
participants in the game with the goal of choosing the actions that produce
their most preferred outcomes.

2. Game Types

A game can be one of two types: non-cooperative or cooperative. In the
first type, players are selfish and are only concerned with maximizing their
own benefit. In the second type, some players cooperate and form a coalition
in order to achieve a common goal, and then the coalition and the rest of
players play non-cooperatively the game.

A game can be a repeated game that consists in a finite or infinite number
of iterations of some one-stage game. In such one-stage game, players’ choices
are referred to as actions rather than strategies (a term reserved to the repeated
game) and these actions take into account their impact on the future actions of
other players.

Evolutionary game theory also provides a dynamic framework for
analyzing repeated interactions. In such games, randomly chosen players
interact with each other, then the player with the lower payoff switches to the
strategy of the player with the higher payoff i.e., players reproduce

Peer-to-Peer Storage 37

proportionally to their payoffs. Hence, strategies with poor payoffs eventually
die off, while well-performing strategies thrive.

3. Game Equilibria

Finding a solution to a game equates to finding equilibria in the game. At
the equilibrium, each player of the game has adopted a strategy that they are
unlikely to change. Many equilibrium related concepts have been developed in
an attempt to capture this idea. The most famous is the Nash equilibrium. A
Nash Equilibrium is the set of players’ strategy choices such that no player can
benefit by changing its strategy while the other players keep their strategies
unchanged. So, it is a set of strategies {σ1 ∈ S1, …, σn ∈ Sn}, such that:

Ui(σ1, …, σi, …, σn) ≥ Ui(σ1, …, σ’i, …, σn), i ∈ {1, …, n} and σ’i ∈ Si

An Evolutionary stable strategy (ESS) defines strategies conducting to a
Nash equilibrium and such that, if adopted by a population of players, cannot
be invaded by any alternative strategy that is initially rare. For a two-player
game with a strategy space S a strategy σ is an ESS if and only if for any σ’ ≠
σ , either on of the followi g two con itions holds:

,

a
e n d

b) U(σ , σ) = U(σ’, σ) and U(σ , σ’) > U(σ’, σ’)
) U(σ , σ) > U(σ’, σ)

Here, U(., .) is the payoff function of the associated two-player game.

To achieve a socially optimal equilibrium for a self-organizing system

with autonomous peers, different incentive mechanisms have been proposed in
the literature. These incentives include providing virtual or real payment
incentives or establishing and maintaining a reputation index for every peer in
the network.

B. Reputation Incentive Modeling

The cooperation enforcement property of reputation schemes can be

proven with game theoretical tools. The modeling may operate with static
games that consider interaction between peers that have persistent strategies.
On the other hand, dynamic games involve peers that constantly change their
strategy. The following reviews static and dynamic game models that describe
several features of reputation approaches.

Nouha Oualha and Yves Roudier 38

1. Static games
Reputation schemes have received a great deal of attention for enforcing

node cooperation in mobile ad hoc networks. Notably, [85] proposed CORE as
a collaborative reputation mechanism motivating nodes to forward packets,
and used a game theoretical approach to assess the features and validate the
mechanism. This work relies on a cooperative game that uses a two-period
structure: players first decide whether or not to join a coalition, and then both
the coalition and the remaining players choose their behavior non-
cooperatively. Additionally, the model employs a preferential structure as
suggested by the ERC-theory [30]. A player i's utility is based on the absolute
payoff yi and on the relative payoff:

The ERC utility function is derived then as:

)
where and are parameters describing the preferences of the nodes.
The study of the model demonstrates that there is a Nash equilibrium

where at least half of the total number of nodes cooperate. Nodes may also
have a continuous strategy space where they may choose their cooperation
levels instead of discretely choosing just between cooperation and defection.
The study reveals that for identical ERC preferences and for a sufficiently
small ratio α/β (i.e., nodes are interested enough in being close to the equal
share), then the grand coalition is stable, i.e., no player has an incentive to
leave the coalition. Still, the assumption that the nodes will be much interested
in their relative payoff (small α/β) may not be met in practice.

2. Dynamic games

In contrast to [85] that addresses a specific mechanism, [16] introduces a
general game theoretical framework to model and analyze cooperation
incentive policies, and to more specifically focus on their dynamics. In the
proposed model, peer strategies are expressed using an n×n generosity matrix
G with Gij being the probability that a peer of strategy si will provide service
for peer of strategy sj. The expected payoff of a peer of strategy si at time t is
derived as:

Peer-to-Peer Storage 39

where denotes the fraction of peers with strategy sj in the peer

population at time t, α > 0 is the gain of a peer receiving a service from
another peer, while it loses β (normalized payoff with β = 1) when it provides
a service to another peer. Thus, the total expected performance of the system
is:

with the vector x = (x1, x2,… , xn).
Instead of game equilibria, the model studies the game dynamics where

strategies change according to two learning models: the current-best (CBLM)
and the opportunistic (OLM) learning models. In CBLM, each peer may
switch to another strategy with probability γa (adapting rate). The peer chooses
the strategy sh that has the highest payoff. The peer of strategy si will switch to
strategy sh with probability , where γs represents the
sensitivity rate to the performance gap. System dynamics are then expressed
by the following equations:

 (learning rate)
In the second learning model OLM, each peer randomly chooses another

peer as its teacher with probability γa. If the teacher has a better payoff than
the peer, the latter adapts to the teacher’s strategy with sensitivity γs to their
performance gap. OLM is similar to evolutionary game concepts where the so-
called teacher is the co-player of the peer. For this reason, the evolution of the
system with OLM follows the replicator dynamics (the payoff is in number of
offsprings):

The main parameter of comparison between these learning models is

robustness: a system is robust if it stays at a high contribution level despite
perturbations such as peer arrivals or departures from the network. The
mathematical analysis demonstrates that a system with CBLM is less robust
than with OLM, the latter being akin to a typical evolutionary game model.
Moreover, the analysis allows comparing two incentive policies. The first
considered policy is the mirror incentive policy under which a peer provides
service with the same probability as the requester serves other peers in the
system. On the other hand, in a second policy named the proportional
incentive policy, the peer serves the requester with a probability equal to the
requester’s contribution to consumption ratio. The study shows that the mirror
incentive policy may lead to a complete system collapse, while the

Nouha Oualha and Yves Roudier 40

proportional incentive policy can lead to a robust system. This result is quite
interesting because it demonstrates that a policy motivating fairness in terms
of contributions and consumptions of resources achieves better stability than
participatory incentives.

Another reputation technique to support cooperative behavior in a P2P
system, named reciprocative strategy, is proposed in [61]. In this strategy, a
peer j cooperates with another peer i depending on its normalized generosity
value:

where peer i’s generosity g(i) = pi/ci, and pi and ci are respectively the

services the peer i has provided and consumed. The reputation technique
resembles the proportional incentive policy of [16], though the normalization
overcomes the system bootstrapping problem.

To validate the reputation technique while taking into account several
challenging issues of P2P systems such as their large populations, high
turnover, asymmetry of interest of peers, and zero-cost identities, the authors
propose a dynamic and asymmetric game model based on the generalized
Prisoner’s Dilemma (GPD). The dynamic model is composed of multiple
rounds. In each round, every player plays a client role in one game, then a
server role in another game. Every such player may subsequently either mutate
by switching to a randomly picked strategy, or learn by switching to a strategy
with a higher score determined by reputation, or turnover by leaving the
system, or finally stay with the same strategy.

[48] also opted for an evolutionary study of applications in P2P systems.
The authors proposed a model that they call a generalized form of the
Evolutionary Prisoner’s Dilemma (EPD). Though the model is very similar to
the traditional EPD, they argue that the new model permits asymmetric
transactions between a client peer and a server peer. The proposed model
consists of several generations of rounds. At the end of a generation, the
history of other players’ actions is cleared and players evolve according to ri

t+1

= ri
t × si

t, where ri
t+1 is the frequency of peers playing strategy i at the (t+1)th

generation, and ri
t at the tth generation. si

t is their average score obtained after
the tth generation. Peers decide whether to cooperate based on a reciprocative
decision function that sets the probability to cooperate with a given peer X to
the ratio (rounded to a value in [0, 1]):

Peer-to-Peer Storage 41

Such a function is comparable to the proportional incentive policy of [16]
in which EPD is simulated under various situations. This work shows that
techniques relying only on private history, where solely peer experiences are
taken into account, fail in stimulating cooperation among peers as the
population size increases. However, techniques based on a shared history scale
better to large populations.

The evolutionary game proposed in [74] attempts to validate a large scale
P2P storage system that is based on private history to estimate reputation. The
reputation scheme relies on a verification routine to detect selfish behavior.
Thus, peers may play several roles throughout the game: owner, holder, or
verifier. In the proposed game inspired from the donor-recipient model of [38],
the owner is considered a recipient, the r holders and m verifiers are donors.
The owner gains b if at least one holder donates at a cost –c; however if no
holder donates then the owner gains βb if at least one verifier donates at a cost
–αc (α≤1) for each verifier. The latter case corresponds to the situation where
the cooperative verifier informs the owner of the data destruction, and then the
owner may replicate its data elsewhere in the network thus maintaining the
security properties of the stored data (e.g., the replication rate of the data).

Holders and verifiers have the choice between cooperating and defecting.
The following peer strategies are specifically studied: altruistic peers that
always donate, defectors that never donate and discriminators that donate
under conditions. If the discriminator does not know its co-player, it will
always donate; however, if it had previously played with its co-player, it will
only donate if its co-player donates in the previous game. This strategy
resembles Tit-For-Tat but differs from it in that both the owner (the donor) and
its verifiers may decide to stop cooperating with the holder in the future.

The evolution of these strategies is analyzed using the replicator
dynamics. The basic concept of replicator dynamics is that the growth rate of
peers taking a strategy is proportional to the fitness acquired by the strategy.
Thus, the strategy that yields more fitness than average for the whole system
increases, and vice versa.

The study of the convergence of the system to equilibrium proves that
there exist parameter values for which discriminators may win against free-
riding defectors. Discriminators are not hopeless when confronting defectors,
even if the latter may dominate altruists. At the equilibrium of the game, both
discriminators and defectors may coexist if there is some churn in the system,
otherwise discriminators will dominate. The number of verifiers increases the
frequency of discriminators at the equilibrium whereas a costly storage or an
increase of the replication rate reduce this frequency.

Nouha Oualha and Yves Roudier 42

3. Whitewashing Problem

An inherent problem to a cooperation incentive mechanism implemented
in a dynamic system where peers may join or leave at any time is the
whitewashing problem. Whitewashers are peers that repeatedly misbehave
then leave the storage system and come back with new identities thus escaping
the punishment imposed by the incentive mechanism. The whitewashing
problem is essentially due to the presence of free or cheap pseudonyms for
peers. Therefore, countering the whitewashing attacks demands either the use
of irreplaceable pseudonyms, e.g., through the assignment of strong identities
by a central trusted authority, or requires imposing a penalty on all
newcomers. The first solution reduces the decentralized nature of P2P systems
and introduces a single point of failure. The second option requires defining
the right penalty parameter for the system. The penalty corresponds to the best
tradeoff for restricting whitewashers while encouraging newcomers to
participate.

The simulation results of [48] demonstrate that cooperation with strangers
fails to encourage cooperation in the presence of whitewashers. The authors
thus propose an adaptive policy in which the probability of cooperation with
strangers becomes equal to pC

t+1 = (1-μ)×pC
t + μ×Ct at time t+1, where Ct=1 if

the last stranger cooperated and equal to 0 otherwise. Simulations validate the
adaptive policy by demonstrating that incentives based on such a policy make
the system converge to higher levels of cooperation.

[60] studies in more detail the whitewashing problem in P2P systems
using a game theoretical model that particularly takes into account the
heterogeneity of user behaviors. Indeed, each user is characterized by a type
that reflects its willingness to contribute resources (its generosity level): users
of type ti will contribute if and only if ti > 1/x where x is the fraction of
contributing users. The fraction of contributors is then determined by the
solution to:

x = Probability(ti > 1/x)
In order to sustain the system when the societal generosity is low (low x),

punishment mechanisms against free-riding users are required. The proposed
punishment mechanism consists in imposing a penalty on free-riding behavior
with probability (1-p). The optimal value for the probability p is defined by the
maximum performance obtained from the system. The authors express such a
performance as:

Wsystem = (αxβ – 1) (x + (1 – x)(1 – p)); α>0 and 0<β≤1

Peer-to-Peer Storage 43

where Q = αxβ is the maximum benefit received by each user, an
increasing function of the number of contributors with diminishing returns.
The performance of the system is maximized with p = p* ≥ 1/α. Still, such a
mechanism can be undermined by the availability of cheap pseudonyms
through which a free-rider may choose to whitewash. To measure the effect of
a whitewashing behavior, the authors compute the system performance at p =
p* considering the cases of permanent identities and free identities, in addition
to different turnover rates that represent user arrival and departure rates
(arrivals and departures are assumed to be type-neutral, i.e., they do not alter
the type distribution). This study demonstrates that the penalty mechanism is
effective when both the societal generosity and the turnover rate are low;
otherwise a notable societal cost due to whitewashing is experienced.

[73] studies the penalty mechanism described in [60] with the
evolutionary game model of [74] by changing the strategy of discriminators
such that the latter only cooperate probabilistically with strangers and also
introducing whitewashers into the game. The study of the game equilibrium
convergence demonstrates that discriminators are not hopeless in front of
whitewashers and that they may even win over them provided system
parameters are chosen sensibly. The fraction of discriminators in the system
should in particular not be null initially, and the replication rate and the churn
sensed in the system should not be too high.

The simulation results also show that there is an optimal probability p for
the penalty mechanism that achieves a high social welfare for the whole P2P
storage system. However, a non-zero welfare is only obtained if the
whitewashing phenomena is restricted to a given fraction of defectors. For
instance, if all defectors are whitewashing, discriminators are entirely
eliminated and the system collapses. This result motivates the requirement to
supplement the proposed penalty mechanism with other means that prevent or
at least limit the whitewashing behavior such as controlling the peers that join
the system using a cryptographic puzzle [95] or the payment of a membership
fee. Another solution is to force or motivate peers to stay online a minimum
amount of time in the system like in Wuala [97] (1/w is then increased)
because peer connection time must be taken into consideration.

The penalty mechanism adopted with strangers can be adaptive. The
probability that a peer cooperates with a stranger is defined in [61] as ps/cs
where ps and cs are respectively the number of services that strangers have
provided and consumed. The results of the simulation of the dynamic game
model show that a system with this strategy can ensure the cooperation of
peers with a sufficiently low turnover.

Nouha Oualha and Yves Roudier 44

c. Payment Incentive Modeling

One of the first studies that considered payment schemes in P2P systems

is [83], which uses a game theoretical model to study the potential benefits of
introducing micro-payment methods into centralized P2P file-sharing systems
such as Napster. In such systems, the strategies have two independent actions
in order to catch the asymmetric aspect of interactions between peers, which
are also called agents: sharing, i.e., providing the service, and downloading,
i.e., acquiring the service. Agent actions and other several considerations are
put together into one utility function that is defined for each agent ai as:

Ui = (fi
AD(AD) + fi

NV(NV) + fi
AL(AL)) – (fi

DS(DS) + fi
BW(BW)) – FT

where variables AD, NV, AL, DS, BW, and FT respectively denote the
amount of files the agent desires to download, the number of options from
where the agent may download, the altruism derived from contributing to the
system, the disk space used, the bandwidth used, and the financial transfer for
using the system. Concerning functions f, they are arbitrary functions: each of
them maps a variable to its financial value conferred by the agent. Relying on
this theoretical model, the authors have analyzed the equilibrium solution for
multiple situations. Without considering any incentives (FT=0) as it is the case
with Napster and disregarding the altruism variable of agents’ utility functions
(fi

AL(AL)=0), the outcome of the equilibrium analysis results in an unique
equilibrium where nothing is shared and nothing can be downloaded. With
some level of altruism in the system, all agents, both altruistic and free-rider,
are unrestrained from downloading, the whole cost then weighing over the
small number of altruistic agents. Therefore, the authors propose alternatives
based on payment to overcome the free-riding problem. The first proposed
payment scheme consists in charging agents for every download, and
rewarding them for every upload. The result of the equilibrium analysis of the
model with the payment scheme shows that there is one unique and strict
equilibrium where agents are extensively sharing and downloading files. This
result validates the payment scheme; still, the analysis does not take into
account the fact that agents share diverse files and some of them may store
files that are sufficiently rare thus unfairly receiving a large fraction of all the
download requests for these files. For that reason, the authors propose a
second payment-based alternative that continues to penalize downloads, but
rewards agents in proportion to the amount of material they share rather than
the number of uploads they provide. The equilibrium analysis of the model

Peer-to-Peer Storage 45

shows that two strict equilibria may be reached through either full file sharing
or no sharing at all; in contrast, simulation experiments of the model
demonstrate that the system converges to an equilibrium where all agents
cooperate by sharing files.

[51] takes a different direction for defining peer utility function that relies
on payment more than the model of [83] does. The authors of [51] model a
P2P backup service as a non-cooperative game using an economic model that
relies on the following user utility:

where is the capacity of data to be stored in the system and is the

capacity of the offered disk space. gives the price the user is willing to pay
and gives the price it is willing to be paid for. The monetary compensation
is denoted :

where and are unit prices. The authors define demand and supply

functions, and , as:
 and

These functions follow a chosen common form:
 and

The parameters, and , associated with the demand and supply
functions and characterizing the profile of each user, turn out to be playing a
crucial role on justifying the use of a pricing scheme or imposed symmetry
with respect to the optimal situation of the service that is maximizing the
social welfare defined as:

Indeed, the theoretical study of the economic model shows that if users are

homogeneous in terms of and , then it is better to opt for imposed
symmetric user contributions rather than a pricing scheme. However, for a
heterogeneous user population, which is the general case in P2P networks, the
use of a pricing scheme by which a monopoly is introduced to fix unit prices
for buying and selling storage resources is validated. Still the involvement of
the operator in fixing prices for a P2P backup reduces the social welfare of the
system by ¼ times its maximum.

A P2P storage system purely self-organized that uses a probabilistic
verification routine to detect selfish holders and that relies on a payment

Nouha Oualha and Yves Roudier 46

scheme to punish these holders is modeled as a Bayesian game in [79]. In this
game, the information about the characteristics of other players is incomplete
because the verification protocol allows only probabilistic detection; thus,
nature is introduced as a player for modeling uncertainty. The owner is not
informed about the holder’s type, which may be either cooperative or selfish.
Such situations that cannot be discriminated belong to the same so-called “set
of information”. The owner still can probabilistically determine the holder’s
type based on its prior beliefs: with every verification operation performed, it
updates its beliefs according to Bayes’ formula.

The one-stage game produces a Nash equilibrium in which the owner and
the holder are not cooperative. However, the perfect Bayesian equilibrium
results in the cooperation of both players for some defined conditions. The
study of the repeated Bayesian game proves that the iteration of the game
favors the cooperativeness of the holder as well as that of the owner. The study
also identifies which actions the owner must follow for a given initial belief
about the cooperativeness of the holder. Finally, the study reveals the
expressions that parameters of the payment scheme (e.g., reward, punishment)
should verify. [79] approaches the definition of payment parameters from a
design theory point of view rather than a game theory approach in that it
endeavors to design a game in which the behavior of strategic players results
in the socially desired outcome.

VI. CONCLUSION

Peer-to-Peer (P2P) systems have emerged as an important paradigm for

distributed storage in that they aim at efficiently exploiting untapped storage
resources available in a wide base of peers. Data are outsourced to several
heterogonous storage sites in the network, the major expected outcome being
an increased data availability and reliability, while also achieving reduced
storage maintenance costs, and high scalability. Addressing security issues in
such P2P storage applications represents an indispensable part of the solution
satisfying these requirements. Security relies on low level cryptographic
primitives, remote data possession verification protocols, for observing
malicious and selfish behaviors. Such an assessment of peer behavior is crucial
to the more complex enforcement of cooperation, which is necessary due to
the self-organized nature of P2P networks. It is also crucial to address open
issues, such as how to mitigate denial of service attempts to the long-term
storage as well as to the security and storage maintenance functions.

Peer-to-Peer Storage 47

REFERENCES

[1] Akamai technologies, inc. http://www.akamai.com/
[2] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.

Handbook of Applied Cryptography. CRC Press, 1996.
[3] AllMyData Tahoe. http://allmydata.org/
[4] Amazon. http://www.amazon.com/
[5] Andrew C. Huang, Benjamin C. Ling, Shankar Ponnekanti, and

Armando Fox. Pervasive computing: What is it good for?. In
Proceedings of the ACM International Workshop on Data Engineering
for Wireless and Mobile Access, pages 84-91, Seattle, WA, August
1999. ACM Press.

[6] Anind K. Dey and Gregory D. Abowd. CybreMinder: A context-aware
system for supporting reminders. In Proceedings of Second International
Symposium on Handheld and Ubiquitous Computing, HUC 2000, pages
172-186, Bristol, UK, September 2000. Springer Verlag.

[7] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proceeding of the IFIP/ACMInternational Conference on Distributed
Systems Platforms, Heidelberg, Germany, November 2001.

[8] Ari Juels and Burton S. Kaliski PORs: Proofs of retrievability for large
files. Cryptology ePrint archive, June 2007. Report 2007/243.

[9] Attila Weyland, Thomas Staub and Torsten Braun. Comparison of
Incentive-based Cooperation Strategies for Hybrid Networks. 3rd
International Conference on Wired/Wireless Internet Communications
(WWIC 2005), pp 169-180, ISBN: 3-540-25899-X, Xanthi, Greece,
May 11-13, 2005.

[10] Audun Jøsang and Roslan Ismail. The Beta Reputation System. In
Proceedings of the 15th, Bled Electronic Commerce Conference, Bled,
Slovenia, June 2002.

[11] Audun Jøsang, Roslan Ismail, and Colin Boyd. A Survey of Trust and
Reputation Systems for Online Service Provision. In Proceedings of
Decision Support Systems, 2005.

[12] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical
Report UCB//CSD-01-1141, University of California, Berkeley, April
2000.

Nouha Oualha and Yves Roudier 48

[13] BitTorrent. http://www.bittorrent.com/
[14] Bogdan C. Popescu, Bruno Crispo and Andrew S. Tanenbaum. Safe and

Private Data Sharing with Turtle: Friends Team-Up and Beat the
System. In 12th International Workshop on Security Protocols,
Cambridge, UK, April 2004.

[15] Brian Neil Levine, Clay Shields, and N. Boris Margolin. A Survey of
Solutions to the Sybil Attack. Technical Report 2006-052, University of
Massachusetts Amherst, Amherst, MA, October 2006.

[16] Bridge Q. Zhao, John C. S. Lui, Dah-Ming Chiu. Analysis of Adaptive
Protocols for P2P Networks. In IEEE INFOCOM 2009.

[17] Daniel Stutzbach and Reza Rejaie. Towards a Better Understanding of
Churn in Peer-to-Peer Networks. Technical Report CIS-TR-04-06,
University of Oregon, November 2004.

[18] David Goldschlag, Michael Reed, and Paul Syverson. Onion Routing for
Anonymous and Private Internet Connections. Communications of the
ACM, vol. 42, num. 2, February 1999.

[19] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto.
Demonstrating data possession and uncheatable data transfer. In IACR
Cryptology ePrint Archive, 2006.

[20] Douglas Samuel Jones and B. D. Sleeman. Differential Equations and
Mathematical Biology. London: Allen & Unwin, 1983.

[21] eBay. http://ebay.com
[22] Ee-Chien Chang and Jia Xu. Remote Integrity Check with Dishonest

Storage Server. ESORICS 2008: 223-237.
[23] Emil Sit and Robert Morris. Security Considerations for P2P Distributed

Hash Tables. IPTPS 2002.
[24] Emmanuelle Anceaume and Aina Ravoaja. Incentive-Based Robust

Reputation Mechanism for P2P Services. Research Report PI 1816
(2006), IRISA, http://hal.inria.fr/inria-00121609/fr/

[25] Francesc Sebe, Josep Domingo-Ferrer, Antoni Martínez-Ballesté, Yves
Deswarte, and Jean-Jacques Quisquater. Efficient Remote Data
Possession Checking in Critical Information Infrastructures. IEEE
Transactions on Knowledge and Data Engineering, 06 Aug 2007. IEEE
Computer Society Digital Library. IEEE Computer Society, 6 December
2007 http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190647

[26] François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong. A
Sybilproof Distributed Identity Management for P2P Networks In
Proceedings of the 13th IEEE Symposium on Computers and

Peer-to-Peer Storage 49

Communications (ISCC) 2008, IEEE Computer Society, Marrakech,
Morocco.

[27] François Lesueur, Ludovic Mé, Valérie Viet Triem Tong. Contrôle
d'accès distribué à un réseau Pair-à-Pair. SAR-SSI 2007, Annecy,
France.

[28] Frazer Bennett, Tristan Richardson, and Andy Harter. Teleporting -
making applications mobile. In Proceedings of IEEE Workshop on
Mobile Computing Systems and Applications, pages 82-84, Santa Cruz,
California, December 1994. IEEE Computer Society Press.

[29] Garrett Hardin. The Tragedy of the Commons. Science, Vol. 162, No.
3859 (December 13, 1968), pp. 1243-1248.

[30] Gary E Bolton and Axel Ockenfels. ERC: a theory of equity, reciprocity,
and competition. American Economic Review 90(1): 166-193, 2000.

[31] Gayatri Swamynathan, Ben Y. Zhao, Kevin C. Almeroth, S. Rao
Jammalamadaka. Towards Reliable Reputations for Dynamic
Networked Systems. In IEEE Proceedings on Symposium on Reliable
Distributed Systems (SRDS’08), October 2008.

[32] Germano Caronni and Marcel Waldvogel. Establishing Trust in
Distributed Storage Providers. In Proceeding of the Third IEEE P2P
Conference, Linkoping 03, 2003.

[33] Giuseppe Ateniese and Randal Burns and Reza Curtmola and Joseph
Herring and Lea Kissner and Zachary Peterson and Dawn Song.
Provable data possession at untrusted stores. In Proceedings of the 14th
ACM conference on Computer and communications security, ACM,
2007, 598-609.

[34] Gnutella. http://www.gnutella.com/
[35] Google. http://www.google.com/
[36] Grokster. http://www.grokster.com/
[37] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham

Flaxman. SybilGuard: defending against sybil attacks via social
networks. SIGCOMM 2006: 267-278.

[38] Hannelore Brandt and Karl Sigmund. The good, the bad and the
discriminator--errors in direct and indirect reciprocity. Journal of
Theoretical Biology, Volume 239, Issue 2, 21 March 2006, Pages 183-
194.

[39] Hovav Shacham and Brent Waters. Compact Proofs of Retrievability.
ASIACRYPT 2008: 90-107.

[40] iMesh. http://imesh.com

Nouha Oualha and Yves Roudier 50

[41] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of SIGCOMM, San Diego, CA, Aug. 27–
31, 2001.

[42] Jian Liang, Rakesh Kumar, and Keith W. Ross. The FastTrack overlay:
A measurement study. Computer Networks, 50, 842-858, 2006.

[43] Jinyang Li and Frank Dabek. F2F: reliable storage in open networks. In
Proceedings of the 5th International Workshop on Peer-to-Peer Systems
(IPTPS), February 2006.

[44] John Kubiatowicz, Davic Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris Wells, Ben Zhao. OceanStore:
An architecture for global-scale persistent storage. In Proceedings of the
Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000), Nov.
2000.

[45] John R. Douceur. The Sybil attack. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS’02). MIT
Faculty Club, Cambridge, MA, 2002.

[46] KaZaA. http://www.kazaa.com/
[47] Kenji Koyama, Ueli Maurer, Tatsuaki Okamoto, and Scott Vanstone.

New Public-Key Schemes Based on Elliptic Curves over the Ring Zn.
Advances in Cryptology - CRYPTO '91, Lecture Notes in Computer
Science, Springer-Verlag, vol. 576, pp. 252-266, Aug 1991.

[48] Kevin Lai, Michal Feldman, Ion Stoica, and John Chuang. Incentives for
Cooperation in Peer-to-Peer Networks. In Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems, UC Berkeley,
Berkeley, California, USA, June 2003.

[49] Landon P. Cox and Brian D. Noble. Pastiche: making backup cheap and
easy. in Proceedings of the Fifth USENIX Symposium on Operating
Systems Design and Implementation, Boston, MA, December 2002.

[50] Larry Page, Sergey Brin, R. Motwani, and T. Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical report, Stanford
Digital Library Technologies Project, 1998.

[51] Laszlo Toka and Patrick Maillé. Managing a peer-to-peer backup
system: does imposed fairness socially outperform a revenue-driven
monopoly?. 4th International Workshop on Grid Economics and
Business Models (GECON 2007), August 28, 2007, Rennes, France, pp
150-163.

Peer-to-Peer Storage 51

[52] Levente Buttyan and Jean-Pierre Hubaux. Stimulating Cooperation in
Self-Organizing Mobile Ad Hoc Networks. ACM/Kluwer Mobile
Networks and Applications, 8(5), October 2003.

[53] Lik Mui, Mojdeh Mohtashemi, Cheewee Ang, Peter Szolovits, and Ari
Halberstadt. Ratings in Distributed Systems: A Bayesian Approach. In
Proceedings of the Workshop on Information Technologies and Systems
(WITS), 2001.

[54] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and
Moni Naor. Checking the Correctness of Memories. Algorithmica
12(2/3): 225-244 (1994).

[55] Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Mike Burrows, and
Michael Isard. A Cooperative Internet Backup Scheme. In Proceedings
of the 2003 Usenix Annual Technical Conference (General Track), pp.
29-41, San Antonio, Texas, June 2003.

[56] Markus Jakobsson, Jean-Pierre Hubaux, and Levente Buttyan. A Micro-
Payment Scheme Encouraging Collaboration in Multi-Hop Cellular
Networks. In Proceedings of Financial Crypto, La Guadeloupe, Jan.
2003.

[57] Michael Beigl. MemoClip: A location-based remembrance appliance.
Personal Technologies, 4(4):230-233, September 2000.

[58] Michael Piatek, Tomas Isdal, Thomas Anderson, and Arvind
Krishnamurthy. Do incentives build robustness in BitTorrent?. In
Proceedings of the ACM/USENIX Fourth Symposium on Networked
Systems Design and Implementation (NSDI 2007), 2007.

[59] Michal Feldman and John Chuang. The Evolution of Cooperation under
Cheap Pseudonyms. CEC 2005: 284-291.

[60] Michal Feldman, Christos Papadimitriou, John Chuang and Ion Stoica.
Free-Riding and Whitewashing in Peer-to-Peer Systems. Selected Areas
in Communications, IEEE Journal on, Vol. 24, No. 5. (2006), pp. 1010-
1019.

[61] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust
Incentive Techniques for Peer-to-Peer Networks. Proceedings of ACM
E-Commerce Conference (EC'04), May 2004.

[62] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay
networks. Symposium on Operating Systems and Implementation,
OSDI’02, Boston, MA, December 2002.

[63] Mihir Bellare, Oded Goldreich and Shafi Goldwasser. Incremental
Cryptography and Application to Virus Protection. STOC 1995: 45-56.

Nouha Oualha and Yves Roudier 52

[64] Ming Zhong, Kai Shen, Joel I. Seiferas. The Convergence-Guaranteed
Random Walk and Its Applications in Peer-to-Peer Networks. IEEE
Trans. Computers 57(5): 619-633 (2008).

[65] Moni Naor and Guy N. Rothblum. The Complexity of Online Memory
Checking. FOCS 2005: 573-584.

[66] Morpheus. http://www.morpheus.com/
[67] Mudhakar Srivatsa and Ling Liu. Countering Targeted File Attacks

using LocationGuard. In Proceedings of the 14th USENIX Security
Symposium, to appear August 2005.

[68] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic
Protocols for Fair Exchange. In Proceedings of the 4th ACM Conference
on Computer and Communications Security, Zurich, April 1997.

[69] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous
protocols for optimistic fair exchange. In Proceeding of the IEEE
Symposium on Security and Privacy, 1998, 3-6 May, p. 86-99, Oakland,
CA, USA.

[70] Napster. http://www.napster.com/
[71] Natalia Marmasse and Chris Schmandt. Location-aware information

delivery with ComMotion. In Proceedings of Second International
Symposium on Handheld and Ubiquitous Computing, HUC 2000, pages
157-171, Bristol, UK, September 2000. Springer Verlag.

[72] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48 (1987), 203-209.

[73] Nouha Oualha and Yves Roudier. A Game Theoretical Approach in
Securing P2P Storage against Whitewashers. In the 5th International
Workshop on Collaborative Peer-to-Peer Systems (COPS’09), June 29 -
July 1, 2009, Groningen, Netherlands.

[74] Nouha Oualha and Yves Roudier. Evolutionary game for peer-to-peer
storage audits. In the 3rd International Workshop on Self-Organizing
Systems (IWSOS’08), December 10-12, Vienna, Austria.

[75] Nouha Oualha and Yves Roudier. Reputation and Audits for Self-
Organizing Storage. In the 1st Workshop on Security in Opportunistic
and SOCial Networks (SOSOC 2008), Istanbul, Turkey, September
2008.

[76] Nouha Oualha and Yves Roudier. Reputation and Audits for Self-
Organizing Storage. In the 1st Workshop on Security in Opportunistic
and SOCial Networks (SOSOC 2008), Istanbul, Turkey, September
2008.

Peer-to-Peer Storage 53

[77] Nouha Oualha and Yves Roudier. Securing ad hoc storage through
probabilistic cooperation assessment. 3rd Workshop on Cryptography
for Ad hoc Networks, July 8th, 2007, Wroclaw, Poland. Electronic
Notes in theoretical computer science, Volume 192, N°2, May 26, 2008,
pp 17-29.

[78] Nouha Oualha, Melek Önen, and Yves Roudier. A Security Protocol for
Self-Organizing Data Storage. 23rd International Information Security
Conference (SEC 2008), Milan, Italy, September 2008.

[79] Nouha Oualha, Pietro Michiardi, and Yves Roudier. A game theoretic
model of a protocol for data possession verification. TSPUC 2007, IEEE
International Workshop on Trust, Security, and Privacy for Ubiquitous
Computing, June 18, 2007, Helsinki, Finland.

[80] Patrick P. C. Lee, John C. S. Lui and David K. Y. Yau. Distributed
collaborative key agreement and authentication protocols for dynamic
peer group. IEEE/ACM Transactions on Networking, 2006.

[81] Peter Druschel and Antony Rowstron. PAST: A large-scale, persistent
peer-to-peer storage utility. In Proceedings of HotOS VIII, May 2001.

[82] Philipp Obreiter and Jens Nimis. A Taxonomy of Incentive Patterns - the
Design Space of Incentives for Cooperation. Technical Report,
Universität Karlsruhe, Faculty of Informatics, 2003.

[83] Philippe Golle, Kevin Leyton-Brown, Ilya Mironov. Incentives for
Sharing in Peer-to-Peer Networks. In Proceedings of the 3rd ACM
conference on Electronic Commerce, October 2001.

[84] Philippe Golle, Stanislaw Jarecki, Ilya Mironov. Cryptographic
Primitives Enforcing Communication and Storage Complexity. In
Proceeding of Financial Crypto 2002.

[85] Pietro Michiardi. Cooperation enforcement and network security
mechanisms for mobile ad hoc networks. PhD Thesis, December 14th,
2004.

[86] Roger R. Dingledine. The Free Haven project: Design and deployment
of an anonymous secure data haven. Master’s thesis, MIT, June 2000.

[87] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
The EigenTrust Algorithm for Reputation Management in P2P
Networks. In Proceedings of the Twelfth International World Wide Web
Conference, Budapest, May 2003.

[88] Shane Balfe, Amit D. Lakhani and Kenneth G. Paterson. Trusted
Computing: Providing security for Peer-to-Peer Networks. In
Proceedings of the 5th International Conference on Peer-to-Peer
Computing (P2P), 2005.

Nouha Oualha and Yves Roudier 54

[89] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of
SIGCOMM, San Diego, CA, Aug. 27–31, 2001.

[90] Thai-Lai Pham, Georg Schneider, and Stuart Goose. Exploiting location-
based composite devices to support and facilitate situated ubiquitous
computing. In Proceedings of Second International Symposium on
Handheld and Ubiquitous Computing, HUC 2000, pages 143-156,
Bristol, UK, September 2000. Springer Verlag.

[91] Theodore L. Turocy and Bernhard von Stengel. Game theory. Cdam
Research report lse-cdam-2001-09, London School of Economics,
October 2001.

[92] Thomas Schwarz, and Ethan L. Miller. Store, forget, and check: Using
algebraic signatures to check remotely administered storage. In
Proceedings of the IEEE Int'l Conference on Distributed Computing
Systems (ICDCS '06), July 2006.

[93] UbiStorage. http://www.ubistorage.com/
[94] Victor Miller. Uses of elliptic curves in cryptography Advances in

Cryptology, Proceedings of Crypto’85, Lecture Notes in Computer
Science, 218 (1986), Springer-Verlag, 417-426.

[95] Vivek Vishnumurthy, Sangeeth Chandrakumar and Emin Gun Sirer.
KARMA: A Secure Economic Framework for P2P Resource Sharing. In
Proceedings of the Workshop on the Economics of Peer-to-Peer
Systems, Berkeley, California, June 2003.

[96] Wenrui Zhao, Yang Chen, Mostafa Ammar, Mark Corner, Brian Levine,
and Ellen Zegura. Capacity Enhancement using Throwboxes in DTNs.
IEEE International Conference on Mobile Ad hoc and Sensor Systems
(MASS), Vancouver, Canada, October 2006.

[97] Wuala. http://wua.la/en/home.html
[98] Yves Deswarte, Jean-Jacques Quisquater, and Ayda Saïdane. Remote

Integrity Checking. In Proceedings of Sixth Working Conference on
Integrity and Internal Control in Information Systems (IICIS), 2004.

	Peer-to-Peer Storage: Security
	and Protocols
	Abstract
	Table of Contents
	1. Introduction
	Confidentiality and Integrity of Data
	Anonymity
	Identification
	Access Control
	Scalability
	Data Reliability
	Long-Term Data Survivability
	Data Availability

	II. Trust Establishment

	III. Remote Data Possession Verification
	Storage Usage
	Communication Overhead
	CPU Usage
	Detection of Data Destruction
	Collusion-Resistance
	Denial-of-Service (Dos) Prevention
	Man-in-the-Middle Attack Prevention
	Memory Checking
	Authenticator
	Provable Data Possession
	Proof of Retrievability
	Compact Proofs of Retrievability
	Remote Integrity Check
	Data Chunk Recovery
	Algebraic Signatures
	Incremental Cryptography
	Deterministic Remote Integrity Check
	Storage Enforcing Commitment
	Homomorphic Hash Functions
	C. Delegable Verification Protocol
	a. Security Background
	Solving the Order of Elliptic Curves
	The Elliptic Curve Discrete Logarithm Problem

	IV. Cooperation Incentives
	Direct Vs. Indirect Reputation
	Resistance to Bashing
	Fair Exchange and Payment
	Payments by Installment
	Preventing Starvation

	V. Validation Based On Game Theory
	1. Game
	2. Game Types
	3. Game Equilibria
	1. Static games
	2. Dynamic games
	3. Whitewashing Problem

	VI. Conclusion
	References

