
Metadata Aggregation for Personalized Music
Playlists.

A Multi-layered Architecture for an In-Car Prototype.

Clemens Hahn1,2, Stéphane Turlier1,3, Thorsten Liebig2, Sascha Gebhardt1,4,
and Christopher Roelle1

1 BMW Group Research and Technology, Munich, Germany
2 Ulm University, Faculty of Computer Science, Ulm, Germany

3 Eurécom, Multimedia Communications Department, Sophia-Antipolis, France
4 University of Munich, Department of Informatic, Munich, Germany

Abstract. The growing amount of digital music content and the in-
creasing connectivity of vehicles raise new challenges in terms of media
access for vehicle drivers. Creating easily a personalized playlist in ve-
hicles involves a unified representation of various metadata, combined
with a mobile architecture addressing media resolution and aggregation
issues. This paper analyzes the technical aspects of mobile access to mu-
sic metadata and its use in a personalized playlist generation scenario.
A prototype illustrates this study and gives first results.

Keywords: metadata, content aggregation, mobile architecture, playlist
creation

1 Introduction

Music is one of the most consumed media assets in vehicles. The increasing vehi-
cle internet connectivity is bringing more multimedia content to the mobile use
every day. Digital music assets are nowadays distributed on-demand by internet
services for their consumption.

A typical use case in a modern vehicle is: The driver wants to quickly select
specific online digital music tracks, in order to create a playlist corresponding
to his tastes of the moment. Since his primary task is to drive a vehicle, this
selection process has to provide first class user guidance in terms of minimal
interaction, presentation and explanation. While driving, he wants to be able to
influence the composition of the playlist by choosing alternative tracks or music
styles, without having to reformulate the whole selection query.

The vehicle integration and adaptation of such services is raising a lot of
technical challenges in terms of software architecture, network infrastructure
and usability. We will address the following aspects in this paper:

– provide the user with playlist generation techniques that require few inter-
actions but still allow granularity.

– define an efficient architecture, adapted to the mobile use and the vehicle
requirements.

– make use of internet cloud metadata from external providers while containing
the software complexity overhead.

We will first present the problem of playlist creation for vehicles in section 2
and describe the state of the art in section 3. After a technical discussion about
the different sources of music metaknowledge according to their integrability into
a mobile architecture in section 4 and we will propose a prototype of playlist
generation, that takes into account architecture constraints for the aggregation
of content, as well as techniques that allow the user to take advantage of it and
consume easily music in a vehicle.

2 Using Metaknowledge to Create Music Playlists

From a user’s point of view, the creation of a playlist is an optimization problem
between the time necessary to create the playlist and the quantity of music assets
which are available. Important parameters are the quantity and the quality of
available information that helps the user to make his decisions. We will discuss
in this section the different kinds of criteria that can be used to create a playlist
and explain how a mobile device like a vehicle can access them.

2.1 Techniques for the creation of music playlists

Digitalized music is a media asset that can be sorted and selected through dif-
ferent techniques [2].

Creating playlists based on music similarity

– acoustic similarity: different low-level features (MFCCs or MPEG-7) can
be extracted from the audio signal and using data mining techniques to
compute similarity, [10], [9].

– expert opinion: the music genome project [24] has identified more than
400 musical attributes that are analyzed by experts and saved in a database.

– social information: Social services allow users to share free-text tags,
tracks, artists or genre favorites, playlists and to write comments. They often
implement implicit relevance feedback mechanisms based on the monitoring
of the user behavior (like the scrobbling protocol [13] from Last.FM5). Based
on this information, it is possible to compute playlist co-occurrence [3], or
to analyze common tags between playlists.

5 http://www.last.fm/

Creating playlists based on filtering criteria

– artistic performance: The semantic description of music performances [19]
can help to define playlist creation criteria: author information, performer,
instrument, year of release, etc.

– high-level acoustic features: Based on the accoustic features mentioned
previously, MPEG-7 defines high-level descriptors such as Timbre, Melody
and Tempo. They can be considered as understandable for all users, even
those with minimal music expertise.

– genre: Genres are defined on cultural and historical backgrounds [14]. They
define commonly accepted cultural properties of music composition and per-
formance.

– mood: A mood is a long lasting personal affect. The energy-stress [22], or
valence-arousal [21] models have been developed by psychology research to
semantically describe it. Regarding music the Moodswing [11] proposes a
technique to select music according to the mood.

– web crawled information: The world wide web is an important source
of comments on musical performances. Analyzing it allows to identify the
popularity of an artist (how often the artist has been quoted in musical
reviews) and his hotness (how he he has been quoted the last week).

2.2 Accessing Media Information Knowledge

Accessing the information we have defined in 2.1 is a crucial step to its aggrega-
tion and its use in playlist generation. This section describes the different types
of multimedia metaknowledge sources that can be used to filter music tracks. In
our context, metaknowledge means every kind of knowledge about the content
that can help in selecting it among others through one or several criteria. We
draw a distinction between metadata that is extracted from the content, meta-
content that is delivered together with the content and metainformation that
can be linked to the content.

Agent Self Extracted Metadata A first option to access knowledge is to
extract it directly from the content (see table 1). Low-level features as well as
some high-level features can be accessed this way.

In spite of their advantages, we believe that the metadata extraction has
currently too many shortcomings to be integrated as such in a vehicle. This is
the reason why we decided not to use this technique in our prototype. However,
we will consider in section 4.3 other external services that propose to deliver
metacontent extracted from the content itself.

Co-delivered Metacontent Metacontent like the performing artist, or a cover
art illustration is delivered together with the audio content (see table 2). This
knowledge is tightly linked to the value chain (see 4.1) of the music distribution;

Table 1. Self extracted metadata

Playlist creation Integration in a mobile device

Advantages

The quality of the metadata is en-
tirely based on the quality of the
extraction. The more features can
be extracted, the more criteria can
be used.
A lot of algorithms based on simi-
larity are available.

Extracting information directly in
the client limits the need of internet
connectivity.

Disadvantages

Low-level descriptors are useful for
the computation of music similarity
but cannot be used as such as filter-
ing criteria by a user with no music
expertise.
Pure acoustic based music selection
has shown some limits and under-
performs, methods based on high-
level data[5].

The extraction of metadata in a
multi-layered architecture does not
scale to the aggregation role.
Considering the chain value, the dy-
namic computation of such features
in a client or in an aggregator does
not scale to the increasing amount
of available content.

from the producer to the publisher and to the online provider. It mainly consists
in expert information: track name, artist name, album name, year of release.
The ID3 tags were one of the first attempts to propose a standard way to deliver
track, artist, album and genre information, within the MP3 mediacontainer.
Afterwards then other formats have been proposed based on structured binary
information of the mediacontainer, or XML formats.

Separately delivered Metainformation In the past years, an increasing
amount of internet services aimed at federating new sources of metainformation
without providing music data themselves. We can distinguish:

– textual information based on web crawling.
– music similarity: it can be based on automated music analysis (Gracenote),

expert annotations (Music Genome Project), or social information (playlist-
co-occurrence).

– social tagging and classification, like Last.fm or Finetune who allow their
user to give free-text tags to the tracks or the artists, and compare user
profiles based on the listening behavior.

Since they do not propose the content themselves (see table 3), they all need
to implement some kind of identification in order to deliver the metacontent for
a specific music track. This identification can be based:

– either on extracted metadata: computation of a unique fingerprint of the
track [4],[1];

Table 2. Co-delivered metacontent

Playlist creation Integration in a mobile device

Advantages

Correctness: Co-delivered metacon-
tent has usually a very good quality
in terms of reliability.

This type of metacontent does not
need any extra processing neither
on client side nor on aggregation
side.

Disadvantages

Consistency: spelling differences be-
tween different providers may lead
an aggregating recommender sys-
tem to propose twice the same
artists or oppositely to underesti-
mate his importance.
Completeness: for taxonomic val-
ues like genre or mood, the inner
structure (number of genre, hierar-
chy, dependency between semantic
concepts) can vary a lot between
providers.

The whole content need to be re-
quested even if only the metadata
is necessary.

– or on the co-delivered textual metacontent: the metadata is available through
a search engine using the name of the track, or the name of the artist per-
forming it.

3 Related Work

The music information and retrieval (MIR) research has already presented rec-
ommender systems to help users to create playlists. The Simple Playlist Gen-
erator [15] proposes to create a playlist based on a seed song. Using the user’s
skipping behavior [16], it is possible to infer implicit relevance feedback and
improve the playlists.

In the field of data visualization, the development of user interfaces for the
display of music libraries such as in [12] or [8], has also lead indirectly to propose
clients capable of creating music playlist by selecting regions on a map.

A third important aspect in the literature are the recommender systems
based on user input filters. Satisfly [17] proposes to select the variance around
a genre, an interpret, or an album, as well as a desired tempo or a specific time
period (i.e. 60’, 70’, etc.). Musiclens [7] uses other original metadata like the
intention of the music, importance of the voice or number of instruments.

Most of this research effort has focused on finding innovative ways to use
metaknowledge for the creation of playlists. However, they gave rather little
focus to the analysis of the quality of the metaknowledge for an online scenario

Table 3. Separately delivered metainformation

Playlist creation Integration in a mobile device

Advantages

Those data are independent from
the content provider, so they are
not influenced by commercial ori-
entations and it allows address-
ing simultaneously different content
providers.
Some kind of information like popu-
larity, can only be gathered through
transverse crawling methods (web
information, radio charts, etc.),
that content providers do not pro-
vide.

Most of those services can be ab-
stracted and aggregated in a multi-
layered architecture.

Disadvantages

Correctness: folksonomy and other
user generated content need of-
ten extraprocessing of normaliza-
tion [18].
The lack of consistency in the co-
delivered metacontent may cause
problem to retrieve linked metain-
formation.

The architecture of such system is
less efficient than former systems,
since the query of new metadata re-
quires bidirectional exchange of in-
formation.

where the content changes every day, and the way to integrate it efficiently in
a mobile infrastructure. Moreover, most of them did not address the topic of
vehicle clients which have limited user interaction possibilities.

4 Prototype

Before giving the details of our prototype we think it is important to analyze
what are the different sources of content and metacontent that we need in or-
der to perform playlist generation in a vehicle using daily changing on-demand
media.

4.1 Role definition

Creation

Content Selection

Publishing and Delivery

Creation

metacontent

Publishing

metacontent

Displayed

metadata

Metacontent Enrichment

Folksonomy

metainformation

Web Crawling

metainformation

Music social

service

Web crawling

service

Aggregation

Caching

User

selection

User

Display

Selection

metadata

Folksonomy: social tags, user

reviews

based

Crawled

popularity

artists

press,

Folksonomy: social tags, user

reviews, preferences, similarity

based on playlist co-occurence.

Crawled metainformation: general

popularity and actualized hotness of

artists in different media (online

press, blogs, etc.).

Fig. 1. Extension of the value chain, with internet services.

The music industry is a complex ecosystem that has been dramatically changed
by the digitizing of music assets [20]. The generation of playlists and more gen-
erally the selection and display of media content can be schematically positioned
at the end the value chain, after the production and publication of content (see
figure 1).

With the development of internet as a media distribution channel, new ser-
vices have emerged which do not propose content but rather metadata. We
identify mainly two categories of them.

– Web crawlers and cloud services: They provide metadata based on informa-
tion gathered from the web.

– Social services: They provide information based on social services.

On the one hand, the increasing amount of information available through
this services simplifies some processing tasks for the clients as we announced
in 2.1 but on the other hand they involve a multiplication of interfaces which
would lead to a serious overhead in the software complexity of vehicle clients,
and increase the latency needed to access those services. New functional roles
need to be developed in order to achieve:

– The aggregation of multiple providers, like music providers and metacontent
providers while maintaining a low software complexity.

– The caching of metacontent to interconnect structured information and pro-
vide reactive user interfaces.

4.2 Functional Architecture

Our prototype focuses on the implementation of a multilayered architecture.

...Metadata
Provider

Metadata
Provider

Metadata
Provider

Metadata
Provider

Content
Provider

Content
Provider

Playback Playlist Generator

Caching

Abstraction

Aggregation

User Interaction playlist-criteria

playlist

cr
ite

ria
 q

ue
ry

se
ed

-s
on

gs

se
ed

-s
on

gs

si
m

ila
r s

on
gs

co
nt

en
t:

m
us

ic
 &

 im
ag

e

metadata

seed-songs

generic provider
requests

relevance feedback

relevance
feedback

Fig. 2. The functional components of the architecture for generating playlists in a
mobile environment.

Abstraction Since the prototype uses different kinds of metadata- and content-
provider to have access to a comprehensive set of knowledge, it needs to access
them all in a common way. This component abstracts their functionalities by
providing common functions like search for track or similar tracks for a specific
song to other software components. Thereby the precise implementation of the
several providers is hidden to the frontend and the playlist generator.

Aggregation The data is collected and merged from different providers through
the abstraction component. This component builds up information entities which
hold all required metadata. The set of required metadata is defined by the
caching component.

During the aggregation of data different metadata sources have to be as-
sembled. Our prototype uses metadata provided by experts as well as metadata
provided by the so called folksonomies. To assemble them the system has to
consider factors like spelling differences in track or artist names and the various
kinds of identifiers.

Caching This component caches a representative sample of the digital available
music of our content providers. In order to best support the user in his playlist
generation process, the system must react to the user interactions very fast.
Short reaction times reduce the risk of distraction from the primary task of the
vehicle-driver. Thereby, it reduces the cognitive disorder.

These cached information permits a multi-criteria playlist generation. The
cached tracks have to support the following attributes:

– name of track, artist and album;
– year of release;
– genre and mood information;
– ratings of the popularity;
– user specific ratings;
– album cover;
– download URL of the audio data.

The Aggregation component provides this component with metadata, collected
from different providers. This data collections and caching process is scheduled
as a background process, independently from the playlist generation process.

Playlist Generator This component receives from the vehicle, resp. from the
driver, a set of criteria which are the constraints for the desired playlist. By
matching these criteria with cached songs it receives some seed-songs. These
seed-songs provide the starting-point of the generated playlist. Combined with
similar tracks to these seed-songs (over the Aggregation and Abstraction com-
ponent), a playlist is automatically built up (for details see section 4.2 - the
interlacing strategy).

User Interaction & Playback By interacting with this component the user
can control the whole system. As described he can select different criteria for
his playlist. He can combine the following criteria in order to tell the system his
current music tastes:

– Genre: A hierarchicaly structured tree with 8 top level genres likes Rock,
Pop, Jazz, Classical and so on;

– Mood: A set of 25 moods, ordered in a valence-arousal grid;
– Popularity: A three stepped scale from underground over mainstream to

hot ;
– Year: A period of time or the exact year of publication;
– Origin: A personalized option like music from the own repository or loved

songs.

For each selected criteria a preview of the playlist is presented. The songs of
the preview derive from the caching component. Therefore they can be displayed
very fast.

After the user has selected all his playlist constraints, the Playlist Generator
builds up a list of tracks which fit these criteria. Thereupon the Generator returns
the playlist to the user. Each track of the list has a download URL attribute.
So the vehicle can request the songs directly from the content providers and
playback them.

Query Adaption via Preference Relaxation In the case that a filter com-
bination will not produce any results due to conflicting criteria the search query
is gradually relaxed along the path of the category taxonomy. In particular, the
most specific categories are replaced with their respective more general super
categories until there are matching results which can be combined to a playlist
of reasonable size. This approach is easily extensible to more sophisticated relax-
ation mechanism which incorporates additional domain knowledge into account
such as those described in [23] for instance.

Fast Filter Criteria Preview through Pre-Cached Content In order to
support the driver in his playlist generation process a preview of the desired
playlist will be offered. Each time the filter criteria changes a new preview
demonstrates its influence on the final result.

The user can add as many filters as he wants, while filters from different
categories are linked by a logical AND and filters from the same category are
linked by a logical OR. We expect the user to naturally assume that kind of
linkage.

Track Interlacing Strategy and Parallel Metadata Aggregation Once a
preview has been requested, the backend starts automatically a playlist genera-
tion process in background and saves the results. If the user is pleased with the

Table 4. Similar tracks for two seed song, collected from Last.fm’s web service

seed song 1: Mando Diao - Gloria seed song 2: Kasabian - Fast Fuse

T1,1 Mando Diao High Heels T1,2 Kasabian Take Aim
T2,1 The Libertines Can’t Stand Me Now T2,2 Arctic Monkeys Fire and the Thud
T3,1 Johnossi Man Must Dance C4 Editors Munich
C1 The Kooks Do You Wanna T3,2 White Lies Death
T4,1 Sugarplum Fairy She T4,2 Franz Ferdinand Turn It On
T5,1 The Hives Walk Idiot Walk T5,2 Arctic Monkeys Potion Approaching
C2 The Hives Tick Tick Boom C1 The Kooks Do You Wanna
T6,1 Johnossi 18 Karat Gold T6,2 The Libertines Can’t Stand Me Now
T7,1 Razorlight Wire To Wire C3 Razorlight America
C3 Razorlight America C2 The Hives Tick Tick Boom
C4 Editors Munich T7,2 Kaiser Chiefs The Angry Mob

preview, the playlist is transferred from the backend to the frontend, otherwise,
it is deleted.

Since we are using different metadata providers to generate the playlist we
had to develop an algorithm to combine the results. The playlist generation
process is based on the preview tracks which consist in a list of n seed songs;
S[0] = {s1, s2, ..., sn}. For every sk there is set of mk recommendations Rsk =
{t1,k, t2,k, ..., tmk,k} which is retrieved from metadata providers. Our algorithm
process incrementally and takes the first seed song s1 and searches in s2, ..., sn
a song sk such that the cardinal of Cs1,sk = Rs1 ∩ Rsk is maximum, that is
to say that the recommendations of s1 and sk have the maximum of tracks in
common (see figure 3-1). The algorithm then carries on with the set S[1] =
{sk, s2, ..., sk−1, sk+1, ..., sn} where s1 has been removed, until S[n − 1] when
the set of seed songs is exhausted. This way, we create an ordered listed chain
of seed-songs S ′ = {s1, s′2..., s′n} where s′k are a permutation of sk and sets
of common songs which can have different cardinality Csi,sj . A playlist can be
created by placing the common songs between the seed songs as following: s′i,
Cs′

i+1
,s′

i
\Cs′

i
,s′

i−1
, s′i+1, Cs′

i+2
,s′

i+1
\Cs′

i+1
,s′

i
, where Cx \Cy is the difference between

the sets Cx and Cy.

The figure 3-2 and the table 4 illustrate how the remaining tracks that are
not common to the seed songs (i.e. they belong to the complementary of Cs′

i
,s′

i+1

in Rs′
i
∪Rs′

i+1
) are interlaced between the common tracks completing the result,

in order to create a playlist smoothly going from a seed song to another.

In order to deliver a playlist to the user as fast as possible, the collections of
similar songs are (a) parallel retrieved and (b) the playlist generation is split in
multiple parts. The parallel request for similar tracks accelerates the generation
process. Depending on the latency of the service providers, waiting for the re-
sponse takes a significant amount of time in generating the playlist. By splitting
up the playlist a first part of it can be delivered in an acceptable delay to the
user. Thereupon, while listening to the first tracks of the playlist, the other parts
can be built up in background.

seed 1 seed
2T2,1T1,1 C2 C3T4,1 T3,1 C4C1 T1,2T2,2T3,3

seed
1

seed
2

T2,1

T1,1

C2

C3

T4,1

T3,1

C4

C1
T1,2

T2,2

T3,3

1

2

Fig. 3. The interlacing method to generate playlists with smooth track-to-track inter-
sections. At the top two seed-songs with similar tracks (T) and common similar tracks
(C). At the bottom the generated playlist with interlaced tracks for two seed-songs.

4.3 Deployment Architecture for a Mobile Use

The presented functional components have to be deployed on an adequate hard-
ware architecture. The prototype is split into two main applications: firstly the
graphical user interface (the so called frontend), with whom the user can in-
teract in the car and secondly a server (backend). A conceptual model of this
architecture is presented in figure 1. The discussed functional components are
mapped to the corresponding hardware components.

Frontend The UI-Prototype we implemented for the frontend is written in
Flash. The input/output-devices used in the prototype are the controller knob (a
push-shift-rotate controller) for input and the central information display (CID)
for visual output. The music playback performs over the car audio system. The
flash application runs in a Web-Browser based on Webkit and specifically de-
veloped to read commands from the controller. Commands are forwarded to the
flash run-time using JavaScript. The browser is capable of handling gzip com-
pression over HTTP, which helps reducing the latency of exchanging requests.

We use a 7 Series BMW for our experimental vehicle. It is equipped with
an UMTS router and the described visual and haptic interface. A picture of the
user interface in the vehicle is presented in figure 5.

Backend We installed on a server a servlet container (Glassfish) and a rela-
tional database (MySQL). The functional component Caching is mapped to the

World Wide Web
Crawling
Compute Music Similarity
Content Storage

Frontend (Vehicle)
User Interaction
Presentation
Playback

Backend (Server)
Caching
Aggregation
Abstraction
Playlist Generator
Web Service

Fig. 4. The hardware architecture of the prototype

relational database. The components Abstraction, Aggregation and Playlist Gen-
erator are deployed in the servlet container . The Abstraction handles the access
to the several providers by implementing the web service API over WSDL or
REST. The Aggregation and Playlist Generator implement the business logic.

World Wide Web The several providers for metadata and audio/image-content
reside in the world wide web. These providers aggregate dynamically metadata
by crawling the web for music related content. They also support services to
identify tracks and deliver similar music to given seed-songs. We use the music-
catalog from Rhapsody6 with over 9 Mio. songs as content-provider as well as
metadata-provider. Additionally Gracenote7 supplies the prototype with mood-
information. The social network Last.fm and the web crawler The Echo Nest
complete the list of the metadata providers that we have used.

The backend offers a web service that can be accessed by the frontend. This
service is designed in a RESTful style [6]. The data is transferred between front-
and backend in XML format over HTTP.

First results We monitored the response time of the server to the client based
on the simulation of 1000 user preview queries that generated around 1600
queries from the frontend to the backend, with a number of playlist criteria
from 1 to 6. As depicted in figure 6, the response time does not depend of the
number of criteria (still it is only database selects on the different rows of the
track table) and remains reasonable from user experience since the user does
not have to wait longer than 3 seconds. The variability in the results can be

6 http://www.rhapsody.com
7 http://www.gracenote.com

Fig. 5. The experimental vehicle. left: graphical user interface, right: controller knob

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6 7

Ti
m

e
(s

)

Number of playlist criteria

Average time to retrieve a preview

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7

Ti
m

e
(s

)

Number of playlist criteria

Average time to retrieve a complete playlist
Average time to retrieve the 3 first items of a playlist

Fig. 6. Response time for the preview and the playlist over 600 user queries

explained by the jitter of mobile communications, the very changing latency of
internet web services. In order to permit an almost immediate start of the final
playlist, its first three tracks are always composed of cached tracks, while our
system retrieves additional metadata in the background with the algorithm de-
scribed formerly. As a result, the rendering of the playlist can start right after
the preview.

5 Conclusion and Future Works

We have analyzed the issues encountered when tackling the topic of personalized
playlist creation in a vehicle. Our vehicle scenario involves usability aspects like
selecting different metadata filters to create a playlist, overcoming the latency
of some internet services and proposing the user alternative choices to modify
the final result.

We have presented a prototype to illustrate how the main functional com-
ponents, user display, caching, aggregation and abstraction can be deployed in
a mobile architecture. We have noticed that even if this deployment gives sat-
isfying results it could be improved to provide a more reactive interface for the
preview of user queries.

We believe that new web technologies that will be implemented in mobile
devices like HTML 5 browsers or Adobe Air, allow the development of efficient
caching methods on the client side. Combined with a synchronization mechanism
with our backend, a future version of our client will be able to give immediate
previews of user queries avoiding the latency of backend requests.

References

1. Allamanche, E.: Content-based identification of audio material using mpeg-7 low
level description. In: ISMIR (2001)

2. Berenzweig, A., Logan, B., Ellis, D.P.W., Whitman, B.P.W.: A large-scale evalua-
tion of acoustic and subjective music-similarity measures. Computer Music Journal
28(2), 63–76 (2004)

3. Bernhardsson, E.: Implementing a Scalable Music Recommender System. Master’s
thesis (2009)

4. Cano, P., Batlle, E., Kalker, T., Haitsma, J.: A review of algorithms for audio
fingerprinting. VLSI Signal Processing 41(3), 271–284 (2005)

5. Celma, O.: Music Recommendation and Discovery in the Long Tail.
Ph.D. thesis, Universitat Pompeu Fabra, Barcelona, Spain (2008),
http://mtg.upf.edu/ ocelma/PhD/doc/ocelma-thesis.pdf

6. Fielding, R.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, Citeseer (2000)

7. finetunes: musiclens - in tune with you (2010), http://finetunes.musiclens.de/,
[Available online at http://finetunes.musiclens.de/; accessed 9-June-2010]

8. van Gulik, R., Vignoli, F.: Visual playlist generation on the artist map. In: Pro-
ceedings of the International Conference on Music Information Retrieval ISMIR.
Citeseer (2005)

9. Haitsma, J., Kalker, T.: A highly robust audio fingerprinting system. In: ISMIR
(2002)

10. Kastner, T., Allamanche, E., Herre, J., Hellmuth, O., Cremer, M., Grossmann, H.:
Mpeg-7 scalable robust audio fingerprinting (May 2002)

11. Kim, Y., Schmidt, E., Emelle, L.: Moodswings: A collaborative game for music
mood label collection. In: Proc. Intl. Symp. Music Information Retrieval (2008)

12. Lillie, A.S.: MusicBox: Navigating the space of your music. Master’s thesis, School
of Architecture and Planning, Massachusetts Institute of Technology (September
2008)

13. Ltd., A.: Audioscrobbler. the social music technology play-
ground (2010), http://www.audioscrobbler.net/, [Available online at
http://www.audioscrobbler.net/; accessed 9-June-2010]

14. Pachet, F., Cazaly, D.: A Taxonomy of Musical Genres. In: In Proceedings of the
1st Conference of Content-Based Multimedia Information Access (RIAO). Paris,
France (April 2000)

15. Pampalk, E., Gasser, M.: An implementation of a simple playlist generator based
on audio similarity measures and user feedback (2006)

16. Pampalk, E., Pohle, T., Widmer, G.: Dynamic playlist generation based on skip-
ping behavior. In: Proc. of Int. Symposium on Music Information Retrieval (2005)

17. Pauws, S., van de Wijdeven, S.: User evaluation of a new interactive playlist gen-
eration concept. In: Proc. Sixth International Conference on Music Information
Retrieval (ISMIR2005). vol. 11, p. 15. Citeseer (2005)

18. Peters, I., Weller, K.: Tag gardening for folksonomy enrichment and maintenance.
Webology 5(3) (2008)

19. Raimond, Y.: A Distributed Music Information System. Ph.D. thesis, Queen Mary,
University of London (November 2008)

20. Rayport, J., Sviokla, J.: Exploiting the Virtual Value Chain. The McKinsey Quar-
terly (1), 21–22 (1996)

21. Russell, J.: A circumplex model of affect. Journal of personality and social psy-
chology 39(6), 1161–1178 (1980)

22. Thayer, R.: The biopsychology of mood and arousal. Oxford University Press, USA
(1989)

23. Wagner, M., Liebig, T., Noppens, O., Balzer, S., Kellerer, W.: Towards Semantic-
based Service Discovery on Tiny Mobile Devices

24. Westergren, T.: The music genome project (2010),
http://www.pandora.com/mgp.shtml, [Available online at
http://www.pandora.com/mgp.shtml ; accessed 9-June-2010]

