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Abstract

Uplink channel estimation for a block-synchronous chip-asynchronous CDMA

system as proposed for the time-division duplex (TDD) option of 3rd generation

cellular systems is considered. Training midambles are employed for joint channel

estimation of all users. An unstructured approach based on modeling the e�ective

user channels as unknown FIR �lters is compared with two structured methods that

exploit a priori knowledge about the user channels such as the maximum delay

spread, the transmit chip-shaping pulse and the path delays. A low-complexity,

high-performance delay estimator based on maximum-likelihood is proposed which

explicitly estimates the delays of the individual multipath components of each user.

Keywords: DS/CDMA, channel estimation, multiuser detection.

1 Introduction

One of the proposals for UMTS, the European 3rd generation mobile communication

system, is based on hybrid TDMA/CDMA (brie
y denoted as T-CDMA) [1, 2, 3]. In

this scheme, multiple access is regulated by a TDMA slot structure similar to GSM [4],

and time-division duplexing (TDD) is adopted. User signals are direct-sequence spread-

spectrum, with limited processing gain. In standard TDMA, one single user per cell is

allowed to transmit over a slot. However, in T-CDMA multiple users per cell are allowed

to transmit over the same time slot.

In the uplink (mobile-to-base), users have a coarse common timing reference and are

able to align their signal \blocks" with the slot reference of the base station. Due to

imperfect synchronization and to the delay-spread of the multipath channels, the signal

blocks experience some misalignment. This misalignment is compensated for by inserting

guard intervals of appropriate duration. Therefore, the system is block-synchronous, but

cannot be considered chip-synchronous.

Provided that the blocks are su�ciently short with respect to the channel coherence

time [5], the user channels can be considered time-invariant over each slot. On the other

hand, due to the TDMA dynamic user allocation over the slots and to the bursty nature

of transmission, tracking the channels from block to block might be infeasible. Hence,

we shall consider blockwise channel estimation, where the receiver estimates the user

channels block-by-block without tracking across di�erent blocks.



We consider training-based joint channel estimation of all uplink users as in [3]. Each

signal block contains a training sequence of known chips, in a �xed nominal position

(typically, in the middle of the block [4]). In classical LS (or ML) training-based channel

estimation, the user channels are modeled as FIR �lters with unknown coe�cients [3],

and no a priori information about the channels is exploited. We refer to this approach

as \unstructured" channel estimation. More recently, a priori knowledge of the struc-

ture of the overall use channel impulse responses has been exploited in order to improve

estimation [6, 7, 8, 9, 10, 11]. In some works, the special feature of rectangular chip-

shaping pulses is exploited to estimate directly the channel physical parameters (delays

and path gains). In this way, a minimal number of unknowns needs to be estimated. On

the other hand, these methods do not generalize easily to arbitrary chip-shaping pulses

(typically, root-raised-cosine (RRC) pulses with a given roll-o� factor � [5]). Other ap-

proaches exploit the fact that the channel vectors must lie in the column-space of an a

priori known convolution matrix determined only by the chip-shaping pulse and by the

maximum delay-spread. This approach can be applied to arbitrary approximately ban-

dlimited chip-shaping pulses, but requires in general more unknowns than the methods

based on \physical" channel parameterization.

In this paper, we propose two types of \structured" channel estimators which can

be applied to any arbitrary (approximately bandlimited) chip-shaping pulse. Our �rst

method is essentially the multiuser version of [10], and exploits only the coarse infor-

mation represented by the maximum delay-spread and by the chip-shaping pulse. Our

second method is based on the \physical" channel parameterization and exploits the

knowledge of the path delays for each user. In practice, this information is not available.

Thus, we propose a two-step approach where �rst the path delays are explicitly estimated,

and then used in the structured channel estimator. Starting from a ML approach, we

derive a low-complexity delay estimator with very good performance, which can be used

in the �rst step of structured channel estimation.

2 Signal model

We consider the uplink of a CDMA system with K block-synchronous users. The

baseband receiver front-end is an ideal Low-Pass Filter with (one-sided) bandwidth

W=2. The k-th user's total channel impulse response gk(t) is given by the convolu-

tion of the chip-shaping pulse  (t), common to all users, with the k-th user multipath

channel response ck(t) and the LPF. The pulse  (t) is bandlimited with bandwidth

(1 + �)=(2Tc) � W=2, such that
R
 (�) (� + t)�d� satis�es the Nyquist criterion [5].

The noise �(t) after LPF is complex circularly-symmetric Gaussian with autocorrelation

function E[�(t)�(t � �)�] = N0sinc(W�).

We do not make an explicit distinction between the delay introduced by non-ideal

user synchronization and the delay introduced by multipath propagation. These e�ects

are incorporated in the channel impulse response

ck(t) =

P�1X
p=0

ck;p�(t� �k;p) (1)

where we let � denote the maximum delay-spread (over all users) accounting for syn-

chronization errors and multipath delay-spread. All users have the same transmit average



energy per chip: di�erent average received signal-to-noise ratios (SNR) are taken into ac-

count as an e�ect of the channels, by multiplying the chanel gains of each user k by the

corresponding amplitude factor.

The LPF output r(t) is sampled at rate W = Nc=Tc (Nc is an integer), without any

explicit timing reference. We de�ne the polyphase representation of the discrete-time low-

pass �ltered channel impulse response as gk;`[m]
�
= gk((mNc+`)=W ) for ` = 0; : : : ; Nc�1.

and we assume that, for all possible channel realizations and user synchronization errors,

there exists an integer Q such that gk;`[m] is negligible form =2 f0; : : : ; Q�1g. Under this
�nite-memory assumption, we de�ne the channel vectors gk;` = (gk;`[0]; : : : ; gk;`[Q�1])T .

Users transmit sequences of known chip-symbols of length M + Q � 1 starting at a

given nominal point of the block. Without loss of generality, we let n = �Q + 1 be

the training sequence starting point. In order to estimate the user channels, the receiver

forms the vectors of received signal samples

r` = Ag` + �` (2)

where g` = (gT1;`; : : : ; g
T
K;`)

T is the total user channel vector corresponding to the sampling

phase `; �` = (�[`]; �[Nc + `]; : : : ; �[(M � 1)Nc + `])T is a vector of i.i.d. noise samples;

and A = [A1; : : : ;AK] is aM�KQ block matrix containing only training chip-symbols,

whose k-th M �Q block is given by

Ak =

26664
ak[0] ak[�1] � � � ak[�Q + 1]

ak[1] ak[0] � � � ak[�Q + 2]
...

. . .
...

ak[M � 1] ak[M � 2] � � � ak[M �Q]

37775 (3)

3 Unstructured ML channel estimation

Since the noise is i.i.d. and Gaussian, ML estimation is equivalent to the simple LS

estimation [12]:

bg` = (AHA)�1AHr` (4)

for ` = 0; : : : ; Nc � 1, where we assume that A rank(A) = KQ. We refer to the above

estimation method as \unstructured", since we treat g` as a vector of KQ unknowns.

The resulting normalized estimation MSE of the unstructured estimator is given by

�
2
unstr

�
=

1

KQNc

Nc�1X
`=0

E[jbg` � g`j2] =
N0

KQ
Tr
�
(AHA)�1

�
(5)

It is well-known [13, 14, 3], that optimal training sequences minimizing �2unstr must satisfy

AHA / I. The construction of optimal training sequences satisfying AHA / I has

been investigated in several papers (see [3, 13, 14, 15, 16, 17] and references therein).

Most related research considers sequences constructed from simple symbol alphabets,

like BPSK and QPSK. Unfortunately, this requirement is too restrictive and optimal

sequences cannot be found for most training lengthsM . In this paper, we require the chip-

symbols to belong to a N -th root-of-unity alphabet AN = fej2�i=N : i = 0; : : : ; N � 1g,
for some integer N . This choice is enough to obtain optimal training sequences for any

desired training length M , while preserving the constant envelope. In particular, we



propose to derive the training sequences for all K users from a single Perfect Root-of

Unity Sequence (PRUS) [16]:

De�nition: PRUS. The sequence x = (x0; : : : ; xM�1) 2 C
M

is a PRUS if xm 2 AN ,

for all m = 0; : : : ;M � 1 and some integer N , and if its periodic autocorrelation satis�es

�x(n) =

M�1X
m=0

xmx
�
[m�n mod M ] =M�n;0

�

Let x be a PRUS of length M � KQ. Then, the k-th user training sequence (ak[�Q +

1]; : : : ; ak[M � 1]) is obtained from x as

ak[m] =
p
Ecx[m�(k�1)Q mod M ] (6)

for all k = 1; : : : ; K and m = �Q+ 1; : : : ;M � 1, where Ec is the transmit chip-energy.

By using (6) into (3), it is easy to check that the columns of A are distinct cyclic shifts

of the same PRUS x. By construction, we obtain AHA = MEcI, as desired, and the

resulting minimum estimation error is given by

�
2
unstr =

L

M

�
Es

N0

��1
(7)

where Es = LEc is the nominal average transmit energy per symbol and L is the spreading

factor (number of chip/symbol).

4 Structured channel estimation

We de�ne the k-th sampled LPF channel response eck �
= (eck[0]; : : : ;eck[D � 1])T with

j-th element eck[j] �
= 1p

W

R
ck(t)sinc(j � t=W )dt, the k-th channel gain vector ck

�
=

(ck;0; : : : ; ck;P�1)
T , the Q � D convolution matrix 	` with (i; j)-th element  

�
iNc+`�j

W

�
and the D � P interpolation matrix �k with (j; p)-th element sinc (j � �k;pW ) =

p
W .

Then, we let ec �
= (ecT1 ; : : : ;ecTK)T , c �

= (cT1 ; : : : ; c
T
K)

T , �
�
= diag(�1; : : : ;�K) and we de-

�ne the Kronecker product matrix 	`

�
= IK 
	`, the block vector g

�
= (gT0 ; : : : ; g

T
Nc�1)

T

and the block matrix 	
�
= [	T

0 ; : : : ;	
T
Nc�1]

T . Eventually, we can write

g = 	ec = �c (8)

Equations (8) de�ne the a priori structure of the channel impulse response. The matrix

	 is determined by the chip-shaping pulse  (t) and by the maximum delay-spread �,

therefore it is always known by the receiver. The matrix � is determined also by the

path delays f�k;p : p = 0; : : : ; P � 1g for all k = 1; : : : ; K, and by the number of paths

P , which are generally not known by the receiver.

4.1 Type I structured estimation

Let r
�
= (rT0 ; : : : ; r

T
Nc�1)

T and �
�
= (�T0 ; : : : ;�

T
Nc�1)

T . Then,

r = [INc

A]g + � (9)



where A is the same as de�ned by (3). From the �rst equality of (8), we have that

the desired channel vector g lies in the column-space of the a priori known matrix 	.

Since KQNc > KD, this has a non-trivial null-space and this additional information can

be exploited to improve channel estimation. By using the singular-value decomposition

(SVD) [18] 	 = U0S0(V0)H , where S0 is �0 � �
0 diagonal, �0 is the rank of 	, and U0,

V0 are rectangular matrices with orthonormal columns and dimension KQNc � �
0 and

KD � �
0, respectively, we get the following channel estimator:

1. Obtain the ML estimate of d0 from the observation r as

bd = arg min
d

jr� [INc

A]U0dj2 (10)

2. Obtain the Type I structured estimate of g as bg = U0bd.
Since 	 is known a priori, no real-time SVD computation is required.

4.2 Type II structured estimation

If the delays �k;p and the number of paths P are known, the receiver can compute � and

impose that the channel vector g must lie in its column space (see the second equality

of (8)). Again, it is convenient to re-parameterize the problem by using the SVD � =

U00S00(V00)H , where S00 is �00��00 diagonal, �00 is the rank of�, andU00, V00 are rectangular

matrices with orthonormal columns and dimensionKQNc��00 and KP��00, respectively.
Since in general neither the �k;p's nor the number of paths P are a priori known, these

parameters must also be estimated from the received signal. We propose a two-step

approach where �rst an estimate b�k;p of delays �k;p is obtained and then Type II structured
estimator is computed assuming �k;p = b�k;p. We have:

1. Obtain an estimate the maximum number of paths per user bP and of the delays

fb�k;p : p = 0; : : : ; bP � 1g, for all k = 1; : : : ; K.

2. Based on the estimated delays, compute an estimate b� of � and the KQNc � b�00
factor bU00 in its SVD.

3. Under the assumptionU00 = bU00, obtain the ML estimate of d00 from the observation

r as

bd = arg min
d

���r� [INc

A] bU00d

���2 (11)

4. Obtain the Type II structured estimate of g as bg = bU00bd.
Since b� is not known a priori, a real-time SVD per block is needed. In general, since

U00 6= bU00 the Type II estimator is biased.

Next, we �nd optimal training sequence sets for Type I and Type II structured esti-

mators (assuming perfect knowledge of the delays for the latter). The solution of the LS

estimation (10) and (11) is given by

bd =
�
UH

�
INc


 (AHA)
�
U
��1

UH [INc

AH]r



where U = U0 (resp., U = U00) for Type I (resp., Type II) estimation. The error vector

in the estimation of d is given by e = bd� d, � NC(0;�), where

�
�
= E[eeH ] = N0

�
UH

�
INc


 (AHA)
�
U
��1

The error vector in the estimation of g is given by Ue, � NC(0;U�UH). The resulting

normalized estimation MSE is given by

�
2
struc

�
=

1

KQNc

Tr
�
U�UH

�
=

1

KQNc

Tr(�) (12)

where we used the fact that UHU = I. Optimal training sequences should satisfy � / I.

Fortunately, since U has orthonormal columns, we have immediately that if AHA / I

then also� / I. We conclude that optimal sequences for unstructured estimation are also

optimal for Type I and Type II structured estimation (assuming ideal delay estimation

for the latter). In particular, the construction of training sequences from a single PRUS

of length M � KQ, as indicated in (6), can be successfully applied here. The resulting

minimum estimation error is given by �2struc =
�

KQNc

�
2
unstr where � = �

0 (resp., � = �
00)

for Type I (resp., Type II) estimation. Then, the ratio between the minimum structured

and unstructured estimation errors is exactly equal to the ratio between the number of

structured and unstructured unknown parameters to be estimated (this does not hold in

general, for suboptimal training sequences).

5 Delay estimation

We propose a delay estimator derived from ML estimation of �
�
= f�k;pg from the obser-

vation bg, given by the estimated discrete-time low-pass �ltered channel impulse responses

provided either by unstructured or by Type I structured estimation. This method can

be used in the preliminary delay estimation of the Type II structured channel estimator

described in Section 4.2. We can write

bg = g + e = �c+ e (13)

where e � NC(0;�), independent of the vector of channel gains c. We assume Rayleigh

fading, so that c is � NC(0;�). For given delay vector � ,� is �xed and bg is conditionally
� NC(0;Rg(� )), where the conditional covariance matrix is given by

Rg(� ) = �(� )��(� )H +�

where we indicate explicitly the dependence on the delay vector � . With the above

statistical model, the ML estimate of � based on the observation bg is given by

b� = arg max
�

�
�bgHR�1

g (� )bg � logDet(Rg(� ))
	

(14)

This requires the maximization of the log-likelihood function over a KP -dimensional real

space. Moreover, the log-likelihood function depends on � via a matrix inversion.

In order to decrease complexity, we make some simpli�cations and assumptions. In

particular, we assume that: i) white error vector (i.e., � = �
2
eI); ii) channel gains for

di�erent users and for di�erent delays of the same user are mutually independent (i.e.,

� is diagonal); iii) In order to obtain an additional simpli�cation, we assume that the



delays � k are su�ciently separated, so that  (t � �k;p) and  (t � �k;q) have essentially

disjoint support for p 6= q. Then, it is possible to show [19] that the ML delay estimator

for each user k can be put in the form:

b� k = arg max
� k

P�1X
p=0

�
2
k;p

�2e + �
2
k;p

�� H
k;pbg(k)��2 (15)

where � k and g(k) are the subvectors of � and of g corresponding to user k, where

�
2
k;p

�
= E[jck;pj2] and where we de�ne the column vector  k;p with i-th element

[ k;p]i =  (i=W � �k;p)=
p
W (16)

for i = 0; : : : ; QNc�1. We have not escaped a P dimensional maximization and typically

independent maximization of each term in (15) yields b�k;p = b� , for all p = 0; : : : ; P � 1,

where b� is located with high probability in the vicinity of the maximum peak of the

sampled observed channel response bg(k). Also, we observe that in practice, both the

delay-intensity pro�le and P are unknown. However, we can still propose a further

approximated algorithm which requires only a sequence of P one-dimensional maximiza-

tions.

Assume P known. First, de�ne a delay discretization step �� , such that Tc=�� = N�

is an integer multiple of Nc. Then, for all j = 0; : : : ; QN� � 1, de�ne the vectors vj of

length QNc with i-th component

[vj]i =  (i=W � j��)=
p
W

for i = 0; : : : ; QNc � 1. Clearly, vj =  k;p if j�� = �k;p, for some j, while if �k;p is not

an integer multiple of �� , the maximum delay discretization error is ��=2. Initialize the

vectorw0 = bg(k) and the set of delay indexes S0 = f0; : : : ; QN��1g. For p = 0; : : : ; P�1,
repeat the following steps:

1. Estimate the p-th delay as b�k;p = bjp�� , where
bjp = arg max

j2Sp

��vHj wp

��2 (17)

2. Eliminate the e�ect of the p-th delay from the observed channel impulse response

as

wp+1 = wp �
 
vH
bjp
wp

jv
bjp
j2

!
v
bjp

(18)

3. Update the delay index set as

Sp+1 = Sp � fbjp �N� + 1; : : : ;bjp +N� � 1g (19)

6 Performance with linear detectors

In order to investigate the impact of channel estimation on the receiver performance,

we consider some simple FIR (or \one-shot") linear receivers. After low-pass �ltering



and sampling at rate W , for each n, a window of samples centered around the inter-

val [nLTc; (n + 1)LTc] is used to detect the n-th symbol. Since transmission is chip-

asynchronous and the channel delay-spread can be larger than a symbol interval, the

processing window should span more than one symbol interval. Approximated single-user

matched �lters (SUMF) and linear minimum mean-square error (LMMSE) �lters [20] are

obtained from the channel estimates produced by the algorithms seen before.

We consider a system with K = 8 users, spreading factor L = 16, RRC chip-shaping

pulse with roll-o� � = 0:22, truncated over � = 12 chips, and maximum channel delay

spread of � = 20Tc. With this delay-spread, user blocks may be misaligned by more

than one symbol and ISI is not at all negligible, in contrast to what is normally assumed

in most DS/CDMA literature. The maximum channel length is Q = 20+ 12 = 32 chips.

We choose training length M = 256, i.e., the minimum length necessary for estimating 8

channels of length 32. As a performance measure, we consider the signal-to-interference

plus noise ratio (SINR) at the �lter output. Since the channel impulse responses change

randomly and independently from block to block, the output SINR is a random variable.

Therefore, we use Monte Carlo simulation to evaluate the empirical SINR cumulative

distribution function (cdf).

Figs. 1 show the SINR cdf for the SUMF receiver in the case of slow and fast power

control. In the case of slow power control, the ratio Ek=N0 is set to 10 dB for all users

and no further normalization of the path gains applied. Then, the average received SNR

on the shortest path (for which �2k;0 = 1) is actually equal to 10 dB for all users, but the

instantaneous user received power 
uctuates considerably from block to block, because

of the uncompensated Rayleigh fading. In the case of fast power control, Ek=N0 is set

as before but the channel gains are normalized such that
PP�1

p=0 jck;pj2 = 1. This could

be obtained in practice by a TDD system where each user measures the signal power

received on the downlink and exploits reciprocity in order to compensate instantaneously

for the Rayleigh fading block by block. The SINR cdf yields the block outage probability,

de�ned as the probability that the SINR is below a �xed threshold 
. The horizontal

dashed line corresponds to Fsinr(
) = 10�1.

Figs. 2 show analogous results for the LMMSE receiver. Apparently, structured chan-

nel estimaiton does not provide considerable advantages with SUMF detection. On the

contrary, the MMSE detector is more sensitive to accurate channel estimation and struc-

tured methods provide considerable improvements in terms of outage probability.
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Figure 1: SINR cdf with slow (left) and fast (right) power control and SUMF receiver.

0

0.2

0.4

0.6

0.8

1

-5 0 5 10 15

S
I
N

R
 c

d
f

SINR (dB)

K=8, L=16, M=256, slow power control, MMSE

Ideal
Unstr
Str.Type I
Str.Type II,perf.
Str.Type II,est.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

S
I
N

R
 c

d
f

SINR (dB)

K=8, L=16, M=256, fast power control, MMSE

Ideal
Unstr
Str.Type I
Str.Type II,perf.
Str.Type II,est.

Figure 2: SINR cdf with slow (left) and fast (right) power control and LMMSE receiver.


