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Abstract

Achieving enhanced spectral efficiency and increased reliability are the leading ob-
jectives of upcoming wireless systems. In the pursuit of these objectives, it is imper-
ative to devise strategies taking into account the practical constraints so that the
ensuing solutions are implementable in the real world. Our focus in this thesis is
therefore on the practical communication systems.

In the first introductive part of the thesis, we discuss the classical Orthogo-
nal Frequency Division Multiplexing (OFDM) principle highlighting its advantages
such as low-required decoding complexity in case of multipath propagation channel
together with its well-known limitations induced by impaired reception. Further-
more, we carefully examine its application to next generation 3GPP Long Term
Evolution (LTE) wireless telecommunication system. In this sense, LTE OFDMA
physical-layer system parameters are detailed and their dimensioning explained from
the 3GPP standard perspective.

In the second part of the thesis, we first consider the design of Reference Signals
in LTE and the wireless propagation channel model. We then approach the Channel
Estimation problem. In particular, we study the impact of LTE system parameters
on common linear channel estimation techniques and introduce several new methods
applicable in this specific context. Furthermore, we propose a general framework
for the performance analysis of classical and proposed methods.

In the last part of the thesis, we consider impaired OFDM reception in the
case of selective channels. As a first step, we deal with linear OFDM equalization
in highly doubly selective channels. In order to avoid complex matrix inversion
entailed by straightforward application of linear equalization, we develop iterative
equalization methods which show to be very attractive from an implementation
point of view. Exploiting Basis Expansion Model of the frequency-selective time-
varying channel and preconditioning, we show that the complexity of such methods
are roughly linearly proportional to the OFDM FFT order but yet attaining MMSE
equalizer performance within an acceptable performance loss. Finally, we discuss
Alamouti block-code reception for OFDM in case highly selective channel. We
determine useful Maximum Likelihood (ML) detection bounds and then revise linear
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and non-linear detection approaches. To overcome known sub-optimality of such
methods, we present a Lattice Reduction aided near-ML technique which reveals to
offer optimal diversity-order detection performance with negligible coding gain loss.
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Resumé

Atteindre une meilleure efficacité spectrale et une fiabilité accrue sont les objectifs
principaux des systèmes sans fil à venir. Dans la poursuite de ces objectifs, il est
impératif d’élaborer des stratégies tenant compte des contraintes d’ordre pratique
afin que les solutions qui en découlent soient applicables dans le monde réel. Dans
cette thèse, l’accent est donc mis sur les systèmes de communication ayant une
dimension pratique et réalisable.

Dans la première partie introductive de la thèse, nous discutons le principe du
Multiplexage Orthogonale en Fréquence (OFDM) en soulignant ses avantages comme
la faible complexité nécessaire a sa détection dans le cas de canal de propagation
multi-trajet et aussi les désavantages dérivants de la violation des assomptions de
reception pour ce type de modulation. En particulier, on examine dans le détail son
application aux systèmes de nouvelle génération 3GPP LTE. Dans ce sens, on détaille
les paramètres de la couche physique de LTE OFDMA et leur dimensionnement dans
la perspective du standard 3GPP.

Dans la deuxième partie de la thèse, on considère d’abord le principe utilisé
pour les Signaux de Référence en LTE et la modélisation du canal sans-fil. On aborde
ensuite le problème de l’estimation de canal en étudiant l’impacte des paramètres
système LTE sur les méthodes classiques d’estimation de canal linéaires. On intro-
duit plusieurs nouvelles techniques applicables dans le contexte spécifique du LTE
et on analyse leurs performances en proposant un cadre général commun.

Dans la dernière partie de la thèse, on considère la détection du signal OFDM
détérioré par des canaux hautement sélectifs. Dans un premier temps, on se
penche sur l’égalisation linéaire du signal OFDM dans le cas de canaux double-
ment sélectifs. Pour éviter la complexité élevée engendrée par l’application directe
de l’égalisation linéaire, on développe de méthodes itératives qui montrent un intért
dans l’applicabilité dans le monde réel. En exploitant la Modélisation par Expan-
sion en Bases du canal et le pre-conditionnement, on démontre que la complexité de
ces méthodes est grossièrement proportionnelle à l’ordre de la FFT tout en offrant
des performances très proches de l’égalisation par Minimisation de l’Erreur Quadra-
tique Moyenne. Finalement, on discute la réception des codes à blocs Alamouti pour
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OFDM dans le cas de canaux sélectifs. On détermine également les limites de per-
formances atteignables lors de détection par Maximum de Vraisemblance. Ensuite,
on révise les approches de détection linéaires et non linéaires. Pour surmonter la
sous-optimalité connue de ces méthodes, on présente une méthode dite presque-MV
basée sur Réduction de Treillis qui se révèle exploiter d’une faon optimale l’ordre de
diversité du code avec une perte négligeable en terme de gain de codage.
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– We propose a general approach to pilot-aided linear channel estimation

∗ We perform among the few and first comprehensive overview of FD
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Com. Soc. LTE Tech-focus, sponsored by Anritsu
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means of fast-converging iterative techniques based on precondition-
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∗ We invented an optimal receiver structure in the MMSE sense subject
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– We investigate the Alamouti block codes detection over selective channels

∗ We derive ML detection bounds of Alamouti codes over selective
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on Lattice-Reduction

• The work done throughout the thesis allowed the filing of over 15 patents
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Chapter 1

Orthogonal Frequency Division
Multiplexing in LTE

1.1 Introduction

The choice of an appropriate modulation technique for wireless data communica-
tions is a critical issue due to the adverse influence of the dispersive and mostly
time variant mobile radio channel. The interest in multi-carrier modulation for
wireless transmissions has revived. In general multi-carrier schemes, the channel
spectrum is parsed into a number of parallel sub-channels (Figure 1.1-a) and, un-
der the best circumstances, independent and ideally frequency non-selective. An
implementationally attractive approach to multi-carrier modulation is the Orthog-
onal Frequency Division Multiplexing (OFDM). In OFDM, the frequency selective
wide-band channel is divided into many overlapping but orthogonal frequency non-
selective narrow-band sub-channels (Figure 1.1-b). Unlike classical multi-carrier
modulation, where the carriers are placed sufficiently further apart by means of
guard-bands to avoid interference leakage between sub-channels - as can be seen
in Figure 1.1, OFDM uses spectral overlapping between sub-carriers and allows for
perfect sub-channel separation at the receiver because of the Fourier waveforms
orthogonality. This makes of OFDM a highly spectral efficient multi-carrier mod-
ulation with a reasonable required receiver complexity and thus attractive for high
rate mobile data transmission such as the UMTS Long Term Evolution (LTE).
The advantage of separating the transmission into several sub-channels cannot it-
self translate into robustness against multi-path time-varying channels if no channel
coding is employed. LTE, as other systems, make use of diversity offered by the
channel coding such as Turbo codes to overcome the deep fading channel situations
and can then be regarded to as so called Coded OFDM systems. This attribute is

3
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is not considered within the scope of this chapter and it is covered instead in [61].

Save In Spectrum

a- Classical Multi-carrier System Spectrum

b- OFDM System Spectrum

Figure 1.1: Spectral efficiency of OFDM compared to classical multi-carrier modu-
lation: (a) classical multi-carrier system spectrum; (b) OFDM system spectrum

1.1.1 History of OFDM Development

Multi-carrier communication systems were first introduced about 50 years ago by
Chang in [1] through the first OFDM patent filed in US at Bell Labs in 1966. A
first analysis on this parallel system was done in 1967 [2]. At that time only ana-
log design was proposed. The employment of the discrete Fourier transform (DFT)
to replace the banks of sinusoidal generators and the demodulators was suggested
by Weinstein and Ebert [3] in 1971, which made OFDM implementation cost effec-
tive. Furthermore, the complexity could drastically be reduced by the application of
reduced computational complexity algorithms such as the Winograd Fourier Trans-
form (WFT) or the Fast Fourier Transform (FFT) in 1980 by Peled [4]. In [6]
authors proposed a cellular mobile radio system based on OFDM. Since then, the
processing power of modern digital signal processors has increased allowing OFDM,
after more than thirty years of research and development, to find its way into com-
mercial use. OFDM became then the modulation of choice for many applications for
both wired and wireless systems. OFDM systems already available in the market
comprise Asymmetric Digital Subscriber Line (ADSL), Digital Video Broadcasting
(DVB), Wireless Local Area Network (WLAN), Digital Audio Broadcasting (DAB)
and now OFDM is considered as the modulation technology for 3GPP LTE down-
link. The introduction of OFDM into the cellular world was driven by two main
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benefits: the low-complexity equalization and the OFDM spectrum flexibility com-
ing from its ability to operate in different frequency bands and with different channel
bandwidths allowing possible deployment in existing spectrum. For LTE, bandwidth
ranging from 1.4MHz (suitable for the initial migration of CDMA2000 for example)
to 20MHz are envisaged.

1.2 OFDM

1.2.1 Orthogonal multiplexing principle

A high data rate stream of complex symbols faces the problem of having a symbol
period much smaller than the channel delay spread. In serial broad-band transmis-
sions, the symbol duration T is shorter than the channel delay spread Td generating
a strong ISI impairment which can be undone only with complex equalization proce-
dure. In the general case, the equalization complexity grows as the square of channel
memory size.

In OFDM, the high-rate streams of data symbols is first serial-to-parallel con-
verted for modulation onto M parallel sub-carriers as shown in Figure 1.3. This
increases the symbol duration on each sub-carrier by a factor approximately M ,
such that it becomes significantly longer than the channel delay spread.

This operation, while imposing the time-varying channel to stay constant over
the transmission of the modulated symbol, has the important advantage of requir-
ing a much less complex equalization procedure. Figure 1.3 sketches the serial-to-
parallel operation and figure 1.4 depicts the ISI virtually unaffected long symbol
duration low-rate signal compared to highly corrupted short symbol duration high
rate waveform.

The figure 1.2 shows the typical block diagram of an OFDM system. The
signal to be transmitted is defined in the frequency domain. A Serial to Parallel
(S/P) converter collects serial data symbols into a data block S = [S1, S2, ..., SM ]T

of dimension M . The M parallel data streams are first independently modulated
resulting in the complex vector X = [X1, X2, ..., XM ]T . Note that the modulation
constellations may be different on each sub-carrier: due to channel frequency se-
lectivity, the channel gains may be different along the sub-carriers, and thus some
streams can carry higher bit-rate than others. The M parallel modulated data
symbols S pass then through an IFFT resulting on a set of N complex time-domain
samples x = [x[0], ..., x[N−1]]T as any practical OFDM system uses less sub-carriers
than the number of processed ones (and then M ≤ N). The un-used sub-carriers are
padded with zeros. The last LCP samples of the IFFT output block are duplicated
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and appended at the beginning of x yielding to the time domain OFDM symbol
[x[N − LCP ], ..., x[N − 1], x[0], ..., x[N − 1]]T . This operation is called Cyclic Prefix
(CP) insertion. Figure 1.5 describes the structure of the resulting TX signal. The
CP is inserted to eliminate the effect of ISI caused by multi-path propagation. The
CP length LCP must be chosen to be longer than the worst case channel length to
avoid ISI. The goal of the CP is to convert the aperiodic convolution of the channel
into a periodic one which is suitable for DFT processing. This important feature
of CP used in OFDM is clarified by the mathematical analysis provided later in
this section. The parallel signals are converted back to a serial sequence by using a
Parallel to Serial (P/S) device. Finally, the signal is converted to an analog signal
and transmitted through the frequency-selective channel.

At the receiver, the reverse procedure is used to demodulate the OFDM sig-
nal. Assuming OFDM symbol synchronization is granted, the signal repetition intro-
duced by the CP insertion is removed.The CP removal has in addition the advantage
of allowing block processing which can be performed in DSP with very low complex-
ity using the FFT to transform the signal back to frequency domain. Among the N
parallel streams returned by the FFT, the used subset of M sub-carriers are selected
and further processed by the receiver.

Let x(t) be the signal symbol transmitted a time instant t. The received signal
in multi-path environment is then given by

y(t) = x(t) ∗ h(t) + z(t) (1.1)

=

∫ ∞
−∞

h(τ)x(t− τ) dτ + z(t) (1.2)

where h(t) is the continuous-time impulse response of the channel and z(t) is the
additive noise.

Since x(t) is band-limited to [−W/2,W/2], the continuous-time signal x(t) can
be sampled at sampling rate Ts satisfying Nyquist criterion and obtain

y[n] = x[n] ∗ h[n] + z[n] (1.3)

where h[n] is the channel response sampled at rate Ts. we have

h[n] =

∫ ∞
−∞

h(t)sinc (t− nTs) dt (1.4)

As a result of the multi-path propagation, several replicas of the transmitted signals
arrive at the receiver at different delays. The delayed signals are the result of reflec-
tions, refractions and diffractions on surrounding objects referred to as scatterers.
In general broad-band systems, one of the main issues is to perform the equalization
operation which consists in recovering x[n] from Equation (1.3).
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In order to ensure quasi-memoryless behavior, OFDM transmitters insert in
a clever manner a cyclic prefix at the beginning of each symbol period , see Figure
1.5.
The discrete time received signal after cyclic prefix removal can be expressed as


y[LCP ]

y[LCP + 1]
...

y[N + LCP − 1]

 =


x[0] x[N − 1] · · · x[N − LCP + 1]
x[1] x[0] · · · x[N − LCP ]

...
. . .

. . .
...

x[LCP − 1] x[LCP − 2] · · · x[0]




h[0]
h[1]

...
h[LCP − 1]

+


z[N − LCP ]

z[N − LCP + 1]
...

z[N + LCP − 1]



This assumes the channel length L is smaller than LCP and therefore some
channel taps may be equal to 0. Adding zeros to the channel vector can extend the
signal matrix without changing the output vector. This is expressed as


y[N − LCP ]

y[N − LCP + 1]
...

y[N + LCP − 1]

 = A



h[0]
h[1]

...
h[LCP − 1]

0
...
0


+


z[N − LCP ]

z[N − LCP + 1]
..
.

z[N + LCP − 1]



where matrix A is given by

A =


x[0] x[N − 1] · · · x[N − LCP + 1] x[N − LCP ] · · · x[1)
x[1] x[0] · · · x[N − LCP ] x[N − LCP − 1] · · · x[N − LCP ]

...
. . .

. . .
. . .

. . .
...

x[LCP − 1] x[LCP − 2] · · · x[0] x[N − 1] · · · x[LCP ]



The matrix A is circular and since any circular matrix is diagonal in the Fourier
basis with its eigenvalues given by the FFT of its first row. The equivalent received
signal can then be written in matrix notation as


y[N − LCP ]

y[N − LCP + 1]
...

y[N + LCP − 1]

 = F


X0 0 0 · · · 0
0 X1 0 · · · 0
...

. . .
. . .

...
0 0 0 · · · XN−1

FH



h[0]
h[1]

...
h[LCP − 1]

0
...
0


+


z[N − LCP ]

z(N − LCP + 1]
...

z(N + LCP − 1]

 (1.5)

where F is the Fourier transform matrix whose elements are (F)n,k = e−
j2π
N

(nk)/
√
N ,

0 ≤ n ≤ N− 1 and 0 ≤ k ≤ N− 1 and N the length of the OFDM symbol. Xi is
given by

Xk =
N∑
n=1

x[n]e2jπk n
N (1.6)
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In the transform domain we can then write

 Y0
...

YN−1

 =


X0 0 0 · · · 0
0 X1 0 · · · 0
...

. . . . . .
...

0 0 0 · · · XN−1




H0

H1
...

HN−1

+

 Z0
...

ZN−1


This shows how OFDM by the use of cyclic prefix turns the linear convolution into
a circular one. The circular convolution is very efficiently transformed by the use of
FFT into multiplicative operation in the frequency domain. Hence, the transmitted
signal over a frequency selective (i.e. multi-path) channel is converted into the
transmission over N parallel flat fading channels in the frequency-domain. As a
result the equalization is much simpler than for single carrier systems and consists
in one complex multiplication per sub-carrier.

1.2.2 PAPR and sensitivity to nonlinearity

A part from the low required complexity receiver to overcome the ISI advantage
exposed in previous section, OFDM reveals to have disadvantages and sensitivity
to system parameters. The high PAPR of OFDM signalbeing one of the major
drawbacks, this chapter is dedicated to a qualitative analysis of these issues.

The OFDM transmitter can be seen as a linear operation performed over a
large block of frequency-domain i.i.d. QAM modulated complex symbols. As a re-
sult, due to the central limit theorem, the time-domain OFDM symbol can be very
well approximated as a Gaussian waveform. The amplitude variations of the OFDM
modulated signal can then be very high. The Power Amplifiers (PA) of RF trans-
mitters work instead in a limited dynamic range. Thus, the high dynamic OFDM
signal can likely undergo non-linear effect, namely clipping, resulting in transmitting
a distorted OFDM signal. The distortion introduces out-of-band spurious emissions
and in-band corruption of the signal. To avoid at most this distortion, power am-
plifiers are required to operate with large power back-offs. This situation leads to
very inefficient amplification or expensive transmitters.

One measure of the high input amplitude dynamic (and thus a measure of the
expect degradation) is the Peak to Average Power Ratio (PAPR). PAPR of OFDM
increases proportionally with the number of sub-carriers.

In the following we provide a mathematical analysis for PAPR. Let x[n] be the
the signal after IFFT as given by equation (1.6). The PAPR of an OFDM symbol
is defined as the square of the maximum amplitude divided by the mean power and
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is thus given by

PAPR =
max

{
|x[n]|2

}
E
{
|x[n]|2

} (1.7)

When the number of sub-carriers N is small, a PAPR of N has reasonable
chances of occurring. However, if N is large enough a PAPR of N has exceedingly
small probability of occurring. The OFDM modulated signal is usually modeled as
the sum of independent random variables. According to the central limit theorem
if the number of sub-carriers is large, the signal can be approximated as a Gaussian
distributed random variable. Thus, the amplitude of x[n] has a Rayleigh distribu-
tion, while the power distribution becomes a central chi-square distribution with two
degrees of freedom. The cumulative distribution function (CDF) Fx(α) of power is
given by

Fx(α) = Pr

(
|x[n]|2

E
{
|x[n]|2

} < α

)
= 1− e−α (1.8)

Without oversampling, the time domain samples are mutually uncorrelated and the
probability that the PAPR is below a certain threshold PAPR0 is

Pr{PAPR > PAPR0} = 1− F (PAPR0)N = 1−
(
1− e−PAPR0

)N
(1.9)

Figure 1.6 plots the distribution of the PAPR given by equation (1.9) for different
values of the number of sub-carriers N (from left to right 16, 32, 64, 128, 256, 1024).

As can be seen from this curve, high PAPR does not occur very often. However,
when it exists, degradation due to non-linearities may be expected. In order to
evaluate the impacts of distortion on the OFDM signal reception, we develop in the
following an useful framework. Using vector notation, the distortion generated by
the non-linear transmitting power amplifier (or any non-linear device present along
the transmission chain) for an OFDM signal can be modeled using the Bussgang’s
theorem [22] as (see also figure 1.7):

x̃ = αx + d (1.10)

where x̃ is the distorted OFDM signal by non-linearities, x is the column vector of
the undistorted OFDM symbol, d is the vector of the equivalent interference term
due to distortion uncorrelated to signal x and α is a complex gain factor accounting
for the attenuation and phase rotation. The parameter α can be derived as

α =
E{x̃Hx}
E{xHx}

(1.11)
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The covariance matrix of the output signal can therefore be written as

Cx̃x̃ = |α|2Cxx + Cdd (1.12)

with Cxx = E{xxH} and Cdd = E{ddH}.
The distorted signal x̃ generated by the RF transmitter is further corrupted

by complex white circular Gaussian noise n ∼ N (0, σ2
nI) and the signal received by

the OFDM receiver is expressed by

r = x̃ + n = αx + d + n (1.13)

The assumption of AWGN channel is taken for the sake of simplicity but equa-
tion (1.13) can be straightforwardly extended to the case of a frequency selective
convolutive channel and Cyclic Prefixed OFDM system.

As a result, the signal at the output of the FFT can be written as

R = αFx + Fd + Fn = αX + D + N (1.14)

F being the Fourier transform matrix.

Consequently, the covariance matrix of the frequency-domain received signal
is

CRR = |α|2CXX + CDD + CNN = |α|2FCxxF
H + FCddFH + σ2

nI (1.15)

Hence this shows how the OFDM received signal distorted by non-linearities
can be equivalently expressed as the transmitted signal x, scaled by a complex gain
factor α, corrupted by AWGN and an additional interference term originating in an
irreducible error floor for decreasing AWGN σ2

n variance.

Assuming OFDM receiver coherent detection, the phase rotation induced by
the scaling factor α is not influent as it will be compensated for in the receiver
channel estimation. In both coherent and non-coherent OFDM systems, the impact
of the magnitude of α translates into a power penalty to the useful signal.

We remand to [5] for a detailed discussion on the derivation of the statistical
properties of the distortion as a function of any nonlinear function.

Assuming again FFT processing of large blocks and benefiting of the central
limit theorem, the frequency-domain distortion term D can be well approximated
by a complex white circular Gaussian noise D ∼ N (0, σ2

dI) and the Signal to Inter-
ference and Noise Ratio (SINR) of the distorted received OFDM signal can then be
simply expressed as

SINRd =
|α|2tr{CXX}

tr{CDD}+ σ2
n

=
|α|2

σ2
d + σ2

n

(1.16)
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assuming a normalized signal X power.

We finally note that this model is used in setting the performance for LTE
and the additive distortion term is commonly included as transmitter Error Vector
Magnitude (EVM) source. We point at chapter at [61] for a detailed discussion.

PAPR Reduction Techniques

For the sake of completeness, we provide here a short overview of PAPR reduction
techniques available in literature. However, 3GPP LTE does not specify any of those
leaving to eNodeB manufacturers the burden of handling the increased required RF
costs and complexity.

Several algorithms have been proposed to handle the distortion due to the
PAPR. At least three concepts for reducing the peak-to-average power ratio have
been proposed:

• Clipping and Filtering [7], [8]-[10]: In these techniques, the time domain signal
is clipped to a predefined level. This causes significant spectral leak into
adjacent channels resulting in a reduction of the spectral efficiency and in-band
noise causing degradation of the bit error rate performance. The out-of-band
radiation can then be eliminated by filtering. If discrete signals are clipped
directly, the resulting clipping noise will all fall in in band and thus can not be
reduced using filtering. To avoid this problem, one solution is to oversample
the original signal by padding the input signal with zeros and taking a longer
IFFT and then use filtering to reduce the out of band clipping noise.

• Selected Mapping: Selected mapping was introduced in [11] for MPSK mod-
ulation. In this method, multiple transmit signals which represent the same
OFDM data symbol are generated by multiplying the OFDM symbol with
different phase vectors. The representation with the lowest PAPR is selected.
To recover the phase information, it is of course necessary to transmit to the
receiver as side information which phase vector was used.

• Coding techniques: The idea behind these techniques consists in finding the
code-words with minimum PAPR from a set of code-words to map the input
data [12]-[14]. A look-up table may be used if N is small. It is shown that
complementary codes have good properties to combine both peak-to-average
power reduction and forward error correction.

Nevertheless, in LTE context, not all of above presented techniques can be
applied. For example, Selected Mapping and Coding techniques cannot be supported
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in LTE. The first requires additional signaling. The second requires an additional
scrambling stage to encoded data symbols.

1.2.3 Sensitivity to carrier frequency offset and time-
varying channel

The orthogonality principle of OFDM relies on the condition that transmitter and
receiver operate with exactly the same frequency reference. If this is not the case,
the perfect sub-carriers orthogonality is destroyed as can be seen from Figure 1.8
causing sub-carriers leakage, also known as Inter-Carrier Interference (ICI). ICI can
harm system performance resulting in an increased Bit-Error-Rate (BER) in the
decoded signal.

Frequency errors typically arise result from a mismatch between the trans-
mitter and receiver local oscillators reference frequencies. On the receiver side in
particular, due to the usually low cost local oscillators drifts in frequency are com-
monly experienced as function of many parameters such as temperature changes and
aging. This difference between the generated reference frequencies is widely referred
to as Carrier Frequency Offset (CFO).

The CFO can be several times larger than the sub-carrier spacing. It is usually
divided into an integer and fractional part. Thus the frequency error can be written
as

fo = (Γ + ε) ∆f (1.17)

with ∆f being the sub-carriers spacing and Γ is an integer and ε ∈]−1, 1[. If Γ 6= 0,
then the modulated data are in the wrong positions with respect to the sub-carriers
mapping performed at the transmitter. This simply results in a bit-error rate (BER)
of 0.5 if the frequency offset is not compensated at the receiver independently of the
value of ε. In the case of Γ = 0 and ε 6= 0, the perfect sub-carriers orthogonality is
destroyed (as can be seen from Figure 1.8) and results in Inter-Carrier Interference
(ICI) leakage which might degrade the BER. Only synchronization errors up to a
few percents of the carrier spacing are tolerated in OFDM.

Assuming the ideal case where the local oscillators are perfectly aligned, the
relative speed between transmitter and receiver generates as well frequency errors.
This is well known as Doppler effect.

In case of single-path channel, the UE mobility with constant direction with
respect to the angle of arrival α of the electro-magnetic wave-plane front results in
a CFO exactly given by Doppler shift fd is given by

fd =
vfc
c

cosα (1.18)
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where v is the mobile speed with respect to the transmitter, fc is the carrier fre-
quency, c is the speed of light (3× 108m/s).

In most cases, the wireless channel consists of several paths each with index
k. Each path angle of arrival may be different due to reach scattering environment.
Thus each channel path will introduce its own Doppler frequency shift f

(k)
d . Hence

the overall effect of UE mobility in a multi-path propagation would result from
the combination of each component into a spread of the sub-carriers according to a
Doppler spectral density P (f). The path delays are irrelevant for the Doppler spread
density function, only the angles and path attenuations are determining P (f).

As in [16] and [17], it can be shown that, for both flat and dispersive channels
and assuming a transmitted signal power equal to 1, the Inter-Carrier Interference
power can be exactly computed in function of the generic Doppler spectral density
P (f) by

PICI =

∫ 1

0

P (f)(1− sinc2(fdmaxTf))df (1.19)

where , fdmax is the maximum Doppler frequency obtained from Equation (1.18)
setting α = 0 and T is the OFDM symbol duration.

If the ICI is caused by a mismatch of fo between the transmitter and receiver
oscillators frequencies, it can be seen, using the equivalence with the single path
propagation, as

P (f) = δ(f − fo) (1.20)

Hence, substituting (1.20) in (1.19), we straightforwardly find the exact ex-
pression of the ICI power in case of deterministic CFO as

PICI,CFO = 1− sinc2(foTs) (1.21)

For the classical Jakes model, the expression (1.19) can be written as

PICI,Jakes = 1− 2

∫ 1

0

(1− |f |)J0(2πfdmaxTf)df (1.22)

with J0 being the zero-th order Bessel function.

When no assumptions on the Doppler spectrum shape can be made, an up-
per bound on ICI given by equation (1.19) can be found by applying the Cauchy-
Schwartz inequality, leading to

PICI ≤
∫ 1

0
(1− sinc2(fdTsf))2df∫ 1

0
1− sinc2(fdTsf)df

(1.23)
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This upper bound on PICI is valid only in the case of frequency spread and
does not cover the case of deterministic CFO.

Using (1.23), (1.22) and (1.21), we can easily obtain the SIR expression due
to ICI as

SIRICI =
1− PICI
PICI

(1.24)

Figures 1.2.3 and 1.2.3 plot these two quantities for the cases provided. They
reveal that the highest ICI is introduced by a constant frequency offset. In case
of Doppler spread, instead, the ICI impairment is lower. In addition, figure 1.2.3
shows that, in absence of any other impairment such as interference (SIR =∞), the
SNRICI rapidly decays as function of frequency misalignments. Data transmitted
with high order modulations require higher SNR conditions compared to lower orders
to be decoded. Thus, the highest is the modulation order the lower is the tolerated
maximum frequency offset. According to [15], for SNR shift of 0.5 dB of the BER
curve, QPSK modulation can tolerate up to 5% error whereas 64QAM requires at
least 1% accuracy.

1.2.4 Timing offset, multi-path channels, and guard interval
dimensioning

In case of memoryless channel (i.e. no delay spread), OFDM is insensitive to timing
synchronization errors as long as the misalignment remains within the cyclic prefix
region. Despite a timing misalignment To within the limits of the CP, i.e. To ≤ TCP ,
orthogonality is maintained thanks to the circulant property of CP. The symbol
timing delay would only introduce a constant phase shift from one sub-carrier to
another. The received signal at kth sub-carrier is given by

Yk = Xk exp

(
j2π

dk

N

)
. (1.25)

where d is the timing offset in samples.

This phase shift can be safely recovered along with the channel estimation
operation. It is worth highlighting that the insensitiveness would not hold for any
other kind of guard interval than cyclic prefix such as zero-padding. In such case,
depending on the timing misalignment, a portion of the useful signal power would
be lost.

In the general case of a channel with delay spread, the maximum tolerated
timing offset without degrading the OFDM reception is reduced by an amount ex-
actly equal to the channel length: To ≤ TCP − TL. For greater timing errors, ISI
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and ICI occur either because the decoded signal extends over the next OFDM block
boundaries (in addition to a useful signal power loss) either because ISI from previ-
ous OFDM symbol is collected. This violation can be assimilated to the condition
of an insufficient CP length, as explained in section 1.2.4.

The timing synchronization procedure is hence increasingly critical with the
CP occupation by the channel leaving it less error margin.

Initial timing acquisition is normally achieved by the cell-search synchroniza-
tion procedures (see [61]). For continuous timing-offset tracking, mainly two classes
of synchronization approaches exist in the literature: the first class exploiting the
cyclic prefix correlation while the second is based on reference symbols (i.e. pilot-
based). Combination of the two are also possible possibly combined with data-aided
techniques as well. We point the reader to [24] for a comprehensive survey on OFDM
synchronization techniques.

Insufficient guard interval

In the assumption of a system designed with a cyclic prefix of length LCP such
that L < LCP , OFDM benefits from the cyclic periodicity of Fourier transform and
come up to an orthogonal multi-carrier system. The condition of a sufficient guard
interval is therefore strictly related to the orthogonality property of OFDM. In the
unfortunate situation when the channel might be longer than the system designed
cyclic prefix length, the orthogonality is destroyed due to the loss of the circularity
property, resulting in the introduction of ICI. ISI from previous OFDM symbol is
also introduced since not completely absorbed by the CP.

As shown in [20], for an OFDM symbol consisting of N + LCP samples where
N is the FFT order and h the channel vector consisting of L taps, the power of ICI
and ISI terms can be computed by

PICI = 2

N+LCP−1∑
k=LCP

|h[k]|2N(k − LCP )− (k − LCP )2

N2
(1.26)

PISI =

N+LCP−1∑
k=LCP

|h[k]|2 (k − LCP )2

N2
(1.27)

Conversely, the signal power PS is reduced and can be written as

PS =

LCP−1∑
k=0

|h(k)|2 +

N+LCP−1∑
k=LCP

|h(k)|2 (N − k + LCP )2

N2
(1.28)
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The resulting Signal to Interference Ratio due to offended guard interval can
then be written as

SIRog =
PS

PISI + PICI
(1.29)

Figures 1.2.4 and 1.2.4 plot Equations (1.27)-(1.29) in the case of normal CP
LTE OFDM assuming a uniform and normalized PDP channel of length L < N +
LCP where the dashed line marks the boundary of the cyclic prefix.

1.3 MIMO and OFDM

The use of multiple antenna at the transmitting and/or receiving side of a wire-
less link can considerably improve the spectral efficiency and reliability of wireless
communications [61]. However, the work in multiple antennas usually only con-
centrates on narrow band systems. The combination of MIMO and OFDM, i.e.
MIMO-OFDM, is thus a particularly attractive technique that gathers the benefits
of the two methods in order to offer the high data rates promised by LTE. Fig-
ure 1.13 shows a typical MIMO-OFDM transmission/reception scheme. The coded
and modulated data are mapped to the different sub-carriers and spatial layers.
This mapping is the responsibility of the scheduler. The layers in each sub-carrier
can be assigned to a single user (SU-MIMO) or different users (MU-MIMO). The
data mapped to each sub-carrier are then spatially precoded over the multiple trans-
mit antennas and the set of sub-carriers belonging to each antenna undergoes an
independent OFDM modulation except that the transmissions from the different
antennas are synchronous and are using cyclic prefixes of the same length. OFDM,
in the same way as for single antenna communications, converts the transmitted
signal over a frequency-selective (i.e. multi-path) channel into a transmission over
N parallel flat-fading channels in the frequency domain. In each sub-carrier m and
OFDM symbol k, the received signal can be expressed as follows:

Rk[m] = H[m] ·Xk[m] + Zk[m] (1.30)

where Rk[m] is the Nr × 1 received vector, Xk[m] is the Nt × 1 transmitted signal
and Hk[m] is the Nr × Nt channel matrix between the Nr receiving and the Nt

transmitting antennas. This equation is thus the same as for an equivalent narrow
band case.



1.4. OFDMA 17

1.4 OFDMA

OFDMA employs OFDM to implement a multi-user communication system. In
OFDM systems, only a single user can be scheduled on all sub-carriers at any given
time. Straightforward OFDM extensions to support multiple users employ Time or
Frequency Division Multiple Access (T/FDMA). OFDMA distributes sub-carriers
among users so that all users can be scheduled simultaneously. Each user is assigned
to a set of aggregated sub-carriers, in LTE also referred to as Resource Blocks
(RB). OFDMA system for mobile communication was first proposed in [25] based
on Multi-carrier FDMA, where each user gets assigned to a set of randomly selected
sub-channels.

An important characteristic of wide-band systems is frequency diversity, i.e.
the channel transfer function in some frequency regions is enhanced whereas it is
attenuated in others. Since different users undergo different wireless channels, also
known as Multiuser diversity, the probability that all users experience a deep fade in
the same sub-channel is very low. Based on feedback information about the channel
conditions from each user, adaptive user-to-RB assignment can be performed and
enhance considerably the system spectral efficiency compared to single user OFDM
systems and multi-users CDMA. Moreover, OFDMA allows the support of differen-
tiated Quality of Service (QoS) or, in other words, to control the data rate and error
probability individually for each user. OFDMA can also be used in combination
with Time Domain Multiple Access (TDMA), where the resources are partitioned
in the time-frequency plane and RBs are assigned along the OFDM symbol index as
well as OFDM sub-carrier index. Figure 1.14 depicts such OFDMA/TDMA mixed
strategy in use in LTE case.

1.4.1 Parameter Dimensioning

Many parameters, with often conflicting effects, are driving the performance of an
OFDMA, as well as for single user OFDM, system. These parameters are to be
adequately defined and traded off in order to maximize system spectral efficiency for
a given bandwidth while maintaining robustness against propagation impairments.
In this section we explain how these parameters are related and how they influence
the system performance.

For a given system bandwidth W , an OFDM system is dimensioned mainly
taking into account the propagation scenario characteristics, namely the delay spread
Td and the maximum Doppler frequency fdmax , and in case of cellular systems, the
targeted multi-cell deployment cell size.

Preliminarily, it is well known that, given the system bandwidth W , the sam-
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pling frequency must satisfy Nyquist theorem and therefore be

fs ≥ W (1.31)

or, consequently, the sampling period must be

Ts ≤
1

W
(1.32)

The propagation channel characteristics impose the constraints on the choice
of the CP length and of the sub-carrier spacing.

As, we saw earlier, the CP length should be longer than the channel length
to insure the robustness against the ISI. For cellular systems and specially for large
cells, users may experience delay spreads longer than those encountered in WLAN
for example, eventually implying a much longer CP. On the other hand, a longer CP
for a fixed OFDM symbol duration corresponds to a wastage of system resources.
This wastage can be expressed in function of CP duration TCP = LCPTs and the
OFDM symbol period Tu as

βwastage =
N + 1

N
(1 +

TCP
Tu

) (1.33)

From this equation, it is clear that to maximize spectral efficiency, Tu is to
be chosen large enough to be much greater than CP duration but small enough
to insure that the channel does not vary within one OFDM symbol. The OFDM
symbol duration Tu is related to the the carrier spacing ∆f by

∆f =
1

Tu
(1.34)

Choosing a large Tu leads to a smaller frequency spacing ∆f and this has a direct
impact on the system performance due to Doppler effect, frequency offset sensitivity,
as explained in Section 1.2.3.

This discussion can be summarized in the two following design criteria

fdmax
∆f

<< 1 (1.35)

and

TCP∆f << 1 (1.36)
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1.4.2 Physical Layer Parameters for LTE

LTE standard aims at covering a large scope of cellular deployment scenarios. It
is designed to operate in indoor, urban, sub-urban and rural situations and for
both low and high UE mobility conditions (up to 350Km/h). Cell size spans from
home-network pico-cells to few kilometers large cells. LTE also supports a Mul-
timedia Broadcast Mobile Service (MBMS) down-link mode using Macro-diversity
(combining from multiple cells) and thus requiring an even increased size of cells to
allow overlapping. Regulatory organizations made available a variety of bandwidths
ranging from 1.4 to 20MHz located in spectrum regions around 900MHz, 2 and
2.6GHz. All these cases imply different delay spread and Doppler frequencies. LTE
OFDMA supports then three different modes to ensure an efficient use of system
resources depending on the deployment. Two ∆f = 15KHz sub-carrier spacing
modes with alternative cyclic prefix lengths, namely normal and extended, of re-
spectively ≈ 5µs and ≈ 16µs. The large sub-carrier spacing is intended to be less
sensitive to Doppler and therefore allow for higher mobility. The two different cyclic
prefix cases cover the heterogeneous cell-size above mentioned: the normal CP is
suited for small size cells and for indoor and urban propagation conditions while the
extended CP allows for sub-urban and rural large cells. A ∆f = 7.5KHz sub-carrier
spacing mode with a cyclic-prefix duration of ≈ 33µs is finally defined for MBMS
Single Frequency Network (SFN) down-link. The very large cyclic-prefix duration
is traded off with a lower sub-carrier spacing for efficiency reasons. This large value
allows for large-cell combining although makes this mode more sensitive to Doppler.
These modes and corresponding parameters are summarized in figure 1.4.2. It is
worth noticing, a specificity of LTE OFDMA, namely an irregular allocation of the
cyclic prefix length only for the first symbol of every slot in the normal cyclic prefix
case with sub-carrier spacing ∆f = 15 KHz. This characteristic feature is due to
the need of accommodating an integer number of OFDM symbols,i.e. 7, with FFT
block-lengths of 2048.

For backward compatibility with previous 3GPP releases such as UMTS and
HSDPA, a sampling frequency multiple of 3.84MHz is required. In addition, the
minimum requirement UE terminal is mandated to support 20MHz bandwidth.
Hence, a sampling frequency of 30.72MHz is indicated for the maximum system
bandwidth of 20MHz. For this system bandwidth, to enable for efficient implemen-
tation, the FFT order is set to 2048. Given this sampling frequency and this system
bandwidth, it appears that the ratio between the number of used sub-carriers and
the total number of sub-carriers processed by FFT is lower compared to other sys-
tems (e.g. DVB, WLAN). This slightly reduces the FFT efficiency. For this 20MHz
maximum bandwidth case, for example only 1200 sub-carriers are used out of 2048
resulting in a ratio of ≈ 0.7 used vs. processed sub-carriers.
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Lower sampling frequencies (and proportionally lower FFT orders) are always
possible to reduce RF and Base-Band (BB) processors complexity and consumption
for narrower bandwidth deployments: for a 5MHz system bandwidth the FFT
order, used sub-carriers and sampling frequency would be respectively scaled down
to 512, 300 and fs = 7.68MHz.

For the sake of further reducing the terminal complexity, the DC sub-carrier
is left unused. Figure 1.4.2 graphically depicts the above discussion.

The OFDMA parameters used in the Down-link are defined in the 3GPP Tech-
nical Specification 36.211 [21].

1.5 Conclusion

This allows a bit stream with a very high transmission rate to be divided into many
bit streams with lower transmission rates. Based on the use of cyclic redundancy,
this approach can be made robust against large delay spreads (i.e. against Inter-
Symbol Interferences - ISI) while preserving orthogonality in the frequency domain.
Furthermore, the clever use of cyclic redundancy at the transmitter reduces the
complexity to only FFT processing and to one-tap scalar equalization at the receiver.

This chapter presented results of more than thirty years research and devel-
opment achievements and understanding. We can sum up the reasons why OFDM
has been chosen for LTE down-link in:

• OFDM is a mature technology.

• It is already widely deployed and is especially suited for broadcast or un-
link application because of the low receiver complexity while requiring a high
transmitter complexity (expensive Power Amplifier).

• It benefits from efficient implementation by means of the FFT.

• It achieves high transmission rates of broadband transmission, with low re-
ceiver complexity.

• It achieves the high transmission rate of broad-band but with the low receiver
complexity of narrow-band transmission.

• It makes use of a cyclic-prefix to null Inter-Symbol Interference, enabling block-
wise processing.

• It exploits orthogonal sub-carriers to avoid spectrum wastage associated with
inter-sub-carrier guard-bands.
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• The parametrization allows the system designer to balance tolerance of
Doppler and delay-spread depending on the deployment scenario.

• It can be extended to multiple-access scheme, OFDMA, and MIMO in a
straightforward manner.

These factors together made OFDMA the technology of choice for the LTE down
link.
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Figure 1.2: OFDM System Model
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Figure 1.3: Serial-to-parallel conversion operation for OFDM

Figure 1.4: Effect of channel on signals with short and long symbol duration

Figure 1.5: OFDM cyclic prefix insertion principle
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Figure 1.6: PAPR distribution
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Figure 1.7: Non-linear device equivalent model.
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Figure 1.8: OFDM sub-carriers orthogonality loss due to frequency offset
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Figure 1.13: General MIMO-OFDM scheme
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Figure 1.14: LTE OFDMA resource allocation example.

Figure 1.15: LTE OFDM symbol and cyclic prefix lengths.
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Figure 1.16: LTE OFDMA spectrum allocation.



Chapter 2

Channel Estimation in LTE

2.1 Introduction

A simple communication system can be generally modeled as in Figure 2.1, where the
signal x transmitted by ‘A’ passes through a radio channel H and suffers additive
noise before being received by ‘B’. Mobile radio channels usually exhibit multi-
path fading, which causes Inter-Symbol Interference (ISI) in the received signal. In
order to remove ISI, different kinds of equalization and detection algorithms can be
utilized, which may or may not exploit knowledge of the Channel Impulse Response
(CIR). Orthogonal Frequency Division Multiple Access (OFDMA) is particularly
robust against ISI, thanks to its structure and the use of the Cyclic Prefix (CP)
which allows the receiver to perform a low-complexity single-tap scalar equalization
in the frequency domain, as described in Section 1.2.1.

x Channel, H

n

+ y

A B

Figure 2.1: A simple transmission model.

When the detection method exploits channel knowledge, it is generally said
to be ‘coherent’, while otherwise it is called ‘non-coherent’. Coherent detection can
therefore make use of both amplitude and phase information carried by the com-
plex signals , and not of only amplitude information as with non-coherent detection.
Optimal reception by coherent detection therefore typically requires accurate esti-

31
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mation of the propagation channel.

The main advantage of coherent detection is the simplicity of the implementa-
tion compared to the more complex algorithms required by non-coherent detection
for equivalent performance. However, this simplicity comes at a price, namely the
overhead needed in order to be able to estimate the channel. A common and simple
way to estimate the channel is to exploit known signals which do not carry any data,
but which therefore cause a loss in spectral efficiency. In general, it is not an easy
task to find the optimal trade-off between minimizing the spectral efficiency loss due
to the overhead and providing adequate ability to track variations in the channel.

Other possible techniques for channel estimation include the use of a priori
knowledge of a parametric model of the channel, exploiting the correlation properties
of the channel, or using blind estimation.

Once synchronization between an eNodeB and a UE has been achieved, the
main characteristic of the LTE physical processing architecture (shared with earlier
systems such as GSM and UMTS) is that of being a coherent communication system,
for which purpose known reference signals are inserted into the transmitted signal
structure.

In general, a variety of methods can be used to embed reference signals into
a transmitted signal. The reference signals can be multiplexed with the data sym-
bols (which are unknown at the receiver) in either the frequency, time or code do-
mains (the latter being used in the case of the common pilot channel in the UMTS
down-link). A special case of time multiplexing, known as preamble-based train-
ing, involves transmitting the reference signals at the beginning of each data burst.
Multiplexing-based techniques have the advantage of low receiver complexity, as the
symbol detection is decoupled from the channel estimation problem. Alternatively,
reference symbols may be superimposed on top of unknown data, without the two
necessarily being orthogonal. Note that multiplexing reference signals in the code
domain is a particular type of superposition with a constraint on orthogonality be-
tween known reference signals and the unknown data. A comprehensive analysis of
the optimization of reference signal design can be found in [35, 37].

Orthogonal reference signal multiplexing is by far the most common technique.
For example, to facilitate channel estimation in the UMTS down-link, two types of
orthogonal reference signal are provided. The first is code-multiplexed, available
to all users in a cell, and uses a specific spreading code which is orthogonal to
the codes used to spread the users’ data. The second type is time-multiplexed
dedicated reference signals, which may in some situations be inserted into the users’
data streams [38].

In the LTE down-link, the OFDM transmission can be described by a two-
dimensional lattice in time and frequency. This structure facilitates the multiplexing
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of the Reference Signals (RSs), which are mapped to specific Resource Elements
(REs) of the two-dimensional lattice in Figure 1.14 according to a pattern explained
in Section 2.2.

In order to estimate the channel as accurately as possible, all correlations be-
tween channel coefficients in time, frequency and space should be taken into account.
Since reference signals are sent only on particular OFDM REs (i.e. on particular
OFDM symbols on particular sub-carriers), channel estimates for the REs which
do not bear RSs have to be computed via interpolation. The optimal interpolating
channel estimator in terms of mean squared error is based on a two-dimensional
Wiener filter interpolation [39]. Due to the high complexity of such a filter, a trade-
off between complexity and accuracy is achieved by using one-dimensional filters.
In Sections 2.4 and 2.5 the problem of channel estimation is approached from a
theoretical point of view, and some possible solutions are described.

The work done in the field of channel estimation, and the corresponding liter-
ature available, is vast. Nevertheless many challenges still remain, and we refer the
interested reader to [37, 40] for a general survey of open issues in this area.

2.2 Design of Reference Signals in LTE

In the Release 8 of LTE down-link, three different types of RSs are provided [41]:

• Cell-specific RSs (often referred to as ‘common’ RSs, as they are available to
all UEs in a cell).

• UE-specific RSs, which may be embedded in the data for specific UEs.

• MBSFN-specific RSs, which are only used for Multimedia Broadcast Single
Frequency Network (MBSFN) operation [61].

2.2.1 Cell-Specific Reference Signals

References [42, 43] show that in an OFDM-based system an equidistant arrangement
of reference symbols in the lattice structure achieves the minimum mean squared
error estimate of the channel. Moreover, in the case of a uniform reference symbol
grid, a ‘diamond shape’ in the time-frequency plane can be shown to be optimal.

In LTE, the arrangement of the symbols making up the cell-specific RSs in the
time-frequency two-dimensional lattice follows these principles. Figure 2.2 illustrates
the RS arrangement for the normal CP length.1

1In the case of the extended CP, the arrangement of the reference symbols slightly changes, but
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Figure 2.2: Cell-specific reference symbol arrangement in the case of normal CP
length for one antenna port.

The LTE system has been conceived to work under high-mobility assumptions,
in contrast to WLAN systems which are generally optimized for pedestrian-level
mobility. WLAN systems typically use a preamble-based training sequence, the
frequency of which governs the degree of mobility they can support.

The required spacing in time between the reference symbols can be obtained
by considering the maximum Doppler spread (highest speed) to be supported, which
for LTE corresponds to 500 km/h [44]. The Doppler shift is fd = (fc v/c) where
fc is the carrier frequency, v is the UE speed in meters per second, and c is the
speed of light (3 · 108 m/s). Considering fc = 2 GHz and v = 500 km/h, then
the Doppler shift is fd ' 950 Hz. According to Nyquist’s sampling theorem, the
minimum sampling frequency needed in order to reconstruct the channel is therefore
given by Tc = 1/(2fd) ' 0.5 ms under the above assumptions. This implies that
two reference symbols per slot are needed in the time domain in order to estimate
the channel correctly.

In the frequency direction there is one reference symbol every six sub-carriers
on each OFDM symbols which includes reference symbol, but these are staggered
so that within each Resource Block (RB) there is one reference symbol every 3 sub-
carriers, as shown in Figure 2.2. This spacing is related to the expected coherence

the explanations in the rest of the chapter are no less valid. The detailed arrangement of reference
symbols for the extended CP can be found in [41].



2.2. DESIGN OF REFERENCE SIGNALS IN LTE 35

bandwidth of the channel, which is in turn related to the channel delay spread.
In particular the 90% and 50% coherence bandwidths2 are given respectively by
Bc,90% = 1/50στ and Bc,50% = 1/5στ where στ is the r.m.s delay spread. In [45]
the maximum r.m.s channel delay spread considered is 991 ns, corresponding to
Bc,90% = 20 kHz and Bc,50% = 200 kHz. In LTE the spacing between two reference
symbols in frequency, in one RB, is 45 kHz, thus allowing the expected frequency-
domain variations of the channel to be resolved.

The LTE down-link has been specifically designed to work with multiple trans-
mit antennas, as is discussed in detail in Chapter 1.3. RS patterns are therefore de-
fined for multiple ‘antenna ports’ at the eNodeB. An antenna port may in practice
be implemented either as a single physical transmit antenna, or as a combination
of multiple physical antenna elements. In either case, the signal transmitted from
each antenna port is not designed to be further deconstructed by the UE receiver:
the transmitted RS corresponding to a given antenna port defines the antenna port
from the point of view of the UE, and enables the UE to derive a channel estimate
for that antenna port – regardless of whether it represents a single radio channel
from one physical antenna or a composite channel from a multiplicity of physical
antenna elements together comprising the antenna port.

Up to four cell-specific antenna ports may be used by a LTE eNodeB, thus
requiring the UE to derive up to four separate channel estimates.3 For each antenna
port, a different RS pattern is designed, with particular attention having been given
to the minimization of the intra-cell interference between the multiple transmit
antenna ports. In Figure 2.3, 2.4 Rp indicates that the resource element is used for
the transmission of an RS on antenna port p. In particular when a resource element
is used to transmit an RS on one antenna port, the corresponding resource element
on the other antenna ports is set to zero to limit the interference.

From Figure 2.4 it can be noticed that the density of RS for the third and
fourth antenna ports is half that of the first two; this is to reduce the overhead
in the system. Frequent reference symbols are useful for high-speed conditions as
explained above. In cells with a high prevalence of high-speed users, the use of four
antenna ports is unlikely, hence for these conditions RSs with lower density can
provide sufficient channel estimation accuracy.

All the RSs (cell-specific, UE-specific or MBSFN specific) are QPSK modulated
– a constant modulus modulation. This property ensures that the Peak-to-Average
Power Ratio (PAPR) of the transmitted waveform is kept low. The signal can be

2Bc,x% is the bandwidth where the autocorrelation of the channel in the frequency domain is
equal to x%.

3Any MBSFN and UE-specific RSs, if transmitted, constitute additional independent fifth and
sixth antenna ports respectively in the LTE specifications.
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Figure 2.3: Cell-specific RS arrangement in the case of normal CP length for two
antenna ports.

written as

rl,ns(m) =
1√
2

[1− 2c(2m)] + j
1√
2

[1− 2c(2m+ 1)] (2.1)

where m is the index of the RS, ns is the slot number within the radio frame and
‘l’ is the symbol number within the time slot. The pseudo-random sequence c(i)
is comprised of a length-31 Gold sequence [36], with different initialization values
depending on the type of RSs.

The RS sequence also carries unambiguously one of the 504 different cell iden-
tities, N cell

ID . For the cell-specific RSs, a cell-specific frequency shift is also applied,
given by N cell

ID mod6.4 This shift can avoid time-frequency collisions between common
RS from up to six adjacent cells. Avoidance of collisions is particularly important in
cases when the transmission power of the RS is boosted, as is possible in LTE up to
a maximum of 6 dB relative to the surrounding data symbols. RS power boosting
is designed to improve channel estimation in the cell, but if adjacent cells transmit
high-power RS on the same REs the resulting inter-cell interference will prevent the
benefit from being realized.

2.2.2 UE-Specific Reference Signals

UE-specific RS may be transmitted in addition to the cell-specific RSs described
above. They are embedded only in the RBs to which the PDSCH is mapped for
UEs which are specifically configured (by higher-layer RRC signaling) to receive

4The mod6 operation is used because RSs are spaced apart by six sub-carriers in the lattice
grid.
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Figure 2.4: Cell-specific RS arrangement in the case of normal CP length for four
antenna ports.

their down-link data transmissions in this mode. If UE-specific RSs are used, the
UE is expected to use them to derive the channel estimate for demodulating the
data in the corresponding PDSCH RBs. Thus the UE-specific RS are treated as
being transmitted using a distinct antenna port, with its own channel response from
the eNodeB to the UE.

A typical usage of the UE-specific RSs is to enable beam-forming of the data
transmissions to specific UEs. For example, rather than using the physical antennas
used for transmission of the other (cell-specific) antenna ports, the eNodeB may use
a correlated array of physical antenna elements to generate a narrow beam in the
direction of a particular UE. Such a beam will experience a different channel response
between the eNodeB and UE, thus requiring the use of UE-specific RSs to enable
the UE to demodulate the beam-formed data coherently. The use of UE-specific
beam-forming is discussed in more detail in [61].
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2.3 RS-Aided Channel Modeling and Estimation

The channel estimation problem is related to the channel model assumed, itself
determined by the physical propagation characteristics, including the number of
transmit and receive antennas, transmission bandwidth, carrier frequency, cell con-
figuration and relative speed between eNodeB and UE receivers. In general,

• The carrier frequencies and system bandwidth mainly determine the scattering
nature of the channel.

• The cell deployment governs its multi-path, delay spread and spatial correla-
tion characteristics.

• The relative speed sets the time-varying properties of the channel.

The propagation conditions characterize the channel correlation function in a
three-dimensional space comprising frequency, time and spatial domains. In the gen-
eral case, each MIMO (Multiple-Input Multiple-Output) multi-path channel com-
ponent can experience different but related spatial scattering conditions leading to
a full three-dimensional correlation function across the three domains. Neverthe-
less, for the sake of simplicity, assuming that the multi-path components of each
spatial channel experience the same scattering conditions, the spatial correlation is
independent from the other two domains and can be handled separately from the
frequency and time domain correlations.

This framework might be suboptimal in general, but is nevertheless useful in
mitigating the complexity of channel estimation as it reduces the general three-
dimensional joint estimation problem into independent estimation problems.

For a comprehensive survey of MIMO channel estimation the interested reader
is referred to [47].

The following two subsections define the channel model and the corresponding
correlation properties which are then used as the basis for an overview of channel
estimation techniques.

2.3.1 Time-Frequency Domain Correlation: The WSSUS
Channel Model

The Wide-Sense Stationary Uncorrelated Scattering (WSSUS) channel model is
commonly employed for the multi-path channels experienced in mobile communica-
tions.
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Neglecting the spatial dimension for the sake of simplicity, let h(τ ; t) denote the
time-varying complex baseband impulse response of a multi-path channel realization
at time instant t and delay τ .

Considering the channel as a random process in the time direction t, the chan-
nel is said to be delay Uncorrelated-Scattered (US) if

E[h(τa; t1)∗h(τb; t2)] = φh(τa; t1, t2)δ(τb − τa) (2.2)

where E[·] is the expectation operator. According to the US assumption, two CIR
components a and b at relative delays τa and τb are uncorrelated if τa 6= τb.

The channel is Wide-Sense Stationary (WSS)-uncorrelated if

φh(τ ; t1, t2) = φh(τ ; t2 − t1) (2.3)

which means that the correlation of each delay component of the CIR is only a
function of the difference in time between each realization.

Hence, the second-order statistics of this model are completely described by
its delay cross-power density φh(τ ; ∆t) or by its Fourier transform, the scattering
function defined as

Sh(τ ; f) =

∫
φh(τ ; ∆t)e−j2πf∆t d∆t (2.4)

with f being the Doppler frequency. Other related functions of interest include the
Power Delay Profile (PDP)

ψh(τ) = φh(τ ; 0) =

∫
Sh(τ ; f) df

the time-correlation function

φh(∆t) =

∫
φh(τ ; ∆t) dτ

and the Doppler power spectrum

Sh(f) =

∫
Sh(τ ; f) dτ

A more general exposition of WSSUS models is given in [48]. Classical results
were derived by Clarke [49] and Jakes [50] for the case of a mobile terminal commu-
nicating with a stationary base station in a two-dimensional propagation geometry.

These well-known results state that

Sh(f) =
1√

f 2
d − f 2

(2.5)
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for |f | ≤ fd with fd being the Doppler shift and

φ̄h(∆t) = J0(2πfd∆t) (2.6)

where J0(·) is the zeroth-order Bessel function. Figure 2.5 shows the PSD of the
classical Doppler spectrum described by Clarke and Jakes [49, 50]. The Clarke and
Jakes derivations are based on the assumption that the physical scattering environ-
ment is chaotic and therefore the angle of arrival of the electromagnetic wave at the
receiver is a uniformly distributed random variable in the angular domain. As a
consequence, the time-correlation function is strictly real-valued, the Doppler spec-
trum is symmetric and interestingly there is a delay-temporal separability property
in the general bi-dimensional scattering function Sh(τ,∆t). In other words,

Sh(τ ; f) = ψh(τ)Sh(f) (2.7)

or equivalently

φh(τ ; ∆t) = ψh(τ)φh(∆t) (2.8)

Figure 2.5: Normalized PSD for Clarke’s model.
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Slot duration [ms] 0.5
Sub-carrier spacing ∆fsc [kHz] 15

Transmission BW [MHz] 1.25 2.5 5 10 15 20
Sampling frequency [MHz] 1.92 3.84 7.68 15.36 23.04 30.72

FFT size N 128 256 512 1024 1536 2048
Occupied sub-carriers (including DC) K 76 151 301 601 901 1201

Table 2.1: LTE OFDMA parameters.

Separability is a very important assumption for reducing the complexity of
channel estimation, allowing the problem to be separated into two one-dimensional
operations.

The continuous-time correlation properties of the channel h(τ, t) discussed
above, equivalently apply to the corresponding low-pass sampled discrete-time
CIR, i.e. h[l, k] [51], for every lth delay sampled at kT th instant where T
is the sampling period. Moreover, these properties are maintained if we as-
sume h[l, k] to be well-approximated by a Finite-Impulse Response (FIR) vector
h[k] = [h[0, k], · · · , h[L− 1, k]]T with a maximum delay spread of L samples. For
the sake of notational simplicity and without loss of generality, the index k will be
dropped in the sequel.

2.4 Frequency-domain Channel Estimation

Although the general channel estimation problem in case of single antenna trans-
missions is two-dimensional [26], i.e. is to be carried jointly in the frequency and
time domains, it is normally separated into two one-dimensional estimation steps
[27] for ease of implementation.

In this context, we deal in particular with the channel estimation problem
over one OFDMA symbol (specifically the symbol containing the RS) to exploit the
frequency domain characteristics and instead we do not consider its time-varying
characteristics due to Doppler effect in the aim of exploiting correlation in time.

In the OFDMA LTE context, as for any comb-distributed pilot OFDM system
[52], the Channel Transfer Function (CTF) z is ML estimated in the frequency
domain at the pilot positions by de-correlating the constant modulus Reference
Signal pilot sequence. Using matrix notation, it can be modeled as:

ẑp = zp + z̃p = Fph + z̃p (2.9)

where
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• P = dK/Me is the number of available pilots where K is the number of occupied
sub-carriers (including DC).

• h is the L× 1 Channel Impulse Response (CIR) vector. The effective channel
length L ≤ LCP is assumed to be known.

• Fp is the P× L matrix obtained by selecting the rows corresponding to the
pilot positions and the first L columns of the N× N Discrete Fourier Transform
(DFT) matrix whose elements are (F)n,k = e−

j2π
N

(nk) with 0 ≤ n ≤ N− 1 and
0 ≤ k ≤ N− 1;

• z̃p is the P× 1 zero-mean complex circular white noise vector whose L× L
covariance matrix is Cz̃p = σ2

z̃p
IL;

2.4.1 Channel Estimation by interpolation

Linear interpolation estimator

The natural approach to estimate the whole CTF is to interpolate the CTF estimate
on pilot positions ẑp. In the general case, let A be a generic interpolation filter and
the interpolated CTF estimate can be written as:

ẑi = Aẑp (2.10)

Substituting (A.1) in (A.2), the error of the interpolated CTF estimate is:

z̃i = z− ẑi = (FL −AFp) h−Az̃p (2.11)

where z = FLh and FL is the N× L matrix obtained taking the first L columns of
the Fourier transform matrix.

The error covariance matrix is:

Cz̃i = (FL −AFp) Ch (FL −AFp)H + σ2
z̃pAAH (2.12)

being Ch = EhhH the channel covariance matrix, {·}H and E{·} denoting, respec-
tively, the Hermitian and the expectation operators.

Although pulse-shaping is not mandated in LTE, receiver front-end consists of
an anti-aliasing low-pass filtering.

Therefore the channel and its covariance matrix can effectively be modeled as:

h = Pu and Ch = PCuPH (2.13)



2.4. FREQUENCY-DOMAIN CHANNEL ESTIMATION 43

where P is the matrix of the equivalent pulse-shaping filter, u is the discrete-time
uncorrelated multi-path fading channel vector and

Cu = EuuH = diag
(
σ2
u0
, σ2

u1
, . . . , σ2

uLMP−1

)
is its diagonal covariance matrix normally assimilated to the channel Power Delay
Profile (PDP).

Recalling Equation (A.2), linear interpolation would be the intuitive choice.
The filter structure A is then given by

A =



0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
1 0 · · · 0 0

M − 1

M

1

M
0 · · · 0

M − 2

M

2

M
0 · · · 0

...
...

...
... 0

1

M

M − 1

M
0 · · · 0

0 1 0 · · · 0

0
M − 1

M

1

M
· · · 0

0
M − 2

M

2

M
0 0

0
...

...
... 0

0
1

M

M − 1

M
0 0

0 0 1 · · · 0
...

...
...

... 0
0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0



(2.14)

This estimator is deterministically biased, but unbiased from the Bayesian viewpoint
regardless of the structure of A.

IFFT estimator

The second natural approach to retrieve the whole CTF estimate is by IFFT inter-
polation. The IFFT CTF estimate interpolated over all sub-carriers can be obtained
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by using in (A.2):

A =
1

P
FLFH

p (2.15)

Hence, the IFFT estimator is given by:

ẑIFFT =
1

P
FLFH

p ẑp (2.16)

The IFFT interpolated CTF estimate error and its covariance matrix, applying
(A.1) and (A.7) into (A.2), becomes:

z̃IFFT = FL

(
IL −

1

P
FH

p Fp

)
h− 1

P
FLFH

p z̃p (2.17)

Cz̃IFFT
=

(
FL −

1

P
FLFH

p Fp

)
Ch

(
FL −

1

P
FLFH

p Fp

)H

+
1

P 2
σ2
z̃pFLFH

p FpF
H
L (2.18)

In the approximation of IL ≈ 1
P
FH

p Fp, the estimator would be unbiased and
its error covariance matrix would reduce to:

Cz̃IFFT
≈ 1

P
σ2
z̃pFLFH

L (2.19)

Given the LTE system parameters and the pilot structure, in practice, 1
P
FH

p Fp

is far from being a multiple of an identity matrix: the approximation would be an
equality when K = N ,N/M > L and N/M being an integer, i.e. the system should
be dimensioned without guard-bands and the pilot should be disposed with a spacing
which is dividing exactly the FFT order N, namely a power of two. Therefore,
according to (A.9), the estimator ẑIFFT is biased as for the linear interpolation case
if the channel is deterministic and unbiased from the Bayesian point of view.

We remand to the simulation results section of this paper for a comparison of
their respective performances.

2.4.2 General approach to linear channel estimation

Compared to the simple approaches presented in the previous section, more elab-
orated linear estimators derived from both deterministic and statistical viewpoint
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proposed in [53], [54] and [55], namely LS, Regularized LS, MMSE and Mismatched
MMSE in addition to the novel estimators presented in the following sections, can
all be expressed under the general formulation:

ẑgen = B
(
GHG + R

)−1
GHẑp (2.20)

Where B, G and R are matrices that vary according to each estimator as
detailed in the following. With (A.1) and (A.12), we obtain the error expression:

z̃gen =
(
FL −B

(
GHG + R

)−1
GHFp

)
h−B

(
GHG + R

)−1
GHz̃p (2.21)

and its covariance matrix:

Cz̃gen =
(
FL −B

(
GHG + R

)−1
GHFp

)
Ch

(
FL −B

(
GHG + R

)−1
GHFp

)H
+

+ σ2
z̃pB

(
GHG + R

)−1
GHG

(
GHG + RH

)−1
BH

(2.22)

LS estimator

The LS estimator discussed in [53] can be inferred by choosing:

B = FL , G = Fp and R = 0L (2.23)

with 0L being the L× L matrix containing zeros. And the estimator appears as:

ẑLS = FL

(
FH

p Fp

)−1
FH

p ẑp (2.24)

Substituting (A.1) and (A.15) in (A.13) and (A.14), the error reduces to:

z̃LS = −FL

(
FH

p Fp

)−1
FH

p z̃p (2.25)

showing that the LS estimator, at least theoretically, is unbiased. Thus, compared
to the linear interpolation estimator given by (A.2), the LS estimator is considered
as the perfect interpolator as it sets to zero the bias term of expression (A.3) with

A = FL

(
FH

p Fp

)−1
FH

p . Consequently, the error covariance matrix can be shown to
be:

Cz̃LS
= σ2

z̃pFL

(
FH

p Fp

)−1
FH

L (2.26)
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Regularized LS estimator

As evidenced in [55], the LTE system parameters make the LS estimator inapplica-

ble: the expression
(
FpF

H
p

)−1
is ill-conditioned due to the large unused portion of

the spectrum corresponding to the unmodulated sub-carriers.

To counter this problem, the robust regularized LS estimator was used to yield
a better conditioning of the matrix to be inverted by using the same B and G as for
the LS estimator but introducing the regularization matrix R = αIL with α being
a constant (off-line) chosen to optimize the performance of the estimator in a given
Signal-to-Noise Ratio (SNR) working range.

Hence, we can write the estimator as follows:

ẑreg,LS = FL

(
FH

p Fp + αIL

)−1
FH

p ẑp (2.27)

The expressions for the error and the error covariance matrix of this estimator can
be deduced directly from (A.13) and (A.14) by substituting B, G and R with their
corresponding expressions.

Down-sampled impulse response LS channel estimation

An alternative solution can be found while investigating the reasons of the ill con-
ditioning problem: the motivation comes from the un-excitation of a large portion
of the band which comes from the LTE OFDM symbol structure. Considering for
example the case of a symbol size N equal to 1024 from Table A.1, we obtain that
the number of modulated sub-carriers is only 600 hence, while the sampling fre-
quency is 15.36 MHz (N∆fc), the occupied band-width is only 9 MHz (Nm∆fc). It
follows that the channel is estimated in the whole 15.36 MHz sampling bandwidth
while only the modulated sub-carriers are excited (9 MHz). The channel can indeed
be sounded only in the excited band. In order to do this, the numerical bandwidth,
which is considered to be the ratio between the occupied bandwidth and the sam-
pling frequency, should be increased to somewhat slight smaller than 1. This can be
done by decreasing the sampling frequency used for the numerical representation of
the channel by a factor 2/3 which ensures the absence of aliasing giving a resulting
sampling frequency of 10.24 MHz. Practically, the channel h is not estimated in all
the L taps but only in 2 out of 3 taps (obtaining the average down-sampling factor
2/3 ) and setting to 0 the discarded ones:
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h = (h0 h1 0 h3 h4 0 · · · hL−1)T (2.28)

In fact the channel equalization in the OFDM system is not performed in the
time domain but in the frequency domain. Therefore it does not matter to have an
exact time domain representation of the channel at the actual sampling frequency.
What is only important is the channel transfer function in the band of interest.

z = FLh =

=



1 1 1 1 1
1 w1 w2 · · · w(L−1)

1 w2 w3 · · · w2(L−1)

1 w3 w6 · · · w3(L−1)

1 w4 w8 · · · w4(L−1)

1 w5 w10 · · · w5(L−1)

...
...

...
...

1 wN−1 w2(N−1) · · · w(L−1)(N−1)





h0
h1
0
h3
h4
0
...

hL−1


(2.29)

z = FDS
L hDS =

=



1 1 1 1 1
1 w1 w3 · · · w(L−1)

1 w2 w6 · · · w2(L−1)

1 w3 w9 · · · w3(L−1)

1 w4 w12 · · · w4(L−1)

1 w5 w15 · · · w5(L−1)

...
...

...
...

1 wN−1 w3(N−1) · · · w(L−1)(N−1)





h0
h1
h3
h4
...

hL−1


(2.30)

w = e
j2π
N (2.31)

As shown by (A.21) and (A.22), this approach turns out to be as if in the
received signal representation, the L

3
columns of the Fourier matrix FL corresponding

to the neglected taps are multiplied by 0, so the time domain received signal can be
represented as:

r = FH
LFDS

L hDS + w (2.32)
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where hDS is the down-sampled version of the FIR channel representation with the
resulting vector length 2

3
L. Analogously FDS

L is equal to the Fourier matrix FL

where the columns corresponding to the removed taps of h are removed.

Again, the LS criterion can be applied to obtain the down-sampled LS channel
estimation expression:

ĥds = (FDS,H
p FDS

p )−1FDS,H
p ẑp (2.33)

Using the Fourier matrix corresponding to the down-sampled channel the ill
conditioning problem is solved and furthermore a complexity gain is obtained be-
cause the size of the matrix (FDS,H

p FDS
p )−1FDS,H

p turns out to be 2
3
L×N .

MMSE estimator

Using equations (A.12), (A.13) and (A.14), we can formulate the MMSE estimator
[53] by denoting:

B = FL , G = Fp and R = σ2
z̃pCh

−1 (2.34)

thus giving

ẑMMSE = FL

(
Fp

HFp + σ2
z̃pCh

−1
)−1

Fp
Hẑp (2.35)

Again, applying (A.1) and (A.26) in (A.13) and (A.14), the error of the MMSE
estimator is:

z̃MMSE = FL

(
IL −

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p Fp

)
h−FL

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p z̃p

(2.36)
and the error covariance matrix:

Cz̃MMSE
=FL

(
IL −

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p Fp

)
Ch(

IL −
(
FH

p Fp + σ2
z̃pCh

−1
)−1

Fz
pFp

)H

FH
L+

+ σ2
z̃pFL

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p Fp

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
L

(2.37)
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Mismatched MMSE estimator

To avoid the estimation of the second order channel statistics Ch and of the conse-
quent on-line inversion of a L× L matrix required in the straightforward application
of the MMSE of (A.27), the channel PDP can be assumed uniform [54]. Hence, in
this Mismatched -MMSE formulation, Ch is imposed to have the structure of an
identity matrix.

With reference to the general formulation in (A.12), this scheme consists in
taking the same B and G of (A.26) but defining R = σ2

z̃p
/σ2

h ·IL to give the expression

ẑM−MMSE = FL

(
FH

p Fp + σ2
z̃p/σ

2
h · IL

)−1

FH
p ẑp (2.38)

Interestingly, we notice that this estimator is in practice equivalent to regular-
ized LS estimator in A.1.2. where the only difference lies in the fact that the ratio
σ2
z̃p
/σ2

h can be estimated and therefore adapted.

For a given channel length L, to avoid the on-line inversion of the matrix(
FH

p Fp + σ2
z̃p
/σ2

h · IL

)
, the practical approach would consist in dividing the SNR

working range into sub-ranges and storing different versions of the matrix inverted
off-line for each sub-range.

The mismatched MMSE formulation offers the advantage that filtering coeffi-
cients can be computed to be real numbers because the uniform PDP is symmetric.
Indeed, real filtering coefficients can be used when the OFDM symbol is properly
synchronized to span half CP on each side and then strongly reduce complexity.
Moreover, since the channel length is small compared to the FFT size, the matrix
Agen can be considered to be low-density storing only significant coefficients reduce
considerably the complexity.

LTE does not implement an exact uniform reference symbols pattern: in par-
ticular this is not the case around the d.c. where reference symbols are unevenly
spaced. This implies that a larger number of coefficients need to be stored.
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Exponential mismatched MMSE estimator

Realistic channel PDP are likely exponentially decaying rather than uniform as
assumed by the mismatched -MMSE discussed above. We therefore propose an ex-
ponential mismatched -MMSE estimator that approximates Ch by a diagonal matrix
whose entries are decaying exponentially. This is done by using (A.26) and taking:

R =
σ2
z̃p

σ2
h

C−1L,exp and CL,exp = γ · diag
(

e−n
ln(2L)

L

)
(2.39)

with 0 ≤ n ≤ L− 1 and γ = 1/
∑L−1

n=0 e−n
ln(2L)

L . Hence, it is represented by:

ẑexp−MMSE = FL

(
FH

p Fp +
σ2
z̃p

σ2
h

C−1L,exp

)−1

FH
p ẑp (2.40)

Again, the error and the error covariance matrix can be deducted from (A.13) and
(A.14) by substituting B, G and R with their corresponding expressions.

Compared to the uniform channel distribution assumption of Mismatched -
MMSE, the estimator reveals to be less sensitive to the channel length mis-estimation
due to the exponential decaying nature and thus less versions of the inverse of the

matrix

(
FH

p Fp +
σ2

z̃p

σ2
h

C−1L,exp

)
can be precomputed and stored.

Simplified MMSE estimator

As already mentioned, the direct implementation of the MMSE estimator in (A.27)
requires the solution of two problems:

1. The estimation of the variance of the noise and channel second order statistics;

2. The on-line inversion of the large L× L matrix

SMMSE = FH
p Fp + σ2

z̃pCh
−1 (2.41)

whenever the channel and noise statistics change.
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Assuming the required estimations available, we propose here an original solu-
tion to overcome in particular the second problem. The idea behind our simplified
MMSE estimator lies in separating the problem of the approximation of (A.33) into,
first, considering a fixed initialization matrix Sinit , as detailed below, and then in
enhancing the first approximation by inserting the contribution of a portion of the
PDP corresponding to the strongest taps, denoted captured taps in the following,
on the diagonal of the initialization matrix Sinit.

As for previous approximated methods, the dependency from the noise variance
can be maintained by quantization of the SNR into sub-ranges and storing a limited
set of Sinit values.

Let us define:
Sinit = FH

p Fp + σ2
z̃pCinit

−1 (2.42)

where Cinit = βIL and β is a constant carefully chosen to provide sufficiently good
performance of the estimator.

The matrix SMMSE can be approximated by:

SSMMSE = Sinit + D∆SDH (2.43)

where

1. D is a L×M selector matrix called after the role it plays in the selection of
the positions where the elements of the PDP profile (that correspond to the
M captured taps) are going to be located on the diagonal of Sinit. The first
column of the matrix D contains one only in the position that corresponds to
the index of the first captured tap and zeros everywhere else and the second
column contains one only in the position that corresponds to the index of the
second captured tap and zeros everywhere else and so on.

2. ∆S is a diagonal matrix containing the inverse of the power of the captured
taps after removing the effect of initialization, i.e. ∆Sm,m = σ2

z̃p

(
C−1

hm
− β−1

)
where hm is a vector contains the M captured taps.

Applying the Matrix Inversion Lemma, we can write:

S−1
SMMSE = S−1

init − S−1
initD

(
DHS−1

initD + ∆S−1
)−1

DHS−1
init (2.44)
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It is worth mentioning that the number of significant taps in terms of power
is usually much less than the overall length of the CIR. Thus, the importance of
the proposed estimator stems from the fact that we take advantage of this prop-
erty to reduce the size of the matrix to be inverted on-line from L× L to M×M
with M� L. Knowing that the number of operations required to invert a matrix
is proportional to the cube of its size, we infer that our estimator reduces signifi-
cantly (from L3 to M3) the computational power compared to the traditional MMSE
estimator in (A.27).

Another important aspect of the proposed estimator is that the accuracy of
the approximation is traded-off with the complexity by controlling the number of
captured taps. Therefore, the more the number of the captured taps the larger the
size of the matrix to be inverted on-line and vice versa.

Finally the estimated CTF is given by:

ẑSMMSE = FLSSMMSE
−1ẑp (2.45)

Comparing (A.37) with (A.12), the Simplified MMSE consists in choosing:

B = FL , G = Fp and R = σ2
z̃pCinit

−1 + D∆SDH (2.46)

The estimation error and the error covariance matrix expression of the pro-
posed estimator can then be obtained by substituting (A.38) in (A.13) and (A.14).

2.4.3 Simulation results

We compare the performances of the estimators by mean of Truncated -Normalized-
Mean-Squared-Error (TNMSE). For each estimator ẑ, the TNMSE is computed from
its covariance matrix Cz̃ and the true channel H = FLh using the following:

TNMSEẑ =
Ttr (Cz̃)

Ttr
(
FLChFH

L

) (2.47)

where with Ttr{·} we denote the truncated trace operator consisting of the truncated
covariance matrix considering only the K used sub-carriers.
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For the comparison in figure A.2, we used raised-cosine pulse-shaping filter
with a roll-off factor of β = 0.2, the SCMA channel and an LTE setup with N =
1024 corresponding to the 10 MHz transmission bandwidth case [28]. As for the
regularized LS estimator, we use the regularization term α = 0.1. Connected lines
represent the theoretical TNMSE while the dotted points represent the results of
simulations. We can first conclude that the IFFT and linear interpolation methods
yield the lowest performances.

Moreover the regularized LS and the mismatched MMSE prove to perform ex-
actly equally and the TNMSE curve of the latter is therefore omitted in figure A.2.
The exponential mismatched -MMSE and the simplified MMSE offer a performance
gain over all other sub-optimal estimators but the latter proves to be the one ap-
proaching the most the MMSE estimator performance particularly in the low SNR
region.

To highlight the robustness of our simplified MMSE, figure A.3 compares its
performance to that of the mismatched -MMSE where the MMSE is used as a ref-
erence. It should be noted that the simulated mismatched -MMSE is further ap-
proximated by exploiting a limited number of pilots around the sub-carriers to be
estimated in order to reduce complexity. It is evident that the performance of sim-
plified MMSE exceeds for any SNR that of mismatched -MMSE even though only 11
out of 50 taps are captured.

It can be seen that the IFFT and linear interpolation methods yield the low-
est performance. The regularized LS and the mismatched MMSE perform exactly
equally and the curve of the latter is therefore omitted. As expected, the optimal
MMSE estimator outperforms any other estimator.

The TNMSE computed over all sub-carriers actually hides the behavior of
each estimator against a well-known problem of frequency-domain channel estima-
tion techniques: the band-edge effect. This can be represented by the Gibbs [66]
phenomenon in a finite-length Fourier series approximation; following this approach,
Figure A.1 shows that MMSE-based channel estimation suffers the least band-edge
degradation, while all the other methods presented are highly adversely affected.

Figure A.4 compares the performances of the mismatched -MMSE and of the
simplified MMSE in terms of Bit Error Rate with 1/3 Turbo Coding with Block
Length = 4992 bits with Maximum Ratio Combining receiver for QPSK modulation.
The decoding performance with simplified MMSE channel estimation outperforms
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Figure 2.6: Frequency-domain channel estimation performance, band-edge behavior.

that of the mismatched -MMSE by 2 dB for BER lower than 10−2.
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Figure 2.7: CTF TNMSE vs. SNR.

2.4.4 Iterative MMSE Channel Estimation

The MMSE channel estimator (A.27) consists of a linear filter performing jointly
an interpolation and a smoothing operation on the ML estimate of the CTF at the
pilot positions in order to reconstruct the whole CTF at any sub-carrier position by
exploiting the frequency correlation.

The MMSE estimator expression of (A.27) can effectively be separated as the
cascade of [64]:

1. a Frequency to Time domain transformation operation to convert the CTF ML
estimates on the pilot positions into a raw Channel Impulse Response (CIR)
estimate

ĥ = FH
p ẑp (2.48)

2. an MMSE CIR estimation operation on the raw CIR estimate

ĥMMSE =
(
FH

p Fp + σ2
wp

C−1
h

)−1

ĥ = U−1
MMSEĥ (2.49)
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Figure 2.8: CTF TNMSE vs. SNR.

3. a Time to Frequency domain transformation to convert the MMSE CIR esti-
mated vector into the MMSE CTF estimate

ẑMMSE = FLĥMMSE (2.50)

The direct application of the MMSE estimator in (2.49) requires on-line inver-
sion of the large L× L matrix whenever the channel and noise statistics change.

Usual matrix inversion methods such as Gaussian elimination [63] entail a
complexity proportional to the cube of the size of the matrix to be inverted and in
many practical cases this reveals to be costly.

We provide here an iterative approach in order to exploit the structure of
the matrix to be inverted and approach the true MMSE channel estimation with
complexities proportional to L2.
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Figure 2.9: BER vs. SNR.

Gauss-Seidel MMSE Channel Estimation

In equation (2.49), note that the matrix inversion operation is not strictly needed
as we are only interested in the solution of a system of linear equations. Therefore,
we can re-formulate (2.49) to avoid the matrix inversion to directly solve(

FH
p Fp + σ2

wp
C−1

h

)
ĥMMSE = UMMSEĥMMSE = ĥ (2.51)

by means of appropriate low complexity techniques such as successive iterations
algorithm, also known as Gauss-Seidel [63]. Indeed, the L× L matrix UMMSE of
(2.51) can be decomposed into its strictly lower triangular Tl, diagonal D and strictly
upper Tu triangular parts such that UMMSE = Tl + D + Tu, to give the following
iterative process

ĥ
(k)
MMSE = D−1

(
ĥ−Tlĥ

(k)
MMSE −Tuĥ

(k−1)
MMSE

)
(2.52)

where ĥ
(k)
MMSE is the MMSE estimate at k-th iteration. This has the advantage

of maintaining the result of the iterative estimation process in one vector and it is
therefore very well suited for implementation because of its low storage requirements.
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The complexity of the algorithm is proportional to NitL
2 where a number of

iterations Nit is required for the convergence of the algorithm within some needed
margins. Interestingly, the number of iterations can be maintained low by exploiting
the coherence time of the channel. The iterations can in fact be initialized with the
estimate resulting from the previous OFDM symbol containing pilots. Assuming
classical Jakes Doppler model [50] for example, the time-correlation at relatively
high mobile receiver speed such as 160 km/h allow for a number of iterations Nit = 5
to converge to approximately the same performance as MMSE, as shown in section
4.

In case the time correlation cannot be exploited, for example when the esti-
mate from previous OFDM symbol might be out-of-date because of discontinuous
reception or excessively high mobile speed, a boot-strap procedure with an increased
number of iterations Ninit

it > Nit can eventually be employed.

Inspecting the structure of GMMSE in (2.51), the method requires the storage
of one row of the Toeplitz Hermitian matrix FH

p Fp to retrieve all the elements of Tl

and Tu matrices. The only coefficients that need to be updated according to the
channel and noise statistics are the elements of the diagonal matrix D and, from
(2.52), the coefficients are simply given by

(D)i,i =
(
FH

p Fp

)
i,i

+ σ2
wp
/ (Ch)i,i = P + γ−1

i (2.53)

where γi = σ2
hi
/σ2

wp
is the per-path Signal-to-Noise Ratio.

The diagonal dominance of the matrix GMMSE, i.e.
| (GMMSE)i,i | >

∑
j 6=i | (GMMSE)j,i |, guarantees the convergence of general successive

iterations schemes such as the Jacobi algorithm but it is a rather severe condition
that is often not verified in real cases unless for very low SNR. In the case of Gauss-
Seidel algorithm instead, the convergence is ensured [62] for any initialization vector
if the matrix GMMSE is positive definite: this is easily verified in our case, being
both FH

p Fp and σ2
H̃p

C−1
h Hermitian matrices and GMMSE invertible.

We evaluate the performance of the iterative method in (2.52) to solve (2.49).
The iterative method is compared to MMSE channel estimation performed by clas-
sical matrix inversion and a robust regularized Least-Square (LS) channel estimator
of complexity proportional to L2.

The performances are expressed in terms of Truncated-Normalized-Mean-
Squared-Error (TNMSE) with respect to the true channel CTF z = FLh. The
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TNMSE is computed using (2.50) to evaluate NMSE = E[‖ẑMMSE − z‖2]/E[‖z‖2]
over Monte-Carlo simulations for OFDM system parameters of 3GPP LTE 10 MHz
band-width case. We considered the Extended Typical Urban (ETU) channel PDP
for a mobile speed of 160 km/h, a number of iterations Nit = 5.

Examining the figure 2.10, we can conclude the method overlaps the per-
formance of the MMSE estimation and outperforms the regularized LS estimator
of comparable complexity. It has to be noticed though that the complexity of the
Gauss-Seidel MMSE estimator is not constant depending on the mobile speed. Even
though its complexity cannot be lowered below an order of two of the channel length,
it yet provides considerable computational power saving compared to MMSE imple-
mentation through direct matrix inversion with negligible loss.

Figure 2.10: Performance of iterative MMSE channel estimation.
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2.5 Time-Domain Channel Estimation

The main benefit of Time-Domain (TD) channel estimation is the possibility to
enhance the channel estimation of one OFDM symbol containing RS by exploiting
its time correlation with the channel at previous OFDM symbols containing RS.

This requires sufficient memory for buffering soft values of data over several
OFDM symbols while the channel estimation is carried out.

However, the correlation between consecutive symbols decreases as the UE
speed increases, as expressed by Equation (2.6). The fact that the TD correlation
is inversely proportional to the UE speed sets a limit on the possibilities for TD
filtering in high-mobility conditions.

TD filtering is applied to the CIR estimate, rather than to the CTF estimate
in the frequency domain. The use of a number of parallel scalar filters equal to
the channel length L does not imply a loss of optimality, because of the WSSUS
assumption.

2.5.1 Finite and Infinite Length MMSE

The statistical TD filter which is optimal in terms of Mean Squared Error (MSE)
can be approximated in the form of a finite impulse response filter [57]. The channel
at the lth tap position and at time instant n is estimated as

ˆ̂
hl,n = wH

l ĥMl,n (2.54)

where
ˆ̂
hl is the smoothed CIR lth tap estimate which exploits the vector ĥMl,n =

[ĥl,n, . . . , ĥl,n−M+1]T of length M of the channel tap hl across estimates at M time
instants.5 This is obtained by inverse Fourier transformation of, for example, any
frequency-domain technique illustrated in previous section or even a raw estimate
obtained by RS decorrelation.

5hl,k is the lth component of the channel vector hk at time instant k. ĥl,k is its estimate. Note
that for the frequency domain treatment the time index was dropped.
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The M × 1 vector of Finite Impulse Response (FIR) filter coefficients wl is
given by

wl = (Rh + σ2
nI)−1rh (2.55)

where Rh = E[hMl (hMl )H] is the lth channel tap M ×M correlation matrix, σ2
n the

additive noise variance and rh = E[hMl h
∗
l,n] the M×1 correlation vector between the

lth tap of the current channel realization and M previous realizations including the
current one.

In practical cases, the FIR filter length M is dimensioned according to a
performance-complexity trade-off as a function of UE speed.

By setting M infinite, the upper bound on performance is obtained.

The MSE performance of the finite-length estimator of a channel of length L
can be analytically computed as

ε(M) = 1− 1

σ2
h

L−1∑
l=0

wH
l rh (2.56)

The upper bound given by an infinite-length estimator is therefore given by

ε(∞) = lim
M→∞

ε(M) (2.57)

From Equation (2.55) it can be observed that, unlike Frequency-Domain (FD)
MMSE filtering, the size of the matrix to be inverted for a finite-length TD-MMSE
estimator is independent of the channel length L but dependent on the chosen
FIR order M . Similarly to the FD counterpart, the TD-MMSE estimator requires
knowledge of the PDP, the UE speed and the noise variance.

Figure 2.11 shows the performance of TD-MMSE channel estimation as a func-
tion of filter length M (Equation (2.56)) for a single-tap channel with a classi-
cal Doppler spectrum for low UE speed. The performance bounds derived for an
infinite-length filter in each case are also indicated.
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Figure 2.11: Time-domain channel estimation performance.

2.5.2 Normalized Least-Mean-Square

As an alternative to TD-MMSE channel estimation, an adaptive estimation ap-
proach can be considered which does not require knowledge of second-order statistics
of both channel and noise. A feasible solution is the Normalized Least-Mean-Square
(NLMS) estimator.

It can be expressed exactly as in Equation (2.54) but with the M × 1 vector
of filter coefficients w updated according to

wl,n = wl,n−1 + kl,n−1el,n (2.58)

where M here denotes the NLMS filter order. The M × 1 update gain vector is
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computed according to the well-known NLMS adaptation:

kl,n =
µ

‖ĥl,n‖2
ĥMl,n (2.59)

where µ is an appropriately-chosen step adaptation, ĥMl,n is defined as for Equa-
tion (2.54) and

el,n = ĥl,n − ĥl,n−1 (2.60)

It can be observed that the TD-NLMS estimator requires much lower com-
plexity compared to TD-MMSE as no matrix inversion is required, as well as not
requiring any a priori statistical knowledge.

2.5.3 Kalman filter

When the channel hk is modeled in a similar manner as previous paragraph, i.e. the
channel evolution across time is expressed by the following state-space model

hk = λhk−1 +
√

1− λ2wk
h′k = hk + nk

(2.61)

where wk ∼ CN (0,Q) is known as the channel innovation term and nk ∼
CN (0, σ2IN) is the additive white Gaussian noise on pilot (and data) symbols. It is
to be noted that this 1st order auto-regressive model still complies with the statistical
assumption on hk ∼ CN (0,Q) made so far.

Under these assumptions, one can easily come up with the expression of a
channel estimator according to the classical Kalman form [58]. In fact, letting Pk a
diagonal matrix with 1 on those lines where pilots are present and 0 otherwise, this
can be written as

Mk = FL

(
λ2Ck−1 + 1−λ2

L
IL

)
FH
p

×
(
Fp

(
λ2Ck−1 + 1−λ2

L
IL

)
FH
p + σ2IN

)−1

kk = λkk−1 + MkPk(h
′
k − λkk−1)

Ck = (IL −MkFp)
(
λ2Ck−1 + 1−λ2

L
IL

) (2.62)

Notice importantly that the estimation process assumes the knowledge of noise
statistics σ2 and the channel length L. In case the latter is not provided, it would be
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necessary to assume L as the largest channel length allowed by the OFDM system
parameters in use. Therefore in practice, one should dimension it as L = bN/Mc [53]
in case of imperfect knowledge. In spite of these limitations, the Kalman estimator
is often chosen because of the well know robustness against non-stationarity of the
signal statistics via the adaptation of the estimate covariance matrix. In order
to counter the intrinsic need of parameter knowledge, one could think of using
Expectation Maximization in conjunction with Kalman or plain MMSE techniques.
Indeed, with an additional complexity cost, any of such channel estimator can be
coupled with parameter estimation (speed or channel length) in an iterative fashion.
Note that other classical adaptive estimators such as (normalized) least mean squares
and recursive least squares, that discard most a priori knowledge, perform much less
accurately than optimal 2-D MMSE optimal filter [57].



Chapter 3

Detection techniques in selective
channels

3.1 OFDM Detection in Rapidly Varying Chan-

nels

3.1.1 Introduction

OFDM allows for flexible bandwidth allocation and low-complexity transmitter and
receiver architectures. However the performance of classical OFDM low complexity
receivers is severely impacted in the presence of time-varying propagation channels
by the rising inter-carrier interference (ICI).

Those circumstances occur in the presence of high Doppler spread relative to
the OFDM symbol rate due to the mobile receiver velocity. The resulting fast time-
varying propagation channel yields to significant ICI. In practice the increased ICI
prevents classical OFDM receiver schemes from reliably detecting the desired signal.
Hence more advanced receiver equalization techniques are required to mitigate the
effect of the ICI.

Optimal linear ICI equalization techniques generally involve complex full chan-

65



66 CHAPTER 3. DETECTION TECHNIQUES IN SELECTIVE CHANNELS

nel matrix inversion. In existing OFDM telecommunication systems, the typical size
of the required Discrete Fourier Transform render such a full channel matrix inver-
sion operation prohibitively complex for practical implementation. Hence several
approaches have been addressed to reduce the complexity while maintaining accept-
able performance. To this end, the use of time-domain windowing of the OFDM
received signal has been shown to limit the significant span of the ICI, generating
banded channel transfer matrices. In addition, iterative equalization and detection
techniques have been proposed to further reduce the complexity of the receiver op-
erating in the frequency-domain, see e.g. [65], [67] and references therein, or in the
time-domain as in [68], [69].

We introduce a general framework for iterative ICI cancellation. Our analysis
of the detection performance, the convergence speed, and the complexity provide
guidelines to derive novel fast-converging iterative ICI cancellation algorithms in
both time and frequency domains. We show that proper preconditioning exploiting
the inherent structure of the OFDM signal and the ICI yields to nearly optimal
detection performance with very fast-converging and reduced complexity iterative
algorithms. Moreover, we interpret windowing techniques under a more general
perspective in relation to the Basis Expansion Modeling (BEM) of the time-varying
channel [77]. In section A.2.2, we introduce the signal model of the considered
OFDM system model considered including the time-varying channel BEM. Then,
we recall known linear equalization techniques and we derive iterative approaches
to ICI cancellation in section A.2.4 and A.2.5 respectively. The performance and
the complexity of the presented techniques are discussed in section A.2.6 with the
support of numerical results.

3.1.2 Signal and System Model

We consider the transmission over a time-varying, frequency-selective fading chan-
nel with continuous-time impulse response h(t, τ) =

∑
m αm(t)ψ(τ − τm) assumed

to obey the wide sense stationary uncorrelated scattering (WSSUS) model 2.3.1,
where ψ(τ) represents the equivalent transmit-receiver front-end low-pass filter, τm
represents the p-th path delay, αm(t) is the time-varying complex channel coeffi-
cient associated with the m-th path of the propagation channel respectively. We
shall refer to h[k, l] as the corresponding low-pass sampled discrete-time impulse re-
sponse, and assume h[k, l] to be well-approximated by a finite-impulse response
model with a maximum delay spread of L samples. Then we assume a classi-
cal OFDM system with cyclic-prefix of duration Ncp ≥ L to avoid inter-symbol-
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interference. By letting N denote the number of sub-carriers the OFDM symbol
duration is given by Nblock = N +Ncp. The frequency-domain k-th OFDM transmit

symbol s[k] = [s[kN ] . . . s[kN −N + 1]]T, where (·)T denotes transpose, compris-
ing the encoded symbols s[i] at the output of channel encoding, interleaving and
mapping onto a finite-symbol constellation S assumed i.i.d. with unit energy, is
modulated by an N × N discrete-Fourier transform unitary matrix F so as to ob-
tain

x[k] = F Hs[k] (3.1)

where (·)H denotes Hermitian transpose. Without accounting for the cyclic-prefix,
the n-th received symbol can be written as

r[k] = H [k]x[k] + z[k] (3.2)

where r[k] = [r[kN ] . . . r[kN −N + 1]]T, H [k] represents the N ×N time domain
channel convolution matrix , and z[k] = [z[kN ] . . . z[kN − N + 1]]T represents
a circularly symmetric complex additive white Gaussian noise such that z[k] ∼
NC(0, σ2

zI).

For the sake of the notational simplicity and without loss of generality, we
shall drop the time index k in the sequel. Thus equation (A.41) can be rewritten as
follows

r = HF Hs + z (3.3)

Since in general L � N the channel matrix H will tend to be sparse and
banded. When the channel is time invariant within an OFDM symbol, H is circulant
and therefore the frequency-domain channel matrix, FHF H, is diagonal.

This characteristic is widely exploited to perform one-tap frequency-domain
equalization.

In case of time-varying channel though, H is no longer circulant and results
in a full frequency-domain channel matrix. Thus the classical OFDM equalization
approach is highly sub-optimal and more complex equalization is required (see [65],
[67] and references therein).
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3.1.3 Channel BEM Representation

The channel convolution matrix can be reformulated as

H =
L−1∑
l=0

Ql diag {hl} (3.4)

where hl = h[k, l] = [h[kN, l] . . . h[kN −N + 1, l]]T comprises the l-th channel
tap time-varying values and Ql denotes the corresponding N × N circulant delay
matrix with ones in the l-th lower diagonal and zeros elsewhere, i.e. with elements
[Ql]ij = 1 if j = (i − l)modN and zero otherwise. The vector corresponding to the
time-varying evolution of the l-th channel tap can be expressed according to the
BEM as follows

hl = Bvl =
P−1∑
p=0

vl,pbp (3.5)

where the N×P matrix B = [b0 b1 . . . bP−1] denotes the deterministic basis spanned
by the P complex vectors bp for p = 0, . . . P − 1, and vl = [vl,0 . . . vl,P−1]T the
stochastic coefficients describing the l-th channel tap behavior for the given OFDM
block on the P basis functions.

Then, by plugging (A.43) in (A.44)

H =
L−1∑
l=0

(
P−1∑
p=0

vl,pdiag {bp}

)
Ql

=
P−1∑
p=0

diag {bp}
L−1∑
l=0

vl,pQl

(3.6)

By defining
Bp = diag {bp}

and summing over the L channel taps, it results

H =
P−1∑
p=0

BpF
HDpF (3.7)

Then the received signal r of (A.42) can be expressed according to the channel BEM
as

r =
P−1∑
p=0

BpF
HDps + z (3.8)
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∑L−1
l=0 vl,pQl being a circulant matrix then

Dp = F
L−1∑
l=0

vl,pQlF
H

is a diagonal matrix.

Figure A.5 depicts the model of the OFDM received signal in the channel BEM
representation.

s

DP−1 F H BP−1

D1 F H B1

D0 F H B0

+

z

+ r

... ... ...

Figure 3.1: BEM representation of OFDM received signal

3.1.4 Linear Equalization

In this section we briefly recall (Linear) Minimum-Mean-Square-Error (L-MMSE),
Zero Forcing (ZF), and Matched Filter (MF) equalization.

Letting H = HF H, we have for the estimated OFDM transmitted sequence

ŝMMSE =
(
HHH + σ2

zI
)−1 HHr (3.9)

ŝZF =
(
HHH

)−1 HHr (3.10)

ŝMF = HHr (3.11)

with the MMSE, ZF, and MF linear equalization respectively.

In the assumption of perfect knowledge of the channel and of its second order
statistics, the MMSE and ZF estimates (A.48) and (A.49) entail the inversion of a
full matrix in general requiring O (N3) complexity order when classical techniques
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are used, e.g. the Gauss-Jordan elimination method [76]. In both cases iterative
techniques can be adopted to avoid a full matrix inversion thus reducing the receiver
equalization complexity as detailed in the following.

3.1.5 Iterative ICI Cancellation

A wide range of iterative techniques have been proposed in the literature to solve
linear systems of equation, see e.g. [71].

For a given technique the overall complexity depends on the number of oper-
ations per iteration stage times the number of iterations necessary to achieve the
estimation accuracy required for the target sequence detection performance. In
view of these considerations the speed of convergence is a primary aspect driving
the design of an iterative equalization algorithm.

Considering a generic linear system of equations of the form

Ax = b (3.12)

where the vector x is the sequence to be estimated, b is the observation vector,
and the matrix A is the input-output transfer matrix, which we assume to be full-
rank with dimension N × N in the scope of our treatment, then for any iterative
estimation method, the convergence of the sequence estimates x̂(k) → x is governed
by the spectral properties of the matrix A. A commonly used metric for those
spectral properties is the condition-number (CN) κ (A), defined as the ratio between
the largest and smallest eigen-values of A, κ (A) = |λmax(A)/λmin(A)| [71]. The
closer κ (A) is to 1, the faster a given iterative algorithm will converge.

In particular, the equalization problems (A.48) and (A.49) can be expressed
in the form of (A.51) (

HHH + σ2
zI
)
ŝMMSE = HHr (3.13)(

HHH
)
ŝZF = HHr (3.14)

In light of the above, the convergence of an iterative approach to the solution
of both problems will depend on κ(HHH) = κ(H)2 in the high SNR (σ2

z → 0)
regimes.
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In the case of the OFDM system under analysis the matrix H is in general
full-rank. Then the ZF problem (A.53) can be equivalently expressed as follows

HsZF = r (3.15)

whose CN is κ(H), and since κ(H) ≤ κ(HHH), an iterative algorithm applied to
(A.54) will generally converge faster than if applied(A.52) and (A.53).

We observe that the equalization problem in (A.54) is characterized by the
inherent channel matrix properties associated with the OFDM transmission. Con-
versely, the MMSE and ZF equalization problems of (A.52) and (A.53) are over -
conditioned in the squared channel matrix domain. In the steady state (number of
iterations going to infinity assuming convergence) the ZF solution is generally yield
to worse performance than the MMSE solution in terms of detection performance.
However when the ZF and MMSE problems are solved by iterative techniques, one
should consider the actual detection performance (or estimation accuracy) for a
finite, limited number of iterations.

Iterative techniques can greatly take advantage from appropriate precondition-
ing to reduce the CN and to allow faster convergence. The iterative methods is then
applied an equivalent preconditioned linear system derived from (A.51) into

PAx = Pb (3.16)

with P being the preconditioning matrix and such that κ (A) ≥ κ (PA) ≥ 1 with
PA = 1 if P−1 = A.

Many preconditioning techniques exist [71]. Among those, a simple, straight-
forward method is the Jacobi preconditioning where P is chosen to be diagonal and
such that diag

{
P−1

}
= diag {A} if [A]ii 6= 0 for i = 1, . . . , N . The Jacobi pre-

conditioning suggests that the preconditioning operation consists in approximately
solving the problem of inverting matrix A and transform the original problem into
a better conditioned one.

Preconditioned Iterative ZF Equalization

In light of the above, in [68] a relevant approach to the ZF iterative ICI cancel-
lation problem is proposed. Even though the referenced work does not mention
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it, the described method consists of a diagonally pre-conditioned ZF iterative al-
gorithm. The pre-conditioner is made of a diagonal matrix whose elements are
exactly the diagonal matrix of the inverse of the frequency-domain channel ma-

trix diag {P } = diag
{(

FHF H
)−1
}

. Figure A.6 depicts the block diagram of this

receiver. Notice that the stage H is realized using channel BEM as of equation
(A.46) and a polynomial -basis functions. Interestingly, the complexity of this ap-
proach is linear to the OFDM block size N . The performance of the ZF diagonal

r F P

w0 ·

H F P

w1 ·

+

H ...

...

F P

wK ·

+ ŝP−ZF

Figure 3.2: Preconditioned iterative ZF receiver

pre-conditioned iterative ICI cancellation method [68] can be improved in several
respects. First the diagonal pre-conditioning although low-complexity yields to an
increased CN with respect to κ(H). Secondly it is inherently sub-optimal with
respect to the MMSE since attempting to approximate the global ZF solution.

In the following, we address faster converging iterative ICI techniques ap-
proaching the MMSE optimal detection performance for a comparable complexity.

BEM-MMSE Preconditioned Iterative ICI Cancellation

In this section, we approximate the global MMSE optimal solution iterative tech-
niques combining different forms of local MMSE pre-conditioning and combining
based on BEM structure. As for the method presented in section A.2.5, the channel
BEM allows us to derive here expressions for an improved pre-conditioner yet with
affordable complexity.

Indeed, the channel BEM can be exploited at the receiver side and interpreted
as a multiple windowing of the received signal where the windowing functions cor-
respond to the conjugate of the basis Bp. Let the output of each windowing-branch
vector be defined as the projection of the received signal onto the p-th basis function

yp = FBH
p r (3.17)
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, then the expanded observation vector of the received signal is obtained by stacking
each windowing-branch vector in a PN × 1 vector as

y =


y0

y1
...

yP−1

 =


FBH

0

FBH
1

...
FBH

P−1

 r = Ur (3.18)

Given the BEM representation of equation (A.46), we estimate the symbol
s[n] at sub-carrier n by adopting local MMSE Finite-Impulse-Response (FIR) filter
fn across tones for all the basis output. Exploiting the particular structure of ICI
in the channel BEM representation, one can limit the complexity of a full per-tone
equalization across all sub-carriers, by properly selecting a subset of the elements
of vector y as ȳn = Sny with Sn being a LFIR × PN selection matrix obtained by
extracting LFIR rows of the identity matrix IPN optimally exploiting the structure
of U for a given LFIR and sub-carrier n to have

ŝ[n] = fT
n ȳn (3.19)

Therefore, the per-tone MMSE filter coefficients are computed such that

fT
n = E {s[n]ȳH

n}R−1
ȳnȳn

(3.20)

where Rȳnȳn = E {ȳnȳH
n} which gives

fT
n = 1nHHUHST

n

[
SnU

(
HHH + σ2

zI
)
UHST

n

]−1
(3.21)

with 1n being the 1 × N vector containing 1 in n-th position and 0 elsewhere. It
is noteworthy mentioning that the above expression stems from the multiplication
of a 1 × LFIR vector E {s(n)ȳH

n} and LFIR × LFIR inverse matrix of Rȳnȳn which
varies across sub-carriers.

Nevertheless, the latter can be computed requiring only (2L− 1)L2
FIR multi-

plications due to the banded nature of HHH + σ2
zI and the LFIR non-zero elements

of SnU .

Moreover, the computation of the MMSE filtering coefficients can exploit
the coherence across sub-carriers and be made by applying a recursive method.
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A sufficiently precise approximation of the inverse of the matrix Rȳnȳn , i.e.

‖ILFIR
− R̂

−1

ȳnȳnRȳnȳn‖ ≤ ε with ε as small as desired, can be computed using
the approximation of the inverse on sub-carrier n− 1 as initialization and applying
the following iterative formula: R̂

−1(0)

ȳnȳn = R̂
−1

ȳn−1ȳn−1

R̂
−1(i)

ȳnȳn = 2R̂
−1(i−1)

ȳnȳn − R̂
−1(i−1)

ȳnȳn RȳnȳnR̂
−1(i−1)

ȳnȳn

(3.22)

to be used in (A.73) to compute the filtering coefficients.

All the filters coefficients can be stacked in a sparse filter matrix

G =


fT

0 S0

fT
1 S1
...

fT
N−1SN−1

 (3.23)

The matrix resulting from the product of GU can therefore be seen a improved
BEM-MMSE pre-conditioner of H. Moreover, the complexity associated to the
filtering operation is proportional to P (N +N log2N).

Indeed, this approach achieves considerably better preconditioning than the
one previously presented relying on diagonal preconditioning. Its effectiveness is
shown in Figure A.7 where the Cumulative-Distribution-Function (CDF) of the CN
for BEM-MMSE preconditioning is compared to both the diagonal preconditioning
explained above and to the channel without preconditioning.

This novel approach can be directly plugged into the method described in
section A.2.5 to give the stationary polynomial iterative receiver depicted in figure
A.8 whose performance are considerably improved, as shown in the simulation results
of section A.2.6, but yet of affordable complexity as the original method.

Non-stationary BEM-MMSE-Preconditioned Iterative ICI Cancellation

The same scheme scheme can be iteratively applied in the time domain to improve
the ICI cancellation performance according to the scheme in figure A.9.



3.1. OFDM DETECTION IN RAPIDLY VARYING CHANNELS 75

100 101 102 103 104

0

0.2

0.4

0.6

0.8

1

κ

C
D

F

Channel

Diagonal

BEM-MMSE LFIR = 3

BEM-MMSE LFIR = 5

Figure 3.3: Condition number for diagonal and BEM-MMSE preconditioning
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Figure 3.4: Stationary polynomial BEM-MMSE preconditioned iterative receiver

In this case the MMSE filter matrix G is optimized at each stage.

Taking the first iteration resulting signal:

y1 = U (r −Hŝ0) (3.24)

and ŝ0 computed as in (20), we then get

y1 = U (r −HG0y0)

= (I−UHG0)Ur
(3.25)

and, by setting U 1 = (I−UHG0)U , we can re-use expression (18) to find the
per-tone MMSE coefficients of first iteration. It is easy to verify that at second
iteration we would have

U 2 = (I−UHG1 + UHG1UHG0)U

= [I−UHG1 (I−UHG0)]U
(3.26)
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Figure 3.5: Non-stationary BEM-MMSE preconditioned iterative receiver

At the generic stage k, the coefficients can then be computed by

fT(k)
n = 1nHHUH

kST
n

[
SnU k

(
HHH + σ2

zI
)
UH
kST

n

]−1
(3.27)

and get Gk as in (A.74).

The overall signal estimate after K iterations can then be obtained by MMSE
combining of the estimates at each stage. Let

X =


G0U 0

G1U 1
...

GK−1UK−1

 (3.28)

then, the K × 1 coefficient vector for n-th sub-carrier cTn can be computed by

cTn = 1nHHXHST
n

[
SnX

(
HHH + σ2

zI
)
XHST

n

]−1
(3.29)

With Sn being in this case the K × KN matrix selecting the sub-carrier n on all
the iterations stage output.

We then obtain the whole N ×K weighting matrix as

W =


cT0
cT1
...

cTN−1

 (3.30)

and derive the per-stage weighting matrices by taking the columns of W =
[w0 · · ·wK−1] to obtain the overall estimate

ŝNS−P−BEM =diag {w0} ŝ0 + · · ·+ diag {wK−1} ŝK−1

=W 0ŝ0 + · · ·+ W k−1ŝK−1

(3.31)
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BEM-MMSE Parallel Interference Cancellation

One could think of performing time-domain PIC detection and figure A.10 shows
the block diagram of the PIC receiver using hard-decisions as non-linear decision
criterion.

By setting Hp = BpF
HDp and H =

∑P−1
k=0 Hk = HFH, let

H0̄ = H−H0 (3.32)

represent the time-varying part of the channel matrix assuming an orthogonal-
polynomial basis, the coefficients of the PIC filtering matrix Ġ are computed ac-
cording to a modified formula assuming perfect cancellation of the ICI

Ġ =HH
0 UH

0

[
U0

(
H0HH

0 + σ2
zI
)

UH
0

]−1

=HH
0

[
U0

(
H0HH

0 + σ2
zI
)]−1

(3.33)

where Ġ is a diagonal matrix.

r +
+

-
BH

0 F Ġ

DEC

ŝPIC

DP−1FHBP−1

D1FHB1

+

.........

Figure 3.6: Time-domain PIC iterative decoder

Preconditioned Conjugate Gradient MMSE Receiver

For the sake of completeness and comparison, it is worth deriving iterative ICI can-
cellation techniques operating in the squared channel matrix domain and solving the
steady state MMSE problem as given in expression (A.52). Although not attrac-
tive because of the inherent additional complexity required and reduced convergence
properties, they are still relevant to demonstrate the statements provided in section
A.2.5.
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Noticing that the left hand-side of the linear system of MMSE detection in
(A.52) is Hermitian, the well known Conjugate Gradient (CG) algorithm can be
applied.

A banded preconditioning computed with similar development as for BEM-
MMSE can be derived for a Preconditioned CG iterative receiver [71], whose algo-
rithm is presented in figure A.11. Letting

INPUT: H, Ğ, σ2
z , r, K

OUTPUT: sK

# Initialize parameters

r0 = HHr
z0 = Ğr0

d0 = z0

s0 = 0N
# Main loop

for k = 0 to K− 1 do
αk =

rH
kzk

dH

k

(
HHH+σ2

zI
)
dk

sk+1 = sk + αkdk
rk+1 = rk − αk

(
HHH + σ2

zI
)
dk

zk+1 = Ğrk+1

βk =
rH
k+1zk+1

rT
kzk

dk+1 = zk+1 + βkdk
end for

Figure 3.7: Preconditioned Conjugate Gradient algorithm

fT
n = 1nHHHST

n

[
SnHH

(
HHH + σ2

zI
)
HST

n

]−1
(3.34)

and

Ğ =


fT

0 S0

fT
1 S1
...

fT
N−1SN−1

 (3.35)

for an appropriate choice of the selection matrix Sn and filter length LFIR.
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3.1.6 Simulation results

We compare the methods proposed in this paper by means of Monte Carlo sim-
ulations assuming a cyclic prefixed OFDM setup with N = 128 sub-carriers, a
multi-path channel with L = 4 with uniform power delay profile and Jakes Doppler
spectrum with normalized Doppler frequency of 0.1 with respect to the sub-carrier
spacing. We assume a first order orthogonal-polynomial BEM channel with P = 2.
The performance are measured in terms of bit-error-rate of uncoded QPSK mod-
ulated transmitted sequences. The SNR is defined as the ratio 1/σ2

z . The meth-
ods presented in the paper are evaluated for BEM-MMSE preconditioning filtering
lengths of LFIR = 3 and LFIR = 5. A number of iterations K = 1 and K = 3 are
tried to allow fair comparison with the method of [68]. For all simulation results
presented in figures A.12–A.15, the Non Stationary BEM-MMSE Preconditioned
iterative ICI cancellation technique (NS-P-BEM) provides always the overall best
performances compared to the reference full-blown matrix inversion MMSE method
(labeled MMSE in the plots). The Preconditioned CG method (P-CG), instead,
always provides the worst performance for the same number of iteration and MMSE
filter lengths. The Preconditioned ZF Iterative (P-ZF) of [68] is drastically improved
by the use of Stationary BEM-MMSE preconditioning (S-P-BEM) and the PIC it-
erative receiver provides a good trade-off in terms of performance and complexity.
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Figure 3.8: Performance comparison of iterative methods with 1 iterations,
LFIR = 5
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3.2 Analysis of Preconditioned Iterative IC

3.2.1 Preconditioned Iterative Reception

For the sake of the convenience for our analysis we shall start from classical linear
Zero-Forcing (ZF) equalization problem, where an estimate of the transmitted signal
s is computed from the received signal r of (A.42) as

ŝZF =
(
HHH

)−1
HHr (3.36)

Typically, Equation (3.36) is solved by first performing the Matched Filter (MF)
operation on the received signal r and then by applying classical iterative techniques
to approximate the inversion of HHH based on its Hermitian structure. This
approach has been widely adopted in a large number of works, especially for Code
Division Multiple Access (CDMA) multi-user Minimum Mean Square Error (MMSE)
linear equalization (for example in [72] – [73] and references therein).

When H is full-rank as in OFDM, Equation (3.36) reduces to

ŝZF = H−1r (3.37)
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Figure 3.10: Performance comparison of iterative methods with 1 iterations,
LFIR = 3

Following this formulation, it is straightforward to show that the problem of
approximating the inverse of H is inherently better conditioned than the one of
inverting HHH by observing the relation of their respective condition numbers
(CN): κ(H) ≤ κ(HHH) where κ(X) = ‖X‖‖X−1‖. As it is well-known from the
literature the smaller the CN, the faster an iterative algorithm will converge.

We therefore shall concentrate on iterative solution of the linear system of
Equation (3.37). The most common iterative procedure, used throughout this dis-
cussion, can be derived by the Taylor expansion of matrix H−1 to give an iterative
ZF (IT-ZF) receiver expressed by

ŝIT−ZF =

(
K−1∑
k=0

(I−H)k
)
r (3.38)

Obviously, ŝIT−ZF = ŝZF for K →∞ if and only if ρ (I−H) < 1, where ρ (X)
denotes the spectral radius of matrix X.

For finite (and low) number of iterations, the IT-ZF receiver of equation (3.38)
can be interpreted as a polynomial expansion receiver since it can be formulated as
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Figure 3.11: Performance comparison of iterative methods with 3 iterations,
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(K − 1)-th order polynomial in H as
∑K−1

k=0 (I−H)k =
∑K−1

k=0 wkH
k with wk =

(−1)k
(
K
k+1

)
. Polynomial expansion receivers have been extensively studied [74] [75],

in particular for the CDMA case, as an effective mean of approximating ZF or
MMSE linear equalizers. Relying in particular on Cayley-Hamilton theorem [76],
these techniques aim at optimizing combining coefficients wk for a reduced number
of iterations (i.e. polynomial order) than N , the dimension of the linear system to
be solved.

Alternatively to polynomial expansion receivers and the problem of finding
optimized combining coefficients wk, we instead focus on preconditioning as an ad-
vantageous mean to improve performance of iterative interference cancellation (IC)
and signal detection by reducing the CN of the linear system to be solved and allow
for faster convergence. For this purpose, the linear system

ŝZF = (PH)−1 Pr (3.39)

easily proves being exactly equivalent to (3.37). Using the same derivation of (3.38)
from (3.37), we can therefore approximate (3.37) by a preconditioned iterative ZF
(P-IT-ZF) receiver such as

ŝP−IT−ZF =

(
K−1∑
k=0

(I− PH)k
)
Pr (3.40)
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if and only if ρ (I− PH) < 1 and where P is a suitable non-singular preconditioning
matrix such that κ (H) ≥ κ (PH) ≥ 1 . The equality holds in the trivial case where
P−1 = H and the linear system in (3.39) is solved in one iteration.

It is worth noting that the ZF signal detection problem as formulated in (3.36)
is a particular case of the preconditioned system (3.40) with P = HH, but where
the CN is increased instead.

The asymptotic convergence in the receiver order K of the P-IT-ZF receiver
of (3.40) to the ZF solution is independent of the choice of P . For lower iteration
orders instead, its convergence and performance behavior strongly depend on the
chosen preconditioning.

In the absence of noise, i.e. σ2
z → 0, the error of the (K− 1)-th order P-IT-ZF

receiver s̃P−IT−ZF = s− ŝP−IT−ZF is

s̃P−IT−ZF =

(
K∑
k=0

(−1)k
(
K

k

)
(PH)k

)
s = (I− PH)K s

For the P-IT-ZF receiver, by defining

G̃ = (I− PH)K , (3.41)

the error norm is ‖s̃‖ = ‖G̃s‖ ≤ ‖G̃‖‖s‖. ‖G̃‖ and ρ (I− PH) = limK→∞ ‖G̃||
1
K

are the (K−1)-th order and asymptotic convergence-factors of the iterative receiver,
respectively.

3.2.2 Iteration-Dependent Preconditioned Iterative Recep-
tion

The P-IT-ZF receiver of Equation (3.40) is based on a constant preconditioning
over iterations. By construction, this receiver is intrinsically sub-optimal because,
as K → ∞, it degenerates to the ZF solution independently of the choice of the
preconditioner.

The approach can be generalized and improved to give an Iteration-Dependent
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Preconditioned ITerative (ID-P-IT) receiver as follows

ŝID−P−IT =

((
K−1∑
k=1

k∏
j=1

(I− P jH)

)
+ I

)
P 0r (3.42)

where the preconditioning matrix P is optimized at each iteration forming the set
PK = {P 0,P 1, · · · ,PK−1}.

This generalization introduces new degrees of freedom to our receiver that can
be exploited to achieve better performances than those achievable with P constant.

The block diagram of the ID-P-IT receiver is depicted in Figure A.9, the P-IT-
ZF receiver of Equation (3.40) can be obtained imposing the same preconditioning
matrix P for all stages.

r P 0 H P 1 +
-

+
H

+ +

P 2 +
-

+
...

...

H PK−1 +
-

+

+ ŝ

Figure 3.12: Iteration-Dependent Iterative ICI cancellation receiver

Similarly as for the P-IT-ZF in (3.41), in case of the ID-P-IT receiver we can
define

G̃ =
K∏
k=0

G̃k =
K∏
k=0

(I− P kH) (3.43)

Then, by denoting T̃K−1 =
∏K−1

k=0 G̃k, the error of the ID-P-IT receiver of the
(K − 1)-th order can be written as

s̃ = G̃
(
s + H−1z

)
−H−1z =

= G̃KT̃K−1s +
(
G̃KT̃K−1 − I

)
H−1z (3.44)

and its mean square error (MSE) as

E‖s̃‖2 =tr
{
σ2
sG̃KT̃K−1T̃

H

K−1G̃
H

K

}
+ (3.45)

+tr

{
σ2
z

(
G̃KT̃K−1 − I

)
R−1

(
G̃KT̃K−1 − I

)H}
where E{·} denotes the expectation operator and R = HHH .
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3.2.3 Sparse Preconditioning Derivation

The optimal preconditioning matrix PK for K-th iteration can be found minimizing
the MSE of Equation (3.45), that is

PK = arg min
P K∈PK

E ‖s̃‖2 =
(
σ2
s T̃K−1 + σ2

z(T̃K−1 − I)R−1
)
·

· T̃
H

K−1H
H
(
HT̃K−1

(
σ2
sI + σ2

zR
−1
)
T̃

H

K−1H
H
)−1

(3.46)

Nevertheless, as we can see for the first iteration, i.e. TK−1 = I, Equation
(3.46) gives

P 0 = σ2
sH

H
(
σ2
sHHH + σ2

zI
)−1

(3.47)

which is the trivial solution corresponding to MMSE receiver. In this case, such pre-
conditioning coefficients would allow any preconditioned receiver to converge to the
optimal solution in the MMSE sense in one iteration but at the cost of unaffordable
complexity entailing the inversion of a N × N matrix. In general, this operation
requires complexity orders of O (N3) or O (N2) order when classical techniques are
used, such as Gauss-Jordan elimination or Cholesky decomposition (exploiting the
Hermitian nature of HHH) respectively [76].

In order to avoid the trivial and extremely complex solution, we therefore need
to add a complexity-limitation constraint to the minimization problem in (3.46).

The optimal constrained MMSE preconditioning matrix can be obtained by
estimating the transmitted symbol s(n) at sub-carrier n by adopting sparse MMSE
Finite-Impulse-Response (FIR) preconditioning filter p̄n across LFIR (neighboring)
tones to limit the complexity of a full per-tone equalization across all N sub-carriers.

Considering for example the first iteration case, this corresponds to selecting a
subset of the elements of vector r as r̄n = Snr with Sn being a LFIR ×N selection
matrix obtained by extracting LFIR rows of the identity matrix IN for a given filter-
length LFIR and sub-carrier n to have

ŝ(n) = p̄H
n r̄n = p̄H

nSnr = pH
nr (3.48)

with pH
n = [P 0]i=n;j=1,...,N .
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Therefore, the sparse MMSE filtering coefficients are computed such that p̄H
n =

E{s(n)r̄H
n}
(
E{r̄nr̄H

n}
)−1

to give

p̄H
n = 1nH

HSH
n

[
Sn

(
HHH + γ−1I

)
SH
n

]−1
(3.49)

with 1n being the 1 × N vector containing 1 at n-th position and 0 elsewhere. It
is noteworthy mentioning that the above expression stems from the multiplication
of a 1× LFIR vector E {s(n)r̄H

n} and LFIR × LFIR inverse matrix of E{r̄nr̄H
n} which

varies across sub-carriers.

By limiting the complexity and determining preconditioning coefficients sub-
ject to this constraint, we are instead able to reduce the computational requirements
to O (L3

FIR) at the expense of an increased number of iterations depending on the
target performance.

The trade-off between the complexity for computing the preconditioning ma-
trix elements and the number of iterations shall be considered in light of the fact
that, even in time-varying channel OFDM reception, each iterative stage can be ef-
ficiently implemented with O (N log2N) complexity, as shown in [3], using the using
channel Polynomial Basis Expansion Modeling (Poly-BEM) approximation [77].

Similarly to (A.73), we can therefore derive the constrained MMSE precondi-
tioning matrix elements at n-th sub-carrier for the (K + 1)-th iteration stage, pro-
vided the set PK−1 = {P 0,P 1, · · · ,PK−1} and subject to the limited-complexity
constraint Sn, as

[PK ]i=n;j=1,...,N = (3.50)

= 1n

(
σ2
s T̃K−1 + σ2

z(T̃K−1 − I)R−1
)
T̃

H

K−1H
HSH

n ·

·
[
Sn

(
HT̃K−1

(
σ2
sI + σ2

zR
−1
)
T̃

H

K−1H
H
)
SH
n

]−1

Sn

The ID-P-IT receiver of Equation (3.42) making use of preconditioning ma-
trices computed according to Equation (3.50) is optimal by construction subject to
the aforementioned limited-complexity constraint.

As a result of this analysis, it is evident how the optimality allowing the method
to achieve the best possible MSE performance along iterations relates to the fastest
possible convergence property in the Euclidean norm sense for the given complexity
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constraint. For this reason, as K → ∞, and contrarily to the P-IT-ZF receiver of
Equation (3.40), does not show degeneration to ZF despite the initial derivation.

Nevertheless, the ID-P-IT receiver appears to be considerably more complex
than the P-IT-ZF making use of constant MMSE preconditioning as of Equation
(A.73) because the preconditioning coefficients are optimized at each iteration.

Quickly time-varying and frequency-selective channels, also known as doubly-
selective channels, show different ICI level depending on the sub-carrier index. This
suggests that the limited-complexity constraint can be made varying depending on
the sub-carrier and its corresponding ICI level. Larger LFIR filters can be used on
those sub-carriers severely impacted by ICI, while minimum preconditioning filtering
effort (LFIR = 1) can be dedicated to the others.

Strong complexity reduction for all above mentioned schemes can then be easily
achieved by first estimating the ICI level then selecting only a subset of sub-carriers
for which the ICI level is above a given acceptance threshold or, using a fixed-
complexity (FC) principle, deciding for a fixed amount of indexes corresponding to
those sub-carriers mostly impacted by ICI. The ICI level on each sub-carrier can be
estimated effortlessly by considering that, in the OFDM case under examination,
the full channel matrix can be decomposed into time-invariant and time-varying
terms such as H = HTI +HTV where HTI is diagonal. By taking G̃J = H−1

TI HTV,

the Signal-to-Interference Ratio (SIR) can be estimated by SIR(n) = 1/
∥∥g̃J,n

∥∥2
with

g̃H
J,n =

[
G̃J

]
i=n;j=1,...,N

.

3.2.4 Performance evaluation

In the previous sections, we derived general expressions for the MSE. Here we will
provide other significant performance metrics such SINR and mutual information.
For both P-IT-ZF and ID-P-IT receivers of Equations (3.40) and (3.42), the trans-
mitted sequence estimate can be written as

ŝP−IT−ZF = Gs + GH−1z (3.51)

where G = I − G̃ denotes the cascade of the channel and of the iterative receiver
computed by plugging respective expressions for G̃ from (3.41) and (3.43). Ad-
ditionally, we consider the MMSE receiver as of Equation (3.47) as reference for
performance evaluation.
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The error term can be expressed as s̃ = s−Gs−Wz with W = GH−1 being
the receiver transfer-function.

Letting gH
n = [G]i=n;j=1,...,N and wH

n = [W ]i=n;j=1,...,N be the n-th row of G and
W respectively, the expected value of the n-th sub-carrier symbol estimate power is

E|ŝ(n)|2 = σ2
s( |gn(n)|2︸ ︷︷ ︸

useful signal

+ ‖gn‖
2 − |gn(n)|2︸ ︷︷ ︸

ICI

) + σ2
z ‖wn‖2︸ ︷︷ ︸

noise

Thus, we find the general error expression of the SINR at n-th sub-carrier to
be

SINR(n) =
|gn(n)|2

‖gn‖
2 − |gn(n)|2 + γ−1 ‖w‖2 (3.52)

with γ = σ2
s/σ

2
z .

Finally, as a convenient performance metric for our discussion, we evaluate the
average mutual information, using

I (SINR) =
1

N

N∑
n=1

log2 (1 + SINR(n)) (3.53)

assuming independent per sub-carrier symbol detection of transmitted sequence.

3.2.5 Simulation results

We compare the methods proposed in this paper by evaluation of the analytical
expressions as described in Section 3.2.4. Monte Carlo simulations were conducted
on an equivalent OFDM setup with N = 128 sub-carriers for a sufficient number of
realizations of uniform power-delay-profile multi-path channel of length L = 4. The
channel is time-varying within an OFDM symbol according to Jakes Doppler spec-
trum with normalized Doppler frequency of 0.256 with respect to the sub-carriers
spacing. The performances are measured in terms of average mutual information
(bits/sub-carrier) assuming perfect channel and noise statistics knowledge. The re-
ceiver uses P = 2 orthonormal Poly-BEM channel. In figures 1 – 3, the methods
presented are evaluated for MMSE preconditioning filtering lengths of LFIR = 3.
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As a general behavior, all methods show to achieve the MMSE capacity for
decoding full-rate QPSK (2 bits/sub-carrier) with 1 iteration, 16QAM (4 bits/sub-
carrier) with 2 iterations and 64QAM (6 bits/sub-carrier) with 3 iterations. As
expected by optimal analytical construction, the ID-P-IT receiver shows the best
approximation to the full-blown MMSE solution compared to any other method for
the same number of iterations. Interestingly, the P-IT-ZF using MMSE precon-
ditioning approaches MMSE performances very well for a very limited number of
iterations and short length of MMSE preconditioning filter. Moreover, the complex-
ity reduction techniques proposed provide negligible performance loss with respect
to P-IT-ZF receiver with full complexity MMSE preconditioning for QPSK and 16
QAM and 1 dB loss for 64 QAM compared to MMSE. In particular, the FC reduction
method realizes a complexity reduction of a factor 10 but still provides similar per-
formance to the full complexity P-IT-ZF for QPSK and 16QAM. Hence, in practical
applications, the P-IT-ZF with MMSE preconditioning and FC reduction appears
to be very attractive.

−10 0 10 20

0

2

4

6

SNR (dB)

A
ve

ra
ge

M
I

(b
its

/s
ub

-c
ar

ri
er

)

MMSE
K=1
K=2
K=3
K=4

Figure 3.13: Performances of ID-P-IT receiver with LFIR = 3
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Figure 3.14: Performances of P-IT-ZF receiver with LFIR = 3

3.3 Alamouti Detection Over Selective Channels

Over the last decade, multi-antenna transmissions imposed as the effective mean
to improve wireless communications over fading channels. The fundamental
multiplexing-diversity trade-off [78] offers the clear insight that multi-antenna com-
munications can enjoy the added spatial dimension as a degree of freedom for in-
creasing the data-rate or enhancing the link quality. While modern wireless systems
such as Wireless-Local Access Network (WLAN) and 3GPP Long Term Evolution
are starting to support spatial-multiplexing, the multi-antenna diversity is already
widely employed in existing standards such as 3GPP UMTS W-CDMA. In par-
ticular, the well known Alamouti scheme [79] revealed to be extremely efficient in
allowing wireless and cellular systems to increase link reliability. Its efficiency proves
because of the extremely simple encoding technique at the transmitter and more im-
portantly in the low complexity linear and optimal decoding which can also easily
be extended to multiple receiving antenna case. This scheme is well known and
deeply analyzed [80]. Nevertheless, the efficiency of this block-code is based on the
assumption of static conditions over the two periods or channel uses spanning its
transmission. The static channel assumption is actually never verified in practice
and remains ideal. In OFDM, for example, the channel is selective because of the
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Figure 3.15: Performances of P-IT-ZF receiver with LFIR = 3 and FC mechanism

time-varying or frequency selective nature of the terminal mobility and the rich
scattering of the wireless environment. Receiving equipments must therefore cope
with these non-idealities and the need for efficient receiving techniques to do so mo-
tivated this work beyond previous contributions [81][82]. In this paper, the signal
model employed along the study is introduced in section 3.3.1, the diversity analysis
of the Maximum-Likelihood detection is carried out in section 3.3.2, modified and
improved Decision-Feedback (DF) based schemes are discussed in 3.3.3, extension
to Space-Frequency Block-Codes (SFBC) and Space-Time Block-Codes (STBC) for
OFDM are given in section 3.3.5 and, finally, simulation results are presented in
section 3.3.6.

3.3.1 Signal model definition

We consider a communication system between a transmitter with two antennas
and a receiver with one receiving antenna. Despite this simplification, the results
presented are general and can be straightforwardly extended to multiple receiving
antennas case.
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The transmitter employing Alamouti transmit-diversity scheme requires two
signaling periods or two parallel channels to convey a pair of finite-alphabet complex
symbols x1 and x2: during the first symbol period, the first antenna sends x1 and
the second antenna sends x2; in the second period, the symbols −x∗2 and x∗1 are
respectively transmitted by first and second antenna.

Denote h1 and h2 the complex flat-fading channel coefficients between the two
transmit antennas and the receding antenna during the first period while h̃1 and h̃2

are the channel coefficients of the second symbol period.

It is easy to show that the received symbol vector can be conveniently written
in matrix form as [

y1

y∗2

]
=

[
h1 h2

−h̃∗2 h̃∗1

] [
x1

x2

]
+

[
n1

n∗2

]
(3.54)

with ∗ being the complex conjugate. The same expression can be written even more
compactly as

y = Hx + n (3.55)

where

• n is the zero-mean circularly symmetric complex Gaussian noise vector whose
covariance matrix is equal to I.

• Rayleigh fading channel coefficients such that h1, h2, h̃1 and h̃2 are zero-mean
circularly symmetric complex Gaussian random variables each with variance
equal to σ2

h, i.e. E[|h1|2] = E[|h2|2] = σ2
h with E[·] denoting the expectation

operator.

• Uncorrelated transmitting antennas such that h1 and h2 are independent, i.e.
E[h1h

∗
2] = 0.

• Correlated channel coefficients between the two symbol periods such that
E[h1h̃

∗
1] = E[h2h̃

∗
2] = ρ where ρ is the complex correlation factor with |ρ|2 ≤ 1.

We stress the fact about ρ being complex as this is the general case as it
will be shown in section 3.3.5. The correlated processes are generated using
a first-order auto-regressive model as h̃i = ρhi +

√
1− ρ2wi with wi being

again a zero-mean circularly symmetric complex Gaussian random variable
with variance equal to σ2

h.

• x a vector of Binary Phase-Shift Keying (BPSK) symbols with xi ∈ {±1}.



3.3. ALAMOUTI DETECTION OVER SELECTIVE CHANNELS 93

3.3.2 Diversity analysis of Maximum Likelihood detection

We are interested in determining the detection performances in case of selective
channel by means of bit error probability. In this section we will, in particular,
handle the case of ML detection using diversity analysis.

We assume the ML detector using the minimum vector norm

zML = arg min
x
‖y −Hx‖2 (3.56)

As introduced in section 3.3, in the static case, i.e. ρ = 1 the optimal detection
is obtained by the Matched Filter detector

zMF = HHy (3.57)

and applying hard decisions on each component on the output vector, namely x̂i =
sign (x̂i) where the sign operation is performed on the real component of xi for
BPSK case.

In the non-static case, i.e. with ρ 6= 1, it was shown in [81] that the MF
detector is not optimal anymore while the ML detector is the only method which
can optimally benefit of the diversity offered by the Alamouti code. Nevertheless,
only simulations results were provided as a proof.

A more formal proof of the optimality of the ML detector without constraints
on the correlation factor ρ can be made by computing upper and lower bounds on
bit-error probability of ML detection. Although an exact ML bit-error probability
would be definitive, we can come to the same conclusion by showing that upper
and lower bounds still get all the diversity order especially in the asymptotic high
Signal-to-Noise Ratio (SNR) regime.

ML detection upper bound

The Union Bound (UB) upper bounds the ML detection of equation (3.56) bit-error
probability and corresponds to the sum of the Pairwise Error Probability (PEP) of
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the error events:
Pb(e) ≤

∑
x̆ 6=x

P̄ (x→ x̆) (3.58)

Note that the bit-error probability of (3.58) does not need to be averaged over
all the possible transmitted vectors x belonging to the constellation because of the
symmetry of bit-error probabilities for BPSK. We can therefore compute the UB
assuming a fixed transmitted symbol, x = [1 1]T for example, for the three only
possible error events – x̆1 = [1 0]T , x̆1 = [0 1]T and x̆1 = [1 1]T – to give

Pb(e) ≤ P̄ (x→ x̆1) + P̄ (x→ x̆2) + P̄ (x→ x̆3) (3.59)

By similar derivation as in [83], the PEP for a given channel realization H can
be found applying the Chernoff bound

P (x→ x̆i) ≤ e−
‖H(x−x̆i)‖

2

σ2 (3.60)

Taking the expectation of (3.60) over the channel statistics, we obtain the
following bound on the average PEP

P̄ (x→ x̆i) = E[P (x→ x̆i)] ≤
1

det
(
I + 1

σ2 Rwiwi

) (3.61)

with Rwiwi = E[wiw
H
i ] being the covariance matrix of

wi = H (x− x̆i).

In Alamouti case, the covariance matrices turn out to be as

Rw1w1 =Rw2w2 = 4σ2
hI

and

Rw3w3 = 8σ2
hI

(3.62)

and, interestingly, independent of ρ.

Finally, substituting (3.62) in (3.61) and (3.59), an upper bound on the ML
detection can be find to be

Pb(e) ≤ Pb(e)
UB =

2

(1 + 2γ)2 +
1

(1 + 4γ)2 (3.63)
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where γ = 2σ2
h is the SNR.

From equation (3.63), the asymptotic bit-error probability [84] of the ML de-
tector is derived as

Pb(e) ≤ Pb(e)
UB ≤ Pb(e)

UB∞ = lim
γ→∞

PUB
b (e) =

9

16

1

γ2
(3.64)

Asymptotic ML detection lower bound

An asymptotic lower bound for ML detection can be taken considering that

Pb(e) ≥ E[max
i

(P (x→ x̆i))] ≥ max
i

(E[P (x→ x̆i)]) (3.65)

From equation the (3.63) and (3.65), the maximum PEP is clearly associated
to the error events x̆1 and x̆2. An asymptotic lower bound for the ML detection can
then be inferred as

Pb(e)
∞ = lim

γ→∞
Pb(e) ≥ Pb(e)

LB∞ =
1

4

1

γ2
(3.66)

Concluding remarks

The result of equation (3.64) are sufficient alone to prove that the ML detector is
asymptotically optimal as the maximum diversity order available is 2 and the upper
bound retrieve it and that a correlation factor ρ 6= 1 has no asymptotic impact on
the ML detection.

Note that this result is general and not limited to the simplistic BPSK assump-
tion taken here. That is because, for any constellation, an error event of the form
x − x̆i = [a b]T would always originate a covariance matrix Rwiwi being a multiple
of an identity as

(Rww)i,i = σ2
h

(
|a|2 + |b|2

)
(Rww)1,2 = (Rww)2,1 =

= E[(ah1 + bh2)(ah̃2 − ah̃1)] = 0

(3.67)
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3.3.3 Decision-Feedback detection

The DF detection schemes are non-linear detectors that were shown to be sub-
optimal in case of selectivity of channel [81] capable of only one order of diversity.
Nevertheless, they are in general less complex than ML detector and in some cases
could be preferred.

The studies on the effect of ordering on DF schemes in other fields such as
MIMO detection [85] motivated us to verify the gain offered by ordering.

By applying the Whitening-Matched Filter to the received signal

zWMF = Gy (3.68)

where the WMF matrix is obtained by

G = C−HHH (3.69)

and C is the Cholesky factor such that

CHC = HHH (3.70)

Using (3.55), (3.69) and (3.68)

zWMF = Cx + n′ (3.71)

where n′ is a zero-mean circularly symmetric complex Gaussian noise vector dis-
tributed as n.

Supposing C upper triangular, the DF detection is performed by solving

x̂1 = sign(z1)

x̂2 = sign
(
z2 − (C)1,2 x̂1

) (3.72)

since the diagonal elements of C have the nice property of being real and positive.

It is worth noticing that the Cholesky factor corresponds exactly to the trian-
gular matrix of the QR decomposition of the channel H.
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Actually two possible factorizations exist: an upper CU and a lower CL tri-
angular matrices satisfying the expression (3.70). The straightforward derivation of
the two factorizations from the 2× 2 channel matrix H is omitted.

The two factorizations can then be used to improve the classical DF scheme
that blindly chooses one among the two possibilities.

The easiest option is to define an ordered DF (ODF) scheme exactly equivalent
to (3.72) but where:

1. choose C = CU if (CU)2,2 ≥ (CL)1,1, otherwise choose C = CL;

2. apply the classical DF scheme, permuting indexes in (3.72) if case C is lower
triangular.

Another option, at the expense of doubling the complexity, is to define a
parallel DF (PDF) detector where two parallel DF detections according to (3.72)
are executed for both CU and CL and the final estimate is constructed using as

x̂1 = x̂L1

x̂2 = x̂U2
(3.73)

where x̂L and x̂L denote the estimated transmitted vectors obtained by lower and
upper Cholesky DF respectively.

The reader is pointed at section 3.3.6 for a comparison in terms of performance
of the two schemes with respect to classical DF detection. Nevertheless, it is worth
mentioning that in any case these two modified DF schemes would be ale to retrieve
the bit-error probability sub-optimality in terms of diversity order but eventually in
terms of coding gain (SNR offset) [84].

3.3.4 Lattice-Reduction Near-ML detection

The direct implementation to retrieve the maximum-likelihood estimate of Equation
(3.56) is practically unfeasible due to the size of the search for large constellations
and numbers of dimensions. A number of rather efficient near-ML algorithms, i.e.
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Figure 3.16: Undisturbed received signals and decision regions of: (a) Maximum-
Likelihood, (b) Linear ZF, (c) Decision-Feedback, (d) Lattice-Reduction aided ZF
and (e) Lattice-Reduction aided Decision-Feedback detection.

Sphere Decoders, have been proposed in the context of MIMO detection [88] [89].
We instead choose a conceptually simpler approach based on Lattice Reduction (LR)
solving any critical dependency on a parameter like the search radius. The noiseless
received points in the communication scenario correspond to points of the integer
lattice which depend on the chosen constellation and on the channel H. Complex
Lattice (basis) reduction [90] [91] optimizes the generating matrix of the lattice to
obtain a nicer description of the lattice. The result is

Hred = HT (3.74)

where T is a unimodular matrix, i.e. whose determinant is |det (T ) | = 1 and whose
entries are integer complex values (and so is for T−1, too). As the basis change does
not change the lattice, we can now interpret the noiseless received signal points as
points in the lattice described by Hred. Denoting H = [b1 b2], the algorithm to
obtain Hred is summarized in 3.17. It is worth noticing that the chosen algorithm
is the complex extension of the well known LLL algorithm [86]. Moreover, in the
Alamouti case (2x2 channel matrix case), it is totally equivalent to the Korkine-
Zolotareff optimal method [87].

Figure 3.3.4 depicts the decision regions of noiseless received signal for classical
ML, Linear ZF and LR aided method. Since the matrix Hred has much nicer than
H , for instance with respect to inversion, it is easier to detect the transmitted
symbol in this lattice when noise is present using a simple low-complexity detector.
Having found these estimates, we can reverse the lattice basis change to obtain an
estimate in the original lattice. Using the reduction of H given in (3.74), we can
write H−1

red = T−1H1 to perform a linear Zero Forcing equalization aided by Lattice
Reduction (LR-ZF). If we apply this matrix to the received signal of equation 3.55,
we get

y′ = H−1
redy = T−1x + H−1

redn (3.75)

We see that the signal y′ contains the desired signal x plus a noise term H−1
redn.
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INPUT: b1,b2

OUTPUT: Hred

while ok = 0 do
c = bH1 b2

m = bH1 b1

if |Re(c)| > 0.5m OR |Im(c)| > 0.5m then
# Reduce basis

b2 = b2 − bc/mcb1

end if
if bH2 b2 > bH2 b2 then
# H is reduced

ok = 1
else
# Swap basis

t = b1

b1 = b2

b2 = t
end if

end while
Hred = [b1 b2]

Figure 3.17: Complex Lattice Reduction LLL algorithm
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Being the columns of Hred are rather orthogonal, only relatively small noise en-
hancement and coloring is present.

Since T−11 contains only integer entries, the noiseless signal points T−1x lie
on a distorted and scaled version of the original constellation. We can then quantize
y′ to the constellation lattice. Finally, the estimates corresponding to the original
signal points can be obtained by

x̂ = T Q (y′) (3.76)

where Q (·) denotes the quantization operation to complex integer lattice values.
This operation corresponds to the generalization for any constellation of sign (·)
operator for BPSK case. As this quantization does not regard the boundary region
of the constellation used for x, the points obtained in x̂ stem from an extended
version of the original constellation, and, in a final step, points that happen to lie
outside the boundary region of the original constellation have to be assigned to the
nearest point within the boundary region.

Note that instead of LR-ZF, decision-feedback equalization of H−1
redn is also

possible. Hence, LR aided extension of methods introduced in 3.3.3 can be easily ob-
tained by operating on Hred rather than on H to expect gain in error propagation.
In the following, we shall then refer to Lattice-Reduction aided Decision-Feedback
(LR-DF) to the method obtained by substituting Hred in Equations (3.70),(3.69),
(3.68) and, finally, (3.72). Similarly, we then indicate Lattice-Reduction aided Par-
allel Decision-Feedback (LR-PDF) to the method obtained from Equation (3.73)
applying the substitution of H into Hred.

3.3.5 OFDM SFBC and STBC extension

As introduced in section 3.3, Alamouti block-codes naturally fit OFDM context be-
cause of the availability of orthogonal frequency flat channels with quasi-static prop-
erties and are well known to as SFBC and STBC. They are distinguished depending
if the quasi-static channel property is assumed in frequency or time respectively.

Considering the OFDM SFBC case, the Channel Transfer Function (CTF)
discretized into parallel channels at each sub-carrier is characterized in terms of
correlation-bandwidth which is roughly proportional to the inverse of the Channel
Impulse Response (CIR) length.
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Hence, in case of sufficiently short CIR with respect to the cyclic prefix, the
CTF over adjacent sub-carriers is strongly correlated and can then be used to convey
Alamouti block-codes. The two symbol periods used for the block transmission are
then transferred into pairs of neighboring sub-carriers to exploit the local quasi-static
channel conditions.

While the correlation factor ρ is widely assumed as a real coefficient, it is easy
to prove that in SFBC case the factor ρ is instead a complex value and can be
obtained by the Power Delay Profile (PDP) p of the tapped delay line of length L
representing the channel as

ρ =
L∑
i=1

pie
j2π i

N (3.77)

where N is the FFT order of the OFDM system in use.

In STBC case instead, the symbol periods to be used for Alamouti block-
codes transmission are spanning the same sub-carrier over two neighboring OFDM
symbols. The time-correlation of the time-varying channel in case of low relative
speed between transmitter and receiver is exploited in this case.

In the assumption of classical Jakes Doppler spectrum the correlation factor ρ
is real and given by

ρ = J0 (2πfdTs) (3.78)

where fd = fcv/c is the maximum Doppler frequency of a mobile unit with relative
speed v for an OFDM system modulated around fc carrier frequency, c is the speed
of light constant and Ts is the OFDM symbol duration of the system (including the
cyclic prefix).

3.3.6 Simulation results

The performances of the ML detector, the ML upper and lower bounds, the proposed
modified DF schemes together with linear detectors such as MF and Zero-Forcing
(ZF) and classical DF are plotted in Figure 3.18 for a correlation coefficient ρ = 0 ,
in Figure 3.19 for a correlation coefficient ρ = 0.5 and in Figure 3.20 for a correlation
coefficient ρ = 0.9.

We can first conclude that the upper and lower bounds confine the simulated
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ML performances and confirm the analytical derivation. Furthermore, the opti-
mality of the ML detector over all other classes of linear and non-linear estimators
presented in the paper in case of selective channel appears evident: the ML detector
being the only offering a bit-error probability curve whose slope decays by a factor
of two, all other detectors suffer from a diversity penalty and can only enjoy of an
order of one.

The proposed modified DF schemes outperform the classical DF detector and
the gain offered by the ordered -DF and the parallel -DF can be evaluated in 3 dB
and 5 dB respectively.

In Figure 3.21, we instead compare ML, Linear and DF schemes to Lattice-
Reduction aided methods proposed (LR-ZF, LR-DF and LR-PDF) in terms of raw
BER performance for 16-QAM modulation case and ρ = 0.9. We can notice that
LR aided gather the full diversity and their performance stands close to ML. In this
case DF methods do not show the the same coding gain improvement as for linear
based methods and their performance differs of few points of dB. Nevertheless, the
LR-PDF method outperforms all other methods proposed as expected.

Figure 3.18: Performance of SFBC detectors in selective Rayleigh channel (ρ = 0).
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Figure 3.19: Performance of SFBC detectors in selective Rayleigh channel (ρ = 0.5).

Figure 3.20: Performance of SFBC detectors in selective Rayleigh channel (ρ = 0.9).
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Figure 3.21: Performance of SFBC detectors in selective Rayleigh channel (ρ = 0.9).
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Slot duration [ms] 0.5
Sub-carrier spacing ∆fsc [kHz] 15

Transmission BW [MHz] 1.25 2.5 5 10 15 20
Sampling frequency [MHz] 1.92 3.84 7.68 15.36 23.04 30.72

FFT size N 128 256 512 1024 1536 2048
Occupied sub-carriers (including DC) K 76 151 301 601 901 1201

Table A.1: Paramètres de OFDMA en LTE.

A.1 Estimation de canal en LTE

Bien que le problème général d’estimation de canal en cas de transmissions à une
seule antenne est bidimensionnel [26], c’est à dire qu’il doit être effectué en commun
dans les domaines des fréquence et du temps, il est normalement divisé en deux
étapes d’estimation unidimensionnels [27] pour la facilité de mise en oeuvre.

Dans ce contexte, nous nous intéressons en particulier au problème
d’estimation de canal sur un symbole OFDMA (plus précisément le symbole con-
tenant la RS) à fin d’exploiter les caractéristiques du domaine de la fréquence sans
considérer ses caractéristiques de temps-varaiance en raison de l’effet Doppler.

Dans le contexte de l’OFDMA pour LTE, comme pour tout système OFDM
avec pilotes distribués en peigne [52], la fonction de transfert du canal (CTF) z
est estimé par Maximum de Vraisemblence dans le domaine des fréquences sur les
sous-porteuses des pilotes par décorrélation de la suite-pilote du signal de référence
à module constant. Utilisant la notation matricielle, il peut être modélisé comme:

ẑp = zp + z̃p = Fph + z̃p (A.1)

where

• P = dK/Me est le nombre de pilotes disponibles où K est le nombre de sous-
porteuses occupées (y compris DC).

• h est le vecteur L× 1 de la réponse impulsionnelle du canal (CIR). La longueur
du canal effectif L ≤ LCP est supposée connue.

• Fp est la matrice P× L obtenue en selectionnant les lignes correspondant aux
positions des pilotes and les premières L colonnes de la matrice N× N de
la transformée discrète de Fourier (DFT). La matrice dont les éléments sont

(F)n,k = e−
j2π
N

(nk) avec 0 ≤ n ≤ N− 1 et 0 ≤ k ≤ N− 1;
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• z̃p est le vecteur P× 1 du bruit blanc complèxe circulairement symmetrique a
moyenne zero dont la matrice L× L de covariance est Cz̃p = σ2

z̃p
IL;

A.1.1 Estimation de canal par interpolation

Estimateur par interpolation linéaire L’approche naturelle pour estimer
l’ensemble de la CTF est d’interpoler l’estimation du CTF sur les positions des
pilotes Ẑp. Dans le cas général, A est un filtre d’interpolation générique et l’ esti-
mation interpolée de la CTF peut être écrite comme:

ẑi = Aẑp (A.2)

En substituant (A.1) in (A.2), l’erreur de l’estimation interpolée du CTF est:

z̃i = z− ẑi = (FL −AFp) h−Az̃p (A.3)

où z = FLh et FL est la matrice N× L obtenue en prenantles premières L colonnes
de la matrice de la transformée de Fourier.

La matrice de covariance de l’erreur est:

Cz̃i = (FL −AFp) Ch (FL −AFp)H + σ2
z̃pAAH (A.4)

étant Ch = EhhH la matrice de covariance du canal, {·}H and E{·} désignant
respectivement l’opérateur Hermitien et l’opérateur de l’attente.

Bien que un filtre de mise en forme de l’impulsion n’est pas obligatoire dans
LTE, la première opération du récepteur est constituée d’un filtrage passe-bas d’anti-
crénelage.

Par conséquent, le canal et sa matrice de covariance peuvent effectivement être
modélisés comme:

h = Pu and Ch = PCuPH (A.5)

où P est la matrice de filtrage de la forme d’impulsion, u est le vecteur du canal
multi-trajet et

Cu = EuuH = diag
(
σ2
u0
, σ2

u1
, . . . , σ2

uLMP−1

)
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est la matrice de covariance diagonale normalement assimilée au profil de retard de
puissance du canal (PDP).

Rappelant l’équation (A.2), l’interpolation linéaire serait le choix intuitif. La
structure du filtre A est alors donnée par

A =



0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
1 0 · · · 0 0

M − 1

M

1

M
0 · · · 0

M − 2

M

2

M
0 · · · 0

...
...

...
... 0

1

M

M − 1

M
0 · · · 0

0 1 0 · · · 0

0
M − 1

M

1

M
· · · 0

0
M − 2

M

2

M
0 0

0
...

...
... 0

0
1

M

M − 1

M
0 0

0 0 1 · · · 0
...

...
...

... 0
0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0



(A.6)

Cet estimateur est déterministiquement biaisé, mais non biaisée du point de vue
bayésien indépendamment de la structure de A.

IFFT estimator La deuxième approche naturelle pour récupérer l’ensemble es-
timation FCT est par IFFT interpolation. L’estimation du CTF par interpolation
IFFT sur toutes les sous-porteuses peut être obtenu en utilisant dans (A.2):

A =
1

P
FLFH

p (A.7)
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Ainsi, l’estimateur par IFFT est donné par:

ẑIFFT =
1

P
FLFH

p ẑp (A.8)

L’erreur de l’estimé par interpolation IFFT et sa matrice de covariance, ap-
pliquant (A.1) etnd (A.7) into (A.2), deviennent:

z̃IFFT = FL

(
IL −

1

P
FH

p Fp

)
h− 1

P
FLFH

p z̃p (A.9)

Cz̃IFFT
=

(
FL −

1

P
FLFH

p Fp

)
Ch

(
FL −

1

P
FLFH

p Fp

)H

+
1

P 2
σ2
z̃pFLFH

p FpF
H
L (A.10)

Dans l’approximation de IL ≈ 1
P
FH

p Fp, estimateur serait biaisé et sa matrice
de covariance d’erreur réduirait à:

Cz̃IFFT
≈ 1

P
σ2
z̃pFLFH

L (A.11)

Compte tenu des paramètres du système LTE et la structure pilote, dans la
pratique, 1

P
FH

p Fp est loin d’être un multiple d’une matrice identité: le rapproche-
ment serait une égalité lorsque K = N ,N/M > L et N/M étant un nombre entier:
autrement dit, le système doit être dimensionné sans garde-bandes et les pilotes
doivent être disposé avec un espacement qui est divisant exactement l’ordre de
la FFT N, notamment une puissance de deux. Donc, en accordance avec (A.9),
l’estimateur ẑIFFT est biaisé comme dans le cas de l’interpolation linéaire Si le canal
est déterministe et non biaisé du point de vue bayésien. Nous renvoyons à la sec-
tion des résultats de simulation de ce document pour une comparaison de leurs
performances respectives.

A.1.2 Une approche général à l’estimation linéaire de canal

Par rapport aux approches simples présentés dans la section précédente, les esti-
mateurs linéaires plus élaborés dérivés à la fois du point de vue déterministe et du
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point de vue statistique proposée dans [53], [54] et [55], à savoir LS, LS régularisée,
MMSE MMSE, en plus des nouveaux estimateurs présentés dans les sections suiv-
antes, peuvent tous être exprimés sous la formulation générale:

ẑgen = B
(
GHG + R

)−1
GHẑp (A.12)

où B, G et R sont des matrices qui varient en fonction de chaque estimateur tel que
décrit ci-après. Avec (A.1) et (A.12), on obtient l’expression d’erreur:

z̃gen =
(
FL −B

(
GHG + R

)−1
GHFp

)
h−B

(
GHG + R

)−1
GHz̃p (A.13)

et sa matrice de covariance:

Cz̃gen =
(
FL −B

(
GHG + R

)−1
GHFp

)
Ch

(
FL −B

(
GHG + R

)−1
GHFp

)H
+

+ σ2
z̃pB

(
GHG + R

)−1
GHG

(
GHG + RH

)−1
BH

(A.14)

LS estimator L’estimateur LS discuté dans [53] peut être déduit en choisissant:

B = FL , G = Fp and R = 0L (A.15)

avec 0L étant la matrice L× L contenant zeros. Et l’estimateur apparait comme:

ẑLS = FL

(
FH

p Fp

)−1
FH

p ẑp (A.16)

En substituant (A.1) et (A.15) en (A.13) et (A.14), l’erreur se reduit à:

z̃LS = −FL

(
FH

p Fp

)−1
FH

p z̃p (A.17)

montrant que l’estimateur LS, au moins théoriquement, est non biaisé. Ainsi, par
rapport à l’estimateur d’interpolation linéaire donné par (A.2), l’estimateur LS
est considéré comme l’interpolateur idéal car il remet à zéro le terme de biais de

l’expression (A.3) avec A = FL

(
FH

p Fp

)−1
FH

p . Par conséquent, la matrice de covari-
ance d’erreur peut être démontré:

Cz̃LS
= σ2

z̃pFL

(
FH

p Fp

)−1
FH

L (A.18)
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Estimateur LS Regularisé Comme en témoigne [55], les paramètres du système

LTE font l’estimateur LS inapplicable: l’expression
(
FpF

H
p

)−1
est mal conditionné

en raison de la grande partie inutilisée du spectre correspondant aux sous-porteuses
non modulées. Pour contrer ce problème, le robuste estimateur LS régularisé a
été utilisée pour obtenir un meilleur conditionnement de la matrice à inverser en
utilisant la même B et G que pour l’estimateur LS mais en introduisant la matrice
de régularisation R = αIL avec α une constante choisie (offline) pour optimiser la
performance de l’estimateur dans une plage de rapport signal-bruit (SNR) donné.
Par conséquent, nous pouvons écrire l’estimateur comme suit:

ẑreg,LS = FL

(
FH

p Fp + αIL

)−1
FH

p ẑp (A.19)

Les expressions de l’erreur et de la matrice de covariance d’erreur de cet estimateur
peuvent être déduites directement à partir de (A.13) et (A.14) en remplaçant B, G
et R avec leurs expressions correspondantes.

Estimation LS par sous-échantillonage de la réponse impulsionnelle du
canal Une autre solution peut être trouvée lors de l’enquête les raisons du
problème de conditionnement malade: la motivation vient de la non-excitation d’une
grande partie de la bande qui vient de la structure de symbole OFDM LTE. Con-
sidérant par exemple le cas d’un A.1, taille du symbole N égal à 1024 du tableau,
on obtient que le nombre de sous-porteuses modulées est de seulement 600. Ainsi,
alors que la fréquence d’échantillonnage est de 15,36 MHz (N∆fc), la bande pas-
sante occupée est à seulement 9 MHz (Nm∆fc). il s’ensuit que le canal est es-
timé dans l’ensemble 15,36 MHz échantillonnage bande passante alors que seuls les
sous-porteuses modulées sont excités (9 MHz). Le canal peut en effet être sonné
uniquement dans le excité bande. Pour ce faire, la bande passante numérique, ce
qui est considéré comme étant le rapport entre la largeur de bande occupée et l’
la fréquence d’échantillonnage, doit être portée à un peu moins que 1. Cela peut
se faire en diminuant la fréquence d’échantillonnage utilisée pour la représentation
numérique de la chane d’un facteur 2/3 ce qui garantit l’absence d’aliasing donnant
un échantillonnage résultant fréquence de 10.24 MHz. Pratiquement, le canal H
n’est pas estimé dans tous les coefficients L mais seulement dans 2 des 3 coefficients
(obtenenant un facteur de sous-échantillonnage moyen 2/3) et la mise à 0 de ceux
mis à rebut:

h = (h0 h1 0 h3 h4 0 · · · hL−1)T (A.20)

En fait, l’égalisation de canal dans le système OFDM n’est pas effectuée dans
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le domaine temporel, mais dans le domaine des fréquences. Par conséquent, il
n’importe pas d’avoir une représentation exacte dans le domaine du temps du canal
à la fréquence d’échantillonnage réelle. Ce qui est important est la fonction de
transfert de canal dans la bande d’intérêt.

z = FLh =

=



1 1 1 1 1
1 w1 w2 · · · w(L−1)

1 w2 w3 · · · w2(L−1)

1 w3 w6 · · · w3(L−1)

1 w4 w8 · · · w4(L−1)

1 w5 w10 · · · w5(L−1)

...
...

...
...

1 wN−1 w2(N−1) · · · w(L−1)(N−1)





h0
h1
0
h3
h4
0
...

hL−1


(A.21)

z = FDS
L hDS =

=



1 1 1 1 1
1 w1 w3 · · · w(L−1)

1 w2 w6 · · · w2(L−1)

1 w3 w9 · · · w3(L−1)

1 w4 w12 · · · w4(L−1)

1 w5 w15 · · · w5(L−1)

...
...

...
...

1 wN−1 w3(N−1) · · · w(L−1)(N−1)





h0
h1
h3
h4
...

hL−1


(A.22)

w = e
j2π
N (A.23)

Comme l’a montré (A.21) et (A.22), cette approche se révèle être comme la
représentation du signal reçu, les L

3
colonnes de la matrice de Fourier FL corre-

spondant à la négligence coefficients sont multipliées par 0, de sorte que le domaine
temporel le signal reçu peut être représenté en tant que:

r = FH
LFDS

L hDS + w (A.24)



A.1. ESTIMATION DE CANAL EN LTE 113

o ù hDS est la version sous-échantillonnée du canal FIR représenté avec une longueur
du vecteur résultant en 2

3
L. Analoguement FDS

L est égaleis a la matrice de Fourier
FL o ù les colonnes correspondantes aux coefficients mis a zero de h sont enlevées.

Encore une fois, le critère LS peut être appliquée pour obtenir l’expression de
l’ estimation LS du canal sous-échantilloneé :

ĥds = (FDS,H
p FDS

p )−1FDS,H
p ẑp (A.25)

En utilisant la matrice de Fourier correspondant à la voie sous-échantillonné, le
problème du mauvais conditionnement est résolu et en outre un gain de complexité
est obtenu en raison de la taille de la matrice (FDS,H

p FDS
p )−1FDS,H

p qui se revèle être
2
3
L×N .

Estimateur MMSE En utilisant les equations (A.12), (A.13) et (A.14), on peut
reformuler l’estimateur MMSE [53] par:

B = FL , G = Fp and R = σ2
z̃pCh

−1 (A.26)

donnant ainsi

ẑMMSE = FL

(
Fp

HFp + σ2
z̃pCh

−1
)−1

Fp
Hẑp (A.27)

Encore, en appliquant (A.1) et (A.26) en (A.13) et (A.14), on obtient l’erreur
de l’estimateur comme:

z̃MMSE = FL

(
IL −

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p Fp

)
h−FL

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p z̃p

(A.28)
et la matrice de covariance:

Cz̃MMSE
=FL

(
IL −

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p Fp

)
Ch(

IL −
(
FH

p Fp + σ2
z̃pCh

−1
)−1

Fz
pFp

)H

FH
L+

+ σ2
z̃pFL

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
p Fp

(
FH

p Fp + σ2
z̃pCh

−1
)−1

FH
L

(A.29)
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Estimateur MMSE desadpté Pour éviter l’estimation du canal des statistiques
de second ordre Ch et l’inversion en ligne d’une matrice rmL timesL nécessaire
à l’application pure et simple du MMSE de (A.27), la PDP du canal peut être
supposée uniforme [54]. Ainsi, dans cette formulation desadptée du MMSE, Ch est
imposée pour avoir la structure d’une matrice d’identité.

En référence à la formulation générale dans (A.12), ce approche consiste à
prendre le même B et G de (A.26) mais en definissant R = σ2

Z̃p
/σ2

h · IL pour donner

l’expression

ẑM−MMSE = FL

(
FH

p Fp + σ2
z̃p/σ

2
h · IL

)−1

FH
p ẑp (A.30)

Fait intéressant, on constate que cet estimateur est en pratique équivalent à
l’estimateur LS régularisé A.1.2. où la seule différence réside dans le fait que le
rapport σ2

Z̃p
/σ2

h peut être estimée et donc adaptée. Pour une longueur rmL de

canal donnéw, afin d’éviter l’inversion en ligne de la matrice
(
FH

p Fp + σ2
Z̃p
/σ2

h · IL

)
,

l’approche pratique consisterait à diviser la plage de travail du SNR en sous-gammes
et en stockant différentes versions de la matrice inversée hors ligne pour chaque sous-
gamme. La formulation du MMSE désadaptée offre l’avantage que les coefficients
de filtrage peuvent être calculées pour être des nombres réels parce que le PDP uni-
forme est symétrique. En effet, les coefficients de filtrage réels peuvent être utilisés
lorsque le symbole OFDM est correctement synchronisé pour couvrir la moitié de CP
de chaque cté, en réduisant fortement la complexité. En outre, puisque la longueur
du canal est faible par rapport à la taille de la FFT, la matrice Agen peut être con-
sidéré comme faible densité ne stockant que les coefficients significatifs pour réduire
encore considérablement la complexité. LTE ne pas mettre en oeuvre un modèle
de symboles de référence uniforme exact: en particulier, ce n’est pas le cas partout
dans le DC où les symboles de référence sont inégalement espacées. Cela implique
qu’un plus grand nombre de coefficients doivent être stockés.

Estimateur MMSE désadapté Exponentiel PDP de canal eéalistes sont sus-
ceptibles de décroissance exponentielle plutt que uniforme comme le suppose le
MMSE désadpté discuté ci-dessus. Nous proposons donc une estimateur MMSE
désadapté exponentiel qui se rapproche de Ch par une matrice diagonale dont les
entrées sont de forme exponentielle. Ceci est fait en utilisant (A.26) et prenant:

R =
σ2
z̃p

σ2
h

C−1L,exp and CL,exp = γ · diag
(

e−n
ln(2L)

L

)
(A.31)
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avec 0 ≤ n ≤ L− 1 and γ = 1/
∑L−1

n=0 e−n
ln(2L)

L . Ainsi, il est représenté par:

ẑexp−MMSE = FL

(
FH

p Fp +
σ2
z̃p

σ2
h

C−1L,exp

)−1

FH
p ẑp (A.32)

À nouveau, l’erreur et la matrice de covariance d’erreur peuvent être déduites de
(A.13) et (A.14) en remplaçant B, G et R avec leurs expressions correspondantes.

Par rapport à l’hypothèse de la distribution de canal uniforme d’avant,
l’estimateur révèle être moins sensible à la longueur de canal et a sa mauvaise es-
timation due à sa nature exponentielle decroissante et donc moins de versions de

l’inverse de la matrice

(
FH

p Fp +
σ2

z̃p

σ2
h

C−1L,exp

)
doivent etre calculées et stockées.

Estimateur MMSE simplifié Comme déjà mentionné, la mise en oeuvre directe
de l’estimateur MMSE dans (A.27) exige la solution de deux problèmes:

1. L’ estimation de la variancedu bruit et des statistiques de deuxième ordre du
canal;

2. L’inversion on-line inversion d’une large matrice L× L

SMMSE = FH
p Fp + σ2

z̃pCh
−1 (A.33)

chaque fois que la statistique du canal et du bruit changent.

En supposant que les estimations nécessaires disponibles, Nous proposons ici
une solution originale à surmonter en particulier le deuxième problème. L’idée
derrière notre estimateur MMSE simplifiée réside dans séparer le problème du
rapprochement de (A.33) en, d’abord, l’examen d’une initialisation fixe matrice
Sinitialisation, comme détaillé ci-dessous, puis dans l’amélioration de la première ap-
proximation par l’insertion, l’apport d’une partie du PDP correspondant aux co-
efficients forts, notés coefficients capturés dans ce qui suit, sur la diagonale de
l’initialisation matrice Sinitialisation. Quant aux méthodes approximées précédentes,
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la dépendance de la variance du bruit peut être maintenue par la quantification du
SNR en sous-gammes et stocker un ensemble limité de valeurs de Sinitialisation. Nous
définissons:

Sinit = FH
p Fp + σ2

z̃pCinit
−1 (A.34)

où Cinitialisation = βIL et β est une constante soigneusement choisie pour fournir une
performance suffisamment bonne de l’estimateur.

La matrice SMMSE peut être approchée par:

SSMMSE = Sinit + D∆SDH (A.35)

où

1. D est une matrice sélecteur L×M appelée après le rle qu’elle joue dans la
sélection des positions où les éléments du profil de PDP (qui correspondent
aux M trajets capturés) vont être situés sur la diagonale de Sinitialisation. La
première colonne de la matrice D contient un 1 dans la position qui correspond
à l’indice du prémier trajet capturé et zéros partout ailleurs et la seconde
colonne contient un 1 seulement dans la position qui correspond à l’indice du
second trajet capturé et de zéros ailleurs. Et ainsi de suite.

2. ∆S est une matrice diagonale contenant l’inverse de la puissance des co-
efficients capturés après élimination de l’effet de l’initialisation, à savoir
∆Sm,m = σ2

z̃p

(
C−1

hm
− β−1

)
où hm est un vecteur qui contient les M coeffi-

cients capturés.

Appliquant, le Lemme d’inversion de matrice, on peut écrire:

S−1
SMMSE = S−1

init − S−1
initD

(
DHS−1

initD + ∆S−1
)−1

DHS−1
init (A.36)

Il est à noter que le nombre de taps importants en termes de puissance est en général
très inférieur à la longueur totale du canal. Ainsi, l’importance de l’estimateur
proposé découle du fait que nous profitons de cette propriété pour réduire la taille
de la matrice à inverser en ligne à partir de L× L à M×M avec M� L. Sachant
que le nombre d’opérations nécessaires pour inverser une matrice est proportionnelle
au cube de sa taille, nous en déduisons que notre estimateur réduit de manière
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significative (à partir de L3 à M3), la puissance de calcul par rapport à la méthode
traditionnelle.

Un autre aspect important de l’estimateur proposé est que la précision de
l’approximation peut être balancée avec le complexité en contrlant le nombre de
coefficients capturées. Par conséquent, plus le nombre des taps capturés est grand
plus est grande la taille de la matrice à inverser en ligne et vice versa.

Enfin, le CTF estimé est donné par:

ẑSMMSE = FLSSMMSE
−1ẑp (A.37)

En comparant (A.37) avec (A.12), le MMSE Simplifié consiste dans le choix
de:

B = FL , G = Fp and R = σ2
z̃pCinit

−1 + D∆SDH (A.38)

Les exressions de l’erreur et de sa matrice de covariance peuven être obtenue
en substituant (A.38) en (A.13) et (A.14).

A.1.3 Résultats de simulation

Nous comparons les performances des estimateurs par moyen de l’erreur quadra-
tique moyen normalisé tronqué (TNMSE). Pour chaque estimateur Ẑ, le TNMSE
est calculée à partir de sa matrice de covariance Cz̃ et le vrai canal H = FLh en
utilisant les expressions suivantes:

TNMSEẑ =
Ttr (Cz̃)

Ttr
(
FLChFH

L

) (A.39)

où avec Ttr{·} on dénote l’operatuer tronqué de trace consistant de la matric de
covariance tronquée en considerant seulement les K sous-porteueses utilisées.
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Pour comparaison, dans la figure A.2, on utilise un filtre de pusle-shaping de la
forme raised-cosine avec un facteur de roll-off de β = 0.2, le canal SCMA et un setup
LTE pour 10 MHz de bande [28]. Pour ce qui concerne l’estimateur LS regularisé, on
utilise un terme de regularization égale à α = 0.1. Les ligne connectées représentent
le TNMSE théoretique pendant que le points représentent les resultats de simulation.
On peut tout de suite conclure que les méthodes IFFT et d’interpolation linéaires
ont les moindres performances.

En outre, l’estimateur LS régularisé et le MMSE désadapté s’avèrent performer
exactement à égalité et la courbe TNMSE de ce dernier est donc omise dans la figure
A.2. Le’estimateur MMSE désadapté exponentiel et le MMSE simplifiée offrent un
gain de performances sur tous les autres estimateurs sous-optimaux mais celui-ci se
révèle être meilleur dans la région de faible SNR.

Pour mettre en évidence la robustesse de notre MMSE simplifiée, la figure A.3
compare sa performance à celle de du MMSE désadapté où le MMSE est utilisé en
tant que référence.

Le TNMSE calculée sur l’ensemble des sous-porteuses cache en réalité le
comportement de chaque estimateur pour un problème bien connu pour des tech-
niques agissantes dans le domaine fréquentiel: l’effet de bande-garde. Ceci peut
être représenté par le phénomène de Gibbs [66] dans l’approximation d’une série
de Fourier de longueur finie; suivant cette approche, la figure A.1 montre que
l’estimation de canal MMSE basée souffre le moins de dégradation aux bords de
la bande bande, tandis que toutes les autres méthodes présentées sont fortement
affectées.

La figure A.4 compare les performances des methodes à base de MMSE en
terme de taux d’erreur de bits avec rate un recepteur MF et 1/3 Turbo Coding avec
longueur de code de 4992 bits for QPSK modulation. Les perfromances du MMSE
simplifié surpasse celles des autres. than 10−2.
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Figure A.1: Perfromances des estimation de canal, comportement aux bords de la
bande.
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Figure A.2: CTF TNMSE versus SNR.

Figure A.3: CTF TNMSE versus SNR.
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Figure A.4: BER versus SNR.
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A.2 Détection OFDM avec canal variant rapide-

ment

A.2.1 Introduction

OFDM permet une allocation flexible de la bande ainsi que architectures à faible
complexité pour l’emetteur et le recepteur. Toutefois, la performance d’un recp-
teur OFDM a faible complexite est fortement impactee en presence d’un canal de
propagation temps-variant par la hausse de l’interference inter-porteuse (ICI). Ces
conditions se produisent en présence d’une grande étalement Doppler par rapport
au taux de symbole OFDM en raison de la vitesse du récepteur mobile. le résultat
variant dans le temps rapide des rendements de canaux de propagation de significatif
ICI. Dans la pratique, l’augmentation ICI empêche schémas classiques de récepteurs
OFDM à partir de détecter de manière fiable le signal désiré. Ainsi techniques les
plus avancées de péréquation du récepteur sont nécessaires pour atténuer l’effet de
l’ICI.

Techniques d’égalisation ICI linéaire optimale impliquent généralement in-
version complète de la matrice de canal complexe. Dans les systèmes de
télécommunication OFDM existants, la taille typique de la nécessaire transformation
de Fourier discrète rend une telle opération d’inversion de matrice de canal complet
prohibitif complexe pour la mise en oeuvre pratique. Ainsi plusieurs approches ont
été adressées à réduire la complexité tout en conservant des performances accepta-
bles. À cette fin, l’utilisation du temps-domaine fenêtrage de l’OFDM signal reçu a
été montré pour limiter la durée importante de l’ICI, générant des matrices bandees
de transfert de canal. En outre, itératif d’égalisation et des techniques de détection
ont été proposées pour réduire davantage la complexité du récepteur fonctionnant
dans le domaine fréquentiel, voir par exemple [65], [67] et les références citées, ou
dans le domaine temporel comme dans [68], [69].

Nous introduisons un cadre général pour itérative annulation ICI. L’analyse de
la performance de détection, la vitesse de convergence, et la complexité fournissent
des lignes directrices pour dériver roman rapide convergence des algorithmes itératifs
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d’annulation ICI dans le temps et en fréquence. Nous montrons que la bonne pre-
conditioning exploitant la structure intrinsèque du signal OFDM et les rendements
ICI à la performance de détection quasi optimal avec très rapide de convergence
et de complexité réduite algorithmes itératifs. En outre, nous interprétons tech-
niques de fenêtrage sous une perspective plus générale par rapport à la modélisation
d’extension de base (BEM) du canal variant dans le temps [77]. Dans la section
A.2.2, nous introduisons le modèle de signal du modèle de système OFDM considéré
envisagé d’inclure le BEM de canal variant dans le temps. Ensuite, nous rappelons
techniques d’égalisation linéaires connus et nous tirons des approches itératives ICI
annulation dans la section A.2.4 et A.2.5 respectivement. La performance et la com-
plexité des techniques présentées sont discutés dans la section A.2.6 avec l’appui des
résultats numériques.

A.2.2 Modèle du système et du signal

Nous considérons que la transmission sur un variant dans le temps, la fréquence
sélective canal à évanouissement avec impulsion en temps continu réponse h(t, τ) =∑

m αm(t)ψ(τ − τm) supposé obéir au modèle de diffusion stationnaire non corrélés
au sens large (WSSUS) 2.3.1, ou ψ(τ) représente l’émission-récepteur frontal filtre
passe-bas équivalent, τm représente the p-ième retard de trajet, αm(t) est le coeffi-
cient de canal complexe variant dans le temps associée au m-ième trajet du canal
de propagation, respectivement. Nous désignerons h[k, l] que la réponse impulsion-
nelle à temps discret correspondant passe-bas échantillonné, et assumer h[k, l] pour
être bien approchée par un modèle de réponse impulsionnelle finie avec un retard
maximum la propagation de L échantillons. Ensuite, nous supposons un système
OFDM classique avec cyclique préfixe de durée Ncp ≥ L pour éviter l’interférence
inter-symbole. En laissant N représenter le nombre de sous-porteuses, la durée du
symbole OFDM est donnée par Nblock = N +Ncp. Le k-ième symbole OFDM emis

s[k] = [s[kN ] . . . s[kN −N + 1]]T, où (·)T représente l’operation de transosition,
comprenant le symboles codés s[i] à la sortie du codage de canal, de l’entrelacement
et du mappage sur une constellation finie S supposé i.i.d. avec une énergie unitaire,
est modulé par la N × N matrice unitaire de la transformée discrète de Fourier F
de manière à obtenir
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x[k] = F Hs[k] (A.40)

où (·)H denote l’operation de transposée Hermitienne. Sans tenir compte du préfixe
cyclique, le n-ième symbole reçu peut s’écrire

r[k] = H [k]x[k] + z[k] (A.41)

où r[k] = [r[kN ] . . . r[kN − N + 1]]T, H [k] représente la N × N matrice de
convolution du canal dans le domaine du temps , et z[k] = [z[kN ] . . . z[kN−N+1]]T

représente un bruit additif Gaussien complexe et circulairement symmetrique tel que
z[k] ∼ NC(0, σ2

zI).

Par souci de la simplicité d’écriture et sans perte de généralité, nous allons
supprimer l’index de temps k par la suite. Ainsi, l’équation (A.41) peut être réécrite
comme suit

r = HF Hs + z (A.42)

Car, en général L� N , la matrice de canal h aura tendance à être clairsemée
et bandes. Lorsque le canal est invariante dans le temps au sein d’un symbole OFDM,
bdmh est circulante et donc la dans le domaine fréquentiel matrice de canal, FhF H,
est diagonale.

Cette caractéristique est largement exploitée pour effectuer l’égalisation a co-
efficient unique dans le domaine fréquentiel.

En cas de variation en temps du canal, h n’est plus circulante et cela résulte
dans une matrice de canal pleine dans domaine de fréquence. Ainsi, l’approche
classique d’égalisation OFDM est très égalisation sous-optimale et plus complexe
est nécessaire (voir [65], [67] et les références citées).



A.2. DÉTECTION OFDM AVEC CANAL VARIANT RAPIDEMENT 125

A.2.3 Représentation BEM du canal

La matrice de convolution du canal peut être reformulée comme

H =
L−1∑
l=0

Ql diag {hl} (A.43)

où hl = h[k, l] = [h[kN, l] . . . h[kN −N + 1, l]]T comprend le l-ieme trajet du
canal temps-variant et Ql denote la correspondante N × N matrice circulante des
delais avec des uns dans la l-ieme diagonale inferieure et zeros ailleurs, c.a.d. avec des
elements [Ql]ij = 1 if j = (i−l)modN et zeros autrement. Le vecteur correspondant à
l’évolution temps-variante de la l-ième prise de canal peut être exprimée en fonction
de la BEM comme suit

hl = Bvl =
P−1∑
p=0

vl,pbp (A.44)

où le N×P matrix B = [b0 b1 . . . bP−1] denote la base deterministe engendré par les
P vecteurs complexes bp for p = 0, . . . P − 1, et vl = [vl,0 . . . vl,P−1]T les coefficients
stochastiques décrivants les l-ème comportement du coefficient de canal pour un
bloc OFDM donné sur les fonctions de base P .

Puis, en substituant (A.43) en (A.44)

H =
L−1∑
l=0

(
P−1∑
p=0

vl,pdiag {bp}

)
Ql

=
P−1∑
p=0

diag {bp}
L−1∑
l=0

vl,pQl

(A.45)

En definissant
Bp = diag {bp}

et sommant sur les L coefficients de canal, cela resulte en

H =
P−1∑
p=0

BpF
HDpF (A.46)

Donc, le signal reçu r of (A.42) peut être exprimé en accordance avec la BEM du
canal comme

r =
P−1∑
p=0

BpF
HDps + z (A.47)
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∑L−1
l=0 vl,pQl étant une matrice circulante, alors

Dp = F

L−1∑
l=0

vl,pQlF
H

est une matrice diagonale.

La figure A.5 dépeint le modèle du signal OFDM reçu dans la représentation
BEM du canal.

s

DP−1 F H BP−1

D1 F H B1

D0 F H B0

+

z

+ r

... ... ...

Figure A.5: Représentation BEM du signal OFDM reçu

A.2.4 Égalisation Linéaire

Dans cette section, on rappelle brièvement l’égalisation Minimum-Mean-Square-
Error (Linéeaire, L-MMSE), Zero Forcing (ZF), and Matched Filter (MF).

En laissant H = HF H, l’estimé de la sequence OFDM transmise devient

ŝMMSE =
(
HHH + σ2

zI
)−1 HHr (A.48)

ŝZF =
(
HHH

)−1 HHr (A.49)

ŝMF = HHr (A.50)

pour l’égalisation MMSE, ZF, and MF respectivement.
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Dans l’assomption de connaissance parfaite du canal et de ses statistiques
de deuxième ordre, les estimés MMSE et ZF (A.48) (A.49) engendrent l’inversion
d’une matrice pleine qui en général nécessite une complexité de l’ordre de O (N3)
en utilisant des techniques classiques (comme l’élimination de Gauss-Jordan [76]).
Danse les deux cas, des techniques iteratives peuvent être adoptées pour éviter
l’inversion complète de la matrice ainsi réduisant la complexité du récepteur comme
détaillé dans la suite.

A.2.5 Cancellation itérative de l’ICI

Un large nombre de techniques itératives pour resoudre les systèmes linéaire ont
été proposé dans la littérature, voir [71]. Pour une technique donnée, la complexité
dépend du nombre d’operations par itération et le nombre d’itération nécessaires
pour atteindre la précision voulue. Compte tenu de ces considérations, la vitesse de
convergence est un aspect primordial pour la conception d’un algorithme itératif.
En considérant un système linéaire générique de la forme

Ax = b (A.51)

où le vecteur x est la séquence a estimer, b est le vecteur observé, et la matrice
A est la matrice de transfert entrée-sortie, que l’on assume de rang plein avec di-
mensions N × N pour notre tractation. Ainsi, pour toute méthode d’estimation
itérative, la convergence des estimés de la séquence x̂(k) → x est gouvernée par
les proprietés spectrales de la matrice A. Une métrique utilsée communément
pour ces proprietés spectrales est le nombre de conditionnement (CN) κ (A), defini
comme le rapport entre le plus grand et le plus petit des valeurs propres de A,
κ (A) = |λmax(A)/λmin(A)| [71]. Le plus κ (A) sera proche de 1, le plus rapidement
un algorthme itératif convergera.

En particulier, les problèmes d’égalisation (A.48) et (A.49) peuvent être ex-
primé par la forme (A.51) (

HHH + σ2
zI
)
ŝMMSE = HHr (A.52)(

HHH
)
ŝZF = HHr (A.53)
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Sous ces conditions, la convergence de toute approche itérative à la solution
de ces deux problèmes dépendra de κ(HHH) = κ(H)2 dans la région de haut SNR
(σ2

z → 0). Dans le cas du système OFDM consideré, la matrice H est en général
de rang plein. Le problème ZF (A.53) peut être exprimé d’une facon équivalente
comme

HsZF = r (A.54)

dont le CN est κ(H), et comme κ(H) ≤ κ(HHH), un algorithme itératif appliqué
a (A.54) covergera plus rapidement qu’en appliquant (A.52) et (A.53).

On observe que le problème d’égalisation en (A.54) est characterisé par les
propriétés de la matrice du canal associée à la transmission OFDM. Au contraire,
les problèmes d’égalisation MMSE et ZF de (A.52) et (A.53) sont sur -conditionnés
dans le domaine du carré de la matrice de canal. Dans l’état d’équilibre (nom-
bre d’itérations qui vont à l’infini en supposant convergence), la solution ZF donne
généralement ddes performances pire que la solution MMSE en termes de perfor-
mances de détection. Toutefois, lorsque les problèmes ZF et MMSE sont résolus par
des techniques itératives, on doit considérer la performance réelle de détection (ou
de l’exactitude de l’estimation) pour un nombre fini, limité d’itérations.

Les techniques itératives peuvent grandement profiter d’un
préconditionnement approprié visant à réduire le CN et pour permettre une
convergence plus rapide. La méthode itérative est donc appliquée à un système
linéaire preconditionné derivé de (A.51) dans

PAx = Pb (A.55)

avec P étant la matrice de preconditionnement telle que κ (A) ≥ κ (PA) ≥ 1 et
avec PA = 1 if P−1 = A.

Plusieurs technique de preconditionnement existent [71]. Parmi celles-ci, une
méthode simple et directe est le precondtionnement de Jacobi où P est choisi pour
etre diagonal et tel que diag

{
P−1

}
= diag {A} if [A]ii 6= 0 for i = 1, . . . , N .

Le preconditionnement de Jacobi indique que l’opération de préconditionnement
consiste à environ la résolution du problème de matrice inverse A et transforme le
problème original dans un mieux conditionné.
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Égalisation itérative preconditionnée ZF À la lumière de ce qui précède,
dans [68] une approche pertinente du problème ZF itératif d’annulation de ICI est
proposé. Même si le travail référencé ne le mentionne pas, la méthode décrite consiste
en un algorithme itératif diagonale pré-conditionné ZF. Le pré-conditionnement est
composée d’une matrice diagonale dont les éléments sont exactement ceux de la
matrice diagonale de l’inverse de la matrice de canal dans le domaine fréquentiel

diag {P } = diag
{(

FHF H
)−1
}

. La figure A.6 dépeint le diagramme a blocs de ce

recepteur. Notez que l’étage H est realisé utilisant la BEM du canal comme decrit
par l’équation (A.46) et une base polynomiale. Fait intéressant, la complexité de
cette approche est linéaire à la taille du bloc OFDM N .

r F P

w0 ·

H F P

w1 ·

+

H ...

...

F P

wK ·

+ ŝP−ZF

Figure A.6: Recepteur itératif ZF pré-conditionné

La performance de la méthode d’annulation d’ICI ZF préconditionné diagonale
itérative [68] peut être améliorée à plusieurs égards. D’abord la diagonale de pré-
conditionnement, bien que de faible complexité cède à un CN augmenté par rapport
à κ(H). Deuxièmement, il est intrinsèquement sous-optimale par rapport au MMSE
depuis la tentative d’approcher la solution ZF. Dans ce qui suit, nous abordons plus
rapide convergence des techniques itératives ICI approchant les performances de
détection optimale MMSE pour une complexité comparable.

Cancellation Iterative Preconditionée de l’ICI par BEM-MMSE Dans
cette section, nous voulons nous rapprocher de la solution optimale MMSE par des
techniques itératives combinant différentes formes préconditionnement locale MMSE
et la combinaison basée sur la structure BEM. Quant à la méthode présentée dans
la section A.2.5, le canal BEM nous permet de dériver ici expressions pour un pré-
conditionneur amélioré encore à une complexité abordable. En effet, le canal BEM
peut être exploitée sur le cté du récepteur et interprété comme un multiple fenêtrage
du signal reçu lorsque des fonctions de fenêtrage l’ correspond au conjugué de la base
Bp. Laissez le vecteur de sortie de chaque branche de fenêtrage être définie comme



130 APPENDIX A. RÉSUMÉ DE THÈSE

la projection du signal reçu sur le p-ème fonction de base

yp = FBH
p r (A.56)

alors le vecteur élargi d’observation du signal reçu est obtenu en empilant chaque
vecteur issu d’une branche de fenêtrage dans un vecteur PN × 1 comme

y =


y0

y1
...

yP−1

 =


FBH

0

FBH
1

...
FBH

P−1

 r = Ur (A.57)

Compte tenu de la représentation BEM de l’équation (A.46), nous estimons
le symbole s[n] à la sous-porteuse n en adoptant un filtre FIR MMSE local fn
dans tous les tons pour toute sortie de chaque base. L’exploitation de la structure
particulière de ICI dans la représentation BEM du canal peut limiter la complexité
d’une égalisation dans toutes les sous-porteuses, en choisissant correctement un sous-
ensemble des éléments du vecteur y que ȳn = Sny avec Sn être une matrice FIR de
sélection L × PN obtenue par extraction de LFIR lignes de la matrice identité IPN

exploiter de manière optimale la structure de U pour un LFIR donné et sous-porteuse
n pour avoir

ŝ[n] = fT
n ȳn (A.58)

Donc, les coefficients du filtre MMSE per-ton sont calculés tels que

fT
n = E {s[n]ȳH

n}R−1
ȳnȳn

(A.59)

où Rȳnȳn = E {ȳnȳH
n}

ce qui donne

fT
n = 1nHHUHST

n

[
SnU

(
HHH + σ2

zI
)
UHST

n

]−1
(A.60)

avec 1n étant le vecteur 1×N contenant 1 dans la n-ieme position et 0 ailleurs. Il est
remarquable de mentionner que l’expression ci-dessus découle de la multiplication
d’un vecteur 1×LFIR E {s(n)ȳH

n} et une LFIR×LFIR matrice inverse de Rȳnȳn qui
varie selon la sous-porteuse.
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Néanmoins, celui-ci peut être calculée exigeant seulement (2L− 1)L2
FIR mul-

tiplications en raison de la nature a bandes de HHH + σ2
zI et les LFIR éléments

différents de zero de SnU .

Par ailleurs, le calcul des coefficients de filtrage MMSE peut exploiter la
cohérence entre les sous-porteuses et être faite par l’application d’une méthode
récursive. Une approximation suffisamment précise de l’inverse de la matrice Rȳnȳn ,

i.e. ‖ILFIR
−R̂

−1

ȳnȳnRȳnȳn‖ ≤ ε avec ε aussi faible que souhaité, peut être calculé en
utilisant l’approximation de l’inverse sur la sous-porteuse n − 1 que l’initialisation
et en appliquant la formule suivante itérative: R̂

−1(0)

ȳnȳn = R̂
−1

ȳn−1ȳn−1

R̂
−1(i)

ȳnȳn = 2R̂
−1(i−1)

ȳnȳn − R̂
−1(i−1)

ȳnȳn RȳnȳnR̂
−1(i−1)

ȳnȳn

(A.61)

à utiliser dans (A.73) pour calculer les coefficients de filtrage.

Tous les filtres coefficients peuvent être empilés dans une matrice clairsemée
matrice de filtrage

G =


fT

0 S0

fT
1 S1
...

fT
N−1SN−1

 (A.62)

La matrice résultante du produit de GU peut donc être vue comme un pre-
coonditionneur amélioré de type BEM-MMSE de H . En outre, la complexité
associée à l’opération de filtrage est proportionnelle à P (N +N log2N).

En effet, cette approche permet d’obtenir beaucoup mieux préconditionnement
que celui présenté précédemment en s’appuyant sur diagonale préconditionnement.
Son efficacité est illustré à la figure A.7 où la distribution-fonction cumu-
lative (CDF) du CN pour préconditionnement BEM-MMSE est comparée à
la fois le préconditionnement diagonale expliqué ci-dessus et au canal sans
préconditionnement.
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Figure A.7: Nombre de conditionnement pour preconditionnement diagonal et BEM-
MMSE

Cette nouvelle approche peut être directement branché sur la méthode
décrite dans la section A.2.5 pour donner le récepteur itératif polynmiale station-
naire représenté dans la figure A.8 dont les performances sont considérablement
améliorées, comme le montrent les résultats des simulations de la section A.2.6,
mais encore de la complexité abordable que la méthode originale.

r U G

w0 ·

H U G

w1 ·

+

H ...

...

U G

wK ·

+ ŝS−P−BEM

Figure A.8: Recepteur itératif polynomial preconditionné BEM-MMSE

Cancellation Iterative Non-stationnaire de ICI par préconditionnement
BEM-MMSE Le même schéma de régime peut être appliqué de manière itérative
dans le domaine temporel pour améliorer la performance d’annulation de ICI selon
le schéma de la figure A.9.
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r U G0

W 0

H +
-

+
U G1

W 1

+

H +
-

+
...

...

...

+
-

+
U GK

WK

+ ŝNS−P−BEM

Figure A.9: Recepteur à Cancellation Iterative Non-stationnaire de ICI par
préconditionnement BEM-MMSE

Dans ce cas, la matrice de filtrage MMSE G est optimisée à chaque étage.
Prenant le premier signal résultant de l’itération:

y1 = U (r −Hŝ0) (A.63)

et ŝ0 calcule comme en (20), on obtient donc

y1 = U (r −HG0y0)

= (I−UHG0)Ur
(A.64)

et, en definissant U 1 = (I−UHG0)U , nous pouvons réutiliser l’expression (18)
pour trouver les coefficients MMSE de première itération. Il est facile de vérifier que
lors de la deuxième itération, nous aurions

U 2 = (I−UHG1 + UHG1UHG0)U

= [I−UHG1 (I−UHG0)]U
(A.65)

Au stade générique k, les coefficients peuvent alors être calculée par

fT(k)
n = 1nHHUH

kST
n

[
SnU k

(
HHH + σ2

zI
)
UH
kST

n

]−1
(A.66)

et obtenir Gk comme en (A.74).

L’estimation globale du signal après K itérations peut alors être obtenue par
MMSE combinant des estimations à chaque étape. Laissez

X =


G0U 0

G1U 1
...

GK−1UK−1

 (A.67)
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alors, le vecteur de coefficients K × 1 pour la n-ieme sous-porteuse cTn peut être
calculée par

cTn = 1nHHXHST
n

[
SnX

(
HHH + σ2

zI
)
XHST

n

]−1
(A.68)

Avec Sn étant cette fois la matrice K×KN qui selectionne la sous-porteuse n pour
toute les ostries de chaque étage d’itération.

On obtient donc la matrice de ponderation N ×K par

W =


cT0
cT1
...

cTN−1

 (A.69)

et d’en tirer les matrices de pondération par-étape en prenant les colonnes de W =
[w0 · · ·wK−1] pour obtenir l’estimation globale

ŝNS−P−BEM =diag {w0} ŝ0 + · · ·+ diag {wK−1} ŝK−1

=W 0ŝ0 + · · ·+ W k−1ŝK−1

(A.70)

Cancellation d’Interférence Parallèle par BEM-MMSE On pourrait penser
à effectuer une détection de PIC dans le domaine temporel et la figure A.10 montre
le schéma de principe du récepteur PIC en utilisant hard-décisions comme critère
de décision non-linéaire.

En règlant Hp = BpF
HDp and H =

∑P−1
k=0 Hk = HFH, laissez

H0̄ = H−H0 (A.71)

representer la partie temps-variante de la matrice de canal assuming an orthogonal-
polynomial basis, the coefficients of the PIC filtering matrix Ġ are computed ac-
cording to a modified formula assuming perfect cancellation of the ICI

en supposant une base polynme orthogonal, les coefficients de la matrice de
filtrage PIC Ġ sont calculés selon une formule modifiée en supposant annulation
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parfaite de l’ICI

Ġ =HH
0 UH

0

[
U0

(
H0HH

0 + σ2
zI
)
UH

0

]−1

=HH
0

[
U0

(
H0HH

0 + σ2
zI
)]−1

(A.72)

où Ġ est une matrice diagonale.

r +
+

-
BH

0 F Ġ

DEC

ŝPIC

DP−1FHBP−1

D1FHB1

+

.........

Figure A.10: Détecteur dans le domaine du temps de type PIC

Récepteur Preconditionné MMSE par méthode de gradient conjugué
Par souci d’exhaustivité et de comparaison, il est intéressant de dériver des tech-
niques itératives d’annulation ICI opérant dans le domaine de la matrice de canal
carré et résoudre le problème du MMSE l’état d’équilibre tel qu’il figure dans
l’expression (A.52). Même s’il n’est pas attrayant en raison de la complexité
inhérente supplémentaire requise et réduit les propriétés de convergence, elles sont
toujours pertinentes pour démontrer les déclarations dans A.2.5.

Remarquant que la main gauche du système linéaire de détection MMSE dans
(A.52) est hermitienne, l’algorithme de Gradient Conjugué (CG) peut être appliqué.

Une préconditionnement bandé calculé avec le développement similaire à celui
de BEM-MMSE peut être obtenu pour un récepteur CG itératif préconditionné [71],
dont l’algorithme est présenté dans la figure A.11. En laissant

fT
n = 1nHHHST

n

[
SnHH

(
HHH + σ2

zI
)
HST

n

]−1
(A.73)

et

Ğ =


fT

0 S0

fT
1 S1
...

fT
N−1SN−1

 (A.74)
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INPUT: H, Ğ, σ2
z , r, K

OUTPUT: sK

# Initialize parameters

r0 = HHr
z0 = Ğr0

d0 = z0

s0 = 0N
# Main loop

for k = 0 to K− 1 do
αk =

rH
kzk

dH

k

(
HHH+σ2

zI
)
dk

sk+1 = sk + αkdk
rk+1 = rk − αk

(
HHH + σ2

zI
)
dk

zk+1 = Ğrk+1

βk =
rH
k+1zk+1

rT
kzk

dk+1 = zk+1 + βkdk
end for

Figure A.11: Algorithme du Gradient Conjugué Preconditionné

pour un choix approprié de la matrice de selection Sn et longueur du filtre LFIR.

A.2.6 Resultats de simulation

Nous comparons les méthodes proposées dans ce document au moyen de simula-
tions de Monte Carlo en supposant un préfixe cyclique OFDM configuration avec
N = 128 sous-porteuses, un canal à trajets multiples avec L = 4 uniforme avec un
profil de retard de puissance et de spectre Doppler Jakes avec la fréquence Doppler
normalisée de 0.1 par rapport à l’espacement de sous-porteuse. Nous supposons
un polynme orthogonal BEM de canal commande avec p = 2. La performance est
mesurée en termes de taux d’erreur de bits sur séquences non codés modulés en
QPSK. Le SNR est défini comme le rapport 1/σ2

z . Les méthodes présentées dans
ce document sont évalués pour des longueurs de filtrage par préconditionnement
BEM-MMSE de LFIR = 3 et LFIR = 5. Un certain nombre d’itérations K = 1 et
K = 3 sont jugés pour permettre une comparaison équitable avec la méthode de
[68]. Pour tous les résultats de simulation présentés dans les figures A.12 - A.15,
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la technique d’annulation iterative de ICI non-stationnaire par preconditionnement
BEM-MMSE (NS-P-BEM) fournit toujours les meilleures performances globales par
rapport à la méthode de référence d’inversion de la matrice entière MMSE. La
méthode CG préconditionnée (P-CG), en revanche, offre toujours la plus mauvaise
performance avec le même nombre d’itérations et des longueurs de filtrage. Le ZF it-
eratif Préconditionné (P-ZF) de [68] est considérablement améliorée par l’utilisation
de préconditionnement stationnaire BEM-MMSE (SP-BEM) et le récepteur PIC
itératif constitue un bon compromis en termes de performances et de complexité.
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Figure A.12: Comparaison de performances des methodes iteratives avec 1 iteration,
LFIR = 5
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Figure A.13: Comparaison de performances des methodes iteratives avec 3 itera-
tions, LFIR = 5
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Figure A.14: Comparaison de performances des methodes iteratives avec 1 iteration,
LFIR = 3
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Figure A.15: Comparaison de performances des methodes iteratives avec 3 itera-
tions, LFIR = 3
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Bibliography

[1] R. W. Chang, Synthesis of band-limited orthogonal signals for multichannel data
transmission, Bell Systems Technical Journal, vol. 46, pp. 1775-1796, December
1966.

[2] B. R. Saltzberg, Performance of an Efficient Parallel Data Transmission Sys-
tem, IEEE Trans. on Communications, vol. 15, no. 6, pp. 805-811, Dec. 1967.

[3] S. B. Weinstein and P. M. Ebert, Data Transmission by Frequency-Division
Multiplexing using the Discrete Fourier Transform, IEEE Trans. on Communi-
cations, vol. 19, no. 5, pp. 628-634, Oct. 1971.

[4] A. Peled, A. Ruiz, Frequency domain data transmission using reduced compu-
tational complexity algorithms, Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, pages: 964-967, Denver, CO, 1980.

[5] P. Bannelli and S. Cacopardi, Theoretical Analysis and Performance of OFDM
Signals in Nonlinear AWGN Channels, IEEE trans. on Comm., VOL. 48, No.
3, March 2000.

[6] L. J. Cimini, Analysis and simulation of digital Mobile Channel using Or-
thogonal Frequency Division Multiplexing, IEEE Trans. in comm., vol. 33, pp.
665-675, july 1985.

[7] X. Li and L. J. Cimini, Effects of clipping and filtering on the performance of
OFDM, IEEE Commun. Lett., vol. 2, no. 5, pp. 131- 133, May 1998.

[8] L. Wane and C. Tellambura, A simplified clipping and filtering technique for
PAR reduction in OFDM systems, IEEE Signal Processing Lett., vol. 12, no.
6, pp. 453-456, June 2005.

141



142 BIBLIOGRAPHY

[9] A. Gatherer and M. Polley, Controlling clipping probability in DMT transmis-
sion, in 31st Asilomr Conf on Signal, System and Computers, vol. 1, Pacific
Grove, CA, Nov. 2-5, 1997, pp. 578-584.

[10] J. Armstrong, Peak to average power reduction for OFDM by repeated clipping
and frequency domain filtering, IEE Elect. Lett., vol. 38, no. 5, pp. 246-247,
Feb. 2002.

[11] A. Jayalath, OFDM for wireless broadband communications (peak power reduc-
tion, spectrum and coding), P h D dissertation, School of Computer Science
and Software Engineering, Monash University, May 2002

[12] A. Jones, T. Wilkinson, and S. Barton, Block coding scheme for reduction of
peak to mean envelope power ratio of multicarrier transmission schemes, IEE
Elect. Lett., 01. 30, no. 25, pp. 2098-2099, Dec 1994.

[13] H. Ochiai, Analysis and reduction of peak to average power ratio in OFDM sys-
tems, Ph.D dissertation, The Graduate School of Engineering, The University
of Tokyo, Mar 2001.

[14] C. Tellambura, Use of m-sequence for OFDM peak-to-average power ratio re-
duction, IEE Elect. Lett., ”01. 33, no. 15, pp. 1300-1301, July 1997

[15] J. Heiskala and J. Terry. OFDM Wireless LANs: A theoretical and practical
guide, SAMS Publishing, 2001.

[16] Y. Li and L. J. Cimini, Bounds on the Interchannel Interference of OFDM in
Time-Varying Impairments, IEEE trans. on Comm., VOL. 49, No. 3, March
2001.

[17] X. Cai and G. B. Giannakis, Bounding Performance and Suppressing Intercar-
rier Interference in Wireless Mobile OFDM, IEEE trans. on Comm., VOL. 51,
No. 12, March 2003.
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