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Abstract—Utilizing the real-valued parametrization of each
transmitter’s efficient beamforming vectors, we propose a de-
centralized resource allocation scheme in the multiple-input
single-output interference channel. The scheme is motivated by
bargaining concepts in game theory. The aim of these concepts is
to improve the joint payoff of the users from the Nash equilibrium
outcome. In each bargaining-step, each user proposes a strategy.
A user accepts any proposal if it increases his payoff. Otherwise,
new proposals are made. When all proposals are accepted, a new
bargaining-stage begins. We prove the scheme’s convergence and
demonstrate its performance by simulations. In comparison to
previous approaches, our bargaining outcome is arbitrarily close
to the Pareto boundary of the achievable single-user rate region.
We further discuss the control overhead and complexity of this
scheme.

I. INTRODUCTION

We consider a setting in which two transmitter-receiver

pairs utilize the same spectral band simultaneously. Each

transmitter is equipped with N transmit antennas and each

receiver with a single antenna. This setting corresponds to

the multiple-input single-output (MISO) interference channel

(IFC) [1]. The performance of the systems in such a setting

is degraded by mutual interference, and their noncooperative

operation is usually not efficient [2]. Therefore, coordination

between the links is needed in order to improve the joint

outcome. In game theory, bargaining describes the process

in which the bargainers make use of an opportunity to gain

by coordinating their actions [3]. In this work, we consider

strategic bargaining between the links. The links decide on

their actions at each bargaining-step and bargain as long as

they experience improvement in their situation.

For the two-user MISO IFC, the efficient beamforming

vectors of each transmitter are parameterized by a single

real-valued parameter between zero and one in [4]. This

parametrization is valuable for designing efficient low com-

plexity distributed resource allocation schemes. In [5], this

parametrization is utilized and a bargaining algorithm is pro-

posed that requires two bit signaling between the transmitters.

In each bargaining-step, the transmitters reduce their beam-

forming parameters by an equal step-length leading to a joint
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increase in the links’ performance. In [6] a similar algorithm is

proposed. At each bargaining-step, each transmitter optimizes

its transmission to reduce a fixed amount of interference power

at unintended receivers. Both algorithms in [5] and [6] termi-

nate when at least one link experiences reduction in its out-

come. While both algorithms improve the joint performance of

the systems from the noncooperative state, these outcomes are

however not Pareto optimal. In [7], a distributed algorithm is

proposed that is performed between link pairs in a multi-link

system. The transmitters exchange interference levels (scalar

values) in each iteration and optimize their transmission such

that the interference levels are met at unintended receivers. The

interference levels are updated based on a necessary condition

for Pareto optimality. Although this condition is not proven to

be also sufficient, numerical evidence shows that the algorithm

converges to a Pareto optimal outcome almost surely.

In this work, we propose a bargaining process between

two links. The preference representation of the links in the

Edgeworth box [8] is utilized in order to describe this process.

We determine how each transmitter chooses its beamforming

vectors in each bargaining-step such that the bargaining out-

come lies arbitrarily close to the contract curve. The contract

curve in the Edgeworth box corresponds to all Pareto optimal

outcomes. Thus, our process is to converge to an outcome

which is arbitrarily close to the Pareto boundary. Our algorithm

requires four bit signaling between the transmitters in each

bargaining-step, and we show that only a few iterations are

necessary for the bargaining process to converge.

Notations: Column vectors and matrices are given in low-

ercase and uppercase boldface letters, respectively. ‖a‖ is the

Euclidean norm of a,a ∈ CN . |b| is the absolute value

of b, b ∈ C. (·)H denotes the Hermitian transpose. The

orthogonal projector onto the column space of Z is ΠZ :=
Z(ZH

Z)−1
Z

H . The orthogonal projector onto the orthogonal

complement of the column space of Z is Π
⊥

Z := I − ΠZ ,

where I is an identity matrix. Throughout the paper, the

subscripts k, ℓ are from the set {1, 2}.

II. PRELIMINARIES

A. System and Channel Model

The quasi-static block flat-fading channel vector from trans-

mitter k to receiver ℓ is denoted by hkℓ ∈ CN . We assume



that transmission consists of scalar coding followed by beam-

forming. The beamforming vector used by transmitter k, is

wk ∈ CN . The matched-filtered, symbol-sampled complex

baseband data received at the receivers is:

yk = h
H
kkwksk + h

H
ℓkwℓsℓ + nk, k 6= ℓ, (1)

where sk is the symbol transmitted by transmitter k. The

random variables nk are noise terms which we model as inde-

pendent and identically distributed (i.i.d.) complex Gaussian

with zero mean and variance σ2. Each transmitter has a total

power constraint of P , 1 such that ‖wk‖2 ≤ 1.

Each transmitter is assumed to have perfect local channel

state information (CSI), i.e., it has perfect knowledge of

the channel vectors only between itself and all receivers. In

addition, each receiver can measure the interference plus noise

power and feedback this amount to its intended transmitter. We

assume there exists a low bit rate communication link of high

reliability between the transmitters. This enables signaling

between the links during the bargaining process.

B. SINR Region and Efficient Transmission

The signal-to-interference-plus-noise ratio (SINR) at re-

ceiver k is

φk(w1,w2) = |hH
kkwk|2/(|hH

ℓkwℓ|2 + σ2), k 6= ℓ. (2)

This results in the achievable rate log2(1+φk(w1,w2)) when

the receivers perform single user decoding. The SINR region:

Φ ,
{

(φ1(w1,w2), φ2(w1,w2)) : ‖wk‖2 ≤ 1
}

, (3)

is the set of all SINR tuples achieved by feasible beamforming

vectors. In the SINR region, tuples can be ranked by their

Pareto efficiency. An operating point (Q1, Q2) is Pareto supe-

rior to an operating point (R1, R2) if (Q1, Q2) ≥ (R1, R2),
where the inequality is componentwise and strict for at least

one component. The transition from (R1, R2) to (Q1, Q2) is

called a Pareto improvement. Situations where Pareto improve-

ments are not possible are called Pareto optimal. These points

constitute the Pareto boundary of the SINR region.

The beamforming vectors that are relevant for Pareto opti-

mal operation in the MISO IFC are [4, Corollary 1]:

wk(λk) =
√

λk

Πhkℓ
hkk

‖Πhkℓ
hkk‖

+
√

1− λk

Π
⊥

hkℓ
hkk

‖Π⊥

hkℓ
hkk‖

, (4)

where λk ∈ [0, 1] and k 6= ℓ. The set of beamforming

vector in (4) includes maximum ratio transmission (MRT)

(λMRT

k = ‖Πhkℓ
hkk‖2/‖hkk‖2) and zero forcing transmission

(ZF) (λZF

k = 0). According to [4, Corollary 2], it suffices

that the parameters λk only be from the set [λZF

k , λ
MRT

k ] for

Pareto optimal operation. In the rest of the paper, we will

write φk(λ1, λ2) instead of φk(w1(λ1),w2(λ2)).
Lemma 1: φk(λ1, λ2) is monotonically increasing in λk,

λk ∈ [λZF

k , λ
MRT

k ] for fixed λℓ, and monotonically decreasing

in λℓ for fixed λk, k 6= ℓ.
Proof: The proof can be found in [9, Section IV.A].

The monotonicity property of the SINRs is essential for the

preference representation of the links discussed in the next

section.
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Fig. 1. Preference representation for each player.

III. GAME THEORETIC ANALYSIS

A. Noncooperative Game

The links’ noncooperative outcome is the solution of a

strategic game [10, Section 2.1] between them. The set of

players is {1, 2} consisting of the two links. The pure strategies

of player k are the real-valued parameters λk ∈ [λZF

k , λ
MRT

k ]
in (4), and his utility function is φk(λ1, λ2) in (2). In this

game, a player always chooses the MRT strategy independent

of the choice of the other player [2], i.e., MRT is a dominant

strategy for each player. Hence, the unique Nash equilibrium

(NE) is (λMRT

1 , λMRT

2 ). The outcome in NE is usually not Pareto

optimal. In order to achieve Pareto improvements from the

NE, the players are required to cooperate. For this purpose,

we assume there exists exogenous enforcement that compels

the players to negotiate and apply any negotiated strategies.

B. Multi-stage Bargaining

Cooperation between the players is enabled by allowing

them to communicate. In this way, they can exchange propos-

als as well as their preferences to the proposal outcomes. The

act of proposal exchange based on the players’ preferences

can be modeled as a bargaining process. This process is

sequential, and at each bargaining-step t, player 1 proposes

λ
(t)
1 to player 2, and player 2 proposes λ

(t)
2 to player 1. In

a general bargaining process, the players exchange amounts

of goods within themselves. In our setting these goods will

stand for the strategies of the players. According to Lemma

1, player 1 has higher payoff with a larger λ1 and also a

larger λMRT

2 − λ2. We define the possession vector of player 1

at a bargaining-step t as a
(t)
1 = (λ

(t)
1 , λMRT

2 − λ
(t)
2 ), where λ

(t)
1

is the amount of his good and (λMRT

2 − λ
(t)
2 ) is the amount of

good from player 2. Similarly, a
(t)
2 = (λMRT

1 − λ
(t)
1 , λ

(t)
2 ) is the

possession vector of player 2. a
(t)
1 and a

(t)
2 are plotted in Fig. 1

(left) and (right), respectively, where the x-axis describes the

good of player 1 and the y-axis that of player 2. In Fig. 1, Ik
is the indifference curve of player k. This curve represents

the pairs (λ1, λ2) such that φk(λ1, λ2) = φk(λ
(t)
1 , λ

(t)
2 ).

The dark region above Ik , represents the pairs (λ1, λ2) such

that φk(λ1, λ2) > φk(λ
(t)
1 , λ

(t)
2 ), and the region below Ik

corresponds to less payoff for player k.

The bargaining process is structured in stages. A bargaining-

stage, indexed with s, can span several bargaining-steps. In

the first stage, s = 0, the possession vectors correspond

to NE. i.e., a
(s)
1 = (λMRT

1 , 0) and a
(s)
2 = (0, λMRT

2 ). If at a
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Fig. 2. An illustration of an Edgeworth box.

bargaining-step t, t > s, (φ1(λ
(t)
1 , λ

(t)
2 ), φ2(λ

(t)
1 , λ

(t)
2 )) is a

Pareto improvement to (φ1(λ
(s)
1 , λ

(s)
2 ), φ1(λ

(s)
1 , λ

(s)
2 )) then we

set s = t. This means that a new bargaining-stage begins

each time a Pareto improvement is achieved. The players then

compare their outcomes at each bargaining-step t to their

current stage outcome (corresponding to bargaining-step s).

C. Edgeworth Box Representation

The Edgeworth box [8], [11, Chapter 5], illustrated in Fig. 2,

is a graphical representation that is useful for the analysis of a

bargaining situation. The box is constructed in joining Fig. 1

(left) and Fig. 1 (right) (rotated 180 degrees anticlockwise).

Thus, the Edgeworth box has two points of origin, O1 and

O2, corresponding to player 1 and 2, respectively. The initial

amounts of goods of the players define the size of the box

(width is λMRT

1 , height is λMRT

2 ). The possession vectors a
(t)
1

and a
(t)
2 make up the allocation a

(t) = (a
(t)
1 ,a

(t)
2 ). Every

point in the box denotes an allocation, i.e., an assignment of

a possession vector to each player.

Lemma 2: For a fixed strategy λℓ, there exists a strat-

egy λk, k 6= ℓ, that achieves the payoff φk(λ
(t)
1 , λ

(t)
2 ) if

φk(λ
(t)
1 , λ

(t)
2 ) ∈ Fk(λℓ), where

F1(λ2) , [φ1(λ
ZF

1 , λ2), φ1(λ
MRT

1 , λ2)], (5)

F2(λ1) , [φ2(λ1, λ
ZF

2 ), φ2(λ1, λ
MRT

2 )]. (6)

Proof: The proof is provided in [12].

The players’ preferences in the Edgeworth box can be revealed

according to their indifference curves.

Proposition 1: The indifference curves of player 1 and 2

for given payoffs φk(λ
(t)
1 , λ

(t)
2 ) ∈ Fk(λℓ), k 6= ℓ, are

I1(λ2, λ
(t)
1 , λ

(t)
2 ) = f(λMRT

1 , φ1(λ
(t)
1 , λ

(t)
2 )/φ1(λ

MRT

1 , λ2)), (7)

I2(λ1, λ
(t)
1 , λ

(t)
2 ) = f(λMRT

2 , φ2(λ
(t)
1 , λ

(t)
2 )/φ2(λ1, λ

MRT

2 )), (8)

respectively, where f(a, b) = (
√
ab−

√

(1− a)(1 − b))2.

Proof: The proof is provided in [12].

Note in Proposition 1, that player k does not need to know

λℓ, ℓ 6= k, specifically to calculate Ik(λℓ, λ
(t)
1 , λ

(t)
2 ), but

requires only the interference plus noise levels at receiver k.

The dark region in Fig. 2 is called the lens and contains

all allocations that are Pareto improvements to the outcome in

a
(t). The locus of all Pareto optimal points in the Edgeworth

box is called the contract curve [8]. On these points, the

indifference curves are necessarily tangent.

Lemma 3: The indifference curve Ik(λℓ, λ
(t)
1 , λ

(t)
2 ), k 6= ℓ,

for given payoff φk(λ
(t)
1 , λ

(t)
2 ) is concave in λℓ.

Proof: The proof is provided in [12].

The indifference curves in Fig. 2 are illustrated to be convex

to the origin due to the axes transformation. The convexity

property of the players’ indifference curves implies that these

can only be tangent at a single point. Thus, the condition

that the indifference curves are tangent at an allocation a
(t)

is a necessary and sufficient condition for a
(t) to be on the

contract curve, i.e., (φ1(λ
(t)
1 , λ

(t)
2 ), φ2(λ

(t)
1 , λ

(t)
2 )) is on the

Pareto boundary of the SINR region.

IV. DECENTRALIZED BARGAINING PROCESS

This section describes how the players choose their pro-

posals at each bargaining-step. At a bargaining-step t, player

k knows his SINR φk(λ
(t)
1 , λ

(t)
2 ) as well as his SINR

φk(λ
(s)
1 , λ

(s)
2 ) for the current stage. We define the following

capabilities of each player:

• Player k keeps track of step-length δ
(t)
k at each

bargaining-step t. The initial step-length is δ
(0)
k .

• Player k can change the sign of δ
(t)
k and also reduce its

length by multiplying it with θk ∈ (0, 1).
• Player k can choose three types of proposals:

(I) λ
(t+1)
k = λ

(t)
k

(II) λ
(t+1)
k = λ

(t)
k − δ

(t+1)
k

(III) λ
(t+1)
k = Ik(λ

(t)
ℓ , λ

(s)
1 , λ

(s)
2 ), ℓ 6= k.

From Proposition 1, proposal type (III) gives player k the

payoff φk(λ
(s)
1 , λ

(s)
2 ) when player ℓ chooses λ

(t)
ℓ .

• Player k sets Γℓ = true if player ℓ, ℓ 6= k, chooses

proposal type (III) at the current bargaining-step.

The choice of player 1’s proposal (analogously player 2) is

described in the flowchart in Fig. 3. In Fig. 4 six Edgeworth

boxes are illustrated. In all boxes, the indifference curves

correspond to the stage allocation a
(s). The marked regions in

Fig. 4 resemble the regions where the allocations a
(t), t > s,

are possible with respect to the indifference curves. Note that

all regions in the Edgeworth box are covered in the cases in

Fig. 4, hence all possible positions of a(t) are treated. These

cases will aid in the description of our bargaining process.

Each player k can signal to the counter player one of four

signals: Bk, Ak, Rk, and Nk. In Fig. 3, Player 1 chooses the

signaling to player 2 based on conditions D1, D2, and D3

(analogously for player 2). Condition D1 is true if the current

step-length δ
(t)
1 is below an accuracy measure ǫ. If player k

signals Bk, then all players alter their initial step-length as

δ
(0)
k = −θkδ

(0)
k and set δ

(t+1)
k = δ

(0)
k . The new proposals are

of type (II). This adaptation is necessary since a
(t) can be

in the opposite direction to the lens (proposals in the regions

marked with a prime in Fig. 4 (E 4)-(E 6)). Changing the sign
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Fig. 3. Flowchart for player 1 (analogously player 2) for a new proposal.

of the step-length makes the allocations on the side of the lens.

Since δ
(t)
1 and δ

(t)
2 always have the same sign, a(t) will never

be in the marked regions in Fig. 4 (E 1).

Condition D2 is true if player 1 achieves an improvement in

his payoff. Thus, player 1 accepts the proposal by signaling

A1 to player 2. If player 2 signals A2, then the allocation

a
(t) is necessarily in the lens in Fig. 4 (E 2), i.e., a Pareto

improvement from the stage allocation is achieved. The new

stage allocation is set as a
(s) = a

(t) and both players choose

proposal type (II) without altering the step-lengths. If player 2

signals R2, then a
(t) is in region (a) in Fig. 4 (E 3). Player 2

chooses proposal type (III) and player 1 chooses proposal type

(I). This adaptation is illustrated in Fig. 4 (E 3) as projecting

the allocation a
(t) onto I2. Player 1 sets Γ2 = true. If player

2 signals N2, then a
(t) is in region (a’) in Fig. 4 (E 6) and

above I1. Both players then choose proposal type (II) which

makes a
(t+1) closer than a

(t) to a
(s) .

Condition D3 is true if player 1 cannot find λ
(t+1)
1 , given

λ
(t)
2 , to achieve φ1(λ

(s)
1 , λ

(s)
2 ) as payoff (Lemma (2)). This

case occurs if a
(t) is in the region marked in Fig. 4 (E 6),

where a
(t) cannot be projected onto I1 for constant λ

(t)
2 .

Condition D3 is also true if Γ2 is true, i.e., player 2 has chosen

proposal type (III) in the previous step. This case reveals that

the previous allocation a
(t−1) has been in any of the marked

regions in Fig. 4 (E 4). Each player chooses proposal types

(II) after reducing their step-lengths. Hence, a(t+ 1) will be

closer to a(s). If D3 is false, player 1 chooses his proposal

according to the signaling from player 2. If player 2 signals

(A2), then this case is analogous to the case when player 1

I1
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I1I2
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Fig. 4. Six Edgeworth boxes which illustrate the possible positions of the
allocation a

(t) of a bargaining-step.

signals A1 and player 2 R2. If player 2 signals (R2), then a
(t)

can only be in regions (a) or (a’) in Fig. 4 (E 5). Both players

use proposal types (II) after reducing their step-lengths.

Convergence and Pareto Optimality: The bargaining pro-

cess terminates when |δ(0)1 | < ǫ or |δ(0)2 | < ǫ. The initial step-

length δ
(0)
k is reduced each time Bk is signaled, i.e., when

|δ(t)k | < ǫ. The step-length of at least one player is reduced

in each bargaining-step, except when Pareto improvements are

achieved. Pareto improvements lead to a reduction in the size

of the lens. The lens vanishes when the indifference curves are

tangent, i.e., the allocation is on the contract curve. Therefore,

the bargaining process converges after a finite number of steps

to an outcome arbitrarily close to the Pareto boundary.

V. SIMULATIONS

In Fig. 5, an SINR region for a sample channel realization

is plotted using the set of efficient beamforming vectors in (4)

(100 samples are taken uniformly in [λZF

k , λ
MRT

k ]). The upper

right boundary of this region is the Pareto boundary. The ZF

and NE outcomes correspond to (λZF

1 , λ
ZF

2 ) and (λMRT

1 , λMRT

2 ),
respectively. Three different outcomes achieved by our bar-

gaining process are marked with squares. The bargaining

trajectories from the NE to these outcomes corresponds to the
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stages during the bargaining process. The bargaining outcome

cannot be determined prior to the bargaining process and

depends on the initializing parameters. However, this outcome

always dominates the NE, e.g. BO1, BO2, and BO3. The

dashed line connecting NE and ZF is the trajectory curve of

the bargaining algorithm proposed in [5]. In this algorithm

both players start at the NE (or ZF) and reduce their proposals

in equal step-lengths. The algorithm terminates when at least

one player experiences reduction in his payoff. The outcome

of this algorithm starting in NE is marked with a circle.
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In Fig. 6, an Edgeworth box is plotted for the bargaining

process in which (δ01 , δ
0
2) = (0.1, 0.1) and ǫ = 10−5. The stage

allocations are marked with crosses, and the lens is bounded

by the corresponding indifference curves. The lens reduces in

size after each bargaining-stage until the indifference curves

are tangent at the bargaining outcome. This indicates that the

outcome is Pareto optimal. In Fig. 7, the SINR values for the

same setting as of Fig. 6 are plotted over the bargaining-steps.

The stage outcomes are marked with circles. These are the

SINR pairs that both players agreed on during the bargaining

process. The algorithm terminates after 40 bargaining-steps.

However, since the SINRs only increase slightly after half the
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Fig. 7. SINR values over the bargaining-steps for (δ
(0)
1 , δ

(0)
2 ) = (0.1, 0.1),

N = 2, and SNR = 0 dB.

bargaining-steps, the bargaining process could be stopped at

bargaining-step 20 requiring a total of 80 signaling bits.

VI. CONCLUSIONS

In this work, we consider bargaining between two links in

the MISO IFC. We propose a strategic bargaining process

in which the links adapt their transmission based on the

current bargaining situation. The adaptation is motivated by

the Edgeworth box preference representation of the links. We

prove the convergence of the bargaining process to an outcome

which is arbitrarily close to the Pareto boundary and dominates

the Nash equilibrium in the SINR region. Simulation results

show that only few bargaining-steps are required for the

bargaining process to converge. In each bargaining-step, four

bit signaling between the links are required.
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