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Abstract

The communication between a multiple-antenna transmitter and multiple receivers (users) with either

a single or multiple-antenna each can be significantly enhanced by providing the channel state informa-

tion at the transmitter (CSIT) of the users, as this allows for scheduling, beamforming and multiuser

multiplexing gains. The traditional view on how to enable CSIT has been as follows: In time-division

duplexed (TDD) systems, uplink (UL) and downlink (DL) channel reciprocity allows the use of a training

sequence in the UL direction, which is exploited to obtain an UL channel estimate. This estimate is in

turn recycled in the next downlink transmission. In frequency-division duplexed (FDD) systems, which

lack the UL and DL reciprocity, the CSIT is provided via the use of a dedicated feedback link of limited

capacity between the receivers and the transmitter. In this paper, we focus on TDD systems and put their

classical approach in question. We show that the traditional TDD setup above fails to fully exploit the

channel reciprocity in its true sense. In fact, we show that the system can benefit from a combined CSIT

acquisition strategy mixing the use of limited feedback and that of a training sequence. This combining

gives rise to a very interesting joint estimation and detection problem for which we propose two iterative

algorithms. An outage rate based framework is also developed which gives the resource split between

training and feedback. We demonstrate the potential of this hybrid combining in terms of the improved

CSIT quality under a global training and feedback resource constraint.
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I. INTRODUCTION

Multiple-antenna transmitters and receivers are instrumental to optimizing the performance of band-

width and power limited wireless communication systems. In the downlink (DL), in particular, the

communication between a multiple-antenna enabled base station (BS) and one or more users with either a

single or multiple antenna each can be significantly enhanced through the use of scheduling, beamforming

and power allocation algorithms, be it in single user or multi-user mode (spatial division multiplexing).

To allow for beamforming and/or multi-user multiplexing capability, the BS transmitter must however

be informed with the channel state information (CSI) of each of the served users [2] [3] [4], except

when the number of users reaches an asymptotic (large) regime in which case random opportunistic

beamforming scheme can be exploited [5], [6]. This has motivated the proposal of many techniques for

providing the channel state information at the transmitter (CSIT) in an efficient manner. Proposals for

how to provide CSIT roughly fall in two categories depending upon the chosen duplexing scheme for the

considered wireless network. In the case of time-division duplex (TDD) systems, it was always assumed

that CSIT should exploit the reciprocity of the uplink (UL) and DL channels, so as to avoid the use of

any resource consuming feedback channel [7], [8], [9]. The way reciprocity is exploited in the current

TDD systems, is through the use of a training sequence sent by the user on the UL, based on which the

BS first builds an estimate of the UL channel which in turn serves as an estimate for the DL channel in

the next DL transmission [7], [8], [9]. In frequency-division duplex (FDD) systems, UL and DL portions

of the bandwidth are normally quite apart and hence the channel realizations can be safely assumed to

be independent of each other. This lack of channel reciprocity motivates instead the use of a dedicated

feedback link in which the user conveys the information, about the estimated DL channel, back to the

BS. Recently, several interesting strategies have been proposed for how to best use a limited feedback

channel and still provide the BS with exploitable CSIT (see [10], [11], [12] for feedback acquisition and

[13], [14], [15] [16] for limited feedback based precoding and scheduling).

Although in the past, the balance has weighed in the favour of FDD systems when choosing a duplexing

scheme (in part because of heavy legacy issues in voice oriented 2G networks and also because of

interference management between UL and DL), current discussions in the standardization groups indicate

an increasing level of interest for TDD for upcoming wireless data-access networks (e.g.WiMax, etc.).

This interest mainly stems from the fact that TDD systems are extremely flexible in managing asymmetric
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UL and DL traffic loads and secondly because they are seen as more efficient in providing the CSIT

required by several MIMO DL schemes, thanks to channel reciprocity. In practical systems though, the

use of channel reciprocity faces some limitations mainly due to the difference in transmit/receive RF

electronics [17] and some calibration is required [17], [18] for reciprocity exploitation.

In this paper, we focus on the problem of CSIT acquisition in a TDD system. We take a step back and

shed some critical light on the traditional approach above consisting in exploiting the channel reciprocity

via the use of training sequences exclusively. In fact we show that this approach fails to fully exploit the

channel reciprocity. The key shortcoming is as follows: when sending a training sequence in the UL of a

traditional TDD system, the user allows the BS to estimate the channel by a classical channel estimator

(it can be a least-square (LS) estimator or minimum mean square error (MMSE) based, see [19] for

details). However, note that the user itself has the knowledge of the channel coefficients (obtained from

DL pilots during the current frame or from the DL synchronization sequence or other control signals or

even from the previous DL frames if the channel is correlated in time) but, regretfully, does not exploit

that knowledge in order to facilitate the CSIT acquisition by the BS. Instead, it uses this knowledge only

locally.

Interestingly, by contrast, in FDD systems, the user exploits its DL channel knowledge by quantizing

the channel and sending the result over a dedicated feedback link (actually UL bandwidth is used for

this feedback along with UL data transmission). In the FDD case, UL training is used by the BS solely

for UL data detection as this UL training cannot give any direct information to the BS about the DL

channel coefficients.

In this paper, we point out that in TDD systems there is a unique opportunity to combine both forms

of CSIT acquisition. In doing so, we obtain a new CSIT acquisition scheme mixing the classical channel

estimation using training with the quantized limited channel feedback of the same channel. This gives

us a framework for fully utilizing the channel reciprocity in a TDD setup and it improves the classical

trade-off between the CSIT quality and the amount of training/feedback resource used. We characterize

the optimal CSIT acquisition structure under this novel framework. A novel hybrid CSIT acquisition

setup is proposed which gives rise to a very interesting joint estimation and detection problem for which

we propose two iterative algorithms. We further propose a sub-optimal outage rate based approach which

helps us to optimize the fixed resource partitioning between training and quantized feedback phases. We

adapt this optimization framework to use it with practical constellations like QPSK and 16-QAM. The

results obtained confirm our intuition and clearly demonstrate the benefit of this hybrid (mix of training

and quantized feedback) approach for upcoming TDD systems.
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In previous work, Caire et al. studied the achievable rates for multi-user MIMO DL removing all the

assumptions of channel state information at the receiver (CSIR) and CSIT for FDD systems in [20]. They

gave transmission schemes incorporating all the necessary training and feedback stages and compared

achievable rates either with analog feedback or with quantized feedback. The reference [21] studies the

decay rate of the feedback distortion versus SNR with analog and digital quantized feedback for FDD

systems. A very recent paper [22] studies combining the analog and digital feedback for FDD systems.

Another recent reference [23] does a simulation based comparison of separation and non-separation

based feedback schemes. All of these works fundamentally differ from our work as there is no channel

reciprocity in FDD systems and hence there is no point in combining the UL training and the quantized

feedback of the DL channel.

Some other contributions [7], [24], [25], [26] and [27] analyze the sum rate of TDD systems starting

without any assumption of CSI but restrict the CSIT acquisition through training only. [8] does a

comparison of TDD systems versus FDD systems in terms of CSIT acquisition accuracy. [28] studies the

diversity-multiplexing trade-off [29] of two-way SIMO channels when TDD is the mode of operation.

All of these references treat no-CSI TDD systems but all acquire CSIT through training only. According

to authors’ knowledge, there is no single contribution which exploits the combining of training and the

quantized feedback in TDD systems, which we believe to be one of the major novelties of this work.

The paper is structured as follows: The system settings are given in section II along with the classical

CSIT acquisition for FDD and TDD systems. The optimal CSIT acquisition strategy combining training

and feedback is outlined in section III. Two iterative and one non-iterative algorithms for the joint

estimation and detection have been proposed in section IV. The simplified outage-rate based framework

to optimize the resource split appears in section V followed by its adaption for practical constellations

in section VI. The simulation results have been provided in section VII, followed by the conclusions and

the possible future extensions combined in section VIII.

Notation: E denotes statistical expectation. Lowercase letters represent scalars, boldface lowercase letters

represent vectors, and boldface uppercase letters denote matrices. A† and A−1 denote the Hermitian and

the inverse of matrix A, respectively. For a vector a, ||a|| and ā represent, respectively, its norm and unit-

norm direction vector so that a = ||a||ā. A Gaussian distributed vector a with mean ma and covariance

matrix Ka is represented as a ∼ CN (ma,Ka). IM represents the identity matrix of M dimensions.
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II. SYSTEM SETTINGS AND PRELIMINARIES

We consider the two way TDD communication in a cell between a single BS, equipped with M

antennas, and a single antenna mobile user. The channel h ∈ C
M×1 is assumed to be flat-fading

with independent complex Gaussian zero-mean unit-variance entries, where C
M×1 represents the M -

dimensional complex space. A general TDD frame structure is shown in Fig. 1.

Fig. 1. (a) One TDD Frame; (b) Traditional CSIT Acquisition Setup for TDD systems; (c) Novel CSIT Acquisition Strategy

for TDD systems: Total feedback length is divided between UL training and quantized feedback phases.

We assume that the channel realization stays constant for the duration of each frame. This implies

that the channel coherence time is larger than or equal to the length of one frame. This channel model

assumption is widely accepted in wireless systems [30], [31], entitled as block fading channel [32].

In TDD systems, UL and DL data transmissions are carried out in each single frame over the same

frequency. Hence both the users and the BS need to have some reasonable channel knowledge for proper

UL and DL operation. Fig. 1(a) shows that the TDD frame has been split in three phases:

• DL training: The first phase of the frame is reserved for DL training. In this phase, the BS will

transmit global pilots which will enable all the users in the cell to estimate their corresponding

channel realizations. In cellular systems, the users are always obliged to decode some low rate DL

control information which requires the presence of DL pilots.

• CSIT acquisition: This phase is dedicated for CSIT acquisition at the BS. In traditional TDD wireless

systems, the active users will send orthogonal training sequences in the UL direction and the
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channel estimation carried out the BS based upon these pilot sequences furnishes CSIT [7] [8],

as shown in Fig. 1(b). This CSIT is then employed for DL beamforming/precoding necessary for

user multiplexing.

• Data transmission: The third phase is dedicated for the transmission of UL and DL information data.

The split between UL and DL data portions can be carried out as required during this particular

frame and can be modified later if desired.

We assume all the UL (as well as the DL) data symbols to be contiguous in each frame. This is commonly

employed in practical TDD systems as well, for example in LTE TDD (consult table 4.2-2 in [33] for

various UL-DL configurations in each TDD frame). If transmission is quickly switched between UL and

DL, a guard interval is used (not shown in Fig. 1) as is employed inside the special subframe which is

part of each LTE TDD frame [33].

The goal of this work is to provide a reliable estimate of the DL channel to the BS, which in turn

can be used for beamforming/precoding purposes. It is true that the further optimization of the DL vs.

UL time ratio could be of interest in the future. However in this paper, we focus on the situation where

the UL to DL ratio is either imposed by the natural symmetry or the level of asymmetry of the traffic.

Since a detailed model of traffic symmetry/asymmetry is beyond the scope of this paper, we leave this

optimization aside assuming that the UL vs. DL split is governed by the traffic model. We would like to

point out that the key idea of the paper about exploiting the reciprocity and the shared channel knowledge

in TDD systems stays valid irrespective of the nature of the traffic.

The mean square error (MSE) of CSIT is selected to be the performance metric for CSIT reliability.

It has been widely shown in literature that the DL throughput of a system with imperfect CSIT incurs a

loss which is the product of the DL power and the MSE of CSIT [10], [20]. Hence the minimization of

the MSE of CSIT is equivalent to the maximization of the system wide sum rate, the most commonly

adopted system performance metric. As CSIT reliability directly translates into system performance, we

can limit ourselves to the acquisition issue of the channel knowledge and its quality for a fixed acquisition

resource and not about its use in MIMO transmission schemes. The similar strategy was adopted in [8]

and [34] to investigate the system performance.

A. CSIR Acquisition at the Users

The BS transmits global pilots in the DL direction which are known sequences. The channel estimation

based upon these known sequences at the users’ side provides CSIR which can be used in the detection

of DL data.
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In LTE TDD frame, even if all data needs to be transmitted in the UL direction, the subframes numbered

0 and 5 in each frame (consisting of 10 subframes) are DL subframes [33] because the BS has to assign

resources and provide control information to the users anyway. This means that the users always get the

DL channel estimates which we shall be exploiting in our novel CSIT acquisition strategy.

B. Classical CSIT Acquisition in FDD Systems

Pilots transmitted by the BS in the DL direction provide the DL channel information to the users. In

an FDD system, UL and DL bandwidths are normally quite far apart and the channel realizations are, in

general, independent. Hence the only means to provide the DL channel information to the BS is through

explicit feedback of users’ DL channel knowledge on the UL resource [12], [10], [14], [15], [16]. For

the BS to be able to decode the feedback properly (sent as UL payload), it should first know/estimate

the UL channel. To overcome this difficulty, the users first transmit pilot sequences which provide the

BS the knowledge of UL channel and then DL channel information is transmitted as UL payload [20].

C. Classical CSIT Acquisition in TDD Systems

If the communication system is operating under TDD mode which is the main focus of this contribution,

DL and UL channels are reciprocal. If Tfb channel uses are reserved for CSIT acquisition, conventionally

a user will transmit pilot sequence of this length, denoted as xp ∈ C
1×Tfb , on the UL, as shown in Fig.

1(b) [8] [7]. The signal Yp received at the BS is given by

Yp =
√

P hxp + Np, (1)

where Np ∈ C
M×Tfb represents the spatio-temporally white Gaussian noise with zero-mean unit-variance

entries and Yp ∈ C
M×Tfb is the received signal at M antennas of the BS during this Tfb-length training

interval. P represents the user’s peak power constraint which is equal to the UL signal-to-noise-ratio

(SNR) at every BS antenna due to the normalized noise variances. Then simple (UL) channel estimation

at the BS will furnish CSIT due to UL and DL channel reciprocity.

III. OPTIMAL TRAINING AND FEEDBACK COMBINING IN TDD SYSTEMS

The classical training based CSIT acquisition for TDD systems ignores the fact that user knows the

DL channel and the CSIT acquisition based only on the quantized feedback for FDD systems cannot use

the channel reciprocity (non-existent in FDD systems) whereas in TDD systems both can be exploited at

the same time. Working under a constraint of fixed resource available for CSIT acquisition (Tfb channel
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uses and user’s power constraint of P ), we want to have the best CSIT estimate which fully exploits the

reciprocity and the user’s channel knowledge simultaneously. We assume perfect channel knowledge at

the user’s side for ease of exposition1 and later, imperfect CSIR analysis is carried out in section V-C

and simulation results are presented in section VII.

The optimum CSIT acquisition problem in this setting is to inform the receiver (BS) about the fading

state known causally at the user. This problem formulation resembles the case in [35] where the authors

treated the problem of state information transmission to the receiver for the unfaded case. Let the mean

square error in CSIT with respect to (w.r.t.) the true state be selected as the performance metric. Then

the input sequence should be designed as a function of the known state h, denoted as xi(h) ∈ C
1×Tfb ,

in such a manner as to provide the best estimate (w.r.t the metric) at the BS. Let the received signal at

the BS corresponding to the input sequence xi(h) be denoted by Yi ∈ C
M×Tfb .

Yi =
√

P hxi(h) + Ni (2)

Ni ∈ C
M×Tfb denotes the spatio-temporally white Gaussian noise at the BS. The BS needs to extract

the state information from the observation sequence where it appears not only in the encoded sequence

xi(h) but also in the state h of the channel which is used to convey the input sequence xi(h). If O
denotes this optimal extraction function, the optimal state detected at the BS is given by

hopt = O(Yi). (3)

So the information theoretic optimal CSIT acquisition in this setting requires the optimal encoding of

the known state at the transmitter (user) and the optimal state extraction from the encoded information

and the state itself at the receiver (BS).

Although the information theoretic problem formulation suggests the fundamental limits of operation,

in most of the cases the analysis becomes intractable. And even if the optimal solution is known, it may

require large block lengths for coding and infinite delays for quantization and decoding etc, making it

impractical to implement such a solution in practical systems. This motivates us to find a practically viable

solution which might be suboptimal but still capturing the performance better than the existing solutions.

We propose a novel hybrid two stage CSIT acquisition strategy which exploits the channel reciprocity

and user’s channel knowledge at the same time. Working under a constraint of fixed resource available for

1In general, the CSIR quality at the users’ side is much better. Firstly the DL pilots are global (they are not transmitted per

user contrary to the UL pilots) and secondly, the BS can surely pump larger power as compared to small hand-held mobile

devices.
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CSIT acquisition (Tfb channel uses and user’s power constraint of P ), our strategy consists of dividing

this interval in two phases as shown in Fig. 1(c), contrary to the classical UL pilot sequence transmission

in Fig. 1(b). The first stage of this hybrid approach, termed as “UL training”, is the transmission of

normalized training sequence xa ∈ C
1×Ta from the user to the BS for Ta channel uses and the received

signal will be

Ya =
√

P hxa + Na. (4)

where Na ∈ C
M×Ta represents the spatio-temporally white Gaussian noise with zero-mean unit-variance

entries and Ya ∈ C
M×Ta is the received signal at M antennas of the BS during this Ta-length training

interval. The optimal training based estimate, denoted as ĥa, based upon the observed signal Ya and

knowing xa will be:

ĥa = arg min
h

||Ya −
√

P hxa||2 (5)

The second stage, termed as “quantized feedback”, consists of the transmission of quantized channel,

already known at the user as a consequence of the DL training. If Q denotes the quantization function,

then the quantized version of the channel at the user (the index of the closest codeword in the codebook)

is given by Q(h). Afterward user maps this index (sequence of bits) into a sequence of constellation

symbols, using the mapping function denoted by S. Let the finite cardinality set of all mapped codewords

be denoted by CB. Hence the UL feedback would be

xq = S(Q(h)), (6)

where xq ∈ C
1×Tq is the Tq dimensional row vector of the normalized constellation symbols. If the user

transmits this feedback, the received signal at the BS is given by

Yq =
√

P hxq + Nq, (7)

where Yq and Nq are M × Tq matrices of the received signal and the noise respectively at M antennas

of the BS during this explicit Tq length feedback interval. This equation reveals the intriguing aspect that

the BS needs to acquire h which appears both as the channel and the transmitted feedback xq. The BS

can try to decode only the quantized channel information based upon the knowledge of ĥa (obtained as

in eq. (5) making use of pure training xa)

ĥq = arg min
xq∈CB

||Yq −
√

P ĥaxq||2. (8)

The optimal CSIT for this strategy will be obtained by the joint estimation and detection (of h and

xq respectively) based upon the observation of Ya and Yq, knowing xa and assuming an optimal split
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between the training and the quantized feedback phases (constrained as Ta + Tq = Tfb).

ĥ = arg min
h

|| [Ya Yq] −
√

P h[xa S(Q(h))] ||2 (9)

The optimal solution requires a double minimization and does not seem to bear a closed form expression

for ĥ.

Interestingly even this sub-optimal scheme of splitting the acquisition resource among training and

quantization based feedback can be cast in terms of a well-known problem in information theory -

the Wyner-Ziv setup [36] which basically treats the problem of decoding with side information at the

receiver. Some variants of this problem have been treated where the objective could be some function

of message (encoded data) and the side information e.g. [37]. Our proposed hybrid setup will give the

problem formulation where the objective is to minimize the distortion in CSIT, decoding the quantized

information in the presence of side information from the pilot sequence. As argued earlier, we shall

keep our focus on practical signal processing algorithms which might confirm our intuition about CSIT

acquisition through this hybrid setup.

IV. ALGORITHMS FOR JOINT CHANNEL ESTIMATION AND FEEDBACK DETECTION

We give three algorithms in this section which separately solve the estimation and the detection

problem of the joint minimization of eq. (9). The first two algorithms are iterative which separately

solve the estimation and detection problems and iterate till convergence. These algorithms have been

closely inspired by [38] which proposes similar algorithms for joint blind estimation and detection for

signal separation. We have made modifications for our requirements where data aided channel estimation

after the initialization step and the presence of channel as “data” (feedback) make it quite unique. The

third algorithm is just the single-shot solution of the joint estimation and detection. Owing to its simplicity,

it allows us to further optimize the resource split between training and quantized feedback in the next

section. These algorithms assume perfect channel reciprocity as if the calibration were ideal. In case

of imperfect reciprocity/calibration, imperfection will add additional noise to the system, the detailed

analysis of which goes out of the scope of the present work.

A. Iterative Estimation and Detection

We describe below our algorithm.

Step 1) Initial channel estimation based only upon pilots

ĥ0
a = arg min

h

||Ya −
√

P hxa||2, (10)
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which is a simple least squares problem with the solution

ĥ0
a = Yax

†
a(xax

†
a)

−1 1√
P

. (11)

i = 1 (12)

Superscript denotes the iteration number.

Step 2) At iteration i, do enumeration over all the codes in the codebook assuming that the channel

ĥi−1
a is perfectly known.

x̂i
q = arg min

xq∈CB
||Yq −

√
P ĥi−1

a xq||2 (13)

Step 3) Regenerate extended pilot sequence xext (pilots and detected feedback)

xext
i = [xa x̂i

q]. Yext = [Ya Yq]. (14)

Step 4) Channel estimation based upon extended pilots (i.e. knowing xext
i)

ĥi
a = arg min

h

||Yext −
√

P hxext
i||2 (15)

ĥi
a = Yextxext

†i(xext
ixext

†i)−1 1√
P

(16)

Step 5) If x̂i
q 6= x̂i−1

q or ĥi
a 6= ĥi−1

a , i = i + 1 and go to Step 2.

The final channel estimate ĥ is the channel vector corresponding to x̂i
q in the codebook.

Theorem 1 (Convergence for Iterative Estimation and Detection Algorithm): Let ĥi
a be the estimated

channel and x̂i
q be the detected feedback, both at i-th iteration of the iterative estimation and detection

algorithm. Let the residual function f
(

ĥa,xext;Yext

)

∆
= ||Yext −

√
P ĥaxext||2 be selected as the

descent function for this algorithm. Then there exists some j such that for any i ≥ j, x̂i
q = x̂

j
q and

ĥi
a = ĥ

j
a.
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Proof: The residual descent function f
(

ĥa,xext;Yext

)

= ||Yext −
√

P ĥaxext||2 is clearly non-

negative and continuous. Considering the residual function at i-th iteration:

f
(

ĥi
a,xext

i;Yext

)

a
= ||Yext −

√
P ĥi

axext
i||2

b
= min

h
||Yext −

√
P hxext

i||2

c

≤ ||Yext −
√

P ĥi−1
a xext

i||2

d
= ||Ya −

√
P ĥi−1

a xa||2 + ||Yq −
√

P ĥi−1
a x̂i

q||2

e
= ||Ya −

√
P ĥi−1

a xa||2 + min
xq∈CB

||Yq −
√

P ĥi−1
a xq||2

f

≤ ||Ya −
√

P ĥi−1
a xa||2 + ||Yq −

√
P ĥi−1

a x̂i−1
q ||2

g
= ||Yext −

√
P ĥi−1

a xext
i−1||2

h
= f

(

ĥi−1
a ,xext

i−1;Yext

)

(17)

Equalities d and g make use of the property of the Frobenius norm [39]. The set of equations above shows

that each single iteration of the algorithm over estimation and detection causes to monotonically reduce

the residual function unless iterates converge. This monotonic reduction of the descent function, its non-

negativity and the fact that xq belongs to a finite set (codes of the codebook) and hence corresponding

iterates of the estimation subproblem are also finite prove the convergence of this algorithm to the locally

optimal solution in a finite number of steps. The globally optimal solution is achieved by having a good

initial point which depends upon the training part as confirmed by our simulations.

B. Simplified Iterative Estimation and Detection

This algorithm is very similar to the previous algorithm in essence but the difference arises at the

detection step. The second step of the previous algorithm, the ML detection of the quantized code from

the codebook, is computationally quite onerous, especially for codebooks with large cardinality. So we

replace this enumeration step with least squares detection followed by mapping on the codebook. So the

Step 2 of the previous algorithm gets replaced by two sub-steps.

Step 2-A) At iteration i, do LS detection of the quantized feedback assuming ĥi−1
a as the perfectly

known channel

x̂i
LS = (ĥ†i−1

a ĥi−1
a )−1ĥ†i−1

a Yq

1√
P

. (18)
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Step 2-B) Do hard detection of LS estimate x̂i
LS on the constellation symbols which will map the LS

detected channel feedback to the nearest code in the codebook.

x̂i
q = HardDetection(x̂i

LS) (19)

LS followed by hard detection significantly reduces the computational complexity of this algorithm

but this step of hard detection prevents the analytical convergence proof.

C. Single-Shot Estimation and Detection

This is the simplest and the fastest algorithm for the joint estimation and detection problem where the

channel estimation and the feedback detection are performed (separately) only once.

Step 1) Channel estimation based only upon the pilots

ĥa = arg min
h

||Ya −
√

P hxa||2. (20)

One can employ the MMSE criteria instead of LS.

Step 2) Detection of the feedback xq assuming channel ĥa is perfectly known. This detection problem

can be solved either by enumerating all the codewords as in the first algorithm or by simple LS as in

the second algorithm or even by applying MMSE filter.

V. OUTAGE BASED TRAINING AND FEEDBACK OPTIMIZATION

A. Definitions and Initial Setup

The solution for the optimal CSIT estimate, ĥ in eq. (9), requires joint estimation and detection.

Furthermore, the fixed resource (Tfb channel uses) needs to be optimally split between training and

feedback. Even if, as a simplification, we focus separately on training based estimate ĥa (given in eq.

(5)) and digital feedback based estimate ĥq (given in eq. (8)), three questions still need to be answered:

1) how the fixed CSIT acquisition interval Tfb should be split between training and feedback?

2) what should be the rate of the quantized feedback?

3) how the two estimates should be combined to get the final estimate?

We use the minimization of the mean-square error (MSE) of the final CSIT (defined below) as the

criterion to determine the resource split and the rate of the quantized feedback, thus answering the first

two questions for which we give the proper framework in the next subsection. This choice is justified as

we detailed in section II that the CSIT reliability directly translates into system wide throughput [10].

Furthermore, we propose to use the quantized feedback based estimate ĥq as the final CSIT estimate ĥ
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due to the better MSE decay behavior associated to the quantized feedback as an answer to the third

question. We revisit this statement in section V-D. It may appear that the training based estimate ĥa is

not used properly but in reality quantized feedback xq, which provides ĥq, is decoded based upon this

training based estimate ĥa hence combining is implicitly achieved.

The optimization framework is based upon the single shot estimation and detection algorithm, proposed

in section IV-C. It consists of first providing a training based estimate ĥa to the BS in the training interval

of Ta channel uses. In the second interval of Tq channel uses, the user sends the quantized version of

its unit-norm channel direction information (CDI) vector which we assume to be perfectly known at the

user. The size of the codebook employed will depend upon the rate of the feedback. It was pointed out in

[40], [41] and [30] that when channel fades cannot be averaged out either because of stringent decoding

delay constraints or because of a very slowly fading channel, the classical notion of Shannon capacity

bears no meaning and there is an error probability associated to each rate. This rate is called the outage

rate and the associated probability is the probability that the channel can not support this rate. For this

CSIT quantized feedback transmission over a single channel realization, a case with the most stringent

decoding delay scenario (or equivalently a very slow fading channel where transmission sees only one

realization), deep channel fades (causing outage) are the typical error events [30]. Following [42], we

ignore feedback decoding errors beyond a system outage event.

We define the “outage” as an event when the channel realization and the quality of the training based

estimate ĥa (a function of Ta) do not allow the BS to successfully decode the feedback information. Let

ǫ(Ta, b) be the outage probability when quantized feedback is transmitted at a rate of b bits per channel

use. Thus b is the ǫ(Ta, b)-outage rate of the UL channel [30]. So the user can send a total of B = bTq

feedback bits at ǫ(Ta, b) outage. Although the constellations used in practice have 2b points where b must

be a positive integer, for the time being we relax this restriction and allow positive real values for b.

We define the squared CDI error as the sine squared of the angle (θ) between the true channel direction

vector h̄ and the BS estimated direction vector
¯̂
h, denoted as σ2(h, ĥ).

σ2(h, ĥ)
∆
= sin2(θ) = 1 − cos2(θ) = 1 − |h̄†¯̂h|2 (21)

Further the MSE of CSIT is defined to be the expected value of the squared CDI error at the transmitter

and denoted as σ2. Although it is a slight abuse of notation but it has been shown that the CDI plays

a vital role both for single-user and multi-user scenarios [10], [11] and secondly CDI makes the major

feedback burden in CSIT compared to channel norm scalar.
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For the quantization of M -dimensional unit-norm CDI at the user, we employ random vector quanti-

zation (RVQ). For RVQ, the exact expression for the mean-square quantization error σ2
q has been given

in [43], [10] as

σ2
q = 2Bβ

(

2B ,
M

M − 1

)

, (22)

where B is the total number of feedback bits (i.e. the codebook consists of 2B codes) and β represents

the beta function which is defined in terms of the Gamma function as β(a, b) = Γ(a)Γ(b)
Γ(a+b) . However it

turns out that a simple and tight upper bound given in reference [10] suffices:

σ2
q ≤ 2

−B

M−1 . (23)

B. Optimal Resource Split between Training and Quantized Feedback

Theorem 2 (The minimization of the MSE of CSIT): Under the training and feedback combining strat-

egy, the MSE of CSIT σ2 is minimized as a result of the following optimization governing the fixed

resource (Tfb) split between the training Ta and the quantized feedback interval Tq and the outage rate

b:

σ2∗ = min
Ta,b

[

2
−b(Tfb−Ta)

M−1 + ǫ(Ta, b)

]

(24)

The constraints for this minimization are:

1 ≤ Ta ≤ Tfb and 0 ≤ b (25)

The outage probability in the feedback interval ǫ(Ta, b) and the feedback rate b are linked by the relation:

b = log

(

1 +
P 2Ta

2(P + PTa + 1)
F−1(ǫ(Ta, b))

)

, (26)

where P is the user’s power constraint and F−1(.) is the inverse of the standard cumulative distribution

function (CDF) of χ2
2M distributed variable.

Proof: The proof consists of two parts. First we show the argument of minimization to be an upper

bound on the MSE of CSIT and in the second part, the relation between ǫ(Ta, b) and b is derived.

Upper bound on the MSE of CSIT: During the feedback phase, when the channel is not in outage

and the BS is able to decode the feedback correctly, there is only quantization error in the final CSIT

estimate. On the other hand, when the channel is in outage (happens with probability ǫ(Ta, b)), the BS

cannot decode the feedback information. Hence the MSE of CSIT σ2 can be written as

σ2 = (1 − ǫ(Ta, b)) σ2
q + ǫ(Ta, b) Eσ2

h̄6=
¯̂
h
(h, ĥ)

≤ (1 − ǫ(Ta, b)) σ2
q + ǫ(Ta, b)

≤ σ2
q + ǫ(Ta, b), (27)
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where σ2
q is the mean-square quantization error and σ2

h̄6=¯̂
h
(h, ĥ) represents the MSE of CSIT when

the channel is in outage (which means a feedback error occurs). The first inequality is obtained as

Eσ2

h̄6=¯̂
h
(h, ĥ) is upper-bounded by 1. Putting the value of σ2

q from eq. (23) using B = bTq and Tfb =

Ta + Tq in eq. (27), we get the desired upper bound of the MSE of CSIT as

σ2 ≤ 2
−b(Tfb−Ta)

M−1 + ǫ(Ta, b), (28)

which concludes the first part of our proof.

Significance of the MSE bound: The MSE bound of the CSIT eq. (28) is the desired performance

metric. Its minimization gives us the optimal values for Ta, Tq and b (the number of feedback bits per

channel use - this parameter governs the constellation size and hence the quantization error) for a fixed

resource Tfb. This bound shows us the basic trade-off involved. If the total number of feedback bits

B = bTq is made large (either by choosing a large rate b per channel use in the feedback channel

or by making Tq large), it will allow the user to select a larger codebook (with 2B codewords) and

hence the quantization error will be negligible. But this strategy will plague the final CSIT estimation

error by introducing a lot of outage events (due to large b or poor channel estimate ĥa caused by small

Ta = Tfb − Tq). On the other hand for a small number of total feedback bits B, the degradation due to

outage probability will fade away, but there will be fewer codewords in the codebook and hence a large

quantization error.

The relation of b and ǫ(Ta, b): Pilot sequence transmission from the user to the BS for an interval

of length Ta, given in eq. (4), can be equivalently written in a simplified form as

ya =
√

PTa h + na, (29)

where P is the user’s power constraint and ya,h,na are the received signal, the channel vector and the

noise respectively, all column vectors of dimension M . The BS can make MMSE estimate ĥa of the

channel h as

ĥa =

√
PTa

PTa + 1
ya. (30)

As the i.i.d. channel entries are standard Gaussian, the MMSE estimation error h̃a = h− ĥa has also

Gaussian i.i.d. entries as h̃a ∼ CN
(

0, σ2
aIM

)

and the MSE per channel coefficient σ2
a is given by

σ2
a =

1

PTa + 1
. (31)

Similarly the estimate ĥa has Gaussian i.i.d. entries and is distributed as ĥa ∼ CN
(

0, PTa

PTa+1IM

)

.
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Now we focus our attention on the quantized feedback interval of the CSIT acquisition, given in eq.

(7). The signal received during one symbol interval of this phase is given by

yq =
√

P hxq + nq, (32)

where xq represents the scalar feedback symbol transmitted by the user and yq,h,nq are M -dimensional

column vectors representing respectively the observed signal, the channel and the noise for this particular

symbol interval. To decode this information, the BS uses the estimate ĥa that it developed during the

training phase. So the above equation can be written as

yq =
√

P ĥaxq +
√

P h̃axq + nq. (33)

The average effective signal-to-noise-ratio (denoted as SNReff) at the BS during the feedback interval

relegating the imperfect channel estimate portion of the signal into noise and treating ĥa as the perfectly

known channel is given by:

SNReff =
P ||ĥa||2
Pσ2

a + 1
. (34)

Plugging in the value of σ2
a from eq. (31), SNReff will become

SNReff =
P ||ĥa||2

P
PTa+1 + 1

. (35)

We can do a small change of variable as
2(PTa+1)

PTa
||ĥa||2 represents a standard chi-square random variable

having 2M degrees of freedom (DOF), denoted as χ2
2M . So the SNReff becomes

SNReff =
P 2Ta

2(P + PTa + 1)
χ2

2M . (36)

The outage probability ǫ(Ta, b) during this feedback interval corresponding to the outage rate b bits

per channel use can be written as

ǫ(Ta, b) = P [log (1 + SNReff) ≤ b]

= P

[

log

(

1 +
P 2Ta

2(P + PTa + 1)
χ2

2M

)

≤ b

]

, (37)

where P denotes the probability of an event. This relation can be inverted to obtain the outage rate b

corresponding to the outage probability ǫ(Ta, b), as given below

b = log

(

1 +
P 2Ta

2(P + PTa + 1)
F−1(ǫ(Ta, b))

)

, (38)

where F−1(.) is the inverse of the CDF of χ2
2M distributed variable. This concludes the proof.

The analytical solution to the minimization in Theorem 2 does not bear closed form expression but its

numerical optimization is quite trivial.
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C. Resource Split with Imperfect CSIR

Let the MSE in the CDI at the user be σ2
r and the MS quantization error be denoted by σ2

q as earlier.

The relation of outage probability and the outage rate in the feedback interval still holds but the expression

for the MSE of CSIT changes. We make use of eq. (27) from the previous subsection which gives a

bound on the MSE of CSIT splitting two cases when feedback is received correctly or not. With correct

feedback detection, now the MSE of CSIT will carry the impact of quantization and imperfect CSIR.

Denoting this MSE of quantized imperfect CSIR by σ2
Q, eq. (27) becomes

σ2 ≤ σ2
Q + ǫ(Ta, b). (39)

Now we need to specify σ2
Q in terms of quantization error and CSIR imperfection. Let hr denote the

imperfect CSIR for true channel h and hq be the unit-norm quantized channel at the user’s side obtained

by quantization of hr. These vectors and the angles they subtend with each other have been plotted in

Fig. 2. Let the angle between hq and the true CDI (h) be denoted by θQ, then the MSE in the direction

Fig. 2. True channel (h), CSIR (hr) and user’s quantized CDI (hq).
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of true channel and its quantized version is given by

σ2
Q

a
= Eσ2(h,hq) = E sin2(θQ)

b

≤ E sin2(θ1 + θ2)

c
= E (sin θ1 cos θ2 + cos θ1 sin θ2)

2

d
= E

(

sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ2 + 2 sin θ1 sin θ2 cos θ1 cos θ2

)

e

≤ E
(

sin2 θ1 + sin2 θ2 + 2 sin θ1 sin θ2

)

f
= E sin2 θ1 + E sin2 θ2 + 2E sin θ1E sin θ2

g

≤ σ2
r + σ2

q + 2
√

E sin2 θ1

√

E sin2 θ2

h
= σ2

r + σ2
q + 2

√

σ2
r

√

σ2
q

i
= (σr + σq)

2
(40)

Inequality b follows as θQ ≤ θ1 + θ2 and e follows as cos α ≤ 1 for α ≤ π/2. f uses the independence

between the angles θ1 and θ2 whereas inequality g uses the Jensen’s inequality. Plugging this bound of

σ2
Q in eq. (39), we get a new upper bound of the MSE of CSIT for the case of imperfect CSIR.

σ2 ≤ (σr + σq)
2 + ǫ(Ta, b) (41)

This MSE bound needs to be optimized to determine the optimal resource split and the feedback rate in

the case of imperfect CSIR.

D. MSE Decay of Training and Quantized feedback based CSIT

In this subsection, we provide some intuition of why quantized feedback is expected to perform better

than simple pilot transmission. Eq. (31) σ2
a = 1

PTa+1 shows that the MSE of the channel estimate obtained

through UL training decays linearly with the length of the training interval .

To see the decay rate of the quantized feedback with respect to the feedback interval, we reproduce

Eq. (28)

σ2 ≤ 2
−bTq

M−1 + ǫ(Ta, b). (42)

This gives the MSE of CSIT through quantized digital feedback. Suppose for a moment that the outage

is negligible (actually the optimization in theorem 2 yields the outage and the quantization error approx-

imately equal) and there is only quantization error where the size of the codebook used for quantization

mainly depends upon b, the bits that can be sent in the UL direction. With some sacrifice of rigour and
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abuse of notation, if we assume that the ergodic rate can be transmitted in the UL direction as if the

channel is noise only channel, i.e., b = log(1 + P ), the MSE becomes

σ2 ≤ 2
−Tq log(1+P )

M−1 =
1

(1 + P )
Tq

M−1

. (43)

This equation shows the exponential decay of the MSE of quantized CSIT w.r.t. the length of the feedback

interval as compared to the linear decay obtained in the MSE of training based CSIT. This makes the

quantized feedback based approach to perform better than simple training based scheme as confirmed

by simulations in section VII. If minimal resources are available for transmission, it was established that

the simple analog transmission (pilot transmission) performs as good as the digital transmission [34].

VI. OPTIMIZATION SETUP WITH PRACTICAL CONSTELLATIONS

In the previous optimization procedure, we had relaxed the restriction of practical constellations and

allowed any positive real value for the feedback rate b bits per channel use. In practical communication

systems, the constellations used always have number of points equal to an integer power of 2, i.e., b can

only take an integer value. We propose two simple strategies in the following subsections to handle this

issue which arises due to this limitation of practical constellations.

A. Resource Split Optimization for a Fixed Constellation

We can optimize the MSE of CSIT for a fixed constellation, i.e. for a fixed feedback rate b. In this case,

the outage rate based optimization setup, built in the previous section, remains operational except that b is

no more an optimization variable but a fixed parameter corresponding to the chosen constellation. Thus b

will assume the values of 2 and 4 for QPSK and 16-QAM, respectively, although any other constellation

can be selected. The minimization of the MSE of CSIT will give the optimal resource split tailored for

the particular constellation. Hence the perfect CSIR objective function for a fixed constellation (fixed

value of b) becomes:

min
Ta

[

2
−b(Tfb−Ta)

M−1 + ǫ(Ta, b)

]

(44)

where Tfb = Ta + Tq and b are fixed, and b and ǫ(Ta, b) are related as in Theorem 2. This minimization

gives us the optimal value of training length Ta which should be used to get the minimum MSE of

CSIT for this particular constellation (fixed b) under fixed values of M , P and Tfb. This restriction of

fixed constellation brings in some limitations. For example, the use of smaller constellation like QPSK at

very high SNR will not be beneficial as CSIT error will stay bounded due to the fixed cardinality of the

codebook (hence quantization error will be non-diminishing as a function of SNR) even for asymptotically

large values of SNR.
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B. Using Real Values of b with Extra Parity Bits

The other way to resolve the issue of discrete practical constellations is through the use of channel

coding. This allows us to use positive real values for b, obtained from the original optimization setup.

The only restriction, we impose, is that B should take an integer value which can be obtained by using

ceiling or floor operation on the product bTq. Now this B governs the cardinality of the codebook. The

actual constellation, which is used to send feedback, is the one larger than that dictated by b, among the

available constellations. Let the rate of that constellation be denoted by bc. Hence the number of total

bits, which will be sent in the feedback phase, is Bc = bcTq where Bc > B as bc > b. All the extra

bits Bc − B in the feedback phase are used as parity bits. So one can employ either linear block codes

or convolutional codes with an appropriate rate so as to convert B information (true channel feedback)

bits into Bc coded bits. One advantage of using convolutional codes is that puncturing can give more

flexibility for rate matching. Now these Bc bits are sent in the digital feedback phase. As the outage

rate b is less than the rate bc of the constellation chosen, the use of larger constellation will give rise to

increase in the number of erroneous coded bits. The number of errors will grow large in direct proportion

to the difference Bc − B. On the other hand, all the extra feedback bits Bc − B are the parity bits and

when decoding will be performed at the BS, the capability of this coding/decoding operation to combat

the channel errors (introduced in the quantized feedback) is also proportional to this difference, hence

compensating the negative impact of using larger constellation.

VII. SIMULATION RESULTS

Our simulation environment consists of a BS with M = 4 antennas and a single user with a single

antenna. The channel model and the frame structure are the same as described in Section II. The feedback

interval Tfb is fixed to 20 channel uses for all simulations. The results with hybrid combining of training

and quantized feedback use iterative algorithms proposed in section IV for joint estimation and detection

whereas the resource split is computed using theorem 2.

A. Optimization Results for Continuous Constellations

First we present the results when the feedback rate b is not constrained to be an integer and can assume

any positive real value. The optimization of the objective function, given in section V, gives us the values

for the optimal training length Ta and the optimal feedback rate b for various values of user’s power

constraint, which is equal to the UL SNR as the noise at every BS antenna has been normalized to have

unit variance. Knowing the values of ǫ(Ta, b) and Tq, computed based upon the optimal values of Ta and
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b, allows us to compute the upper bound of the final CSIT error eq. (28). These values have been plotted

in dB scale in Fig. 3. For comparison purpose, we have also plotted the MSE of CSIT with classical
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Fig. 3. Mean-Square CSIT Errors with perfect CSIR: Tfb = 20 and M = 4. The novel hybrid scheme performs much better

than the classical training based CSIT acquisition. Gains are significant even with naive use of practical constellations without

any coding.

training based estimation. This plot clearly shows the interest for our hybrid two-staged CSIT acquisition

strategy as, from medium to large SNR values, CSIT error incurred by this scheme is much less than

the error obtained by training based only CSIT acquisition. Only at very low SNR values, this two stage

scheme performs worse than the classical training scheme.2 This happens as we have restricted the final

estimate to come from the digital feedback. Here the total feedback resource (SNR and Tfb) does not

allow transmission of sufficient number of bits through the channel so quantization error is quite large.

2The proposed CSIT acquisition strategy is suitable from moderate to large values of SNRs. This work focuses on CSIT

acquisition for DL multi-user multiplexing. This regime has shown promising gains kicking in from medium to large SNR

values. For very low values of SNR, normally diversity approaches will be preferred over user multiplexing where the presence

of CSIT is beneficial but not the prime requirement.
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This gets aggravated due to the poor training based estimate based upon which these bits are decoded,

further degrading the performance. This degradation can be easily avoided by selecting an SNR threshold

below which traditional training based scheme should be employed.

To see the optimal split between training and quantized feedback, we have plotted the optimal values

of training length Ta, corresponding values of quantized feedback interval Tq and the optimal feedback

rate b in Fig. 4.
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Fig. 4. Optimal Lengths and Outage Rate: Tfb = 20 and M = 4. With increase in SNR, both the length of the quantized

feedback interval Tq and the outage rate b increase gradually.

We have plotted the results of the MSE of CSIT obtained through hybrid combining for the case of

imperfect CSIR in Fig. 5. The results have been plotted for various levels of CSIR quality. The proposed

hybrid scheme shows much better performance than the classical scheme for reasonable quality CSIR.

We have plotted the curves when CSIR is 10, 20 and 30 dB better than the quality of CSIT obtained

using classical scheme. Finite CSIR quality might lead to the saturation of CSIT at high UL SNRs. Quite
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logically CSIT acquisition resources should be invested on quantized feedback only when its quality is

better than the pilot based only CSIT.
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Fig. 5. Mean-Square CSIT Errors with imperfect CSIR: Tfb = 20 and M = 4. The novel hybrid scheme outperforms the

classical scheme even with imperfect CSIR. ∆ denotes the difference of the quality of CSIR and CSIT.

B. Optimization Results for Discrete Constellations with Perfect CSIR

In this section, we present simulation results when fixed constellations QPSK and 16-QAM are used

for quantized feedback transmission. Here the feedback rate b becomes fixed corresponding to the fixed

constellation (2 for QPSK and 4 for 16-QAM) and the optimization is carried only over the resource

split between training and quantized feedback as described in section VI-A. The curves for the MSE of

CSIT obtained theoretically, by doing the simulations with actual constellations and the corresponding

quantization bound for that constellation have been plotted in Fig. 6. Quantization bound gives the
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Fig. 6. Mean-Square CSIT Errors with perfect CSIR: Tfb = 20 and M = 4 (a) QPSK and (b) 16-QAM. The novel hybrid

scheme with QPSK performs better than the classical one from 7 to 25 dB of SNR, but 16-QAM outperforms both after 21 dB.

Fixed split curves are for equal resource split between training and quantized feedback intervals.
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quantization error when maximal (Tfb −1) symbols are used for quantized feedback part. Hence, it gives

the lower bound on the MSE of CSIT (performance upper bound) for that particular constellation. For

comparison purpose, we have also plotted the MSE of CSIT for classical training scheme. This figure

shows that from low to medium SNR values, the novel scheme with QPSK gives CSIT error below

that of the classical training approach but 16-QAM is not attractive in this range due to many incorrect

detection events. At high SNR values, hybrid scheme with QPSK suffers from performance degradation

due to its bounded quantization error but 16-QAM behaves much better than the classical scheme. This

dictates that larger constellations should be used for feedback with increasing SNR.

To demonstrate the value of optimal resource split, the curves of fixed split for both constellations have

also been plotted in Fig. 6 where the feedback resource is equally split between training and quantized

feedback (Ta = Tq = Tfb/2). We remark severe degradation for the fixed resource split compared to the

optimal one as was pointed out in section V-B.

In Fig. 6, both for QPSK and 16-QAM, we have plotted the MSE of CSIT using our proposed

iterative estimation and detection algorithms from section IV. One would expect the iterative estimation

and detection algorithm (with ML detection) to perform better than the simplified iterative estimation

and detection algorithm (which uses the simple LS detection), but extensive simulations show that the

performance difference between the two algorithms is negligible. In all our simulations, both algorithms

show very rapid convergence and they were always converging in second or third iteration. There were

extremely rare instances (less than one in ten million) when convergence was not achieved in three

iterations. We commented in section IV-A that the point of convergence depends upon the initial point.

As in our system settings, this initial point is obtained through pure training based estimate and the system

is operating in medium to large SNR regime, the quality of the initial estimate would be reasonably good.

Further the presence of multiple receive antennas at the BS gives diversity and power gain in outage

capacity (the key metric in the second phase of the proposed hybrid scheme). Hence the decoding of the

feedback will normally fail only if all the channel coefficients are suffering through deep fades [30].

The closeness of the theoretical bounds and the system simulation curves in Fig. 6 shows the validity

of the derived bounds and the analysis carried out in section V based upon the idea of outage rate. The

difference is mainly due to beyond outage error events as both curves use bounded error for quantization.

Without this upper bound of quantization error, the performance of hybrid scheme will improve further.
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C. Discrete Constellations and Imperfect CSIR

As perfect CSIR assumption is too good to be true, in this subsection we remove this assumption and

analyze how the MSE of CSIT with novel scheme behaves with imperfect CSIR.

The curves, when quantized feedback is transmitted using QPSK and 16-QAM, have been plotted in

Fig. 7. We have plotted these curves under two settings. First, when the CSIR quality varies and improves

with the increase in UL SNR which is quite logical as, due to reciprocity, the link quality improves in

both directions and the BS can surely pump more power as compared to a small hand-held mobile unit.

For this case, we take the MSE of CSIR 30 dB less than the classical training only CSIT curve. The

second scenario is when CSIR quality is held fixed independent of the UL SNR. For this, we plot the

MSE of CSIT when the MSE of CSIR is kept fixed at −40, −50 and −60 dB. We believe this scenario

to be of relatively less importance. We remark that when CSIR quality improves with UL SNR, hybrid

approach performs very close to the perfect CSIR curve. For the other case when CSIR quality is kept

fixed, it may become the performance limit of the MSE of CSIT (if not of proper quality).

D. Discrete Constellations and Coding

Now we plot the results of the MSE of CSIT when quantized feedback is sent using discrete con-

stellations, the rate matching is performed using convolutional codes as explained in section VI-B and

iterative estimation and detection algorithms are used at the BS. Here we assume only perfect CSIR. The

code rates and the puncturing patterns need to be selected carefully. First of all, convolutional codes of

all desired rates are not available. Secondly, although puncturing can help to achieve the desired rate, a

random choice of puncturing pattern may destroy the code structure and hence ultimately its performance.

We plot the results obtained using three different codes (1/2 rate code, 2/3 rate code and 3/4 rate

code) in Fig. 8. Fig. 4 has shown that the feedback rate should be below 4 bits per channel use till

28 dB so all of these codes have been used with 16-QAM (4 bits per channel use). Hence the number

of actual information (feedback) bits b are 2, 2.67 and 3 per channel use for 1/2, 2/3 and 3/4 rate

code respectively. We optimize the split (getting Ta and Tq) using Theorem 2 for fixed b as in eq. (44).

The codebook used is of size 2⌊bTq⌋ and each single code index after coding/symbol mapping gives Tq

sybmols of 16-QAM. For comparison purpose, the plot shows the MSE of CSIT obtained by using QPSK

and 16-QAM constellations without any coding and through classical training scheme.

For 1/2 rate code, the generator matrix is [171 133]8 and trace back length is 30. It performs better

than classical training from 16 to 23 dB of SNR but QPSK without any coding performs better than this

curve. For 2/3 rate code, the generator matrix is [4 5 17; 7 4 2]8 with trace back length of 20. From
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Fig. 7. Mean-Square CSIT Errors with Imperfect CSIR: Tfb = 20 and M = 4 (a) QPSK and (b) 16-QAM. For an imperfect

CSIR of reasonable quality, the novel scheme performs much better than the classical scheme and the performance approaches

to the perfect CSIR case for a good enough CSIR.
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Fig. 8. Mean-Square CSIT Errors with Convolutional Coding: Tfb = 20 and M = 4. At certain SNR intervals, coding strategy

performs better than no coding optimal resource split outcome.

17 dB onward, it performs better than classical training. It performs even better than 16-QAM (without

coding) before 24 dB of SNR. For 3/4 rate code, we use the 1/2 rate base code (same as before) and

use the puncturing pattern of [111001] to get the final rate of 3/4.

VIII. CONCLUDING REMARKS

Traditional CSIT acquisition in reciprocal systems relying exclusively on the use of training sequences

ignores the shared knowledge of an identical channel between the BS and the user. We presented a

novel approach of CSIT acquisition at the BS for the DL transmission in a reciprocal MIMO communi-

cation system combining the use of a training sequence together with quantized channel feedback. We

characterized the optimal CSIT acquisition setup and proposed two iterative algorithms for the resulting

joint estimation and detection problem and provided a convergence proof. The novel outage-rate based
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approach allows determining the optimal resource partitioning (between the training and the quantized

feedback) and the feedback rate. We proposed two strategies to overcome the limitation of practical

constellation availability with integer number of bits per channel use either by optimizing the resource

split for a particular constellation or by the use of channel coding for rate matching. The novel combining

scheme shows superior performance due to better exploitation of the reciprocity principle and the trade-

off between the CSIT quality and the resource utilization improves significantly. It is further shown that

with an imperfect CSIR of reasonable quality, performance gains comparable to the perfect CSIR case

are achievable.

Multi-User Extension: The proposed novel scheme holds verbatim in the case of multiple users. In the

first phase of “UL training”, the users should use orthogonal training signals so that the BS gets an initial

estimate of the channel. Then during the second “quantized feedback” phase, the UL channel should be

used as MIMO-MAC. The optimization of resources remains however an open problem in this setting. In

this scenario, the resource optimization will depend heavily upon the BS transmission strategy, e.g., the

optimal resource split could be extremely different for TDMA or SDMA. The presence of more users in

the system, larger than the BS transmit antennas, and subsequently required user scheduling would add

an extra twist to this problem.

Users with Multiple Antennas: There are different ways to treat the fully general case of multiple users

with multiple antennas where even a single user can be transmitted multiple streams. It adds an extra

level of complexity to the open problem of multiple single-antenna users. For the users with multiple

antennas, a simplifying strategy could be to do antenna combining as in [44] to minimize the quantization

error. This scheme is promising as it reduces the feedback requirement by converting the MIMO channel

into a vector channel and in a direction of minimal quantization error. Hence effectively it will become

the multiple single-antenna user extension of our work.
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