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Abstract—This paper (1) presents a new centralized collab-
orative sensing technique for cognitive radio systems which
combines algebraic tools and compressive sampling techniques.
The proposed approach consists of the detection of spectrum
holes using spectrum distribution discontinuities detector fed by
compressed measurements. The compressed sensing algorithm is
designed to take advantage from the primary signals sparsity
and to keep the linearity and properties of the original signal in
order to be able to apply algebraic detector on the compressed
measurements. Collaboration among radios enables the cognitive
network to detect hidden primary users and makes it more robust
against fading and unknown channel conditions. Furthermore, as
an important key point, collaboration makes it possible to sample
more compressively at each radio, i.e., each radio performs
sampling with a lower rate. The complexity of the proposed
detector is also discussed and compared with the energy detector
as reference algorithm. The comparison shows that the proposed
technique outperforms energy detector in addition to its low
complexity.

Index Terms—Collaborative compressed sensing, compressive
sampling, cooperative, spectrum sensing, cognitive radio, distri-
bution discontinuities, algebraic detection, wideband.

I. INTORDUCTION

Recently, compressed sensing/compressive sampling (CS)
has been considered as a promising technique to improve
and implement cognitive radio (CR) systems. Cognitive radio
is an smart wireless communication system that is able to
promote the efficiency of the spectrum usage by exploiting
the free frequency bands in the spectrum, namely spectrum
holes [1], [2]. Detection of spectrum holes is of the first
steps of implementing a cognitive radio system. In wideband
radio one may not be able to acquire a signal at the Nyquist
sampling rate due to the current limitations in Analog-to-
Digital Converter (ADC) technology [3]. Compressive sensing
makes it possible to reconstruct a sparse signal by taking less
samples than Nyquist sampling, and thus wideband spectrum
sensing is doable by CS. An sparse signal or a compressible
signal is a signal that is essentially dependent on a number of
degrees of freedom which is smaller than the dimension of the
signal sampled at Nyquist rate. In general, signals of practical
interest may be only nearly sparse [3].

(1)The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement SACRA n ˚ 249060, SENDORA, and the SAM-
POS/WISENET Project, which is funded by the Research Council of Norway
under the contract number 176875/S10 and 176724/I30.

Apart from reconstructing the original signal, detection is
more required and interesting in the context of cognitive
radio. Generally, for detection purposes it is not necessary
to reconstruct the original signal, but only an estimate of
the relevant sufficient statistics for the problem at hand is
enough. This leads to less required measurements and lower
computational complexity [4]. We do skip estimation of the
original signal and instead we directly use the measurements
for detection purpose, so the complexity of the system is
reduced as much as possible.

It is known that a single cognitive radio may fail to detect a
hidden node or primary user because of shadowing or being in
deep fade. Collaboration among cognitive radios can greatly
improve the detection performance of the cognitive network
in such situations, and the probability that all radios be in
deep fades becomes extremely low [5]. The other significant
key point, which we are interested in, is that collaboration
among radios reduces the sampling rate at each single radio
that leads to less complexity and lower energy consumption at
each radio. Lower sampling rate corresponds to less hardware
complexity, and transmitting fewer samples to the fusion
center corresponds to less energy consumption.

In this paper we develop a centralized implementation of
collaborative compressed sensing of wideband spectrum for
cognitive radios that is combined with distribution disconti-
nuities detection technique. In this sense a group of cognitive
radios identify spectrum holes of a wideband spectrum with
low complexity while the sensing action is robust to severe
fading environments.

The rest of the paper is organized as follows. Section II
states the motivation and system model. Section III details
the proposed collaborative compressed sensing for spectrum
detection. Section IV is dedicated to performance results, and
section V concludes this paper.

II. MOTIVATION AND SYSTEM MODEL

A. Motivation

Cognitive radio (CR) as introduced by Joseph Mitola [6]
is a self aware and intelligent device that can adapt itself to
the wireless environment changes by first detecting them, and
then adapting its radio parameters to the new opportunities.
Cognitive radio technique is an smart wireless communication
system that is able to promote the efficiency of the spectrum
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usage by exploiting the idle frequency bands in the spectrum,
namely spectrum holes [1], [2]. Detection of spectrum holes
is of the first steps of implementing a cognitive radio system.
Different statistical approaches already exist. The easiest to
implement and the reference one in terms of complexity is
the energy detector (ED) [7]. Nevertheless, ED is highly
sensitive to noise and does not perform well in low signal
to noise ratio (SNR). Other advanced techniques based on
signals modulations and exploiting some of the transmitted
signals inner features were also developed [8]. For instance,
the cyclostationary features detector (CFD) exploits the built-
in cyclic properties of the PU received signal. The CFD has
a great robustness to noise compared to ED but its high
complexity is still a consequent drawback. Other techniques
that were developed by researchers at Eurécom Institute are
based on model selection tools and entropy investigation [9]–
[11].

An important issue in spectrum sensing by cognitive radio
is the complexity that is introduced by sampling rate of
received signal at a CR. Specially when the spectrum to
be sensed is wide the sampling is more challenging. In
wideband radio one may not be able to acquire a signal
at the Nyquist sampling rate due to the current limitations
in Analog-to-Digital Converter (ADC) technology [3]. Also,
applying the mechanism of narrowband detector for wideband
spectrum sensing is inflexible and slow. Therefore, efficient
wideband sensing techniques are highly demanded to increase
the sensing agility [12].

Furthermore, collaborative sensing is generally required
to detect hidden nodes to a CR, that is several CR nodes
cooperatively sense the spectrum to detect primary users (PUs)
and available holes. In such scenarios, the amount of data
processing at each CR node, in both centralized and decen-
tralized schemes, and the amount of data exchange between
CR nodes and the fusion center in the centralized scheme are
important factors in complexity and power consumption of the
system. Also, high number of samples, sampled at Nyquist
rate, increase the power consumption and complexity at CR
nodes.

In order to actualize sensing in wide spectrum and to reduce
the complexity and power consumption at CR nodes, sampling
at a smaller rate than Nyquist rate, while reconstruction or
detection of signal is accurately possible, is a prominent
key. Hence, compressive sampling or compressed sensing
(CS) becomes a promising solution in realization of cognitive
radio and reducing the complexity and power consumption.
Compressive sampling enables us to do the sampling at a
smaller rate than Nyquist rate, sometimes much smaller, and
accurately reconstruct the sparse signal, or perform detection
or estimation.

The first step for cognitive radio is to sense the spectrum
and identify the spectrum holes, or in other words, detect
the occupied frequency bands. Typically the wireless signal
in open access networks is sparse in the frequency domain
since depending on location and at some times the percentage
of spectrum occupancy is low due to the idle or not deployed
radios [1], [13]. For example, we can model the spectrally

sparse wideband signals as

s(t) =
N−1∑
j=0

βje
i2πjt/N , t = 0, · · · , N − 1 (1)

where N is very large but the number of nonzero coefficients
βj is much less than N . In this sense we can say that the
signal is spectrally sparse [14]. Therefore, we would like to
implement spectrum sensing in the context of cognitive radio
by performing collaborative compressed sensing combined
with distribution discontinuities detection. To avoid signal
reconstruction burden we choose a sensing matrix that enables
the algebraic detector properly works while accepting the
compressed samples directly as input. Collaboration among
cognitive radios greatly improve the sensing performance,
while increasing the number of cooperative radios enables us
for more reduction in the sampling rate at each individual
radio, that is, more reduced complexity at each single radio.

B. System Model
We assume a centralized implementation where a group

of collaborative cognitive radios are spread over a small
area (∼ 1Km2) and each of the radios communicates with
the fusion center through the control channel. For the radio
channel between primary users and cognitive radios we assume
flat fading with a Rayleigh distribution and shadowing effect.
Here, we assume a perfect channel between radios and fusion
center.

Let us consider a discrete representation of the received
signal at a single radio given by:

x(n) = Ans(n) + e(n) (2)

where An is modeling the channel, s(n) represents the
discrete signal, that is s(t) sampled at Nyquist rate, and
e(n) ∼ N (0, σ2In) is i.i.d. Gaussian noise where In is
an identity matrix of size n.

For the moment, assume only an individual radio that
samples the received signal at Nyquist rate, that is, it observes
x(n). Then the radio sends its observations to the fusion center
for being processed. We would like to distinguish between two
classified hypothesis H0 and H1:

H0 : x(n) = e(n) (3)
H1 : x(n) = Ans(n) + e(n) (4)

where H0 means that the sensed frequency band is white
containing only noise and H1 means that the sensed frequency
band is occupied with a signal corrupted by noise. The key
parameter of all spectrum sensing algorithms are the false
alarm probability PF and the detection probability PD. PF
is the probability to determine a frequency band as occupied
while it is free, thus PF should be kept as small as possible.

PF = P (H1|H0) = P (a signal (user) is present|H0) (5)

PD is the probability to determine a frequency band as
occupied when there exists a signal, thus PD should be kept
as large as possible.

PD = 1− PM = (6)
1− P (H0|H1) = 1− P (no signal (user) is present|H1)
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where PM denote the probability of missed detection. To
design the optimal detector on Neyman-Pearson criterion, we
try to maximize the overall PD under a given overall PF .
In order to infer on the nature of the received signal, we
calculate a threshold for each of the detectors. The decision
threshold is determined using the required probability of false
alarm PF given by (5). The threshold Th for a given PF is
determined by solving the equation:

PF = P (a signal is present|H0)) = 1− FH0(Th) (7)

where FH0 denote the cumulative distribution function (CDF)
under H0.

The algebraic approach is able to detect the signal distri-
bution discontinuities and find their positions in the spectrum,
having the complete signal (Nyquist rate samples) as input to
the detector. But as we previously mentioned, the problem
is that sampling a wideband signal with Nyquist rate is
constrained due to the reasons highlighted in section I. In
order to make the detection possible with less number of
samples or smaller sampling rate, relatively to Nyquist rate,
we implement compressed sensing technique. In this sense,
by considering the sparseness of the signal, at each individual
radio we observe the received signal compressively with a
smaller rate than Nyquist rate such as:

y = Φx+ e (8)

where y ∈ RM is the compressed measurements or observa-
tions, Φ is the sensing matrix, x ∈ RN is the received signal
like Ans(n) as above, e is the additive noise, and M � N .
It is shown that with some conditions on Φ it is possible to
recover x accurately based on y.

We would like to use the compressed samples directly to
detect the frequency holes without recovering the signal itself.
Since the algebraic detection of distribution discontinuities is
a linear approach we find a proper sensing matrix that makes
it possible to use the compressed samples as the input to the
linear detector. Cognitive radios can use a same sensing matrix
or different sensing matrices of each other. Here, we assume
that radios use different sensing matrices of each other that
are made randomly as explained in following section.

After compressive sensing, performed by each individual
radio, each radio sends the compressed observations to the fu-
sion center. It is clear that sending the compressed observations
requires lower energy and smaller bandwidth for the control
channel than the case with Nyquist sampling. In following
section we discuss about compressed sensing and the proper
type of the sensing matrix as well as the detection process at
the fusion center.

III. COLLABORATIVE COMPRESSED SENSING FOR
SPECTRUM DETECTION

A. Compressive Sampling at an Individual Radio
First, let us give an introduction on compressive sampling.

Let x ∈ RN be a signal with expansion in an orthonormal
basis Ψ as

x(t) =
N−1∑
j=0

αjψj(t), t = 0, · · · , N − 1 (9)

where Ψ is the N × N matrix with the waveforms ψj as
rows. To use convenient matrix notations we can write the
decomposition as x = Ψα or equivalently, α = Ψ∗x where
Ψ∗ denotes conjugate transpose of Ψ. A signal x is sparse in
the Ψ basis if the coefficient sequence α is supported on a
small set. We say that a vector α is S-sparse if its support
{j : αj 6= 0} is of cardinality less or equal to S [3]. Consider
that we would like to recover all the N coefficients of x, vector
α, from measurements y about x of the form

ym = 〈x, φm〉 =
N−1∑
n=0

φmnx[n],m = 0, · · · ,M − 1 (10)

or
y = Φx = ΦΨα = Θα (11)

where we are interested in the case that M � N , and
the rows of the M × N sensing matrix Φ are incoherent
with the columns of Ψ. Then it is shown that signal x can
accurately and sometimes exactly be recovered, considering
that the recovered signal x? is given by x? = Ψα?, and α? is
the solution to the convex optimization program

min
α̃∈RN

||α̃||l1 subject to ΦΨα̃ = Θα̃ = y (12)

where ||α̃||l1 :=
∑N
j=1 |α̃j |. The compressed sensing (CS)

theory states that there exists a measuring factor c > 1 such
that only M := cS incoherent measurements y are needed to
recover x with high probability. We also have to mention that
except l1-minimization solution other methods such as greedy
algorithms in [15] exist for recovering the sparse signal [3],
[4], [14], [16]–[18].

In case of noisy measurements, i.e., y = Φx + e, where e
is noise with ||e||l2 ≤ ε, [18] shows that solution to

min
α̃∈RN

||α̃||l1 subject to ||Θα̃− y||l2 ≤ ε (13)

recovers the sparse signal with an error at most proportional
to the noise level. Also, [18] discuss the conditions for stable
recovery from noisy measurements.

Each single radio sends the compressed observations to
the fusion center. In the fusion center the observations from
each radio are processed separately by an algebraic approach
to produce the detection result from each radio. Later, we
explain how the detection results from all radios make the
final detection of spectrum holes.

We are interested in doing the spectrum holes detection
using algebraic approach directly from the compressed mea-
surements without reconstructing the original signal itself. For
this reason we must find out the appropriate sensing matrix
according to the detection technique. The proposed detection
technique is a linear algebraic algorithm. This technique uses
the Fourier transform of the observed signal to detect the
occupied frequency bands in the observed spectrum. Therefore
the compressed measurements of the observed signal must
keep the linearity and properties of the original signal in
order to apply the detection algorithm successfully on the
compressed measurements. In [19] we show that any row
vector of the sensing matrix is a Dirac function, that is, only
one column of each row is nonzero. To generate the sensing
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matrix we can start from generating ΦT matrix by randomly
selecting M columns of an identity matrix IN . The sensing
matrix, Φ, is given by transpose of ΦT , where the columns of
the sensing matrix are unit-normed. So the sensing matrix Φ
that we apply has a form like this

Φ ∼

 0 1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · 0 1 0 0


M×N

. (14)

This form of sensing matrix gives us the opportunity to use the
compressed measurements from each radio directly as input to
the algebraic detection algorithm in the fusion center and thus
avoiding the computation complexity of reconstructing the
original signal. Radios can have a similar sensing matrix, but
here we use a different random sensing matrix for each radio.
Following, detection process at the fusion center is explained.

B. Centralized Detection at the Fusion Center

As we said, the compressed observations from each radio is
processed separately at the fusion center with an algebraic ap-
proach. The algebraic detection (AD) is a new approach based
on advanced differential algebra and operational calculus. In
this method, the primary user’s presence is rather casted as
a change point detection in its transmission spectrum [20]. In
this approach, the mathematical representation of the spectrum
of the compressed measurements, i.e., the observed signal Yn
from each radio in frequency domain, is assumed to be a
piecewise P th polynomial signal expressed as following:

Yn =
K∑
k=1

Yk[nk−1, nk](f)pk(n− nk−1) + En (15)

where Yk[nk−1, nk] is the characteristic function, pk is a
polynomial series of order P , En is the additive corrupting
noise, K is the number of subbands defined in the frequency
range of observation interest, and n = f

fs
is the normalized

frequency, where fs is the sampling frequency and f is the
signal frequency.

Let us define the clean version of the received signal Sn as:

Sn =
K∑
k=1

Yk[nk−1, nk](f)pk(n− nk−1) (16)

And let b, the frequency band, is such that one and only one
change point occurs in the interval Ib = [nk−1, nk] = [ν, ν+b],
ν ≥ 0. Denoting Sν(n) = S(n+ν), n ∈ [0, b] as the restriction
of the signal in the interval Ib and redefine the change point
nν relatively to Ib such as:{

nν = 0 if Sν is continuous
0 < nν ≤ b otherwise (17)

Then, the primary user presence on a sensed sub-band is
equivalent to find 0 < nν ≤ b on that band. The AD gives
the opportunity to build a whole family of spectrum sensing
detectors, depending on a given model order P . Depending on
this model order, we can show that performance of the AD is
increasing as the order P increases.
The proposed algorithm is implemented as a filter bank which

composed of P filters mounted in a parallel way. The impulse
response of each filter is:

hk+1,n =

{
(nl(b−n)P+k)(k)

(l−1)! , 0 < n < b

0, otherwise
(18)

where k ∈ [0 · · ·P − 1] and l is chosen such that l >
2 × P . The proposed expression of hk+1,n, k ∈ [0 · · ·P − 1]
is determined by modeling the spectrum with a piecewise
regular signal in frequency domain and casting the problem
of spectrum sensing as a change point detection in the pri-
mary user transmission [20]. Finally, in each detected interval
[nνi , nνi+1 ], we compute the following equation:

λk+1 =
nνi+1∑
m=nνi

Wmhk+1,mXm (19)

where Wm is the weight for numeric integration defined by:{
W0 = WM = 0.5
Wm = 1 otherwise (20)

and M is the number of samples of the observed signal.
In order to infer whether the primary user is present in its

sub-band, a decision function is computed as following:

Df = ‖
P∏
k=0

λk+1(nν)‖ (21)

The decision is made by comparing the threshold Th to the
mean value of the decision function over the detected intervals.

In the collaborative sensing the final decision is made by
applying a rule on the decisions from all the radios for each
detected interval. Different rules maybe used, and here, we
choose the averaging rule. Let us denote the detection results
from collaboration by D. Decision function from each radio
ρ on each interval [νi, νi+1] is denoted by Df ρ,νi

. Then we
have:

Dν =
1
Rs

Rs∑
ρ=1

Df ρ,νi
(22)

where Rs is the number of collaborative radios. So, the final
decision is made by comparing D to the threshold Th over
detected subbands. In next section simulation results on the
proposed technique are presented.

IV. SIMULATIONS

In this section we investigate the performance of the
proposed collaborative compressed sensing with the energy
detector (ED). ED is the most common method for spectrum
sensing because of its non-coherency and low complexity. The
energy detector measures the received energy during a finite
time interval and compares it to a predetermined threshold.
That is, the test statistic of the energy detector is:

M∑
m=1

‖ ym ‖2 (23)

where M is the number of samples of the received signal y
from each radio.
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Traditional ED can be simply implemented as a spectrum
analyzer. A threshold used for primary user detection is highly
susceptible to unknown or changing noise levels. Even if the
threshold would be set adaptively, presence of any in-band
interference would confuse the energy detector.

Since the complexity of sensing algorithms is a major
concern in implementation and ED is well known for its
simplicity, we choose ED as the comparison reference. De-
noting N the number of Nyquist samples of the observed
signal y and P the model order of AD, we show that the
complexity of AD is PN and the complexity of ED is N .
From these results, we clearly see that the exploited sensing
algorithm has a comparable complexity to the energy detector.
For the proposed AD based compressed sensing algorithm,
the complexity is equal to: P M

N N = PM , where M is the
number of compressed measurements of the received signal
and M � N .

Table I summarizes the complexity of each detector.

Sensing technique Complexity
Energy detector N
Algebraic detector PN
Combined compressive sampling and PM
distribution discontinuities detection

TABLE I
COMPLEXITY COMPARISON OF THE THREE SENSING TECHNIQUES; M � N .

In order to achieve realistic and well founded simulations,
DVB-T signals based on DVB-T 2K recommendations are
used as the signals to be sensed. This choice can be justified by
the fact that almost all licensed primary networks are DVB-T
and secondary users are CR deployed in these networks. The
signal and channel parameters are given in Table II.

We consider collaborative radios group with size

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel models AWGN
Flat fading Multipath
Channel gains [-10,0]dB
Sensing time 1.25ms

TABLE II
THE TRANSMITTED DVB-T PRIMARY USER SIGNAL AND CHANNEL PARAMETERS

of 1, 5, 10, 20 radios. For each group size, compressed
collaborative detection with different compression ratios,
M
N = {10%, 20%, 30%}, is simulated and compared to the
ED detector with single radio and no compression. Collab-
orative ED is not simulated due to timing issues and since
the comparison is still valid with single radio because, as
will be seen, performance of a single radio with compressed
sensing for compression ratios of about 20% and higher is
better than single ED with no compression. So, we expect that
cooperative compressed sensing also ourperforms cooperative
ED, intuitively.

Figure 1 shows the performance of energy detector (ED)
with no compression and first order algebraic detector AD1

with different compression ratios for collaborative groups of
size 1, 5, 10 and 20 radios.

We note that only performance of a single radio with
compression ratio of 10% is not as good as performance of

ED with single radio and no compression. And for the rest
of examples the performance is better. This is where the com-
plexity of the compressed sensing, i.e., MN , is much lower than
ED, i.e., N . Collaboration among radios greatly improve the
detection performance. Also, we note that when the number
of collaborations increases the compression ratio at each radio
can be decreased in order to achieve a specific probability of
detection PD. Figure 2 shows the probability of detection that
is achievable by different number of collaborative radios for a
compressed sensing ratio of M

N = 10% at SNR=−20dB and
PF = 0.05.

These results are obtained with Algebraic detection of order
P = 1, where increasing the order to P = 2 improves the
performance dramatically, while complexity increases to 2M
from M . But, still, for example for M

N = 10%, complexity
remains much less than complexity of ED, i.e., N .

As a final word, we can say that the collaborative com-
pressed sensing decreases the complexity and energy con-
sumption of cognitive radio networks remarkably due to the
low sampling rate required for each radio while it makes the
cognitive network robust to fading.
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V. CONCLUSION

In this work we present a new centralized collaborative
sensing technique which combines compressive sampling and
algebraic method to detect spectrum holes. We choose a
compressed sensing matrix which keeps the linear properties
of the sampled primary signal. Each radio of the collab-
oration group use a different random sensing matrix and
sends its compressed observations to the fusion center. The
fusion center process the compressed measurements from
each radio separately with an algebraic detector. The fusion
center makes the final decision by averaging over results from
all the collaborative radios to localize spectrum distribution
discontinuities and identify spectrum holes. The performance
comparison at different sampling rates shows that the new
designed scheme achieves better performance than energy
detector while preserving a low computational complexity.
Also, as an important key point, by increasing the number of
collaborative radios the sampling rate at each radio decreases,
in order to obtain a desired performance. This leads to a great
reduction in terms of system complexity and implementation.
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