
On Scheduling and Redundancy for P2P Backup
Laszlo Toka∗†, Matteo Dell’Amico∗, Pietro Michiardi∗

{laszlo.toka, matteo.dell-amico, pietro.michiardi}@eurecom.fr
∗ Eurecom, Sophia-Antipolis, France

† Budapest University of Technology and Economics, Hungary

Abstract—An online backup system should be quick and
reliable in both saving and restoring users’ data. To do so in
a peer-to-peer implementation, data transfer scheduling and the
amount of redundancy must be chosen wisely. We formalize the
problem of exchanging multiple pieces of data with intermittently
available peers, and we show that random scheduling completes
transfers nearly optimally in terms of duration as long as the
system is sufficiently large. Moreover, we propose an adaptive
redundancy scheme that improves performance and decreases
resource usage while keeping the risks of data loss low. Extensive
simulations show that our techniques are effective in a realistic
trace-driven scenario with heterogeneous bandwidth.

I. I NTRODUCTION

The advent of cloud computing as a new paradigm to enable
service providers with the ability to deploy cost-effective
solutions has favored the development of a range of new
services, including online storage applications. Due to the
economy of scale of cloud-based storage services, the costs
incurred by end-users to hand over their data to a remote
storage location in the Internet have approached the cost of
ownership of commodity storage devices.

As such, online storage applications spare users most of the
time-consuming nuisance of data backup: user interaction is
minimal, and in case of data loss due to an accident, restoring
the original data is a seamless operation. However, the long-
term storage costs that are typical of a backup application may
easily go past that of traditional approaches to data backup.
Additionally, while data availability is a key feature that
large-scale data-centers deployments guarantee, its durability
is questionable, as reported recently [?].

For these reasons, peer-to-peer (P2P) storage systems are an
alternative to cloud-based solutions. Storage costs are merely
those of a commodity storage device, which is shared (together
with some bandwidth resources) with a number of remote
Internet users to form a distributed storage system. Such
applications optimize latency to individual file access: indeed,
users hand over their data to the P2P system, which is used
as a replacement of a local hard drive. In such a scenario, low
access latency is difficult to achieve: the online behavior of
users is unpredictable and, at large scale, crashes and failures
are the norm rather than the exception. As a consequence,
storage space is sacrificed for low access latency: a P2P
application stores large amounts of redundant data to cope
with such unfavorable events.

In this work we study a particular case of online storage:
P2P backup applications. Data backup involves the bulk trans-
fer of potentially large quantities of data, both during regular

data backups and in case of data loss. As a consequence, low
access latency is not an issue, while short backup and restore
times seem a more reasonable goal.

Given these considerations, here we seek to optimize backup
and restore times, while guaranteeing that data loss remains an
unlikely event. There are two main design choices that affect
these metrics:scheduling, i.e. deciding how to allocate data
transfers between peers, andredundancy, i.e. the amount of
data in the P2P system that guarantees a backup operation to
be considered complete and safe. The endeavor of this work
is to study and evaluate these two intertwined aspects.

First, we describe in detail our application scenario (Sec.
II), and show why the assumptions underlying a backup
application can simplify many problems addressed in the
literature. We then set off to define the problem of scheduling
in a full knowledge setting, and we show that it can be
solved in polynomial time by reducing it to a maximal flow
problem. Full knowledge of future peer uptime is obviously
an unrealistic assumption: thus, we show that a randomized
approach to scheduling yields near optimal results when the
system scale is large and we corroborate our findings using
real availability traces from an instant messaging application
(Sec.??).

We then move to study a novel redundancy policy that,
rather than focusing on short-term data availability, targets
short data restore times. As such, our method alleviates the
storage burden of large amounts of redundant data on client
machines (Sec.??). With a trace-driven simulation of a
complete P2P backup system, we show that our technique is
viable in practical scenarios and illustrate its benefits interms
of increased performance (Sec.??).

We conclude by studying a range of data maintenance
policies when restore operations may undergo some natural
delays. For example, detecting a faulty external hard-drive may
not be immediate, or obtaining a new equipment upon a crash
may require some time. We show that an “assisted” approach
to data repair techniques (which involves a cloud-based storage
service) can significantly reduce the probability of data loss,
at an affordable cost (Sec.??).

II. A PPLICATION SCENARIO

In this work, similarly to many online backup applications
(e.g., Dropbox1), we assume users to specify one local folder
containing important data to backup. We also assume that

1https://www.dropbox.com/

2

backup data remains available locally to peers. This is an
important trait that distinguishes backup from storage appli-
cations, in which data is only stored remotely.

Backup data consists of an opaque object, possibly repre-
senting an encrypted archive of changes to a set of files, that
we termbackup object. In the spirit of incremental backups,
we consider that each backup object should be kept on the
system indefinitely. Consolidation and deletion of obsolete
backups are not taken into account in this work.

A backup object of sizeo is split into k original fragments
of a fixed sizef , with k = o/f . Since backup data is stored on
unreliable machines characterized by an unpredictable online
behavior, the originalk blocks are encoded using erasure cod-
ing (e.g., Reed-Solomon). This createsn encoded fragments
having sizef , of which anyk are sufficient to recover the
original data. The redundancy rate is defined asr = n/k. Here
we assume that encoded fragments reside ondistinct remote
peers, which avoids that a single disk failure causes the loss
of multiple fragments.
Backup Phase:The backup phase involves a data owner and
a set of remote peers that eventually store encoded fragments
for the data owner. We assume that any peer in the system can
collect a list of remote peers with available storage space:this
can be achieved by using known techniques, e.g. a centralized
“tracker” or a decentralized data structure such as a distributed
hash table.

Data backup requires ascheduling policythat drives the
choice of where and when to upload encoded fragments to
remote peers. Moreover, aredundancy policydetermines when
the data is safe, which completes the backup operation.
Maintenance Phase:Once the backup phase is completed and
encoded fragments reside on remote peers, the maintenance
phase begins. Peer crashes and departures can cause the loss
of some encoded fragments; during the maintenance phase,
peers detects such losses and generate new encoded fragments
to restore a redundancy level at which the backup is safe again.

For a generic P2P storage system, in which encoded frag-
ments only reside in the network and peers do not keep a local
copy of their data, the maintenance phase is critical. Indeed,
peers need to first download the whole backup object from
remote machines, then to generate new encoded fragments and
upload them to available peers. This problem has fostered the
design of efficient coding schemes to mitigate the excessive
network traffic caused by the maintenance operation (see
e.g. [?], [?]).

In a backup application, the maintenance phase is less
critical: the data owner can generate new encoded fragments
using the local copy of the data with no download required.
Restore Phase: In the unfortunate case of a crash, the data
owner initiates the restore phase. A peer contacts the remote
machines holding encoded fragments, downloads at leastk
of them, and reconstructs the original backup data. Again, a
scheduling policy drives the process.

Since the ability to successfully restore data upon a crash
is the ultimate goal of any backup system, in our application
the restore traffic receives higher priority than the backupand

maintenance traffic.

A. Performance Metrics

We characterize the system performance in terms of the
amount of time required to complete the backup and the restore
phases, labelledtime to backup(TTB) and time to restore
(TTR).

In the following Sections, we use baselines for backup and
restore operations which bound both TTB and TTR. Let us
assume an ideal storage system with unlimited capacity and
uninterrupted online time that backs up user data. In this case,
TTB and TTR only depend on backup object size and on
bandwidth and availability of the data owner. We label these
ideal valuesminTTBandminTTR, and we define them formally
in Sec.??.

Additionally, we consider thedata loss probability, which
accounts for the probability of a data owner to be unable to
restore backup data.

A P2P backup application may exact a high toll in terms of
peer resources, including storage and bandwidth. In this work
we gloss over metrics of the burden on individual peers and
the network, considering a scenario in which the resources of
peers are lost if left unused.

B. Availability Traces

The online behaviorof users, i.e., their patterns of con-
nection and disconnection over time, is difficult to capture
analytically. In this work we will perform our evaluations on
a real application trace that exhibits both heterogeneity and
correlated user behavior. Our traces capture user availability,
in terms of login/logoff events, from an instant messaging
(IM) server in Italy for a duration of 3 months. We argue that
the behavior of regular IM users constitutes a representative
case study. Indeed, for both an IM and an online backup
application, users are generally signed in for as long as their
machine is connected to the Internet.

In this work we only consider users that are online for an
average of at least four hours per day, as done in the Wuala
online storage application2. Once this filter is applied, we
obtain the trace of 376 users. User availabilities are strongly
correlated, in the sense that many users connect or disconnect
around the same time. As shown in Fig.??, there are strong
differences between the number of users connected during day
and night and between workdays and weekends. Most users
are online for less than 40% of the trace, while some of them
are almost always connected (Fig.??).

III. T HE SCHEDULING PROBLEM

Scheduling data transfers between peers is an important
operation that affects the time required to complete a backup or
a restore task, especially in a system involving unreliablema-
chines with unpredictable online patterns. Because of churn,
a node might not be able to find online nodes to exchange
data with: hence, TTB and TTR can grow due to idle periods
of time. Unexpected node disconnections require a method to

2http://www.wuala.com/

3

Mon Tue Wed Thu Fri Sat Sun Mon
50

100

150

200

250

Time [day]

O
nl

in
e

pe
er

s

(a) Online peers during a week.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of time spent online

E
m

pi
ric

al
 C

D
F

(b) Time spent online.

Fig. 1. Availability trace. Uptime is heterogeneous and strongly correlated.

handle partial fragments, which can be discarded or resumed.
Moreover, the redundancy rate used to cope with failures and
unavailability may decrease system performance. Finally,the
available bandwidth between peers involved in a data transfer,
which may be shared due to parallel transmissions, is another
cause for slow backup and restore operations.

In this Section, we focus on the implications of churn alone.
We simplify the scheduling problem by assuming the redun-
dancy factor to be a given input parameter, and neglecting
the possibility of congestion due to several different backup,
restore or maintenance processes interfering. Furthermore, we
do not consider interrupted fragment transfers. In Section??,
we define an adaptive scheme to compute the redundancy rate
applied to a backup operation and in Section?? we relax all
other assumptions.

We now define a reference scenario to bound TTB and
TTR. Consider an ideal storage system (e.g. a cloud service)
with unbounded bandwidth and 100% availability. A peeri
with upload and download bandwidthui and di starting the
backup of an object of sizeo at time t completes its backup
at time t′, after having spentoui

time online. Analogously,
i restores a backup object with the same size att′′ after
having spentodi

time online. We defineminTTB(i, t) = t′−t
andminTTR(i, t) = t′′ − t. We use these reference values
throughout the paper to compare the relative performance of
our P2P application versus that of such an ideal system.

Because we neglect congestion issues, we can focus on a
backup/restore operation as seen from a single peer in the
system. Let us consider a generic peerp0 andI remote peers
p1, . . . , pI used to storep0’s data. We assume time to be
fractioned intime-slotsof fixed length. Letai,t be an indicator
variable so thatai,t = 1 if and only if pi is online at time
t. Each peeri has integer upload and download capacity of
respectivelyui anddi fragments per time-slot.

We now proceed with a series of definitions used to formal-
ize the scheduling problem.

Definition 1: A backup scheduleis a set of (i, t) tuples
representing the decision of uploading a fragment fromp0
to peerpi, wherei ∈ {1 . . . I} at time-slott. A valid backup
scheduleS satisfies the following properties:

1) ∀t : |{i : (i, t) ∈ S}| ≤ u0: no more thanu0 fragments
per time-slot can be uploaded.

2) ∀(i, t) ∈ S : ai,t = a0,t = 1: fragments are transferred

only between online peers.
3) ∀(i, t), (j, u) ∈ S : i 6= j: no two fragments are stored

on the same peer.

Definition 2: A restore scheduleis a set of (i, t) tuples
representing the decision of downloading a fragment from a set
of remote peerspi ∈ P at time t, whereP is set of storage
peers that received a fragment during the backup phase. A
valid restore scheduleS satisfies the following properties:

1) ∀t : |{i : (i, t) ∈ S}| ≤ d0: no more thand0 fragments
per time-slot can be recovered.

2) ∀(i, t) ∈ S : ai,t = a0,t = 1.
3) ∀(i, t) : (j, u) ∈ S, i 6= j.
4) ∀(i, t) ∈ S : pi ∈ P : fragments can only be retrieved

from storage peers.

Definition 3: Thecompletion timeC of a scheduleS is the
last time-slot in which a transfer is performed, that is:

C(S) = max{t : (i, t) ∈ S}.

In the following, we first consider a full information setting,
and show how to compute an optimal schedule which min-
imizes completion time provided that the online behavior of
peers is knowna priori. Then, we compare optimal scheduling
to a randomized policy that needs no knowledge of future
peer uptime; via a numeric analysis, we show the conditions
under which a randomized, uninformed approach achieves
performance comparable to that of an optimal schedule.

A. Full Information Setting

We cast the problem of finding the optimal schedule for
both backup and restore operations as finding the minimum
completion time to transfer a given numberx of fragments.
For backup,x will correspond to the numbern of redundant
encoded fragments; for restores,x will be equal to the number
k of original fragments. We show that this problem can be
reduced to finding the maximum number of fragments that
can be transferred within a given timeT . We then use a max-
flow formulation and show that existing algorithms can solve
the original problem in polynomial time.

Definition 4: An optimal scheduleto backup/restorex frag-
ments is one that achieves the minimum completion time to
transfer at leastx fragments. LetS be the set of all valid
schedules; the minimum completion time is:

O(x) = min{C(S) : S ∈ S ∧ |S| ≥ x}. (1)

The following proposition shows that the optimal comple-
tion time can be obtained by computing the maximum number
of fragments that can be transferred inT time-slots.

Proposition 1: Let S be the set of all valid schedules
andF (t) be the function denoting the maximum number of
fragments that can be transferred within time-slott, that is:

F (t) = max{|S| : S ∈ S ∧ C(S) ≤ t}. (2)

The optimal completion time is:

O(x) = min{t : F (t) ≥ x}.

4

Proof: Let t1 = O(x) and t2 = min{t : F (t) ≥ x}.
• t1 ≥ t2. By Eq. ??, anS1 ∈ S exists such thatC(S1) =

t1 and |S1| ≥ x, implying thatF (t1) ≥ x. Therefore,
t1 ≥ min{t : F (t) ≥ x} = t2.

• t1 ≤ t2. By Eq. ??, an S2 exists such thatC(S2) = t2
and |S2| ≥ x. This directly implies thatt1 = O(x) ≤ t2.

We can now iteratively computeF (t) with growing values
of t; the above Proposition guarantees that the first valueT
that satisfiesF (T) ≥ x will be the desired result.

We now focus on a single instance of the problem of
finding the maximum number of fragmentsF (T) that can be
transferred within time-slotT , and show that it can be encoded
as a max-flow problem on a flow network built as follows.
First, we create a bipartite directed graphG′ = (V ′, E′) where
V ′ = T ∪P; the elements ofT = {ti : i ∈ 1 . . . T} represent
time-slots, the elements ofP = {pi : i ∈ 1 . . . I} represent re-
mote peers (only storage nodes for restores). An edge connects
a time-slot to a peer if that peer is online during that partic-
ular time-slot:E′ = {(ti, pj) : ti ∈ T ∧ pj ∈ P ∧ ai,j = 1}.
Sources and sinkt nodes complete the bipartite graphG′ and
create a flow networkG = (V,E). The source is connected
to all the time-slots during which the data ownerp0 is online;
all peers are connected to the sink.

The capacities on the edges are defined as follows: edges
from the source to time-slots have capacityu0 or d0 (respec-
tively, for backup and restore operations); edges between time-
slots and peers have capacitydi or ui (respectively, for backup
and restore operations); finally, edges between peers and the
sink have capacitym. Note that in this work we assume
individual fragments to be uploaded to distinct peers, hence
m = 1. To simplify presentation, we assume integer capacities
uk = dk = 1∀k ∈ [0, I].

Fig. ?? illustrates an example of the whole procedure
described above, for the case of a backup operation. Fig.??
shows the online behavior for time-slotst1, . . . , t8 of the data
owner and the remote peers (p1, p2, p3) that can be selected
as remote locations to backup data. The optimal schedule
problem amounts to deciding which remote peer should be
awarded a time-slot to transfer backup fragments, so that the
operation can be completed within the shortest time. This
problem is encoded in the graph of Fig.??. Time-slots and
remote peers are represented by the nodes of the inner bipartite
graph. An edge of capacity 1 connects a time-slot to the set
of online peers in that time-slot, as derived from Fig.??. The
source node has an edge of capacityu0 = 1 to every time-
slot in which the data owner is online (in the figure,t4, t5 are
shaded to remindp0 is offline): this guarantees that only 1
fragment per time-slot can be transferred. The sink node has
an incident edge with capacitym = 1 from every remote peer.

Each s − t flow represents a valid schedule. For backup
operations, the schedule is valid because the three equations
of Def. ?? are verified by construction of the flow network.
Similarly, for restore operations the equations of Def.?? are
satisfied by construction, since only remote peers in the setP
are part of the flow network.

Data

owner

p
1

p
2

p
3

t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8

(a) Online behavior

t1

t2

t3

t4

t5

t6

t7

t8

p1

p2

p3

s t

m=1

...

...

...
...

u0=1

...
...

...

...

di=1

(b) Equivalent flow network

Fig. 2. An example of a backup operation. The original problemof finding
an optimal schedule, given the online behavior of peers, is transformed in a
max-flow problem on an equivalent graph.

In the particular case of the example the smallest value
of t ensuringF (t) ≥ 3 is 3, corresponding to a flow graph
that contains only thet1, t2, t3 time-slot nodes. The resulting
optimal scheduling corresponds to the thick edges in Fig.??.

For a flow network withV nodes andE edges, the max-flow
can be computed with time complexityO

(

V E log
(

V 2

E

))

[?].
In our case, when we havep nodes and an optimal solution oft
time-slots,V is O(p+t) andE is O(pt). The complexity of an

instance of the algorithm is thusO
(

pt
(

p log p
t + t log t

p

))

.
The original problem, i.e., finding an optimal schedule

that minimizes the time to transferx fragments, can be
solved by performingO(log t) max-flow computations. In
fact, an upper bound for the optimal completion time can
be found in O(log t) instances of the max-flow algorithm
by doubling at each time the value ofT , then the optimal
value can be obtained, again inO(log t) time, by using
binary search. The computational complexity of determining
an optimal schedule in a full information framework is thus
O
(

pt log t
(

p log p
t + t log t

p

))

.

B. Random Scheduling

In practice, assuming complete knowledge of peers’ online
behavior is not realistic. We introduce arandomized schedul-
ing policywhich only requires knowing which peers are online
at the time of the scheduling decision. In Sec.??, we compare
optimal and randomized scheduling using real traces.

5

For backup operations, in each time-slot, fragments are
uploaded from the data owner to no more thanu0 remote
peers chosen at random among those that are currently online
and that did not receive a fragment in previous time-slots. This
satisfies Def.??. For restore operations, in each time-slot,d0
remote peers in the setP are randomly chosen among those
that are currently online and data is transferred back to the
data owner. This satisfies Def.??.

We now use Fig.?? to illustrate a possible outcome of
the randomized schedule defined here and compare it to the
optimal schedule computed using the max-flow formalization.
We focus on the backup operation ofx = 3 fragments carried
out by the data ownerp0. In Fig. ??, the data owner may
randomly selectp1 to be the recipient of the first fragment
in time-slot t1. Since we assumem = 1 fragment can
be stored on a distinct peer, this choice implies that time-
slot t2 is “wasted”. In time-slott3 the data owner has no
choice but to store data on peerp3. Only in time-slot t7
the backup process is complete, when the last fragment is
uploaded to peerp2. Hence, this randomized schedule writes
as (p1, t1); (p3, t3); (p2, t7).

The optimal schedule is obtained by computing the max-
flow on the flow network in Fig.?? (thick edges in the figure),
and writes as(p2, t1); (p1, t2); (p3, t3). The backup operation
only requires 3 time-slots to complete.

C. Numerical Analysis

Here, we take a numerical perspective and compare optimal
and randomized scheduling in terms of TTB and TTR. We
focus on a single data ownerp0 involved in a backup oper-
ation. The input to the scheduling problem is the availability
trace described in Sec.??, starting the backup at a random
moment; we set the duration of a time-slot to one hour. Let
u0 = 1 fragment per time-slot be the upload rate ofp0. We
report results forx ∈ {40, 60, 80} backup fragments, and
vary the number of randomly chosen remote peers so that
I ∈ {1.1x, 1.2x, . . . , 2x}. We obtained each data point by
averaging 1,000 runs of the experiment; furthermore, for each
of those runs, we averaged the completion times of 1,000
random schedules in the same settings.

Fig. ?? illustrates the ratio between the TTB achieved
respectively by optimal and randomized scheduling, normal-
ized to the ideal backup time minTTB. We observe that
both optimal and randomized scheduling approach minTTB
when the number of remote peers available to store backup
fragments increases: a large system improves transmission
opportunities, and TTB approaches the ideal lower bound.
However, when the number of backup fragments grows, which
is a consequence of higher redundancy rates, randomized
scheduling requires a larger pool of remote machines to
approach the performance of the optimal scheduling. We also
note that heterogeneous and correlated behavior of users inthe
availability trace results in “idle” time-slots in which neither
optimal nor randomized scheduling can transfer data.

This very same evaluation can be used to evaluate a restore
operation, even if the parameters acquire a different meaning.

40 60 80 100 120 140 160
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of remote peers

T
T

B
 /

m
in

T
T

B

random x=40
optimal x=40
random x=60
optimal x=60
random x=80
optimal x=80

Fig. 3. Numerical analysis: a comparison between optimal and randomized
scheduling, using real availability traces.

In this case, the numberx of fragments that need to be
transferred is the number of original fragmentsk, and the
number of remote peersI will correspond to the number of
encoded fragmentsn. For restores, as the redundancy rate
n
k = I

x grows, backups will be more efficient.
We conclude that randomized scheduling is a good choice

for a P2P backup application, provided that:

• to have efficient backups, the ratio between number of
nodes in the system and number of fragments to store is
not very close to one;

• to have efficient restores, the redundancy rate is not very
close to one.

As a heuristic threshold, in our analysis we obtain that a
value of I

x = 1.5 is sufficient to complete backup and restore
within a tolerable (around 10%) deviation from minTTB or
minTTR, respectively. In the following, we will therefore use
randomized scheduling and make sure that such a ratio is
reached in order to ensure that scheduling does not impose
a too harsh penalty on TTB and TTR.

Birk and Kol [?] analyzed random backup scheduling by
modeling peer uptime as a Markovian process. Albeit quan-
titatively different due to the absence of diurnal and weekly
patterns in their model, their study reached a conclusion that is
analogous to ours: in backups, the completion time of random
scheduling converges to to the optimal value as the system
size grows.

IV. REDUNDANCY POLICY

In the literature, the redundancy rate is generally chosena
priori to ensure what we termprompt data availability. Given
a system with average availabilitya, a target data availability
t, and assuming the availability of each individual peer as an
independent random variable with probabilitya, asystem-wide
redundancy rate is computed as follows. The total numbern
of redundant fragments required to meet the targett, whenk
original fragments constitute the data to backup is computed

6

as [?]:

min

{

n ∈ N :
n
∑

i=k

(

n

i

)

ai(1− a)n−i ≥ t

}

. (3)

We label this methodfixed-redundancy, and use it in the
following as a baseline approach.

Ensuring prompt data availability is not our goal, since peers
only retrieve their data upon (hopefully rare) crash events. Data
downloads correspond to restore operations, which requirea
long time to complete because of the sheer size of backup
data. Hence, we approach the design of our redundancy policy
by taking into account the tradeoffs that a backup application
has to face. On the one hand, low redundancy improves the
aggregate storage capacity of the system, TTB decreases,
and maintenance costs drop. On the other hand, two factors
discourage from selecting excessively low redundancy rates.
First, TTR increases, as less peers will be online to serve
fragments during data restores; second, there is a higher risk
of data loss.

Our redundancy policy operates as follows. During the
backup phase, peers constantly estimate their TTR and the
probability of losing data andadjust the redundancy rate
according to the characteristics of the remote peers that hold
their data. In practice, data owners upload encoded fragments
until the estimates of TTR and data loss probability are below
an arbitrary threshold. When the threshold is crossed, the
backup phase terminates.

Note that TTB is generally several times longer than TTR.
First, in the restore phase, peers are not likely to disconnect
from the Internet. Second, most peers have asymmetric lines
with fast downlink and slow uplink; third, backups require
uploading redundant data while restores involve downloading
an amount of data equivalent to the original backup object.
Because of this unbalance, we argue that it is reasonable to use
a redundancy scheme that trades longer TTR (which affects
only users that suffer a crash) for shorter TTB (which affects
all users).

We now delve into the details of how to approximate TTR
and data loss probability.

A. Approximating TTR

Similarly to the optimal scheduling problem, predicting
accurately the TTR requires full knowledge of disk failure
events and peer availability patterns. We obtain an estimate of
the TTR with a heuristic approach; in Sec.?? we show that
our approximation is reasonable.

We assume that a data ownerp0 remains online during
the whole restore process. The TTR can be bounded for two
reasons:i) the download bandwidthd0 of the data owner is
a bottleneck;ii) the upload rate of remote peers holdingp0’s
data is a bottleneck. Let us focus on the second case: we define
the expected upload rateof a generic remote peerpi holding
a backup fragment ofp0 as the productaiui of the average
availability and the upload bandwidth ofpi. The data owner
needsk fragments to recover the backup object: suppose these
fragments are served by thek “fastest” remote peers. In this

0 5 10 15 20 25 30
t [day]

1.0

1.2

1.4

1.6

1.8

2.0

Re
du

nd
an

cy
 r

at
e

50%

10%

1%

0.1%
0.0001%

Fig. 4. Data loss probability.

case, the “bottleneck” upload rate is that of thek-th peerpj
with the smaller expected upload rate. If we considerl parallel
downloads and a backup object of sizeo, a peer computes an
estimate of the TTR as

eTTR = max

(

o

d0
,

o

lajuj

)

. (4)

B. Approximating the Data Loss Probability

Upon a crash, a peer withn fragments placed on remote
peers can lose its data if more thann − k of them crash as
well before data is completely restored. Considering a delay
w that can pass between the crash event and the beginning of
the restore phase, we compute the data loss probability within
a total delay oft = w + eTTR.

We consider disk crashes to be memoryless events, with
constant probability for any peer and at any time. Disk
lifetimes are thus exponentially distributed stochastic variables
with a parametric averaget: a peer crashes by timet with
probability 1− e−t/t. The probability of data loss is then

n
∑

i=n−k+1

(

n

i

)

(

1− e−t/t
)i (

e−t/t
)n−i

. (5)

Data loss probability needs to be monitored with great
care. In Fig.??, we plot the probability of losing data as a
function of the redundancy rate and the delayt. Here we set
t = 90 days andk = 64; when the time without maintenance
is in the order of magnitude of weeks, even a small decrease in
redundancy can increase the probability of data loss by several
orders of magnitude.

In summary, our redundancy policy triggers the end of the
backup phase, and determines the redundancy rate applied toa
backup object. Since we trade longer TTR for shorter TTB, our
scheme ensures that data redundancy is enough to make data
loss probability small, and keeps TTR under a certain value.
Finally, we remark that our approximation techniques require
knowing the uplink capacity and the average availability of
remote peers. While a decentralized approach to resource
monitoring is an appealing research subject, it is common
practice (e.g. Wuala) to rely on a centralized infrastructure
to monitor peer resources.

7

V. SYSTEM SIMULATION

We proceed with a trace-driven system simulation, consid-
ering all the factors identified in Sec.??: churn, correlated
uptime, peer bandwidth, congestion, and fragment granularity.

A. Simulation Settings

Our simulation covers three months, using the availability
traces described in Sec.??, with the exception that peers
remain online during restores. Uplink capacities of peers are
obtained by sampling a real bandwidth distribution measured
at more than 300,000 unique Internet hosts for a 48 hour
period from roughly 3,500 distinct ASes across 160 countries
[?]. These values have a highly skewed distribution, with a
median of 77 kBps and a mean of 428kBps. To represent
typical asymmetric residential Internet lines, we assign to each
peer a downlink speed equal to four times its uplink.

Our adaptive redundancy policy uses the following pa-
rameters: we set the threshold for the estimated TTR to
satisfy eTTR ≤ max (1 day, 2 ·minTTR) and we keep the
probability of data loss smaller than10−4, whenw = 2 weeks
is the maximum delay between crash and restore events (see
Sec.??).

Each node has 10 GB of data to backup, and dedicates
50 GB of storage space to the application. The high ratio
between these two values lets us disregard issues due to
insufficient storage capacity (which is considered to be cheap)
and focus on the subjects of our investigation, i.e., scheduling
and redundancy. The fragment sizef is set to 160 MB,
resulting ink = 64 original fragments per backup object.

We define peers’ lifetimes3 to be exponentially distributed
random variables with an expected value of 90 days. After they
crash, peers return online immediately and start their restore
process; in Sec.??, we also consider a delay between crash
events and restore operations.

As discussed in Sec.??, we compare against a baseline
redundancy policy that assigns a fixed redundancy rate. Here
we set a target data availability oft = 0.99, and use the
system-wide average availabilitya = 0.36 as computed from
our availability traces. Hence, we obtain a valuen = 228 and
a redundancy raten/k = 3.56.

Our simulations involve 376 peers. This is sufficient to
ensure that the performance of a randomized scheduling is
close to optimality (see Sec.??).

For each set of parameters, the simulation results are ob-
tained by averaging ten simulation runs.

B. Results

Fig. ?? shows the cumulative distribution function of
minTTB and minTTR: these baseline values are deeply in-
fluenced by the bandwidth distribution we used, and their gap
is justified by the asymmetry of the access bandwidth and the
assumption that peers stay online during the restore process.

We now verify the accuracy of our approximation of TTR,
expressed as the ratio of estimated versus measured TTR. This

3Here we neglect the economics of the application, e.g. promoting user
loyalty to the system. Hence, we do not consider unanticipated user departures.

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Time [hour]

E
m

pi
ric

al
 C

D
F

minTTB
minTTR

Fig. 5. MinTTB and minTTR.

ratio has a median of0.92, with 10th and 90th percentiles of
respectively0.50 and 2.56. The values of TTRs vary mostly
due to the diurnal and weekly connectivity patterns of users
in our traces, but for most cases the eTTR is a sensible rough
estimation of TTR.

The adaptive policy pays off, with an average redundancy
rate of 1.91 against a flat value of3.56 for the baseline
approach (Fig.??); the maintenance traffic decreases accord-
ingly, and the system almost doubles its storage capacity. In
addition, TTB is roughly halved with the adaptive scheme (Fig.
??); a price for this is paid by crashed peers, which will have
longer TTR (Fig.??). As we argued in Sec.??, we think this
loss is tolerable and well offset by the benefits of reduced
redundancy. We observe tails where a minority of the nodes
have very highTTB/minTTB andTTR/minTTR ratios.
They are nodes with very high bandwidths and therefore low
values of minTTB and minTTR (see Fig.??); their backup
and restore speeds will be limited by the bandwidth of remote
nodes which are orders of magnitude smaller.

These results certify that our adaptive scheme beneficially
affects performance. However, lower redundancy might result
in higher risks of losing data: in the following Section, we
analyze this.

VI. DATA LOSS ANDDELAYED RESTORE

Our simulation settings put the system under exceptional
stress: the peer crash rate is two orders of magnitude higher
than what is reported for commodity hardware [?]. In such an
adverse scenario, we study the likelihood and the causes of
data loss, and their relation to the redundancy scheme.

In addition, we discuss the implications of delayed response
to crashes, affecting both restore and maintenance operations.
We consider the following scenarios:

• Immediate response:Peers start restores as soon as they
crash. Moreover, they immediately alert relevant peers to
start their maintenance.

• Delayed response:Crashed peers return online after a
random delay. If this delay exceeds a timeout, peers
suffering from fragment loss start their maintenance.

• Delayed assisted response:After the above timeout, a
third party intervenes to rescue crashed peers whose data
is at risk, by maintaining it.

In our simulations, delays are exponentially distributed
random variables with an average of one week; the timeout

8

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Redundancy rate

E
m

pi
ric

al
 C

D
F

adaptive
fixed

(a)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

TTB / minTTB

E
m

pi
ric

al
 C

D
F

adaptive
fixed

(b)

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

TTR / minTTR

E
m

pi
ric

al
 C

D
F

adaptive
fixed

(c)

Fig. 6. System performance.

TABLE I
CATEGORIZATION OF DATA LOSS

Red. policy Restores Unfinished Backups Unavoidable

Immediate 96% 76%
Adaptive Delayed 79% 65%

Delayed assisted 94% 78%
Immediate 99% 78%

Fixed Delayed 92% 75%
Delayed assisted 94% 76%

value is one week as well.

For performance reasons, assisted maintenance can be sup-
ported by an online storage provider, which is used as a
temporary buffer. Here we assume a provider with 100%
uptime, unlimited bandwidth and storage space: maintenance
is triggered upon expiration of the timeout, conditioned toa
data loss probability greater than10−4.

In our experiments, due to the inflated peer crash rates,
between 11.4% and 14.6% of crashed peers could not recover
their data. In Table??, we focus on those peers. The majority
of data loss events affected peers that crashed before they
completed their backups, according to the redundancy policy
(unfinished backups column). This can be due to two reasons:
the backup process is inherently time-consuming, due to the
availability and bandwidth of data owners; or the backup
system is inefficient.

To differentiate between these two cases, we considerun-
avoidabledata loss events (rightmost column in the table). If
a peer crashes before minTTB, no online backup system could
have saved the data. Data backup takes time: this simple fact
alone accounts for far more than all the limitations of a P2P
approach. Users should worry more about completing their
backup quickly than about the reliability of their peers.

The difference in redundancy between the high rate used by
the fixed baseline and the adaptive approach does not impact
significantly the data loss rate, excepting the case of non-
assisted delayed response. Assisted maintenance is an effective
way to counter this effect.

In Fig. ?? we show the costs of assisted repairs in terms of
data traffic. Given that prices on storage service are highly

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [day]

C
um

ul
at

iv
e

se
rv

er
 u

pl
oa

d
/ b

ac
ku

p

adaptive
fixed

Fig. 7. Assisted maintenance.

asymmetric4 we only consider the outbound traffic, from
provider to peers. Data volumes are expressed as fractions
of the total size of backup objects in the system. There is a
striking difference between the adaptive and fixed redundancy
schemes: higher redundancy results in less emergency situa-
tions in which the server has to step in. The amount of data
stored on the server has a peak load of less than 2.5% of the
total backup size: the assisted repairs are quick, therefore only
a small fraction of the peers need assistance simultaneously.

VII. R ELATED WORK

Redundancy rates and data repair techniques in P2P backup
systems have been investigated from various angles. Various
works [?], [?] determine redundancy as a function of node
failure rate in order to guarantee data durability at the expense
of data availability. Many other approaches (e.g., [?], [?],
[?]) adopt formulae similar to Equation?? to guarantee low
latency through prompt data availability, but require high
redundancy rates in typical settings. Our proposal strivesto
provideboth durability and performance at a low redundancy
cost, relaxing prompt data availability by requiring that data
becomes recoverable within a given time window.

A complete system design requires considering several
problems that were not addressed in this paper; fortunately,
many of them have been tackled in the literature.

When a full system needs to be backed up,convergent
encryption[?], [?] can be used to ensure that storage space

4To date (July 2010), inbound traffic to Amazon S3 is free: http://aws.
amazon.com/s3/#pricing.

9

does not get wasted by saving multiple copies of the same file
across the system.

Data maintenance is cheap in our scenario, where it is per-
formed by a data owner with a local copy. When maintenance
is delegated to nodes that do not have a local copy of the
backup objects, various coding schemes can be used [?], [?]
to limit the amount of required data transit. For these settings,
cryptographic protocols [?], [?] have been designed to verify
the authenticity of stored data.

A recurrent problem for P2P applications is creating incen-
tives to encourage nodes in contributing more resources. This
can be done via reputation systems [?] or virtual currency
[?]. Specifically for storage systems, an easy and efficient
solution is segregating nodes in sub-networks with roughly
homogeneous characteristics such as uptime and storage space
[?], [?].

Backup objects, whose confidentiality can be ensured by
standard encryption techniques, should encode incremental
differences between archive versions. Recently, various tech-
niques have been proposed to optimize computational time and
size of these differences [?].

It may happen that resources offered by peers are just not
sufficient to satisfy all user needs. In this case, a hybrid peer-
assisted system can be developed where data is stored on
a centralized data center and on peers. This can result in
scenarios having performances comparable with centralized
systems, at a fraction of the costs [?].

VIII. C ONCLUSION

The P2P paradigm applied to backup applications is a
compelling alternative to centralized online solutions, which
become costly for long-term storage.

In this work, we revisited P2P backup and argued that such
an application is viable. Because the online behavior of users
is unpredictable and, at large scale, crashes and failures are the
norm rather than the exception, we showed that scheduling and
redundancy policies are paramount to achieve short backup
and restore times.

We gave a novel formalization of optimal scheduling and
showed that, with full information, a problem that may appear
combinatorial in nature can actually be solved efficiently by
reducing it to a maximal flow problem. Without full informa-
tion, optimal scheduling is unfeasible; however, we showed
that as the system size grows, the gap between randomized
and optimal scheduling policies diminishes rapidly.

Furthermore, we studied an adaptive scheme that strives to
maintain data redundancy small, which implies shorter backup
times than a state-of-the-art approach that uses a system-
wide, fixed redundancy rate. This comes at the expense of
increased restore times, which we argued to be a reasonable
price to pay, especially in light of our study on the probability
of data loss. In fact, we determined that the vast majority
of data loss episodes are due to incomplete backups. Our
experiments illustrated that such events are unavoidable,as
they are determined by the limitations of data owners alone:
no online storage system could have avoided such unfortunate

events. We conclude that short backup times are crucial, far
more than the reliability of the P2P system itself. As such,
the crux of a P2P backup application is to design mechanisms
that optimize such metric.

Our research agenda includes the design and implementa-
tion of a fully fledged prototype of a P2P backup application.
Additionally, we will extend the parameter space of our study,
to include the natural heterogeneity of user demand in terms
of storage requirements. To do so, we will collect measure-
ments from both existing online storage systems and from a
controlled deployment of our prototype implementation.

REFERENCES

[1] R. Wauters. (2009) Online backup company carbonite losescustomers’
data, blames and sues suppliers. TechCrunch. [Online]. Available:
http://tcrn.ch/dABxRn

[2] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” inIEEE INFOCOM,
2007.

[3] A. Duminuco and E. Biersack, “Hierarchical codes: How to make
erasure codes attractive for peer-to-peer storage systems,” in IEEE P2P,
2008.

[4] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” in ACM STOC, 1986.

[5] Y. Birk and T. Kol, “Coding and scheduling considerations for peer-to-
peer storage backup systems,” inSNAPI. IEEE, 2007.

[6] R. Bhagwan, S. Savage, and G. Voelker, “Understanding availability,”
in Peer-to-Peer Systems II. Springer, 2003, pp. 256–267.

[7] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A.Venkatara-
mani, “Do incentives build robustness in bittorrent,” inUSENIX NSDI,
2007.

[8] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an mttf of 1,000,000 hours mean to you?” inUSENIX FAST, 2007.

[9] B.-g. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replicamaintenance
for distributed storage systems,” inUSENIX NSDI, 2006.

[10] L. Pamies-Juarez and P. Garcia-Lopez, “Maintaining data reliability
without availability in p2p storage systems,” inACM SAC, 2010.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-scale persistent stor-
age,” in ACM ASPLOS, 2000.

[12] M. L. Sameh, S. Elnikety, A. Birrell, M. Burrows, and M. Isard, “A
cooperative internet backup scheme,” inUSENIX ATC, 2003.

[13] R. Bhagwan, K. Tati, Y. chung Cheng, S. Savage, and G. M. Voelker,
“Total recall: System support for automated availability management,”
in USENIX NSDI, 2004.

[14] L. Cox and B. Noble, “Pastiche: Making backup cheap and easy,” in
USENIX OSDI, 2002.

[15] M. Landers, H. Zhang, and K.-L. Tan, “Peerstore: Betterperformance
by relaxing in peer-to-peer backup,” inIEEE P2P, 2004.

[16] N. Oualha, M.Önen, and Y. Roudier, “A security protocol for self-
organizing data storage,” inIFIP SEC, 2008.

[17] G. Ateniese, R. Di Pietro, L. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” inICST SecureComm, 2008.

[18] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust al-
gorithm for reputation management in p2p networks,” inACM WWW,
2003.

[19] V. Vishnumurthy, S. Chandrakumar, and E. Sirer, “Karma: A secure
economic framework for peer-to-peer resource sharing,” inP2P Econ,
2003.

[20] L. Pamies-Juarez, P. Garcı́a-López, and M. Śanchez-Artigas, “Rewarding
stability in peer-to-peer backup systems,” inIEEE ICON, 2008.

[21] P. Michiardi and L. Toka, “Selfish neighbor selection inpeer-to-peer
backup and storage applications,” inEuro-Par, 2009.

[22] K. Tangwongsan, H. Pucha, D. G. Andersen, and M. Kaminsky, “Effi-
cient similarity estimation for systems exploiting data redundancy,” in
IEEE INFOCOM, 2010.

[23] L. Toka, M. Dell’Amico, and P. Michiardi, “Online data backup: a peer-
assisted approach,” inIEEE P2P, 2010.

