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Abstract—An online backup system should be quick and data backups and in case of data loss. As a consequence, low
reliable in both saving and restoring users’ data. To do so in access latency is not an issue, while short backup and eestor
a peer-to-peer implementation, data transfer scheduling and the times seem a more reasonable goal.

amount of redundancy must be chosen wisely. We formalize the Gi th iderati h Kt timize back
problem of exchanging multiple pieces of data with intermittently Ivén these consiaerations, nere we seex to optimize backup

available peers, and we show that random scheduling completesand restore times, while guaranteeing that data loss renaain
transfers nearly optimally in terms of duration as long as the unlikely event. There are two main design choices that affec
system is sufficiently large. Moreover, we propose an adaptive these metricsscheduling i.e. deciding how to allocate data
redundancy scheme that improves performance and decreasesy.,nqfars hetween peers, arelundancyi.e. the amount of
resource usage while keeping th(_e risks of data Io_ss I_ow. Exte_ns_lved in the P2 h back .
simulations show that our techniques are effective in a realistic ata in t. e P2P system that guarantees a backup operanon to
trace-driven scenario with heterogeneous bandwidth. be considered complete and safe. The endeavor of this work
is to study and evaluate these two intertwined aspects.
First, we describe in detail our application scenario (Sec.
The advent of cloud computing as a new paradigm to enallg and show why the assumptions underlying a backup
service providers with the ability to deploy cost-effeetivapplication can simplify many problems addressed in the
solutions has favored the development of a range of nditerature. We then set off to define the problem of schedulin
services, including online storage applications. Due te tlin a full knowledge setting, and we show that it can be
economy of scale of cloud-based storage services, the casilved in polynomial time by reducing it to a maximal flow
incurred by end-users to hand over their data to a remqimblem. Full knowledge of future peer uptime is obviously
storage location in the Internet have approached the costaof unrealistic assumption: thus, we show that a randomized
ownership of commodity storage devices. approach to scheduling yields near optimal results when the
As such, online storage applications spare users most of #ygtem scale is large and we corroborate our findings using
time-consuming nuisance of data backup: user interactonreal availability traces from an instant messaging apptica
minimal, and in case of data loss due to an accident, resgtorifsec.??).
the original data is a seamless operation. However, the-longWe then move to study a novel redundancy policy that,
term storage costs that are typical of a backup applicatiay nmrather than focusing on short-term data availability, é#sg
easily go past that of traditional approaches to data backgport data restore times. As such, our method alleviates the
Additionally, while data availability is a key feature thatstorage burden of large amounts of redundant data on client
large-scale data-centers deployments guarantee, itbitiiyra machines (Sec??). With a trace-driven simulation of a
is questionable, as reported recent¥. [ complete P2P backup system, we show that our technique is
For these reasons, peer-to-peer (P2P) storage systems argable in practical scenarios and illustrate its benefitgeims
alternative to cloud-based solutions. Storage costs arelyne of increased performance (S&9).
those of a commodity storage device, which is shared (tegeth We conclude by studying a range of data maintenance
with some bandwidth resources) with a number of remofslicies when restore operations may undergo some natural
Internet users to form a distributed storage system. Sugblays. For example, detecting a faulty external hardedriay
applications optimize latency to individual file accessléad, not be immediate, or obtaining a new equipment upon a crash
users hand over their data to the P2P system, which is usedy require some time. We show that an “assisted” approach
as a replacement of a local hard drive. In such a scenario, I@vdata repair techniques (which involves a cloud-basaadgéo
access latency is difficult to achieve: the online behavior gervice) can significantly reduce the probability of datss|o
users is unpredictable and, at large scale, crashes andefail at an affordable cost (Se@?).
are the norm rather than the exception. As a consequence,
storage space is sacrificed for low access latency: a P2P Il. APPLICATION SCENARIO

application stores large amounts of redundant data to copn this work, similarly to many online backup applications
with such unfavorable events. (e.g., Dropbo¥), we assume users to specify one local folder

In this work we study a particular case of online storag@ontaining important data to backup. We also assume that
P2P backup applications. Data backup involves the bullstran

fer of potentially large quantities of data, both duringuleg Lhitps:/Awww.dropbox.com/

I. INTRODUCTION



backup data remains available locally to peers. This is amaintenance traffic.
important trait that distinguishes backup from storageliapp .
cations, in which data is only stored remotely. A. Performance Metrics
Backup data consists of an opaque object, possibly repre\Ve characterize the system performance in terms of the
senting an encrypted archive of changes to a set of files, tRgtount of time required to complete the backup and the restor
we termbackup objectIn the spirit of incremental backups,Phases, labelledime to backup(TTB) and time to restore
we consider that each backup object should be kept on #d'R).
system indefinitely. Consolidation and deletion of obsmlet In the following Sections, we use baselines for backup and
backups are not taken into account in this work. restore operations which bound both TTB and TTR. Let us
A backup object of size is split into k original fragments assume an ideal storage system with unlimited capacity and
of a fixed sizef, with k = o/ f. Since backup data is stored orHninterrupted online time that backs up user data. In thégca
unreliable machines characterized by an unpredictablimeon! TTB and TTR only depend on backup object size and on
behavior, the originak blocks are encoded using erasure codrandwidth and availability of the data owner. We label these
ing (e.g., Reed-Solomon). This createssncoded fragments ideal valuesninTTBandminTTR and we define them formally
having sizef, of which anyk are sufficient to recover the in Sec.??.
original data. The redundancy rate is defined asn/k. Here ~ Additionally, we consider thelata loss probability which
we assume that encoded fragments residelistinct remote accounts for the probability of a data owner to be unable to
peers, which avoids that a single disk failure causes the Ig§store backup data.
of multiple fragments. A P2P backup application may exact a high toll in terms of
Backup Phase:The backup phase involves a data owner arR£€r resources, including storage and bandwidth. In thik wo
a set of remote peers that eventually store encoded fragme#e 9loss over metrics of the burden on individual peers and
for the data owner. We assume that any peer in the system g, network, considering a scenario in which the resour€es o
collect a list of remote peers with available storage spts: Peers are lost if left unused.
can be achieved by usi.ng known techniques, e.g. a c.entl_lalige_ Availability Traces
“tracker” or a decentralized data structure such as a blig&d . . . .
hash table. The online k:.)ehaworo!c users, i.e, thglr pqtterns of con-
Data backup requires scheduling policythat drives the nection and dlsc_onnectlon over time, is difficult to capture
choice of where and when to upload encoded fragmemst’allaalytlcally. In this work we will perform our evaluations o

remote peers. Moreoverradundancy policyletermines when a real application trage that exhibits both heterogengjny a
the data is safe, which completes the backup operation. correlated user behavior. Our traces capture user av#yabi

Maintenance PhaseOnce the backup phase is completed an terms Of. login/logoft evenFs, from an instant messaging
8 server in Italy for a duration of 3 months. We argue that

encoded fragments reside on remote peers, the maintenat havi f lar IM fitut tai
phase begins. Peer crashes and departures can cause the Sslge avior of reguiar USErs constitules a represwetatl
se study. Indeed, for both an IM and an online backup

of some encoded fragments; during the maintenance phacs% T . . )
peers detects such losses and generate new encoded fragn?é)tw'c.at'o.n’ users are generally signed in for as long as the
to restore a redundancy level at which the backup is safaagaWaCh'n.e Is connected to the' Internet. .

For a generic P2P storage system, in which encoded fra%_In this work we only consider users that are online for an

ments only reside in the network and peers do not keep a lo& ‘eirage of at least four hours per day, as done in the Wuala

copy of their data, the maintenance phase is critical. Idde&—{f)n ne storage applicatién Once this f||§er !s..applled, we
?rki)taln the trace of 376 users. User availabilities are gtyon

peers need to first download the whole backup object fro lated. in th that t or disch
remote machines, then to generate new encoded fragments & 3 (teh, In the ignseA a r:nany 'usgrs c;ahnnec or tl nne
upload them to available peers. This problem has fostered ound the satme 'nlﬁ' S sbownfln Rp, there ?rz 3 rong d
design of efficient coding schemes to mitigate the excessi gfdere_n%?s zvgeten € numkder 0 usgrs corllnege Mur%ng a
network traffic caused by the maintenance operation (s gd mignt and between workdays and weekends. VIost users
e.g. Pl [?) are online for less than 40% of the trace, while some of them

In a backup application, the maintenance phase is 14§ almost always connected (F&g).

critical: the data owner can generate new encoded fragments Ill. THE SCHEDULING PROBLEM

using the local copy of the data with no download required. gehequling data transfers between peers is an important

Restor(_a _P_hase: In the unfortunate case of a crash, the da eration that affects the time required to complete a haoku
owner initiates the restore phase. A peer contacts the EEmQt ;e task, especially in a system involving unrelianée

machines holding encoded fragments, downloads at leastpines with unpredictable online patterns. Because ofrchur
of them, and reconstructs the original backup data. Againganoge might not be able to find online nodes to exchange
scheduling policy drives the process. data with: hence, TTB and TTR can grow due to idle periods

_ Since the ability to successfully restore data upon a craghime Unexpected node disconnections require a method to
is the ultimate goal of any backup system, in our application

the restore traffic receives higher priority than the backog  2http://www.wuala.com/



-

N
a

only between online peers.

3) V(i,t), (j,u) € S : i # j: no two fragments are stored

on the same peer.

Definition 2: A restore schedulds a set of(i,t) tuples
representing the decision of downloading a fragment froeta s
of remote peery; € P at timet, where P is set of storage
peers that received a fragment during the backup phase. A
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et racton of tme spent onine valid restore schedul§' satisfies the following properties:
(a) Online peers during a week. (b) Time spent online. 1) Vi : |{z : (i,t) c S}| < dy: no more thand, fragments
Fig. 1. Availability trace. Uptime is heterogeneous andrsjtp correlated. per time-slot can be recovered.

2) V(Zﬂf) €S: Qi+ = Qg = 1.

3) V(i,t) : (Jyu) €S,i #j.
handle partial fragments, which can be discarded or resumed4) V(i,t) € S : p; € P: fragments can only be retrieved
Moreover, the redundancy rate used to cope with failures and from storage peers.
unavailability may decrease system performance. Fintil,  Definition 3: The completion time&” of a schedules is the
available bandwidth between peers involved in a data teansfiast time-slot in which a transfer is performed, that is:
which may be shared due to parallel transmissions, is anothe
cause for slow backup and restore operations. C(5) = max{t : (i,t) € S}.

In this Section, we focus on the implications of churn alone. |, the following, we first consider a full information settjn
We simplify the scheduling problem by assuming the redugng show how to compute an optimal schedule which min-
dancy factor to be a given input parameter, and neglectiffizes completion time provided that the online behavior of
the possibility of congestion due to several different hack peers is knowra priori. Then, we compare optimal scheduling
restore or maintenance processes interfering. Furthesme ;5 5 randomized policy that needs no knowledge of future
do not consider interrupted fragment transfers. In Sect®@n peer uptime; via a numeric analysis, we show the conditions
we define an adaptive scheme to compute the redundancy {#{ger which a randomized, uninformed approach achieves

applied to a backup operation and in Sectihwe relax all - performance comparable to that of an optimal schedule.
other assumptions.

We now define a reference scenario to bound TTB arfd Full Information Setting

TTR. Consider an ideal storage system (e.g. a cloud service)ye cast the problem of finding the optimal schedule for
with unbounded bandwidth and 100% availability. A peéer hoth backup and restore operations as finding the minimum
with upload and download bandwidth, and d; starting the completion time to transfer a given numherof fragments.
backup of an object of size at time¢ completes its backup For backup,z will correspond to the number of redundant

at time ¢/, after having spent> time online. Analogously, encoded fragments; for restoreswill be equal to the number

i restores a backup object with the same sizet"atafter f of original fragments. We show that this problem can be
having spenty- time online. We defineninTT'B(i,t) =t'—t reduced to finding the maximum number of fragments that
and minTTR(i,t) = t" — t. We use these reference valuegan be transferred within a given tinfle We then use a max-
throughout the paper to compare the relative performancefy formulation and show that existing algorithms can solve
our P2P application versus that of such an ideal system. the original problem in polynomial time.

Because we neglect congestion issues, we can focus on Befinition 4: An optimal scheduléo backup/restore frag-

backup/restore operation as seen from a single peer in fents is one that achieves the minimum completion time to
system. Let us consider a generic ppgrand I remote peers transfer at least: fragments. LetS be the set of all valid

p1,--.,pr used to storepy’s data. We assume time to beschedules; the minimum completion time is:
fractioned intime-slotsof fixed length. Let; ; be an indicator )
variable so thai,; , = 1 if and only if p; is online at time O(z) = min{C(5) : S € SA[S] = x}. )

t. Each peer has integer upload and download capacity of tpe following proposition shows that the optimal comple-

respectivelyu; andd; fragments per time-slot. tion time can be obtained by computing the maximum number
We now proceed with a series of definitions used to formals fragments that can be transferredZintime-slots.

ize the scheduling problem. _ . Proposition 1: Let S be the set of all valid schedules
Definition 1: A backup schedulés a set of(i,t) tuples and F(¢) be the function denoting the maximum number of

representing the decision of uploading a fragment from fragments that can be transferred within time-glothat is:
to peerp;, wherei € {1...I} at time-slott. A valid backup

scheduleS satisfies the following properties: F(t) = max{[S|: S € SAC(S) < t}. 2)

1) vt [{i: (i,t) € S} < up: no more thanu, fragments The optimal completion time is:
per time-slot can be uploaded. )
2) V(i,t) € S : a;s = ap, = 1: fragments are transferred O(z) = min{t : F(t) > z}.



Proof: Let t; = O(x) andty = min{t : F(t) > z}.

o 11 >t5. By EQ.??, ans; € S exists such that'(S) = Daa [ - l l l
t; and|Sy| > =z, implying that F'(¢;) > x. Therefore, snen  Somen | |
t1 > min{t: F(t) > z} = to. P1 : il mm =

o 11 < ty. By Eq.??, an S, exists such thaC(S;) = t» no [ 3 l—l

and|Ss| > «. This directly implies that; = O(z) < t,. T
We can now iteratively computé&'(¢) with growing values ’ :: :: “
of ¢; the above Proposition guarantees that the first vdlue
that satisfies'(7") > « will be the desired result.

We now focus on a single instance of the problem of
finding the maximum number of fragmeniqT’) that can be
transferred within time-sldf’, and show that it can be encoded
as a max-flow problem on a flow network built as follows.
First, we create a bipartite directed gragh= (V’, E’) where
V' =T UP; the elements of = {t;, : i € 1...T} represent
time-slots, the elements & = {p, : i € 1...1} represent re-
mote peers (only storage nodes for restores). An edge ctnnec
a time-slot to a peer if that peer is online during that partic
ular time-slot: B/ = {(t;,p;) :ti € T Apj € P Na;; =1}.
Sources and sinkt nodes complete the bipartite gragh and
create a flow networlG = (V, E). The source is connected
to all the time-slots during which the data owngris online;
all peers are connected to the sink. (b) Equivalent flow network

The capacities on the edges are defined as follows: edg_,es:2 A e of a back . he original probirfindi
from the source to time-slots have capaaityor dy (feSPEC- oy opiimal schedule, given the i behavior of peersAsformed in a

p g peers;
tively, for backup and restore operations); edges betwie@s t max-flow problem on an equivalent graph.
slots and peers have capaaityor u; (respectively, for backup
and restore operations); finally, edges between peers @&nd th
sink have capacitym. Note that in this work we assume In the particular case of the example the smallest value
individual fragments to be uploaded to distinct peers, benof ¢ ensuringF'(t) > 3 is 3, corresponding to a flow graph
m = 1. To simplify presentation, we assume integer capaciti#fzat contains only the,, t,, t3 time-slot nodes. The resulting
ug = dp = 1Vk € [0, I]. optimal scheduling corresponds to the thick edges in Try.

Fig. ?? illustrates an example of the whole procedure For a flow network withl” nodes and® edges, the max-flow
described above, for the case of a backup operation.#g. can be computed with time complexiy ( V E log g‘;?) [?].
shows the online behavior for time-slats . . ., s of the data | our case, when we hayenodes and an optimal solution of
owner and the remote peers: (p:,p;) that can be selected time-siots," is O(p+t) and E is O(pt). The complexity of an
as remote locations to backup data. The optimal SChedELEtance of the algorithm is thug (pt (plog§ +tlog %))

problem amounts to deciding which remote peer should The original problem. i.e. findina an optimal sehedule
awarded a time-slot to transfer backup fragments, so tleat tt% 9 P T 9 P
i

operation can be completed within the shortest time. Thso?\te:jmglmlzgrsfo:rrﬁn“gel tot trr?wr;if?rovr/racgommethSétigig ?If
problem is encoded in the graph of Fig?. Time-slots and yp 9O(log¢) P :

remote peers are represented by the nodes of the inneritejpaL?Ct’ an upper bounq for the optimal completion t|m¢ can
found in O(logt) instances of the max-flow algorithm

raph. An edge of capacity 1 connects a time-slot to the Set . . .
gf opnline peerg'ls in that%imeilot, as derived from F2§. The %y doubling at each tme the_ V"’?'“e at, th_en the optlmal
source node has an edge of capacity= 1 to every time- V‘?"“e can be obtained, again 0 (log ?) t|_me, by using
slot in which the data owner is online (in the figute,ts are binary _search. The cc_)mputathnal complexny of dete_mgmn
shaded to reming, is offline): this guarantees that only qan optimal schedule in atfull information framework is thus
fragment per time-slot can be transferred. The sink node rQs(Pt logt (p log § +tlog 5))
an incident edge with capacity = 1 from every remote peer. )

Eachs — ¢ fcljow repregenttsya valid schedBL/JIe. For EackuB' Random Scheduling
operations, the schedule is valid because the three egsatio In practice, assuming complete knowledge of peers’ online
of Def. ?? are verified by construction of the flow network.behavior is not realistic. We introducerandomized schedul-
Similarly, for restore operations the equations of D#.are ing policywhich only requires knowing which peers are online
satisfied by construction, since only remote peers in thé’setat the time of the scheduling decision. In S@e. we compare
are part of the flow network. optimal and randomized scheduling using real traces.

tl t2 t3 t4 tS t6 t7 t8

(a) Online behavior




For backup operations, in each time-slot, fragments are 1. e ——)
uploaded from the data owner to no more thanremote 1.7 —=—optimal x=4
peers chosen at random among those that are currently online " °random x=6
and that did not receive a fragment in previous time-slotss T L6 '?;’;mﬂf;%
satisfies Def??. For restore operations, in each time-sidt, E 1.5 R ——optimal x=8
remote peers in the sét are randomly chosen among those E 14 !
that are currently online and data is transferred back to the 5 '{ X
data owner. This satisfies Def?. E13 \

We now use Fig.?? to illustrate a possible outcome of 12 Y
the randomized schedule defined here and compare it to the ° .
optimal schedule computed using the max-flow formalization 11 e wll
We focus on the backup operationof= 3 fragments carried e g e,

out by the data ownepo. In Fig. ??, the data owner may % 60 B e em oltgopeeré“o 160

randomly selecty; to be the recipient of the first fragment

in time-slot ¢;. Since we assumen = 1 fragment can Fig. 3. Numerical analysis: a comparison between optimal andorized

be stored on a distinct peer, this choice implies that timécheduling, using real availability traces.

slot ¢ is “wasted”. In time-slotts the data owner has no

choice but to store data on pegs. Only in time-slot ¢,

the backup process is complete, when the last fragmentlisthis case, the number of fragments that need to be

uploaded to peep,. Hence, this randomized schedule writetransferred is the number of original fragmerits and the

as(p1,t1); (ps, t3); (p2, tr). number of remote peerk will correspond to the number of
The optimal schedule is obtained by computing the magncoded fragments. For restores, as the redundancy rate

flow on the flow network in Fig?? (thick edges in the figure), % = £ grows, backups will be more efficient.

and writes agps,t1); (p1,t2); (ps, t3). The backup operation We conclude that randomized scheduling is a good choice

only requires 3 time-slots to complete. for a P2P backup application, provided that:

C. Numerical Analysis « to have efficient backups, the ratio between number of
nodes in the system and number of fragments to store is
not very close to one;

to have efficient restores, the redundancy rate is not very
close to one.

Here, we take a numerical perspective and compare optimal
and randomized scheduling in terms of TTB and TTR. We .
focus on a single data owney involved in a backup oper-
ation. The input to the scheduling problem is the availgbili
trace described in Se@?, starting the backup at a random As a heuristic threshold, in our analysis we obtain that a
moment: we set the duration of a time-slot to one hour. L¥@lue of £ = 1.5 is sufficient to complete backup and restore
uo = 1 fragment per time-slot be the upload rateygf We within a tolerable (around 10%) deviation from minTTB or
report results forz € {40,60,80} backup fragments, and minTTR_, respectively. In the following, we will therefore;el_ _
vary the number of randomly chosen remote peers so thapdomized scheduling and make sure that such a ratio is
I € {1.1z,1.22,...,2z}. We obtained each data point byreached in order to ensure that scheduling does not impose
averaging 1,000 runs of the experiment; furthermore, fehea@ t00 harsh penalty on TTB and TTR.
of those runs, we averaged the completion times of 1,000Birk and Kol [?] analyzed random backup scheduling by
random schedules in the same settings. modeling peer uptime as a Markovian process. Albeit quan-

Fig. ?? illustrates the ratio between the TTB achievedtatively different due to the absence of diurnal and wegekl
respectively by optimal and randomized scheduling, normdlatterns in their model, their study reached a conclusiahith
ized to the ideal backup time minTTB. We observe tha@nalogous to ours: in backups, the completion time of random
both optimal and randomized scheduling approach minTT®heduling converges to to the optimal value as the system
when the number of remote peers available to store back&ige grows.
fragments increases: a large system improves transmission
opportunities, and TTB approaches the ideal lower bound.
However, when the number of backup fragments grows, which
is a consequence of higher redundancy rates, randomizeth the literature, the redundancy rate is generally chasen
scheduling requires a larger pool of remote machines poiori to ensure what we terprompt data availability Given
approach the performance of the optimal scheduling. We alasystem with average availability a target data availability
note that heterogeneous and correlated behavior of us#rs int, and assuming the availability of each individual peer as an
availability trace results in “idle” time-slots in which itieer independent random variable with probabilitya system-wide
optimal nor randomized scheduling can transfer data. redundancy rate is computed as follows. The total number

This very same evaluation can be used to evaluate a restofeedundant fragments required to meet the tatgethenk
operation, even if the parameters acquire a different meanioriginal fragments constitute the data to backup is congpute

IV. REDUNDANCY PoLICY
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We label this methodixed-redundangyand use it in the g o o
following as a baseline approach. s14 o
Ensuring prompt data availability is not our goal, sincerpee £ | A0
only retrieve their data upon (hopefully rare) crash eveDéta t
downloads correspond to restore operations, which require L ao%j/lo U P S
long time to complete because of the sheer size of backup t [day]

data. Hence, we approach the design of our redundancy policy
by taking into account the tradeoffs that a backup appbeati
has to face. On the one hand, low redundancy improves the
aggrega_te storage capacity of the system, TTB decreasc%sge, the “bottleneck” upload rate is that of the¢h peerp;
and maintenance costs drop. On the other hand, two fact\(l)vri%h the smaller expected upload rate. If we conslqearallél
discourage from selecting excessively low redundancysrat% wnloads and a bpacku og'ect of s'.ea cer computes an
First, TTR increases, as less peers will be online to seryg” P00 Zea p P
. ) . . estimate of the TTR as

fragments during data restores; second, there is a higsler ri
of data loss. o o

Our redundancy policy operates as follows. During the eTTR = max <d’l ) 4)
backup phase, peers constantly estimate their TTR and the 0 tajUj
probab.ility of losing data'a.ndadjust the redundancy rate g Approximating the Data Loss Probability
according to the characteristics of the remote peers thdt ho .
their data. In practice, data owners upload encoded fragmen UPON & crash, a peer with fragments placed on remote
until the estimates of TTR and data loss probability areweld?€€rs can lose its data if more than- k of them crash as

an arbitrary threshold. When the threshold is crossed, th&!l before data is completely restored. Considering aydela
backup phase terminates. w that can pass between the crash event and the beginning of

Note that TTB is generally several times longer than TTR]€ restore phase, we compute the data loss probabilitynwith
First, in the restore phase, peers are not likely to disoomn@ fotal delay oft = w + eTTR.
from the Internet. Second, most peers have asymmetric lineyVe consider disk crashes to be memoryless events, with
with fast downlink and slow uplink; third, backups requiréonstant probability for any peer and at any time. Disk
uploading redundant data while restores involve downlogdilifetimes are thus exponentially distributed stochastidables
an amount of data equivalent to the original backup obje®ith @ parametric average a peer crashes by time with
Because of this unbalance, we argue that it is reasonabkeeto Brobability 1 — ¢~/%. The probability of data loss is then
a redundancy scheme that trades longer TTR (which affects n ; i
only users that suffer a crash) for shorter TTB (which affect Z <”) (1 _ 64/%) (eft/z> . (5)
all users). imn—kt1 N

We now delve into the details of how to approximate TTR -~ i )
and data loss probability. Data loss probability needs to be monitored with great

o care. In Fig.??, we plot the probability of losing data as a

A. Approximating TTR function of the redundancy rate and the detayere we set

Similarly to the optimal scheduling problem, predicting = 90 days andk = 64; when the time without maintenance
accurately the TTR requires full knowledge of disk failurés in the order of magnitude of weeks, even a small decrease in
events and peer availability patterns. We obtain an estimft redundancy can increase the probability of data loss byrakve
the TTR with a heuristic approach; in Se2? we show that orders of magnitude.
our approximation is reasonable. In summary, our redundancy policy triggers the end of the

We assume that a data owngg remains online during backup phase, and determines the redundancy rate appked to
the whole restore process. The TTR can be bounded for tiackup object. Since we trade longer TTR for shorter TTB, our
reasonsi) the download bandwidtll, of the data owner is scheme ensures that data redundancy is enough to make data
a bottleneckiji) the upload rate of remote peers holdings loss probability small, and keeps TTR under a certain value.
data is a bottleneck. Let us focus on the second case: we deftirally, we remark that our approximation techniques regjui
the expected upload ratef a generic remote peer, holding knowing the uplink capacity and the average availability of
a backup fragment oy as the product;;u; of the average remote peers. While a decentralized approach to resource
availability and the upload bandwidth @f. The data owner monitoring is an appealing research subject, it is common
needsk fragments to recover the backup object: suppose thgeactice (e.g. Wuala) to rely on a centralized infrastrrestu
fragments are served by the“fastest” remote peers. In thisto monitor peer resources.

Fig. 4. Data loss probability.
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V. SYSTEM SIMULATION

We proceed with a trace-driven system simulation, consid-
ering all the factors identified in Se@? churn, correlated
uptime, peer bandwidth, congestion, and fragment graitylar

o o
o)} Q@

Empirical CDF
o
=

A. Simulation Settings

o
N

Our simulation covers three months, using the availability / e
traces described in Se@?, with the exception that peers T 10 1¢ ¢
remain online during restores. Uplink capacities of peees a Tmethou
obtained by sampling a real bandwidth distribution mea$ure Fig. 5. MinTTB and minTTR.

at more than 300,000 unique Internet hosts for a 48 hour
period from roughly 3,500 distinct ASes across 160 cousitrie
[?]. These values have a highly skewed distribution, with @tio has a median df.92, with 10th and 90th percentiles of
median of 77 kBps and a mean of 428kBps. To represggspectively0.50 and 2.56. The values of TTRs vary mostly
typical asymmetric residential Internet lines, we assmeach due to the diurnal and weekly connectivity patterns of users
peer a downlink speed equal to four times its uplink. in our traces, but for most cases the eTTR is a sensible rough
Our adaptive redundancy policy uses the following pastimation of TTR.
rameters: we set the threshold for the estimated TTR toThe adaptive policy pays off, with an average redundancy
satisfy eTTR < max (1 day,2 - minTTR) and we keep the rate of 1.91 against a flat value oB.56 for the baseline
probability of data loss smaller thai®—*, whenw = 2 weeks ~approach (Fig??); the maintenance traffic decreases accord-
is the maximum delay between crash and restore events (#@dy, and the system almost doubles its storage capadity. |
Sec.??). addition, TTB is roughly halved with the adaptive scheme (Fi
Each node has 10 GB of data to backup, and dedicaf&d; a price for this is paid by crashed peers, which will have
50 GB of storage space to the application. The high ratienger TTR (Fig.??). As we argued in Se®?, we think this
between these two values lets us disregard issues duelogs is tolerable and well offset by the benefits of reduced
insufficient storage capacity (which is considered to beaphe redundancy. We observe tails where a minority of the nodes
and focus on the subjects of our investigation, i.e., scleglu have very highT'TB/minTTB and TTR/minTTR ratios.
and redundancy. The fragment sizeis set to 160 MB, They are nodes with very high bandwidths and therefore low
resulting ink = 64 original fragments per backup object.  values of minTTB and minTTR (see Fi@?); their backup
We define peers’ lifetimésto be exponentially distributed and restore speeds will be limited by the bandwidth of remote
random variables with an expected value of 90 days. Aftgr theodes which are orders of magnitude smaller.
crash, peers return online immediately and start theiorest These results certify that our adaptive scheme beneficially
process; in Sec??, we also consider a delay between crashffects performance. However, lower redundancy mightlresu
events and restore operations. in higher risks of losing data: in the following Section, we
As discussed in Se??, we compare against a baselin@nalyze this.
redundancy policy that assigns a fixed redundancy rate. Here
we set a target data availability af = 0.99, and use the
system-wide average availability= 0.36 as computed from  Our simulation settings put the system under exceptional

our availability traces. Hence, we obtain a vatue- 228 and Stress: the peer crash rate is two orders of magnitude higher
a redundancy rate/k = 3.56. than what is reported for commodity hardwa®. [n such an

Our simulations involve 376 peers. This is sufficient t§dverse scenario, we study the likelihood and the causes of
ensure that the performance of a randomized schedulingd@fa l0ss, and their relation to the redundancy scheme.

VI. DATA Loss ANDDELAYED RESTORE

close to optimality (see Se@?). In addition, we discuss the implications of delayed respons
For each set of parameters, the simulation results are éb-Crashes, affecting both restore and maintenance opesati
tained by averaging ten simulation runs. We consider the following scenarios:

o Immediate responsdeers start restores as soon as they
B. Results i i
. _ o . crash. Moreover, they immediately alert relevant peers to
Fig. ?? shows the cumulative distribution function of start their maintenance.

minTTB and minTTR: these baseline values are deeply in-, Delayed responseCrashed peers return online after a
fluenced by the bandwidth distribution we used, and their gap random delay. If this delay exceeds a timeout, peers
is justified by the asymmetry of the access bandwidth and the  suffering from fragment loss start their maintenance.
assumption that peers stay online during the restore psoces , Delayed assisted responséfter the above timeout, a

We now verify the accuracy of our approximation of TTR,  third party intervenes to rescue crashed peers whose data
expressed as the ratio of estimated versus measured TTR. Thi s at risk, by maintaining it.

SHere we neglect the economics of the application, e.g. progatiser In our S'.mmat'onlsv delays are exponentially d'sm_bUted
loyalty to the system. Hence, we do not consider unanticipaser departures. random variables with an average of one week; the timeout
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TABLE | Q0T
CATEGORIZATION OF DATA LOSS 2 o d et
So.
Q
[ Red. policy [ Restores | Unfinished Backups| Unavoidable | go3
Immediate 96% 76% 204
Adaptive Delayed 79% 65% %04
Delayed assisted 94% 78% 2
Immediate 99% 78% £
Fixed Delayed 92% 75% 30
Delayed assisted 94% 76% i

G0 20 40 60
Time [day]

Fig. 7. Assisted maintenance.
value is one week as well.

For performance reasons, assisted maintenance can be su

ported by an online storage provider, which is used asagemmetrlé we only consider the outbound traffic, from

temporary buffer. Here we assume a provider with 1000/£Jrovider to peers. Data volumes are expressed as fractions

uptime, unlimited bandwidth and storage space: maint@arg({ritgﬁ t?jti?fle?;igfbgzsggg t?]tgeacéz I:;vteh(:msdy?i;eerg.rggl?;;; a
's triggered upon expiration of the timeout, conditionedato scherr?eS' higher redundanc resuI[t)s in less emergency situa
data loss probability greater than—*. - g y gency

i ) tions in which the server has to step in. The amount of data
In our experiments, due to the inflated peer crash ratggored on the server has a peak load of less than 2.5% of the
between 11.4% and 14.6% of crashed peers could not recoygy backup size: the assisted repairs are quick, therefoly

their data. In Table?, we focus on those peers. The majority sma)| fraction of the peers need assistance simultaneous!
of data loss events affected peers that crashed before they

completed their backups, according to the redundancy ypolic VIl. RELATED WORK

(unfinished backups column). This can be due to two reasonsRedundancy rates and data repair techniques in P2P backup
the backup process is inherently time-consuming, due to tgstems have been investigated from various angles. \fariou
availabiljty_ anq .bandwidth of data owners; or the backugorks [?], [?] determine redundancy as a function of node
system is inefficient. failure rate in order to guarantee data durability at thecasp

To differentiate between these two cases, we consider of data availability. Many other approaches (e.@), [?],
avoidabledata loss events (rightmost column in the table). [f?]) adopt formulae similar to Equatio®? to guarantee low
a peer crashes before minTTB, no online backup system coldtency through prompt data availability, but require high
have saved the data. Data backup takes time: this simple feemundancy rates in typical settings. Our proposal striees
alone accounts for far more than all the limitations of a P2#rovide both durability and performance at a low redundancy
approach. Users should worry more about completing theiost, relaxing prompt data availability by requiring thattal
backup quickly than about the reliability of their peers. becomes recoverable within a given time window.

The difference in redundancy between the high rate used by complete system design requ.ires .considering several
the fixed baseline and the adaptive approach does not impai@blems that were not addressed in this paper; fortunately
significantly the data loss rate, excepting the case of ndRany of them have been tackled in the literature.

assisted delayed response. Assisted maintenance is ativeffe When a full system needs to be backed wpnvergent
way to counter this effect. encryption[?], [?] can be used to ensure that storage space

In Fig. 77 W? show the C.OStS of assisted repa?rs in terms 0f4To date (July 2010), inbound traffic to Amazon S3 is free: Waps.
data traffic. Given that prices on storage service are highdyazon.com/s3/#pricing.



does not get wasted by saving multiple copies of the same feents. We conclude that short backup times are crucial, far
across the system. more than the reliability of the P2P system itself. As such,
Data maintenance is cheap in our scenario, where it is p#re crux of a P2P backup application is to design mechanisms
formed by a data owner with a local copy. When maintenantigat optimize such metric.
is delegated to nodes that do not have a local copy of theOur research agenda includes the design and implementa-
backup objects, various coding schemes can be Uged? tion of a fully fledged prototype of a P2P backup application.
to limit the amount of required data transit. For these sgéti Additionally, we will extend the parameter space of our gfud
cryptographic protocols?], [?] have been designed to verifyto include the natural heterogeneity of user demand in terms
the authenticity of stored data. of storage requirements. To do so, we will collect measure-
A recurrent problem for P2P applications is creating incemrents from both existing online storage systems and from a
tives to encourage nodes in contributing more resourceis. Thontrolled deployment of our prototype implementation.
can be done via reputation systen®§ pr virtual currency
[?]. Specifically for storage systems, an easy and efficient
solution is segregating nodes in sub-networks with roughljt! R- Wauters. (2009) Online backup company carbonite lasssomers’

.. . data, blames and sues suppliers. TechCrunch. [Online]. |ablai
homogeneous characteristics such as uptime and storatee spa  np:/jtcrn.ch/dABxRn
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