
DISSERTATION
In Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

from TELECOM ParisTech

Specialization: Communication and Electronics

Muhammad Najam ul Islam

Flexible Baseband Architecture Design &
Implementation for Wireless Communication

Systems

Defense scheduled on the 7th of October 2010 before a committee
composed of:

Reporters Prof. Emmanuel Boutillon Université Bretagne Sud
Prof. Christophe Moy Supélec, Rennes

Examiners Prof. Michel Auguin Université de Nice - Sophia Antipolis
Prof. Jean-Luc Danger TELECOM ParisTech

Thesis supervisors Prof. Raymond Knopp EURECOM
Prof. Renaud Pacalet Lab SoC, TELECOM ParisTech

THESE
présentée pour obtenir le grade de

Docteur de TELECOM ParisTech

Spécialité: Communication et Electronique

Muhammad Najam ul Islam

Flexible Baseband Architecture Design &
Implementation for Wireless Communication

Systems

Thèse prévue le 7 Octobre 2010 devant le jury composé de :

Rapporteurs Prof. Emmanuel Boutillon Université Bretagne Sud
Prof. Christophe Moy Supélec, Rennes

Examinateurs Prof. Michel Auguin Université de Nice - Sophia Antipolis
Prof. Jean-Luc Danger TELECOM ParisTech

Directeur de thèse Prof. Raymond Knopp EURECOM
Prof. Renaud Pacalet Lab SoC, TELECOM ParisTech

Acknowledgments

I would like to express my sincere gratitude to Prof. Raymond Knopp and
Prof. Renaud Pacalet for being my advisors and for providing me with the
opportunity to conduct research in the field of my interest. Their continual
support and guidance throughout my research work at Eurecom made this
thesis a success. I thank Prof. Emmanuel Boutillon and Prof. Christophe
Moy for their willingness to serve as the reporters for my research work.

I would also like to express my appreciation for the support of the Open
Air Interface team at Eurecom for their technical support during my stay
at the institute. I want to express special thanks to all my friends for their
support and encouragement.

Lastly and most importantly, I wish to thank my family members for
their endless support and blessings without which it wouldn’t have been
possible to complete my thesis. To them I dedicate this thesis.

i

ii Acknowledgments

Abstract

The past few decades have seen the rapidest growth of technology and diver-
sification of services in the realm of wireless communications. This growth
is because of the enhanced use of wireless devices with new functionalities
in daily life, while diversity is indebted to the fact that new and advanced
applications keep on pouring in. Today, there exists multiple standards
for cellular networks (GSM, EDGE, WCDMA etc.), and wireless local area
networks (IEEE 802.11a, b, g). Now each of these standards has different
carrier frequencies, channel bandwidths and modulation schemes. The phe-
nomenal growth of these modern standards and applications necessitate a
flexible hardware platform that is capable to support these diverse standards
in the entire wireless communication frequency range. Efficient and flexible
baseband processors are imperative for endorsing true multi-standard radio
platforms.

We present a generic baseband prototype architecture for Software De-
fined Radio (SDR) applications that anticipates not only to fulfill current
UMTS processing requirements but is also proficient enough to handle 3GPP
Long Term Evolution (LTE) processing requirements. The baseband archi-
tecture is adept in implementing 2G, 3G, 4G, broadcast communication and
wireless LAN standards. The partitioning between HW and SW pursues a
general cost-and-complexity versus speed trade-off. The control is in soft-
ware part of design, which passes the relevant parameters to hardware for
specific functionalities. The hardware is designed in such a manner that
it would substantiate the most computation intensive task efficiently i.e.
meeting the throughput and latency requirements. The hardware is also
flexible enough to employ the same baseband processing resources for mul-
tiple standards. The presented configurable architecture takes advantage of
the commonalities that exist among the different schemes to be implemented
but in an efficient manner. The commonalities and disjoints are translated
into hardware architecture to come up with a system that performs all the

iii

iv Abstract

required operations by all the applications. The end product will enable user
to perform desired scheme / standard by providing the parameters without
going into any details of the architecture. The proposed scheme is far more
efficient than having dedicated blocks for each application.

The multi-standard designs should have high performance to comply
with the throughput and timing constraints of all the standards with the
same HW/SW design. To explore the performance criteria in the baseband
design, we present specification, design and implementation of hardware
blocks using two approaches, Application Specific Integrated Circuit (ASIC)
and Application Specific Instruction Processors (ASIP) designs. The ASIP
design provides more flexibility and programmability at the cost of some
loss in the performance. We also consider the other existing hardware tech-
nologies, take into account their specific advantages and drawbacks, and
compare those on the basis of computation type categorization in the base-
band design to come up with some guidelines for multi-standard baseband
design.

Contents

Acknowledgments . i
Abstract . iii
Contents . v
List of Figures . ix
List of Tables . xi
Acronyms . xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline of the report . 5

2 Baseband Architectures for SDR Applications 7
2.1 Software Defined Radio (SDR) 7
2.2 Baseband Processor Design 10
2.3 Existing Baseband Processors 12

3 Transceiver Tasks for Multiple Standards 17
3.1 Function Definitions . 18
3.2 Time and Frequency Synchronization 19
3.3 OFDM : Operations . 24

3.3.1 Pilot Structures in Different Standards 25
3.3.2 Channel Estimation for Block Type Pilot Schemes . . 26
3.3.3 Channel Estimation for Diffuse Type Pilot Schemes . 27
3.3.4 Significance of Subband Operations 30
3.3.5 Single Antenna: Received Signal 31
3.3.6 Carrier Phase Offset Estimation 31
3.3.7 Typical Measurement Procedures in Wireless Systems 33
3.3.8 Timing drift adjustment 33
3.3.9 Channel Compensation (Equalization) 34

v

vi Contents

3.3.10 Data Detection for Block Type Pilot Structures 36
3.3.11 Multiple Antenna Case 36
3.3.12 SIMO Channel Compensation and Data Detection :

Diffuse Pilot Structures 37
3.3.13 MISO and MIMO Channel Compensation- Transmit

Diversity : Diffuse Pilot Structure 39
3.3.14 MISO and MIMO Channel Compensation- Single-layer

Precoding . 39
3.4 CDMA : Operations . 40

3.4.1 Channel Estimation Procedure 40
3.4.2 Low-rate WCDMA (Long Spreading) 41
3.4.3 High-rate WCDMA 42

3.5 Extensions: SC-FDMA . 44
3.6 Summary . 45

4 Flexible Baseband Hardware Design 47
4.1 Baseband Design Choices . 47
4.2 Open Air Interface Architecture 49

4.2.1 The Control Module 50
4.2.2 The Processing Module 50
4.2.3 Interconnect . 51
4.2.4 Generic IP Shell . 52
4.2.5 Software/OS architecture 53

4.3 Hardware Accelerators Inside Processing Engine 54
4.3.1 Pre-Processor Block 54
4.3.2 Channel Encoder and Decoder 54
4.3.3 Interleaver and De-Interleaver 56
4.3.4 Mapper and Detector 56

5 The Front End Processor 59
5.1 Identification of Micro-Blocks 59
5.2 Time / Frequency Domain Conversion 61

5.2.1 Roots of unity . 62
5.2.2 FT Mode Computations 64
5.2.3 Input Vector Size - Power of 4 64
5.2.4 Input Vector Size - Power of 2 68

5.3 Pre Post Processing . 72
5.3.1 Component-wise-addition 74
5.3.2 Component-wise-subtraction 74
5.3.3 Component-wise-product 75

Contents vii

5.3.4 Component-wise-division 76
5.3.5 Dot Product . 76
5.3.6 Energy Calculations 77
5.3.7 Maximum Calculations 79

5.4 Memory Subsystem (MSS) . 81
5.4.1 Memory Access Schema 87
5.4.2 The Addressing Schema 91

5.5 Implementation Results . 93
5.5.1 Limitations of the Architecture 94

6 ASIP design for Vector Processor 95
6.1 ASIP Design Methodology . 95
6.2 ASIP for Flexible Baseband Design 97

6.2.1 Vector Processor Design Features 99
6.3 Functional Specifications of the Vector Processor 100
6.4 The Instruction Set . 102

6.4.1 Op-code . 104
6.5 Pipeline Structure . 106
6.6 Memory Access . 110

6.6.1 Program Memory Access & Instruction Decoding . . . 110
6.6.2 Data Memory Access 112
6.6.3 LUT Design . 112

6.7 Address Generation Unit . 114
6.8 Design Verification Process 114
6.9 Implementation Results . 116

7 Future Wireless Systems Design Approaches 119
7.1 Hardware Design for Baseband Processing 119
7.2 ASIC and ASIP Design Comparison 124
7.3 LTE Channel Estimation Approaches 127

7.3.1 LTE Downlink Frame Arrangement 127
7.3.2 Linear Interpolation in Frequency Domain 128
7.3.3 Pre-Defined Filter Interpolation in Frequency Domain 138
7.3.4 Interpolation by Zero Padding in Time Domain 141
7.3.5 Hardware Resource Utilization for the Interpolation

Schemes . 142
7.3.6 Memory Requirements for Linear Interpolation in Fre-

quency Domain Scheme 143

viii Contents

8 Conclusions and Future Work 147
8.1 Future Work Directions . 150

9 Résumé en Français 153
9.1 Abstarct . 153
9.2 Introduction . 154
9.3 Contributions . 156
9.4 Open Air Interface . 159

9.4.1 Les Choix De Conception 159
9.4.2 L’unité de traitement du DSP - DSP Processing Unit 160

9.5 Front End Processor (FEP) 162
9.5.1 Limitations de l’architecture 163

9.6 Conception d’ASIP pour Vector Processor 164
9.7 Options de conception matériel pour le traitement en bande

de base . 169
9.8 Comparaison des approches de conception (ASIC - ASIP) . . 173
9.9 Conclusions et travaux futurs 177

List of Figures

2.1 Functional Block Diagram of Wireless Communication System 11

3.1 Time Synchronization in Time and Frequency Domain 20
3.2 Vectorization Process . 20
3.3 Coarse Frequency Offset Estimation 23
3.4 OFDM Transmission Chain 24
3.5 Two Basic Types of Pilot Arrangement in OFDM Systems . . 26
3.6 OFDM receiver parameters 31
3.7 Channel Compensation Procedure 34
3.8 RAKE Receiver Block Diagram 41
3.9 High Rate CDMA Receiver 43
3.10 SC-FDMA Receiver . 44

4.1 Baseband Processing Architectural Overview 49
4.2 Generic IP architecture . 52

5.1 Basic Radix-4 Operation . 68
5.2 Internal FEP Architecture in FT Mode 70
5.3 The DFT / IDFT Processing Unit 71
5.4 Communication among the FEP Blocks 72
5.5 Formation of Sub-bands with parameters 73
5.6 FEP Internal Architecture in PP Mode 80
5.7 Successive Command Words for the FEP Core 82
5.8 The FEP Memory Subsystem : Address Space 85
5.9 Structural view of the FEP memory subsystem 86
5.10 Cache at the Input / Output of FT operations 90
5.11 The memory layout from IP core point of view 92

6.1 The ASIP Architecture with FT (of FEP module) 99
6.2 Instruction Set of the ASIP 105
6.3 Pipeline Structure . 109

ix

x List of Figures

6.4 Program Memory Access . 111
6.5 Data Memory Access . 113
6.6 Verification Flow . 115

7.1 Mapping of LTE Downlink Reference Signals for SISO with
normal prefix . 130

7.2 Liner Interpolation for SISO Case with RB = 25 and normal
prefix . 131

7.3 Mapping of LTE Downlink Reference Signals for MIMO (2-
antennas) with normal prefix 136

7.4 Liner Interpolation for MIMO Case (2-antennas) with RB =
25 and normal prefix . 137

7.5 Mapping of LTE Downlink Reference Signals for MIMO (2-
antennas) with extended prefix 139

9.1 Prsentation de l’architecture de processeur de bande de base . 161
9.2 L’architecture ASIP avec FT 167

List of Tables

2.1 The features of cellular and wireless technologies 10

4.1 Channel decoder results . 55

5.1 DFT : Number of cycles used for different Input Vector Sizes 93

6.1 Instruction Set Modes . 107
6.2 Look Up Table (LUT) Schema 113
6.3 Summary of ASIP Implementation Results 116

7.1 The synthesis results summary for FEP and VP design 126
7.2 Glimpse of the assembler code for linear interpolation in the

ASIP design . 134
7.3 Interpolation Schemes Comparison on the basis of arithmetic

operations count . 143
7.4 Memory Requirements for linear interpolation scheme with

normal prefix . 145

9.1 DFT : Nombre de cycles utilisés pour différentes tailles de
vecteur d’entrée . 163

9.2 Résumé des résultats d’implémentation d’ASIP 168
9.3 Le résumé des résultats de synthèse pour la conception de

FEP et VP . 176

xi

xii List of Tables

Acronyms

Here are the main acronyms used in this document. The meaning of an
acronym is usually indicated once, when it first occurs in the text.

3GPP 3rd Generation Partnership Project
A/D Analog to Digital
ADL Architecture Description Languages
AGU Address Generation Unit
AHB AMBA High Performance Bus
ALU Arithmetic Logic Unit
AMBA Advanced Microcontroller Bus Architecture
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
AVCI Advanced Virtual Component Interface
BPSK Binary Phase Shift Keying
CDMA Code Division Multiple Access
CPO Carrier Phase Offset
CWA Component Wise Addition
CWP Component Wise Product
D/A Digital to Analog
DCS Digital Cellular Service
DDR DRAM Double Data Rate Dynamic Random Access Memory
DFT Discrete Fourier transform
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor (ing)
DVB Digital Video Broadcasting
EDGE Enhanced Data Rates for GSM Evolution
FCC Federal Communications Commission
FEP Front End Processor

xiii

xiv Acronyms

FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
FT Fourier Transform
GPP General Purpose Processor
GSM Global System for Mobile Communications:
H/W Hardware
HDL Hardware Description Language
I/Q In-phase and Quadrature Components
IDFT Inverse Discrete Fourier transform
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
IS-95 Interim Standard 95
ISA Instruction Set Architecture
LAN Local Area Network
LTE Long Term Evolution
LISA Language for Instruction Set Architecture.
LSB Least Significant Bit
LUT Look Up Table
MAC Media Access Control
MAP Maximum-a-Posteriori
MIMO Multi-Input Multi-Output
MLE Maximum Likelihood Estimation
MMSE Minimum Mean Square Error
MSB Most Significant Bit
MSS Memory Sub-system
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
PCI Peripheral Component Interconnect
PHY Physical Layer
PP Pre-Post Processing
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
RAM Random Access Memory
RF Radio Frequency
ROM Read-only memory
RTL Register Transfer Language
S/W Software
SCR Software Controlled Radio
SDMA Space Division Multiple Access
SDR Software Defined Radio

Acronyms xv

SIMD Single Instruction Multiple Data
SISO Single-Input Single-Output
SoC System on Chip
UMTS Universal Mobile Telecommunications System
VCI Virtual Component Interface
VHDL VHIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VLIW Very Long Instruction Word
VP Vector Processor
WCDMA Wideband Code Division Multiple Access

xvi Acronyms

Chapter 1

Introduction

1.1 Motivation

The last three decades have seen wireless communications as the biggest en-
gineering success, not only in research and development but also in market
size and impact on the society. Wireless devices have become an integral
part of our daily life, and are also deriving a big chunk of economics. Early
on, only cellular phones were considered as wireless communication devices
but now things have changed a lot. Wireless computer networks, wireless
sensor networks, and wireless positioning systems are a few to name here;
that have changed the composition of their applications and most impor-
tantly have created new directions of research in communications systems
field.

Different types of applications and usages have led to the development of
different standards being used in wireless communications systems. Though
these systems have almost the same functional blocks, but the approach
and hence the algorithms used differs a lot from standard to standard. In
wireless communications systems, radio spectrum, radio access technologies
and protocol stacks change the behavior among the different systems and
networks. Today, there exist multiple standards for cellular networks (GSM,
EDGE, WCDMA etc.), and wireless local area networks (IEEE 802.11a, b,
g). Now each of these standards has different carrier frequencies, channel

1

2 Chapter 1 Introduction

bandwidths and modulation schemes. As new standards and applications
keep on growing, there is a need for a flexible hardware platform that is
capable to support all the different standards in the entire wireless commu-
nication frequency range. Software defined radio (SDR), is a reconfigurable
radio communication system that can be tuned to any frequency band, and
can handle all the modulation schemes in a wide frequency range; thus serv-
ing multiple services and communication protocols [Mit95].

The use of flexible architecture that can serve multiple wireless communica-
tion standards provide many advantages including:

• Once a configurable architecture is in-place, it is expected to help
rapid deployment of new standards. Moreover, it is quite possible
that the existing design may compute the new algorithms without any
modification. The maintenance cost is also expected to go down by a
reasonable factor.

• The new market trends leading to new service-requirements and hence
design and development of new systems will not start from scratch;
instead these configurable systems will aid a faster development and
deployments.

• The SDR design effort is to help the multi-radio handsets to adopt the
changing surroundings. This leads to cognitive or opportunistic radio
making it possible to use the spectrum more effectively and efficiently.
The switching from one access protocol to another becomes seamless
to the users.

• A scalable radio design would not only be useful for terminals but also
for base stations.

1.2 Contributions

In this thesis report, we focus on the different design options for digital
baseband architecture in the context of the SDR applications. The proposed
digital baseband architecture is capable of implementing 2G, 3G, 4G, broad-
cast communication and wireless LAN standards using the same HW/SW
architecture. In our design, the digital baseband processing is performed in
a HW/SW co-design capable of supporting all the functional requirements
at any air-interface and at each stage of SDR processing, from the lowest

1.2 Contributions 3

levels to higher ones. The partitioning between HW and SW follows a gen-
eral cost-and-complexity versus speed trade-off. Hardware is designed in
such a manner that it would support the most computationally intensive
task efficiently i.e. meeting the throughput and latency requirements for all
the standards in the design. The hardware is also flexible enough to use
the same baseband processing resources for multiple standards. The con-
trol is in software part of design, which passes the relevant parameters to
hardware for specific functionalities. The challenge in the design is to syn-
chronize all the processing at air-interface in an efficient way with minimum
resource utilization and high accuracy. The baseband hardware architecture
is subdivided in two main parts: a high level control module and a Digital
Signal Processing (DSP) engine. The control module is responsible to trans-
fer MAC requests to the DSP engine and control data direction flow. The
DSP Engine is responsible for all up-link/downlink signal processing. The
baseband architecture along with its design approach is described in detail
in this work.

To address the needs of the multi-standard wireless devices, the diverse
tasks of the DSP engine of the baseband design range from sample rate
matching to viterbi decoding. A thorough study of the target air interfaces
led to the identification of a set of functional entities for the digital baseband
processing. The identified operations are implemented as seven independent
processing blocks, and can be called as hardware accelerators. These include:
Pre-processor, Front End Processor, Mapper, Detector, Channel Encoder,
Channel Decoder, and Interleaver / De-interleaver. The design approach of
each of these blocks is to take advantage of the commonalities that exist
among the different standards to be implemented. The commonalities and
disjoints are translated into hardware architecture to come up with a system
that performs all the required operation by all the applications. The end
product will enable user to perform desired scheme / standard operation
by providing the parameters without going into any details of architecture.
The proposed scheme may not be as efficient as a single dedicated system
for a particular standard but it would definitely be far more efficient than
having dedicated blocks for each application

The Front End Processor (FEP) block inside the DSP engine is as-
signed to address all the requirements at the air-interface level that in-
clude Channel Estimation, Data Detection, Carrier Phase Offset (CPO)
Estimation, and Synchronization. The mechanism of these functions dif-
fer from air-interface to air-interface and the different air-interfaces being

4 Chapter 1 Introduction

used for wireless communication devices are Orthogonal frequency-division
multiplexing/multiple-access (OFDM/A), Single Carrier FDMA (SC-FDMA),
Wideband Code Division Multiple Access (W-CDMA), and Space-division
multiple access (SDMA). A flexible FEP block of baseband design is capa-
ble to perform the above mentioned operations for all the standards in an
efficient and unseen manner to external user i.e. without any requirement
to change hardware configuration.

The Fast Fourier Transform (FFT) has been used as building block for
air-interface specific architectures both at the transmitter and receiver. Over
the last decade, different architectures have been proposed for OFDM re-
ceivers with the FFT as the key processing block [LL07] [CN06]. Similar to
OFDM, different frequency domain computation architectures for WCDMA
/ HSDPA have been proposed with performances quite similar to classical
time domain equalizers. Following the same methodology, FFT has also
been utilized for MMSE turbo equalization in Global System for Mobile
Communications(GSM)[LLBL05]. Based on these contribution for individ-
ual standards [YGC06], [LIMVS05], [LIZMP05], we analyze and propose a
frequency domain processing block capable of catering all the air-interface
operations. The implementations of these operations are typically tailored
to the standard in question. The detailed design approach, functional de-
scription and the implementation of the hardwired, parameterizable FEP
block is discussed in the thesis report.

The application specific integrated circuits (ASIC) designs are most op-
timized and efficient in terms of area, speed and power consumption in
comparison to other design methodologies. On the other hand, the flexibil-
ity offered is little or even nothing in some cases. The Application Specific
Instruction Set Processors (ASIPs) stand as one of the choices for a complex
flexible platform design to handle the complex transceiver design tasks on
the target software / hardware platform. The ASIPs also provide higher
flexibility that is really helpful for hardware design to serve the ever chang-
ing wireless communication applications. For ASIP design, if high flexibility
and customization for the instruction set architecture (ISA) is required then
tools that focus on architecture level optimization may be used. These tools
use Architecture Description Languages (ADL). There has been lot of re-
search in this field, but so far the LISA language is the only one that gained
commercial acceptance. We used this approach to design an ASIP core
called vector processor (VP) to evaluate its usefulness in baseband architec-
tures for SDR applications. The design details along with the results are

1.3 Outline of the report 5

presented in this document later. The two design approaches adopted for
the FEP, i.e. hardwired and ASIP, are thoroughly analyzed in this thesis
report as well.

In the context of the SDR baseband design, the set of algorithms to
be implemented in the hardware come from diverse wireless standards and
waveforms thus providing a greater design challenge. On the other hand,
a very high digital processing power is required to implement the flexible
and efficient solutions for the SDR applications. In this scenario, the digi-
tal hardware component performance in the software radio design becomes
a really important aspect to measure the radio’s capability. The different
hardware components that can be used to carry out these digital process-
ing are digital signal processors (DSPs), field programmable gate arrays
(FPGAs), general-purpose processors (GPPs), and application specific inte-
grated circuits (ASICs). The parameters such as cost, speed, flexibility, and
power consumption are considered for each of these hardware technologies.
Considering these hardware technology options against the set of algorithms
in the SDR baseband design along with the performance requirements, some
design guidelines are proposed at the end of the report.

1.3 Outline of the report

In the following chapter, the different hardware design approaches for the
current and evolving wireless communications systems are described. It also
provides a brief history of the architectures that were developed over the
period of time for multi-standard communication systems. Chapter 3 fo-
cuses on the algorithms that need to be implemented in a flexible baseband
transceiver design. Being a multiple standard baseband design, the algo-
rithms for different wireless communication standards are listed, later on
these algorithms are grouped together to identify different blocks inside the
processing engine of the design.
In chapter 4, our baseband design is explained in detail. We give the design
details, explain the reasons of different choices made and analyze the advan-
tages that our approach provides. The detailed hardware design, functional
specification and implementation details of the front end processor (FEP)
make chapter 5 of this report. In chapter 6, a highly flexible ASIP design
using LISATek as the design tool is presented. Then in chapter 7, we make
a comparison of the two design approaches that we used for one of our hard-

6 Chapter 1 Introduction

ware block design. We extend the discussion to the other set of algorithms
implemented in other hardware blocks in the SDR design and propose few
guidelines to choose the hardware technology for different set of algorithms.
In this chapter to strengthen our FEP design case, we present an example
of LTE channel estimation methodologies using our hardware block. The
last chapter is dedicated to concluding remarks of this work along with some
future directions from this research contribution.

Chapter 2

Baseband Architectures for
SDR Applications

The need for flexible platforms and their importance with the ever changing
technology are the basis for motivation of this work, and is elaborated at
the start of this chapter. This chapter also discusses the hardware design
approaches for the current and evolving wireless communications systems.
We describe the requirements for the different systems, and then highlight
the need of flexible architectures to handle multiple applications and hence
standards at the same time.

2.1 Software Defined Radio (SDR)

The current trend of convergence between communication and information
systems contributes not only to the introduction of new telecommunication
products with ever-increasing functionalities, but also to the integration of
several means of communication in the same system. Even a standard PC,
now-a-days, has facilities like Blue-tooth connection, several standards of
high data rate local area network (IEEE 802.11a, b and g), and the pos-
sibility of integrating a 2G/3G card. The different types of applications
and usages have led to the development of different standards being used in
wireless communications systems. Although these systems have almost the
same functional blocks, the way these blocks function differs greatly from

7

8 Chapter 2 Baseband Architectures for SDR Applications

standard to standard. In wireless communication systems, radio spectrum,
radio access technologies and protocol stacks vary from system to system
and network to network. Moreover, the evolution of new standards has not
stopped and there are no signs of it in the near future, rather there exist
incompatible network technologies. These issues give rise to the need of a
global system design that can handle most of the existing communication
devices (using different wireless communication standards) that exist, if not
all. The obvious choice is to have a flexible hardware architecture, that will
replace existing dedicated structures for each application. This sums up
the concept of Software Defined Radio (SDR). By a broad definition, SDR
is a reconfigurable radio communication system that can be tuned to any
frequency band, and can handle all the modulation schemes in a wide fre-
quency range; thus serving multiple services and communication protocols
[Mit95].

In the beginning, the SDR emerged from military applications where
communication between several forces was required without any interven-
tion from the enemy forces. The projects like DARPA’s (Defense Advanced
Research Projects Agency) SPEAKeasy [LU95] and Joint Tactical Radio
System (JTRS) [Mel02] can be viewed as the examples for development
of SDR, where multiple air-interfaces with different signal processing tech-
niques were integrated into one platform. Later on, the need and usage
spread to civil and daily life applications. The existing cellular phones op-
erating with different standards (UMTS, GSM, DCS-1800, IS-95 etc.) are a
typical example of SDR applications. Software defined radio technology has
rapidly evolved over the past years and is gaining more and more interest in
the industry because of the enormous advantages it offers over conventional
radio architectures [Tut99] [BCT99].

Software defined radio and reconfigurability can be defined in many ways,
and it is always dependent on the functional support they are providing.
Reconfigurability denotes the capability of a system that can dynamically
change its behavior, usually in response to dynamic changes in its environ-
ment. However in the context of wireless communication, reconfigurability
tackles the changeable behavior of the wireless networks and the associated
equipment, specially in the fields of radio spectrum, radio access technolo-
gies, protocol stacks, and application services.

Though there exists no general consensus about the exact definition of
SDR, the Federal Communications Commission (FCC) has proposed to de-

2.1 Software Defined Radio (SDR) 9

fine SDR as a radio that includes a transmitter in which the operating
parameters of the transmitter, including the frequency range, modulation
type, and maximum radiated or conducted output power can be altered by
making a change in software without any hardware change [Kob01]. The
Wireless Innovation Forum (previously known as the SDR forum) [WIF] has
defined Software Defined Radio in different tiers based on the various capa-
bilities. Each level in the tier definition corresponds to specific capabilities
and level of flexibility, the five tiers are listed here :

• Tier 0 Hardware Radio (HR): The radio is implemented using hard-
ware components only and cannot be modified except through physical
intervention.

• Tier 1 Software Controlled Radio (SCR): Only the control functions
are implemented in software. Typically this includes interconnects,
power levels etc. but not to frequency bands and/or modulation types
etc. Thus limited software controlled functionality.

• Tier 2 Software Defined Radio (SDR): The software control for variety
of modulation techniques, wide-band or narrow-band operations, com-
munication security functions, and waveform requirements of current
and evolving standards over a broad frequency range. The frequency
bands covered may still be constrained at the front-end requiring a
switch in the antenna system.

• Tier 3 Ideal Software Radio (ISR): The programmability extends to
the entire systems with analog conversion only at the antenna, speaker
and microphones.

• Tier 4 Ultimate Software Radio (USR): is defined by the Wireless
Innovation Forum for comparison purposes only. Ultimate Software
Radios could theoretically switch from one interface format to another
in milliseconds.

Thus the simplest example of an SDR is Tier-1, where the baseband pro-
cessing is performed with fixed hardware. Early dual-mode cell phones fall
into this category, as they use two hardware radios to support two different
communications standards. In addition to being the most commonly used
SDRs, Tier 2 devices constitute the most popularly understood definition
of software radios. These systems consist of various processing technologies,
such as application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), and digital signal processors (DSPs). Tier-3 is the

10 Chapter 2 Baseband Architectures for SDR Applications

most advanced type of SDR that is achievable in the near future. The ideal
software radio, has all the capabilities of a Tier-2 radio, except that digital
processing starts at the RF range. It is supposed to perform all the demod-
ulation (RF, IF and baseband) entirely in the digital domain.

In table 2.1 the features of few cellular and wireless standards are listed.
This gives a glimpse of the diversity of parameters that a multi-standard
architecture has to address. On one hand, multiple air-interfaces with their
diverse features are to be catered which means a higher flexibility at the
digital front end of design. On the other hand, the very high data rates for
the evolving standards requires high computational power at high speed.

Standards Freq Band Channel Bandwidth Air-Interface Data Throughput
3 G 2 GHz 5 MHz WCDMA 384 kbps

HSDPA 2 GHz 5 MHz WCDMA 14 Mbps
LTE 2 GHz 1.4, 5, 10, 15, 20 MHz OFDM 100 Mbps

802.11a 5 GHz 20 MHz OFDM 54 Mbps
802.11b 2.4 GHz 20 MHz DSSS 11 Mbps

Table 2.1: The features of cellular and wireless technologies

2.2 Baseband Processor Design

Once the common characteristics of the SDR has been listed, we look at
the components of a typical wireless communication system to achieve the
capabilities mentioned above. The wireless communication system normally
is composed of radio front-end, baseband processor and media access control
processing unit. The baseband processing takes place next to the radio in-
terface, and from now onwards we only concentrate on the digital baseband
part of SDR in this thesis report.
Since the wireless communication systems are designed to support both
the transmitter and receiver streams, therefore there are two computational
paths inside the baseband processor. In the transmitter mode, the base-
band processor carries out channel coding, modulation and symbol shaping
after receiving the data from the MAC (Media Access Control) processor.
Then the data is forwarded to radio front-end via digital to analog convert-
ers. In the receiver mode, the radio signal is filtered and converted into
digital baseband signal using the analog to digital converters. Then the

2.2 Baseband Processor Design 11

baseband processor carries out the filtering, synchronization, channel esti-
mation and compensation, demodulation etc before transmitting the data
to MAC protocol layer. Figure 2.1 [Pro95] shows block diagram of a wireless
communication system with its conventional processing units as functional
blocks.

A/D

Conversion

Data

Decoding

RF

Front−EndDecoding

Source

Encoding

Channel D/A

Conversion

Receiver

Transmitter

Video

Audio

Speech

Source

Encoding

Digital

Modulator Back−End

RF

Digital

Demodulator

Channel

Figure 2.1: Functional Block Diagram of Wireless Communication System

Modern software radio systems require substantial digital processing
power for implementing flexible and highly capable systems. With each new
emerging wireless communication standard, the computational complexity
requirements are increasing. On the other hand, the power budget is also
limited for the wireless devices. The high performance hardware designs are
required to meet the processing requirements with low power consumption
but also need to achieve the required flexibility. Thus the programmable
baseband processors are necessary to carry out efficiently multi-standard
radio tasks. The flexible design for each block inside the communication
system would meet the requirements of all the existing standards and also
would anticipate the future requirements in the upcoming or future stan-
dards and provide a flexible yet efficient design.

The main four design challenges in the baseband design of software radio
are: flexibility, portability, scalability, and performance. These parameters
are interrelated but have opposing effects on each other while making the de-
sign decisions. In the context of the software radio, flexibility can be defined
as the ability to adapt to various current and evolving wireless communi-
cation standards and protocols. The flexible solution would help a faster
integration of new features in the existing solutions. The flexibility will also

12 Chapter 2 Baseband Architectures for SDR Applications

make sure of dynamic switching between different standards [BHFN02].
The measure of ease of a system or its component with which it can be trans-
ferred from one hardware or software environment to another is termed as
its portability [iee91]. With a portable software code to any other hardware
architecture, the cost to produce new applications for standards is reduced.
Also with a modular design, different levels of portability can be achieved
for different implementations across the hardware platforms.

The scalability is defined as the desirable property of a system which
indicates its ability to either handle growing amounts of work in a graceful
manner or to be readily enlarged [Bon00]. A scalable baseband design of
SDR system design would be capable not only to support the existing and
evolving standards but will also be intuitive enough to meet the requirements
of near future standards. The system should also have the capacity to be
enlarged with respect to the new specification by a new standard.

The performance of a baseband design determines how successfully and
efficiently it implements the radio functions. It is not only based on com-
putational data throughput but also based a number of factors including
energy efficiency, cost, and area requirements. So in turn, it is directly re-
lated to flexibility, portability, and scalability. Thus the trade offs must be
made to provide a balanced implementation of baseband in the SDR system.
Some of the design challenges are listed here:

• High computation performance with flexibility

• Low power consumption

• Address all the existing and evolving standards

• Low computational latency to meet timing constraints

This section provided an introduction to the baseband processing in the
SDR design. We looked at the diverse design requirements across multi-
ple standards. In the following section, we look at the existing baseband
processors proposed by the industrial and research groups.

2.3 Existing Baseband Processors

There are number of existing processing architecture for SDR systems, which
have been designed with different design strategies although the dream goal
is to design true SDR system. These solutions include standard processors,

2.3 Existing Baseband Processors 13

DSP designs, configurable units based on FPGA technology and novel ex-
ecution ideas. Some of the commercial solutions to be listed here do not
provide the actual implementation and performance.

Hipersonic, application specific signal processor (ASSP) baseband de-
sign, was developed by Systemonic [KWD+02]. It has the following main
sections:

• Hard-wired logic for computationally intensive processing

• A configurable DSP unit called OnDSP

The processor design also provides an option of protocol processor that can
be used for scalar computations inside the baseband design. Hipersonic is
designed to execute the baseband algorithms for IEEE802.11a and HIPER-
LAN/2 based 5 GHz wireless LAN applications. The configurable DSP unit,
OnDSP, is a VLIW/SIMD (Very long instruction word / Single instruction
multiple data) based DSP where one slot in the VLIW word controls a vector
SIMD unit for complex computations. The OnDSP uses both “horizontal”
and “vertical” (Tagged VLIW) [WF96] code compaction which compacts
the VLIW word when there are unused fields and uses similarities between
neighboring instructions in time.

Philips/NXP acquired Systemonic later on, and an evolved OnDSP pro-
cessor EVP16 [vBHMKM05] was presented. The EVP16 also utilizes Tagged
VLIW instructions to enable compact vector programs. Both the OnDSP
and EVP16 are assumed to be incorporated into a larger system-on-chip de-
sign with a host processor, dedicated hardware etc. [vBHM+04]. The vector
processors perform quite good generally, but their performance is quite low
for the complex bit based operations in the digital baseband design. The
interleaving and channel decoding in the transceiver design are examples of
such computations, that become bottleneck in the system performance.

Icera [ice] came up with the idea that a predictable execution flow can
tolerate a long pipeline and that the usage of a long pipeline is necessary to
utilize silicon resources efficiently. The solution presented by Icera is named
as Deep eXecution Pipeline (DXP) [Kno05]. In this design, the instruc-
tions are pointers to an entry in the configuration map which holds different
configurations and constants for the 4-way deep execution data path. The
configuration map is updated by control instructions. Only dynamic infor-
mation is issued every clock cycle thus allowing a high operation count per

14 Chapter 2 Baseband Architectures for SDR Applications

clock cycle. Architecture details as well as information about the memory
system has not been disclosed. Processors from Icera do not use any hard-
ware accelerators for any functionality [Kno05].

The Sandblaster [GIL+03] is the name of the processor architecture pro-
posed by Sandbridge Technologies [san]. The solution is based on two ex-
ecution units: one RISC and the other SIMD based, and supports both
communications and multimedia application processing. The compound in-
struction set uses an underlying VLIW/SIMD architecture. Each instruction
is composed of four fields: Load/Store, ALU, Integer multiplier and vector
multiplier (SIMD). Thus the architecture can issue up to four simultaneous
instructions. The architecture also uses Token Triggered Threading (T 3)
to hide the effects of memory access latency. The Sandblaster architecture
currently supports 8 threads. In addition to this multi-threading scheme,
cache memories are used in the memory system. However, the usage of
cache memories results in the unpredictability induced by these memories.
If a cache miss occurs, the core needs to be stalled, prohibiting the use of a
statically scheduled processor.

The researchers at technical university (TU) Dresden optimized the con-
cept of Task Triggered Architecture (TTA) to propose the the Synchronous
Transfer Architecture (STA) [CRS+04]. In STA based architecture, each
basic functional unit is connected to other functional units on each side
making a connected network. The results in each clock cycle from each
module are passed to the next module, and data moves in a synchronous
network inside the entire system. The simplicity of the STA architecture
is used to generate RTL (register transfer language) and simulation models
automatically [MSL+06]. To demonstrate the STA architecture, a floating
point baseband processor named SAMIRA [MSL+06] was designed. The
SAMIRA processor combines both SIMD and VLIW parallelism by using
several SIMD floating point data-paths in parallel. The SAMIRA processor
utilizes VLIW instructions to reduce control complexity of the processor. On
the other hand, code compaction is used in the SAMIRA processor to reduce
the memory footprint associated with VLIW-based processors. The research
group has also proposed an updated version of the said design that supports
the multimedia applications for LTE / WiMAX terminals [LWB+08].

There have been some proposals from the FPGA vendors to use the
reconfigurable logic for the multi-standard processing [xil] [alt]. Some aca-
demic research has also been carried out in this regard, however the resource

2.3 Existing Baseband Processors 15

requirement for FPGA configuration [BDBM+04] is enormous. Therefore,
the FPGAs should not be used for the whole system design for SDR appli-
cations. Also the high power consumption of the FPGAs is not practical in
wireless devices.

The survey of the existing SDR baseband architecture reveals that typ-
ical implementations of SDR modems are based on the hardware technolo-
gies such as general purpose processors (GPPs), digital signal processors
(DSPs), field programmable gate arrays (FPGAs) and application specific
integrated circuits (ASICs). The computation requirements of the SDR are
quite diverse in nature across different standards, and require not only high
computational power but high flexibility and low power consumption. It
can be safely stated that all the solutions provided so far do not achieve
the required level of performance in one way or the other. The ASIC based
solutions have limited or no flexibility although achieve high computational
power. The DSP solutions are very specific to the internal units design, and
the computational power is also limited. The FPGA solutions may be a
good option for proof of concept with their low development cost and rapid
development cost, but can not be assumed as a solution for mass scale pro-
ductions.

To achieve the high performance along with flexibility and low power
consumption, a hybrid platform solution that uses the different hardware
technologies while using efficiently their pros and avoiding their corns might
become an interesting option. The GPPs are the most flexible and can serve
hugely variant tasks. The irregular operations should also be carried out by
the GPPs, however it is worth mentioning again that the power consumption
is high in GPPs thus only limited operations should be assigned to the GPPs
in a hybrid design. The control operations in the baseband design may typ-
ically be assigned to the GPPs. Both GPPs and the DSPs have low perfor-
mance for the complex bit based operations as is the case in the interleaving
and channel decoding in a transceiver design. The FPGAs are power hungry
devices compared to their competitors, making it hard to choose them as
the solution for baseband design. ASICs offer the most optimized, powerful
and computationally efficient digital hardware implementation for the signal
processing applications at the cost of flexibility. The ASIC implementations
tend to be better suited for highly complex problems or high volume appli-
cations or high data throughput requirements, such as cellular phones. In
this thesis, we present a hybrid solution that uses general purpose proces-
sors, use the optimized DSP solutions and also parameterizable ASICs. The

16 Chapter 2 Baseband Architectures for SDR Applications

basic approach is to assign one set of tasks to specific hardware technology
e.g. control tasks to GPP and highly regular computation intensive tasks to
ASICs. We carry on this discussion in chapter 7 as well, where we extend
the discussion to Application Specific Instruction Processors (ASIPs) as well.

Summary

In this chapter, we have presented the introduction to the multi-standard ar-
chitectures. We also discussed the variant nature of the computation require-
ments by different wireless communication standards. This thesis presents
only the digital baseband part of the multi-standard platform [ope], and in
the following the focus will be only at the baseband design. In the next
chapter, we present the functional requirements of the two main air inter-
faces OFDM and WCDMA and map those on the functional blocks required
in the hardware design.

Chapter 3

Transceiver Tasks for
Multiple Standards

This thesis report mainly focuses on digital front end processing inside the
baseband design, therefore we discuss the operations required at the air-
interface by different standards. The two main interfaces used in the wire-
less communication devices are OFDM and WCDMA. We enlist the algo-
rithms to carry out the transceiver tasks for these interfaces and try to come
up with hardware functional blocks that are required for the algorithms. In
our baseband design, the hardware block or the Intellectual Property (IP)
that is supposed to carry out these functions is named as Front End Pro-
cessor (FEP). The block, in fact, takes the advantage of the commonalities
that exist among the standards. The FEP block is implemented as indepen-
dent hardware accelerator in the baseband design, and is connected to other
blocks via a common interface to carry out the whole transceiver function-
ality.

First of all, we define the terminology used in this document and also
list the operations that are presented in this chapter. Then we list the
algorithms or set of operations to carry out the air interface operations.

17

18 Chapter 3 Transceiver Tasks for Multiple Standards

3.1 Function Definitions

The operations covered in this document are of the following types:

• Discrete Fourier Transform

• Vector Operations

• Energy and Maximum calculations

In the following we list the conventions and notations used in the docu-
ment along with the definition of the functions.

• Vectors names are uppercase. Scalar names are lowercase.

• If a is a complex number, xmin ≤ xmax two real numbers and p a
natural number:

– j =
√
−1

– a = <(a) + j ×=(a): <(a) is the real part of a, while =(a) is the
imaginary part of a

– a denotes the conjugate of a: a = <(a)− j ×=(a)

– |a| denotes the modulus of a: |a|2 = <(a)2 + =(a)2 = a× a

• In a n-components vector X, X[0] is the first component and X[n−1]
is the last

• If U and V are two n-components complex vectors, W is a real vector,
y a scalar complex number, xmin and xmax two scalar real numbers
and p a natural, ∀ 0 ≤ i < n:

– U [i] = U [i]: conjugate, n-components complex vector

– (U �V)[i] = U [i]×V [i]: component-wise product, n-components
complex vector

– (U × y)[i] = U [i] × y: component-wise product with a scalar,
n-components complex vector

– (U⊕V)[i] = U [i]+V [i]: component-wise addition, n-components
complex vector (note: ⊕ is also frequently used to represent the
bit-wise exclusive or between bits or words of bits)

– (U	V)[i] = U [i]−V [i]: component-wise subtraction, n-components
complex vector

3.2 Time and Frequency Synchronization 19

– (U �W)[i] = U [i]/W [i]: component-wise division, n-components
complex vector

– e(U) =
∑n−1

i=0 |U [i]|2: energy, positive real number

– ẽ(U) = e(U)

2blog2(n)c : approximate average energy, positive real num-
ber

– max(U) = max0≤i<n |U [i]|2: maximum square of modulus, posi-
tive real number

– argmax(U) = min{0 ≤ i < n, |U [i]|2 = max(U)}, smallest index
of maximum square of modulus, natural number

– U.V =
∑n−1

i=0 U [i]× V [i]: dot product, complex scalar number

• 1 is used to indicate an all-ones vector if the arithmetic context clearly
indicates this.

The Discrete Fourier Transform (DFT) of a complex vector of size n is
defined as:

DFTn(X)[u] =
1√
n

n−1∑
v=0

X[v].e−
2π×j×u×v

n , u ∈ [0, n− 1] (3.1)

The Inverse Discrete Fourier Transform (IDFT) of a complex vector of size
n is defined as:

IDFTn(Y)[v] =
1√
n

n−1∑
u=0

Y [u].e
2π×j×u×v

n , v ∈ [0, n− 1] (3.2)

Thanks to the 1√
n

normalization term the property X = IDFT (DFT (X))

holds. The IDFT is computed from IDFT (Y) = DFT (Y).
At the air interface, the time and frequency synchronization procedures

are similar in OFDM and WCDMA and are explained next.

3.2 Time and Frequency Synchronization

Time Synchronization

Timing synchronization is typically achieved using a sliding window cor-
relation with a known pilot waveform transmitted from a synchronization
source. For example, in 802.11a/g/p systems, the so-called short training

20 Chapter 3 Transceiver Tasks for Multiple Standards

Threshold

Energy

Detection
Resultp∗(−n) ()2r(n)

rk DFT

P ∗

IDFT� argmax
max qk,max

argmax(qk)

λ

Rk

Figure 3.1: Time Synchronization in Time and Frequency Domain

Vectorization

r(n)

r0

r1

r2

r3

O
v
e
rl

a
p
p
in

g

r(n) rk

rk

Figure 3.2: Vectorization Process

3.2 Time and Frequency Synchronization 21

sequence (STS) is used. The structure of this signal is chosen to offer a com-
promise between efficient time synchronization and carrier frequency offset
estimation. In LTE and WCDMA, the so-called primary synchronization
signal (PSS) is used for the same purpose.

In the FEP, the time offset estimation process can be efficiently im-
plemented using an overlapping FFT-based correlator, followed by non-
coherent peak detection. The overlapping procedure along with the vector
/ block formation from the signal is depicted in figure 3.2. Let p(n), 0 ≤
n < Lp be the reference pilot signal used for time synchronization, and Lp is
its length in samples. For 802.11a/g/p Lp is 160 samples, while in LTE Lp
is 128 samples (assuming down sampling to 6 resource blocks during initial
acquisition). Let r(n) be the complex-baseband received signal and define
the detection problem as

r(n) = ej2π∆fnp(n) ∗ h(n−∆n) + z(n) (3.3)

where ∆f is an unknown frequency offset to be estimated subsequently to
∆n. Here the effect of the channel is unknown, which infers a non-coherent
detection rule. Typically, even the statistical characterization of h[n] is
assumed unknown, aside from an underlying assumption on its effective
time duration (time delay spread). Define signal segments of dimension Np

samples
rk = [r(kOp), r(1 + kOp), · · · , r(kOp +Np − 1)] (3.4)

where Np can be chosen to be 21+blog2 Lpc, that is 256 for both 802.11a/g/p
and LTE. Op would be the overlap factor Np − Lp. This choice of overlap
guarantees that the signal component at delay ∆n falls entirely in only one
segment rk. Now define

Rk = DFTNp(rk)

to be the DFT of rk. The correlation operation would be performed as

qk = IDFTNp(Rk � P ∗) (3.5)

where P = DFT(p) and

p =

p(O), p(1), · · · , p(Lp − 1), 0, · · · , 0︸ ︷︷ ︸
Op times

 .
The statistics for detection of ∆n are

qk,max = max(qk)

22 Chapter 3 Transceiver Tasks for Multiple Standards

and
∆ñ = argmax(qk)

It is to be noted that the max and argmax are computed using the |qk|2
values as defined in section 3.1. Detection of ∆n would typically be con-
trolled by a threshold on qk,max derived from the average received energy,
λ(Ek), where Ek could be computed as Ek = αEk−1 + (1− α)E(rk), where
α controls the memory of the energy computation. One possible rule (not
necessarily optimal) would be to choose ∆(̃n) when qk,max > λ(Ek) and
qk,max > qk−1,max and qk,max > qk+1,max.

Coarse Frequency Offset Estimation

Once time synchronization is achieved (hypothetically) in segment k, esti-
mation of ∆f can be attempted using Rk. One possible method for this
estimation would be to compute the following statistics based on Rk,

qk+ =
1√
Np

(Rk � P ∗+) · ψ(∆ñ) (3.6)

and
qk− =

1√
Np

(Rk � P ∗−) · ψ(∆ñ) (3.7)

where ψ(x)[n] = e
j 2π
Np

nx. The P+ and P− are computed as

P+ = DFTNp(p+)

and
P− = DFTNp(p−)

where p+(n) = p(n)ej2π∆fmaxn and p−(n) = p(n)e−j2π∆fmaxn. P+, P− and
ψ(x) can be computed offline. ∆fmax is a parameter which represents the
maximal frequency offset that a receiver should expect (it can be derived
from the standards specification of the system). The statistic |qk+|2 roughly
represents the amount of signal energy at a frequency offset of ∆fmax from
the carrier frequency in the direction of the pilot waveform. Based on the
three statistics qk,max,qk+ and qk− a simple binomial interpolation function
can be used to estimate the carrier frequency offset ∆f̃ . The maximum of
the binomial is used as an estimate of the frequency offset. After a bit of
algebra, this estimate is given by

∆f̃ =
|qk−|2 − |qk+|2

2(|qk−|2 + |qk+|2 − 2qk,max)
∆fmax (3.8)

3.2 Time and Frequency Synchronization 23

This is motivated by the fact that

q(u) = p(n)ej2π∆fn ∗ p∗(−n)e−j2πun
∣∣∣
n=∆ñ

is a convex-
⋂

function. The procedure adopted is depicted in figure 3.3.
The point truemax represents the actual maximum value of q(∆f), while
qk,max is the maximum value based on binomial approximation using the
parameters qk−, qk, and qk+.

|qk−|2
|qk+|2

qk,max

∆f∆fmax−∆fmax ∆f̃

q(∆f)

0

truemax

Figure 3.3: Coarse Frequency Offset Estimation

Thus to have time and frequency synchronization in OFDM and WCDMA
air-interfaces, the following functional blocks are required:

• DFT, IDFT

• Component-wise-product

• Maximum, arg-maximum computation

• Dot Product

In the following, we describe the procedures for OFDM air-interface
and list the required functional blocks that are required to carry out these
procedures.

24 Chapter 3 Transceiver Tasks for Multiple Standards

3.3 OFDM : Operations

To transmit the data simultaneously over several sub-carrier frequencies, the
Orthogonal Frequency Division Multiplexing (OFDM) method is used by
various standards. All the sub-carrier frequencies are mutually orthogonal
to each other, thereby signaling on one frequency is not visible on any other
sub-carrier frequency. This orthogonality can be implemented by collecting
the symbols to be transmitted on each sub-carrier in the frequency domain,
and then simultaneously translating all of them into one time domain symbol
using an Inverse Fast Fourier Transform (IFFT).

Since each sub-carrier only occupies a narrow frequency band in OFDM,
it can be considered to be subject to flat fading and hence avoids a complex
channel equalizer. On the receiver side, the signal is transferred back in
frequency domain using the fast Fourier transform. Then the impact of the
channel on each sub-carrier can be compensated by a simple multiplication
in order to scale and rotate the constellation points to the correct position.

x[0]

x[1]

x[N−1]

X[0]

X[1]

X[N−1]

X QAM

Demod

Parralel

to

Serial

(P/S)

FFTPrefix

+

S/P

Remove

Cyclic

A/D

Serial

(S/P)

QAM

Modulator

to
Parralel

X[0]

X[1]

D/A

Add

Cyclic
IFFT

x[1]

x[0]

X[N−1] x[N−1]

X
Prefix

+

P/S

x̃(t) R bps

x̃(t)R bps

Transmitter

Receiver

Figure 3.4: OFDM Transmission Chain

In OFDM schemes, a Cyclic Prefix (CP) is added at the beginning of
each symbol by copying end portion of symbol and adding it in front of

3.3 OFDM : Operations 25

the symbol. This added guard period between the OFDM symbols helps to
reduce the impact of multi-path propagation and Inter Symbol Interference
(ISI). Thus the effects of ISI are mitigated as long as the channel delay
spread is shorter than the cyclic prefix. The OFDM transmission scheme is
shown in figure 3.4 [Gol05].

For all the standards using OFDM as the air interface, the DFT and
IDFT are integral part of any baseband implementation. In the transceiver
implementation, to achieve high performance and efficiency, the DFTs are
implemented for the vector sizes that are power of 2. There are numerous
efficient algorithms that use the symmetry for specific sizes of input vectors.
We discuss the algorithms in the following chapter, when we describe the
design of our DFT implementation. The survey study of the different stan-
dards shows that the required size can be as small as 64 in case of 802.11
and can be as large as 2048 as is the case of LTE. For the channel synchro-
nization procedure where the samples are used along with the cyclic prefix,
or some other operation requiring DFTs of over sampled vectors; even larger
vector size DFT than 2048 is required. To make the design more generic, we
decide to have the input vector size range for DFT operations to be 8−4096
and input sizes are power of 2.

3.3.1 Pilot Structures in Different Standards

The channel estimation procedure in the receiver is dependent on pilot infor-
mation that is transmitted along with the data in the transmission schemes.
The two basic pilot arrangement schemes used in OFDM systems are illus-
trated in Figure 3.5. The first one, block-type pilot scheme, is performed by
inserting pilot tones into all sub-carriers of OFDM symbols within a specific
period. All the other symbols have the pilots at specific location and these
pilots are sparse. This structure is used in systems using 802.11 a/g/n/p
and 802.16e. The second one, diffuse pilot symbols or comb-type pilot chan-
nel estimation, is performed by inserting pilot tones into certain sub-carriers
of each OFDM symbol, where the interpolation is needed to estimate the
conditions of data sub-carriers. This structure is used for the systems like
LTE and 802.11 for carrier phase estimations. The strategies of the channel
estimation procedure for these two basic types are described here.

26 Chapter 3 Transceiver Tasks for Multiple Standards

0

1

 2

3

4

5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9 10 11 0 1

Block Type Pilot Arrangement

Block
F
re

qu
en

cy
Block

Time

Data

Pilot

F
re

qu
en

cy

Time

Comb Type Pilot Arrangement

Figure 3.5: Two Basic Types of Pilot Arrangement in OFDM Systems

3.3.2 Channel Estimation for Block Type Pilot Schemes

Channel estimation is achieved using the pilot OFDM symbols (long train-
ing symbol or LTS) that are transmitted at the start of each block 3.5
or signal/data burst. For simplicity, consider the case of using a single
OFDM symbol for channel estimation, rLTS which is transformed as RLTS =
DFT (rLTS) and given by

RLTS = H � PLTS + Z (3.9)

where Z is additive noise, H is an unknown channel to be estimated and
PLTS is the frequency-domain representation of the long training symbol.
The least-squares estimate of H under no assumption of prior knowledge on
H (i.e. even no knowledge of the time delay spread) is

Ĥ = RLTS � P ∗LTS (3.10)

This estimate can be improved (if required) through additional smooth-
ing/interpolation functions, by taking into account the typical duration (and
shape) of the channel response.

3.3 OFDM : Operations 27

3.3.3 Channel Estimation for Diffuse Type Pilot Schemes

In case of the diffuse pilot scheme, the least square estimate can be used
as well. The channel estimate is achieved using the symbols that contain
pilots inside each data block transmitted. Here pilot resource elements (car-
riers) are sparsely distributed in time and frequency, the channel estimation
procedure requires some form of interpolation. The exact location of pilots
for a specific standard and for a specific structure is known e.g. the pilot
positions for 2-antennas MIMO in LTE. Let us consider a received symbol
rs which is transformed in frequency domain Rs = DFT (rs) and is given
by:

Rs = H �Xs + Z (3.11)

where Z is additive noise, H is an unknown channel to be estimated and
Xs represents the transformed transmitted symbol. However, the known
information at the receiver is only at the pilot positions. The least squares
estimate at the pilot positions:

Ĥp = Rs,p � P ∗ (3.12)

where Ĥp represents the channel estimate at the pilot positions only, Rs,p is
the transformed received signal at pilot positions and P ∗ is the conjugated
known pilot information. To get a channel estimate over all the sub-carriers
inside the symbol, interpolation schemes are to be utilized. There are mul-
tiple interpolation schemes that can be used:

• Linear Interpolation in Frequency Domain

• Pre-defined Filter Interpolation

• Time Domain Interpolation

Linear Interpolation in Frequency Domain

The linear interpolation is the simplest one, which computes the channel es-
timate at sub-carriers with the help of pilot position channel estimate com-
puted above. A fractional sum of two pilot position estimate is summed up to
get the channel estimate at the non-pilot position sub-carriers. To illustrate,
a simple example is presented here. Consider the diffuse pilot arrangement
shown in figure 3.5, there are 12 symbols transmitted per block and are num-
bered {0, 1, . . . , 11}, while there are 9 sub-carriers inside each symbol and
are numbered {0, 1, . . . , 8}. Let us consider the symbols 0 to start with. Us-
ing the least squares methodology explained, we have the channel estimate

28 Chapter 3 Transceiver Tasks for Multiple Standards

at the pilot positions {0, 5}. The linear interpolation scheme uses the esti-
mate at sub-carrier positions {0, 5} to compute the estimate at sub-carrier
positions {1, 2, 3, 4} and is given by:

Ĥ0,1 =
4
5
Ĥ0,0 +

1
5
Ĥ0,5

Ĥ0,2 =
3
5
Ĥ0,0 +

2
5
Ĥ0,5

Ĥ0,3 =
2
5
Ĥ0,0 +

3
5
Ĥ0,5

Ĥ0,3 =
1
5
Ĥ0,0 +

4
5
Ĥ0,5 (3.13)

Here, Ĥi,j represents the channel estimate in symbol i at sub-carrier j.
Thus linear interpolation takes into account the distance between the

position to be estimated and pilot location and then assigns the fractional
co-efficients. The sub-carrier positions at the end of sub-carrier that don’t
have the pilot or reference signals on both sides, use the extrapolation pro-
cedure. In extrapolation procedure, the last two pilot positions are taken
into account and only the fractional co-efficients change. A detailed exam-
ple of LTE channel estimation is presented at the end of this document
in chapter 7. Similarly, the channel estimate for the other positions can
be computed inside the symbol and the procedure is followed by the other
symbols with the pilots, symbols {3, 6, 9} in the block in figure 3.5. Next is
to estimate the channel for the symbols that are with out pilots i.e. symbols
{1, 2, 4, 5, 7, 8, 10, 11} in this case. The temporal interpolation procedure is
similar to what we have for the frequency interpolation. The estimate for
symbols 1, 2 is given by:

Ĥ1,j =
2
3
Ĥ0,j +

1
3
Ĥ3,j

Ĥ2,j =
1
3
Ĥ0,j +

2
3
Ĥ3,j (3.14)

Ĥ1,j represents the channel estimate for symbol 1 in the block at all sub-
carrier positions j.

Thus, linear interpolation requires complex vector addition, and vector
multiplication with scalars (fractional coefficients). The fractional coeffi-
cients are dependent on the distance between the two consecutive pilot po-
sitions in the symbol and vary for different pilot structures in the standards.

3.3 OFDM : Operations 29

Time Domain Interpolation

The time domain interpolation, as the name suggests, would require the
estimate over pilot position to be transferred in time domain. It follows the
fundamental principles of discrete signals that “zero padding” in one domain
results in an increased sampling rate in the other domain. For example, the
most common form of zero padding is to append a string of zero-valued
samples to the end of some time-domain sequence, and if we go to frequency
domain the signal will be sampled over string length plus the original length.
For the channel estimation of diffuse pilot scheme, the estimated channel re-
sponse at pilot positions is transferred in time domain, zeros are appended
to increase the sampling rate as per symbol length and then again the esti-
mate is transferred in frequency domain. This would require Discrete Fourier
Transform (DFT), and Inverse Discrete Fourier Transform (IDFT) functions
in the block. For the symbols without the pilot information, the temporal
interpolation procedure is followed.

For the case shown in figure 3.5, there is one pilot symbol per 5 sub-
carriers. Therefore, the transform is to be spread over 5 times vector length.
The procedure followed is given by:

Ĥi,5Np = DFT 5Np(IDFT (Ĥi,Np)||ZE4Np) (3.15)

The ˆHx,Np represents the channel estimate vector for symbol i at the pilot
position and has length equal to number of pilots Np. First the IDFT takes
the channel estimate into the time domain and then zeros are appended.
The symbol || is used to represent the appending operation while ZE4Np

describes the zero stream with length 4Np. Once the zeros are appended
then the resultant vector is converted back in to frequency domain by taking
the DFT with vector length 5Np.

Pre-defined Filter Interpolation

The pre-defined filter e.g. “sinc” function can be used to spread the channel
estimate at pilot positions over the whole symbol. To map the calculated
channel response at pilot positions to all sub-carriers:

Ĥ =
fl−1∑
i=0

Hp,iFi (3.16)

F is a predefined filter (a sinc function in this case), and its length fl is
dependent on coherence bandwidth of the channel. The filter length is de-
pendent on coherent bandwidth. The filter is moved over all the sub-carriers

30 Chapter 3 Transceiver Tasks for Multiple Standards

in the symbol and the procedure is repeated for all symbols. These oper-
ations require complex multiplication between vectors and scalars and also
addition over complex vectors. The temporal interpolation procedure is ap-
plied to the symbols without the pilot sub-carriers.

With a detailed discussion on LTE channel estimation (which uses diffuse
pilot structure) and performance analysis [STB09], the linear interpolation
in frequency domain is better choice. It is simpler as well and performs
better.

3.3.4 Significance of Subband Operations

The diffuse pilot structure shown in figure 3.5 is similar to used by OFDMA,
the air-interface for the LTE. The pilots are located at a specific distance
from each other in pilot symbols. The starting position or the location of
the first pilot inside the pilot symbol is set by the upper layers by passing
the parameters such as cell ID. The first position may vary for different
structures, however the distance between two consecutive pilot sub-carriers
is constant for a specific scheme.

To carry out different operations e.g. the component wise product be-
tween received pilots and reference signals, the information required by the
computing unit includes the first pilot index and the distance between the
two pilots. There are other operations, like computing average energy of the
sparse pilot symbols in the block type pilot structure to compute the carrier
phase offset, where the skipped index computations are carried out instead
of consecutive index computations.

We define the subband operation along with offset and skip parameters
in the FEP. The subband corresponds to an array of elements in which the
offset and sub-sampling factor are constant. The subband span indicates the
total length over which the sub-band is formed. The size of sub-band can be
less than or equal to its span. The size of subband corresponds to the number
of samples / complex numbers to be used in the FEP computations.The
offset means the distance between the start of sub-band span and the first
sample to be used in the FEP computations. If the value is 0, then it means
that we start from the very first sample i.e. start of the sub-band span. The
sub-sampling factor gives the value of the skip between the two consecutive
samples over the sub-band span. If the sub-sampling parameter is set to
1, then it means that consecutive samples are read out and used in the
computations.

3.3 OFDM : Operations 31

3.3.5 Single Antenna: Received Signal

The transformed received signal for symbol n in case of single antenna is
given by

Rn = ejφnH �Xn + Zn (3.17)

where φn is the phase offset induced by the residual frequency offset and
phase noise, Hn, Xn, and Zn represent Channel Response, Data-transmitted,
and noise respectively. The data transmitted is assumed to be QAM-
constellation, with variance equal to 1.

.

Rp

ejφp

Pilot

ejφ1 ejφ2

. . .

ZN

+

�

RN

ejφN

HN

XN

F
re

q
u
en

cy
(O

F
D

M
-

C
ar

ri
er

s)

(OFDM - Symbols)
Time

�
Hp

Xp

+

Zp

H2

�

Z2

X2

+

R2

X1

+

H1

Z1

R1

�

Figure 3.6: OFDM receiver parameters

As per the specifications of our baseband design, the signal fed to the
detector (another IP block in the design) at the end of FEP operations
should look like:

R = Xn + Zoutn (3.18)

i.e. FEP operations should extract the transmitted signal from the convolu-
tion with the channel response and noise. The FEP block needs to pass the
channel estimate and |Ĥ|2 to the next block if the final step of the detection
(log likelihood ratio (LLR) generation) is performed in another block of the
baseband design.

3.3.6 Carrier Phase Offset Estimation

Case: Block Type Pilot Structures

In case of block type pilot structures, each symbol apart from the pilot
symbols has sparse pilot sub-carriers as is shown in figure 3.5. On the re-
ceiver side before data detection, estimation of eφn must be achieved using

32 Chapter 3 Transceiver Tasks for Multiple Standards

additional pilot symbols interleaved in transmitted signal i.e. Xn. We as-
sume that the channel H is unchanged with respect to its state during the
preamble period. Let us say that np pilot carriers are transmitted out of
total nsc sub-carriers, and p defines the pilot positions in the sub-carriers
p ⊆ {0, 1, . . . , nsc − 1}. The phase offset with respect to the symbol with
which channel estimation was performed can be estimated as:

A(H)e−jφ̂n =
1
np

∑
i∈p

(P ∗LTS �Xn)[i](R∗LTS �Rn)[i] (3.19)

where A(H) is a scalar representing the amplitude of the product, its
value is dependent on H and given by:

A(H) =
1
np

∑
i∈p

(
|H[i]|2 +H∗[i]Zn[i] +H∗[i]Z[i] + Z∗[i]Zn[i]

)
(3.20)

This unknown term can be approximated by

Â(H) =
1
np

∑
i∈p
|Ĥ[i]|2 (3.21)

Thus computing Â(H) is like average energy calculation over a vector length
nsc but selecting np elements in the vector with pre-defined format using
subband definitions.

The computation of A(H)e−jφ̂n can be viewed as averaged dot product
of two vectors with subband definitions.

A(H)e−jφ̂n =
1
np
U.V (3.22)

where
U = (P ∗LTS �Xn)[i]

and
V = (R∗LTS �Rn)[i]

Case: Diffuse Pilot Structures

In case of diffuse pilot structure, the linear interpolation procedure is used
for the channel estimate. The channel response including the residual phase
offset after coarse frequency estimation and correction for transmit antenna
i, symbol l and reference sub-carrier k can be closely approximated as

Hl,i,k = ej2πl∆ffineH ′l,i,k ≈ (1 + 2πl∆ffine)H ′l,i,k (3.23)

3.3 OFDM : Operations 33

under the important assumption that the residual frequency offset after
coarse frequency correction and any Doppler frequency shift due to mobile
objects, ∆ffine, is small compared to the OFDM carrier spacing (15 kHz in
LTE). This linear variation of the channel response between pilot-bearing
symbols can again be easily be estimated by linear interpolation between the
two channel estimates which include the phase offsets and can be achieved
using the temporal interpolation procedures defined in channel estimation
subsection 3.3.3. Thus a separate carrier phase offset estimation procedure
is not required in case of diffuse pilot structures.

However, these interpolation methods will yield unsatisfactory perfor-
mance if ∆ffine is too significant, especially for high spectral-efficiency trans-
mission (high modulation and coding scheme (MCS)). More sophisticated
techniques would have to be considered. ∆ffine on the order of 50 Hz should
be sufficient even for high spectral-efficiency transmission.

3.3.7 Typical Measurement Procedures in Wireless Systems

The measurements performed by the user equipment (UE) in wireless com-
munication systems (e.g. LTE) make use of the channel estimates and raw
signal samples. These operations essentially require

• Wideband energy computation from channel estimates. This is re-
quired to compute wideband received signal strength indicators (RSSI)
and wideband signal-to-noise ratios (SNR).

• Subband energy computations from channel estimates. This is re-
quired to compute subband SNRs for channel-quality indicators (CQI)

• Subband energy computations from received signal vectors during known
blank periods to estimate noise levels

• Component-wise-products and dot-products for pre-coding-matrix in-
dicator (PMI) computation

3.3.8 Timing drift adjustment

Timing adjustment is required in order to track the drift induced by slight
offsets in sampling frequency at the UE with respect to that used to generate
the incoming signal. This can be performed periodically based on the time-
domain representation of the channel estimates. Tracking loops could make
use of the statistic

∆t̃ = argmax
(
IDFTNRE

(Ĥl,i,j)
)

(3.24)

34 Chapter 3 Transceiver Tasks for Multiple Standards

which is the peak location of the dominant path in the impulse response.
NRE is the number of carriers or resource elements of the OFDM sym-
bols. For robustness through transmit and/or receive diversity, this could
be done using the channel response which is strongest among the set of
transmit/receive antenna pairs.

These procedures require DFT, subband energy computations, maxi-
mum, arg-maximum computations, component-wise products and dot prod-
ucts. Both the measurement procedures are common in OFDM and CDMA
based systems, and hence the computational blocks defined can be used for
both the air-interfaces.

3.3.9 Channel Compensation (Equalization)

This procedure is the first step in the data detection procedure in the sense
that it prepares (filters) the received signal using the estimated channel
response. The outputs of this step are sufficient statistics for detection i.e.
R∗ and f(Ĥ) and explained in the following.

Channel

Compensation

R

f(Ĥ)

A(H)e−jφ

Ĥ

R
′

Figure 3.7: Channel Compensation Procedure

Case: Block Type Pilot Structures

Both A(H)e−jφ̂n and Â(H) will be used in conjunction with the channel
estimate Ĥ to provide sufficient statistics for data detection (in the FEP
or in another dedicated co-processor). One target for data detection is to
produce a “equalized” signal

Rd,n = (1 + ε)�Xn + Zoutn (3.25)

3.3 OFDM : Operations 35

where ε[i] � 1 represents the error due to phase and channel estimation,
and should be almost negligible. This is approximately equal to what we
defined in equation 3.18. 1 is an all ones vector.

The estimated channel and phase offset along with received signal Rn
are used in Matched filter receiver technique:

R
′

= A(H)e−jφ̂nĤ∗ �Rn
= A(H)e−j(φ−φ̂n)|H|2 �Xn +A(H)e−jφ̂nĤ∗ � Zn (3.26)

The two operations used are component-wise product between vectors for
Ĥ∗ �Rn, and then resultant is multiplied by A(H)e−jφ̂n using component-
wise product (vector by scalar).

e−j(φ−φ̂n) is termed as phase-error and it is approximately equal to one.
The above equation reveals, to get back the desired signal of equation 3.18,
we need to divide the above resultant R

′
by A(H) and |H|2. The operation

performed is as follows:

Rd,n =
R
′

A(H)
� |Ĥ|2 (3.27)

Rd,n = e−j
ˆ̂
φXn + Zoutn (3.28)

where e−j
ˆ̂
φ represents the phase-error, and its effect should be almost neg-

ligible. The noise factor is given by:

Zoutn =
A(H)e−jφ̂nĤ∗ � Zi

A(H)
� |Ĥ|2 (3.29)

The amplitude of the final resultant in the noise element is of the order of
1
H . The amplitude of A(H) is canceled out with the division by itself, while
a division by |Ĥ|2 further reduces the amplitude of noise.

Case: Diffuse Pilot Structures

Since the channel estimate includes the carrier phase offset estimation, there-
fore the compensation procedure is simplified. The above explained proce-
dure is used with out the division by A(H).

36 Chapter 3 Transceiver Tasks for Multiple Standards

3.3.10 Data Detection for Block Type Pilot Structures

The FEP can be used for the final step of data detection (LLR generation)
in the case of Gray-coded QAM modulation (all known systems!). Consider
first the case of QPSK modulation. Gray coding ensures that the real and
imaginary components can be completely decoupled in the detection process
[MSM05]. Here we use the statistic

Rd,n = (A(H)e−jφ̂n ·((Ĥ∗�Rn)))/Â(H) = (1+ε)�|H|2�Xn+Zoutn (3.30)

which is sufficient for detection (channel decoding). In the case of
16QAM modulation Rd,n is sufficient for two out of four bits, the exact
bits depend on the mapping used. The remaining two bits are obtained as

Rd2,n = abs(Rd,n)	 2√
10
· (Ĥ � Ĥ∗) (3.31)

which is approximately sufficient for detection [GK10]. The function abs
represents the absolute value. In the case of 64QAM modulation Rd,n is
sufficient for two out of four bits, and again the exact bits depend on the
mapping used. The next two bits are obtained as

Rd2,n = abs(Rd,n)	 4√
42
· (Ĥ � Ĥ∗) (3.32)

and the remaining two bits as

Rd3,n = abs(Rd2,n)	 2√
42
· (Ĥ � Ĥ∗) (3.33)

In this section, we listed the procedure to be used for channel estima-
tion, phase estimation and data detection for the OFDM schemes in case
of single antenna. The hardware macro blocks required to implement these
operations were also identified. Now we move to multiple antenna case, and
repeat the procedure.

3.3.11 Multiple Antenna Case

The procedures for the multiple antennas are similar to what we described
for single antenna. Here we consider the case of single stream. The received
signal for a symbol n can be represented in generic format:

Ri,j,n = ejφi,j,nHm �Xi,n + Zi,j,n (3.34)

3.3 OFDM : Operations 37

where i represents the transmit antenna index while j is receive antennas
index. X, H, Z, and R are the conventional notations for data symbols
transmitted, channel response, noise added, and the received signal.

Channel estimation, carrier phase offset correction, and data detection are
computed in the same fashion as for single-antenna case and are elaborated
in the following.

Channel Estimation

The channel estimation procedure is generalization of the single-antenna
case. The pilots are conceived to allow receiver to estimate multiple chan-
nels. First the received signals are converted in the frequency domain by
using the DFT function. The component-wise-product of pilot symbols and
received signal for these pilot symbols results in channel estimate for the
respective receive antenna:

Ĥj = Rpp � P ∗ (3.35)

Here pp represents the pilot positions. In case of block type pilot struc-
ture, the training sequences are used for received signals. On the other hand,
for diffuse pilot structures, the pilot positions refer to exact sub-carrier po-
sitions inside the symbols containing the reference signals (as explained in
3.3.3). For diffuse or sparse pilot arrangements, the interpolation schemes
are applied. The subband operations are applied to estimate the channel.
As the schemes work on one stream and one antenna at a time, therefore the
procedure and the required functions don’t change from single antenna case.
The procedure is repeated on each receive antenna for all transmitted bocks.

The phase offset estimation and compensation procedures for block type
pilot structures procedure are the same for multiple antennas case as ex-
plained for single antenna case (section 3.3.6). The procedure is adopted for
all receive antennas, and the same computational blocks are required.

Here we explain the channel compensation and data detection procedure
for diffuse pilot scheme.

3.3.12 SIMO Channel Compensation and Data Detection :
Diffuse Pilot Structures

Consider now the channel compensation (equalization) process for single-
antenna transmission, or the so-called LTE - Transmission Mode 1. This

38 Chapter 3 Transceiver Tasks for Multiple Standards

procedure could be applied to all downlink physical channels (PBCH, PC-
FICH/PDCCH and PDSCH). We assume a receiver with M antennas and
received signals

Rn,j = (Hj �Xn)⊕ Zn,j , j = 0, 1, · · · ,M − 1 (3.36)

The following statistic is sufficient for data detection in the case of QPSK
transmission since LTE employs Gray-coding

Rd,n =
M−1⊕
j=0

Ĥ∗j �Rn,j =

(1⊕ ε)�
M−1⊕
j=0

|Hj |2
�Xn ⊕ Zoutn (3.37)

The real and imaginary components of Rd,n can be passed through a
de-interleaver procedure prior to channel decoding. Since the FEP is part
of a baseband transceiver design, and the units such as interleaving and de-
interleaving exist. Also, the baseband design units are supposed connected
to each other via a common bus and thus have mutual communication.
These units can be used for the said interleaving or de-interleaving proce-
dures, and then the data can be fed back to the FEP.

Similarly to the case of block type pilot schemes (section 3.38), 16QAM
data can be detected first using Rd,n for two of the bits and using

Rd2,n = abs(Rd,n)	 2√
10

M−1⊕
j=0

Ĥ∗j � Ĥ∗j

 (3.38)

for the remaining two bits, using the abs(·) operator. For 64QAM data the
two statistics in addition to Rd,n would be

Rd2,n = abs(Rd,n)	 4√
42

M−1⊕
j=0

Ĥj � Ĥ∗j

 (3.39)

and

Rd3,n = abs(Rd2,n)	 2√
42

M−1⊕
j=0

Ĥj � Ĥ∗j

 (3.40)

Note that these operations require the presence of an abs(·) operator.
In the event that a generic QAM detector is used outside the FEP, then

the statistic

Rd,n =

M−1⊕
j=0

Ĥ∗j �Rn,j

�
M−1⊕

j=0

Ĥj � Ĥ∗j

 = ((1⊕ ε)�Xn)⊕ Zoutn

(3.41)

3.3 OFDM : Operations 39

along with
(⊕M−1

j=0 Ĥj � Ĥ∗j
)

would be passed to the detector.

3.3.13 MISO and MIMO Channel Compensation- Transmit
Diversity : Diffuse Pilot Structure

We consider the case of LTE where dual antenna transmit diversity makes
use of a space-frequency code based on Alamouti’s original space-time code
[Ala98]. It is used in all transmission modes for control information (PBCH,PDCCH),
and for PDSCH in Transmission Mode 2. It is the fall back solution for
all transmission modes on the PDSCH when performance enhancements of
more complex transmission techniques do not prove to be beneficial because
of channel conditions or type of traffic. The receiver in the UE must employ
a linear combination of resource elements of the received OFDM symbol.
For OFDM symbols not containing the reference signals these are always
adjacent elements, whereas in the symbols containing reference signals, the
reference resource elements must be skipped, and the linear combination
sometimes straddles the reference element. The latter significantly compli-
cates matters in the FEP. For the first case, we first compute the statistics
for transmit antenna i and receive antenna j

Rd,n,i =
M−1⊕
j=0

Ĥ∗i,j �Rn,j , i = 0, 1 (3.42)

The FEP memory organization should be capable to to allow the following:

Rd,n[2k] = Rd,n,0[2k] +R∗d,n,1[2k + 1]

Rd,n[2k + 1] = Rd,n,0[2k + 1]−R∗d,n,1[2k] (3.43)

Data detection is then performed in a similar manner to the process de-
scribed in Section 3.3.12.

The data can be de-interleaved using another block of the baseband
design as explained in the previous section. Once FEP has the data in order,
it would perform the above combining procedure on adjacent samples.

3.3.14 MISO and MIMO Channel Compensation- Single-
layer Precoding

In case of LTE, this channel compensation is used by the UE when configured
in Transmission Mode 6. We compute the statistics Rd,n,i as in Section

40 Chapter 3 Transceiver Tasks for Multiple Standards

3.3.13. For contiguous groups of resource blocks known to the UE, the UE
performs the linear combination

Rd,n,g = Rd,n,0,g ⊕ (Rd,n,1,g × qg) (3.44)

where g indicates the group of contiguous resource blocks, and qg ∈
{1,−1, j,−j} is the known precoding constant for group g. In more general
precoding strategies qg could be arbitrary complex numbers (e.g. 4-antennas
LTE precoding).

The functions or the macro blocks required in case of multiple antenna
case are more or less the same as of single antenna case. In the next section,
we describe the CDMA scheme at air interface and also list the operations
/ macro blocks for the standards that use CDMA scheme.

3.4 CDMA : Operations

Code Division Multiple Access (CDMA) is a multiple access scheme which
allows concurrent transmission in the same spectrum by using orthogonal
spreading codes for each communication channel.

In a CDMA transmitter, binary data are mapped on to complex valued
symbols which then are multiplied (spread) with a code from a set of orthog-
onal codes. The length of the spreading code is called the spreading factor
(SF). In the receiver, data are recovered by calculating a dot-product (de-
spread) between the received data and the assigned spreading code. Since
the spreading codes are selected from an orthogonal set of codes, the dot-
product will be zero for all other codes except the assigned code. By varying
the spreading factor, the system can trade data rate against SNR as a higher
SF increases the energy per symbol.

The CDMA analysis can be divided into two sections: low-rate Wide-
band CDMA (WCDMA) and high-rate WCDMA. We explain the FEP pro-
cedures for both the variants of CDMA. First of all, channel estimation
procedure is explained which is common in both cases.

3.4.1 Channel Estimation Procedure

The channel estimation can be achieved in a similar fashion to the OFDM
case. The overlapped FFT technique is used to compute the channel re-
sponse. The received signal is transformed in frequency domain and then
component-wise multiplication with reference signals (pilots) is carried out.

3.4 CDMA : Operations 41

The method is approximate unless cyclic prefix is used as is the case in
TD-SCDMA (Time Division Synchronous Code Division Multiple Access).

3.4.2 Low-rate WCDMA (Long Spreading)

We consider the case of a RAKE receiver, which uses several baseband cor-
relators to individually process several signal multipath components. The
correlator outputs are combined to achieve improved communications relia-
bility and performance. The receiver block diagram is shown in figure 3.8.

ĥ∗0

ĥ∗1

Ûk

LMδ(n − dF−1)

LM

LM

δ(n − d1)

δ(n − d0)

ψ∗k(−n)
rd

ĥ∗F−1

Figure 3.8: RAKE Receiver Block Diagram

The received signal for symbol k and finger offset d0 is given by:

rk,d0 = r(d0 + kLM, d0 + 1 + kLM, . . . , d0 + (LM − 1) + kLM) (3.45)

where L is the spreading factor and M is the oversampling factor (2 or 4
in case of RAKE receiver). To retrieve the transmitted signal, the following
procedure can be applied:

Ûk =
F−1∑
f=0

ĥ∗f

LM−1∑
l=0

r(df + kLM + l)ψ∗k[l] (3.46)

i.e. the received signal is first used in a dot-product by the long sequence
spreading sequence. A finger f in RAKE receiver is termed as pair of am-
plitude and delay, and df represents the finger offset. Each correlator in the
RAKE receiver detects a time-shifted version of the original transmission,

42 Chapter 3 Transceiver Tasks for Multiple Standards

and each finger correlates to a portion of the signal, which is delayed by at
least one sample in time from the other fingers. The long sequence ψk is
computed by another block, and BPSK/QPSK modulation scheme is used
in WCDMA case.

We split the receiver operation into two elementary operations: convolv-
ing the received signal and spread sequence, and channel compensation. The
convolution of received signal and spreading sequence shown in figure 3.8 is
equivalent to dot product and is given by:

R.ψ =
LM−1∑
l=0

r(df + kLM + l)ψ∗k[l] (3.47)

The procedure is repeated for each finger. Therefore, there will be F dot-
product units utilized each of length LM .

The second elementary operation is the channel compensation and its is
carried out by using the channel estimate for corresponding finger.

Ûk =
F−1∑
i=0

(Rk,di .ψk)ĥ
∗
i (3.48)

This can be accomplished as a dot product with size F .
The control software manages h and d0, d1, . . . , dF−1. The procedure

is called finger tracking on h. The initial acquisition would make use of
argmax(h), however later on the software will take care of the selection of
samples for the set of fingers.

3.4.3 High-rate WCDMA

The procedure for high-rate WCDMA or high speed packet access (HSPA)
is shown in figure 3.9. The procedure consists of two main parts: frequency
domain equalization (FDE) and despreading or descrambling process.

The FDE procedure [LIZMP05] uses the MMSE process which in fact
normalizes the channel estimate computed in the previous step and is given
by:

H2 = Ĥ∗ � (σ2 ⊕ Ĥ∗.Ĥ) (3.49)

where σ2 is the noise variance.
The normalized channel estimate is used with the received signal in fre-

quency domain in component-wise operation to complete the equalization
process.

3.4 CDMA : Operations 43

MMSE

DFT

MMSE

IDFT

Frequency Domain Equalization

Despreading or Descrambling

16th order Hadamard Transform

ξk

ψ∗1(−n)

ψ∗2(−n)

ψ∗15(−n)

r(n)

Ĥ H2

Figure 3.9: High Rate CDMA Receiver

The next step is to despread or de-scramble the equalized signal and re-
trieve the blocks transmitted. The FDE resultant is multiplied component-
wise with the de-scrambling sequence. In figure 3.9, ξ represents the de-
scrambling QPSK sequence, and it is fed to FEP from outside (system level
or by another block). The next step is to pass the data through the orthog-
onal spreading sequences. In figure 3.9, ψ̂∗k(−n) is the orthogonal variable
spreading factor (OVSF) which is equivalent to 16th order fast Hadamard
transform (FHT). The FHT can be implemented in the FEP or in another
block as a separate computational unit. A variable length DFT/IDFT would
be an integral part of FEP since it is used by many other operations at the
air-interface. Thus DFT unit may also be used to compute the FHT using
different set of twiddle factors. The twiddle factors are roots of unit and are
multiplicative factors in the DFT/IDFT unit. The last step of the receiver
is given by:

FHT (rk � ξk)

There are multiple methodologies used for CDMA in the transceiver
design, however our effort was to choose the procedures that are similar to
OFDM unit to facilitate the hardware design.

44 Chapter 3 Transceiver Tasks for Multiple Standards

3.5 Extensions: SC-FDMA

Single-carrier FDMA (SC-FDMA) is a frequency-division multiple access
scheme and its implementation is not considered in first version of the FEP
design. However with slight modifications and/or addition of new modes in
the functionality, it can easily be realized with our baseband design.

In figure 3.10, a block diagram of the SC-FDMA is depicted. First of
all, the received signal is transformed into frequency domain using a 2M

size DFT block, where M is a natural number. Since the DFT block that
we already defined serves all vector sizes that are power of 2 in the range
8− 4096, therefore FEP can carry out this operation. In the following step,
N
′

samples are extracted to form a sub-vector or subband, and the size of
the subband needs not to be power of 2. In case of LTE, it is defined as

N
′

= 2(2+α)3(1+β)5γ

where α, β, γ are natural numbers. Thus the size of subbands can be multiple
of 2, 3 or 5. In case of LTE, the subband size is always multiple of 12.

The extraction of subbands is followed by the channel compensation
procedure using channel estimate. The channel estimate H2 is computed
using the frequency domain equalization (FDE) procedure, explained in sec-
tion 3.4.3. Then the subbands are transformed into time-domain using the
IDFT. Since the size of the subbands or sub-vectors is not power of 2, thus
the current formation of the DFT is unable to support this sub-procedure
in the receiver. Therefore to carry out SC-FDMA operations, radix-3 and
radix-5 need to be implemented along with the radix-2 and radix-4 modes
of the DFT block in the FEP. Similarly, for the SC-FDMA transmitter, a
DFT block implementing radix-2, radix-3, radix-4 and radix-5 is required.
All the other operations needed by SC-FDMA transmitter and receiver are
already present in the FEP design.

DFT IDFT

(Mixed Radix)

Extract

Samples

(FDE)

2M

r

H2

N
′

N
′

N
′

N = 2M

N
′

Figure 3.10: SC-FDMA Receiver

3.6 Summary 45

3.6 Summary

In this chapter, we have listed the air interface operations for OFDM and
CDMA. We also identified the hardware macro units that are required for
these inside the processing block FEP, which is supposed to carry out the
functionality. The set of hardware macros required are:

• Variable Size Discrete Fourier Transform (DFT) and Inverse DFT

• Component wise addition, multiplication between complex vectors

• Multiplication between a complex vector and scalar

• Division between a complex and a real vector

• Energy and Maximum calculation over vector

It is also worth mentioning that the functions need to have conjugation
and subband options for their implementation.

In the next chapter, we present our baseband architecture in detail.

46 Chapter 3 Transceiver Tasks for Multiple Standards

Chapter 4

Flexible Baseband Hardware
Design

In this chapter, the baseband design of our multi-standard transceiver plat-
form is presented. The architecture basis for our design are explained in
detail along with the design choices made. We also explain the methodology
adopted to carry out different set of algorithms, and give a brief description
of each of the hardware unit designed to carry out these operations. To start
with, the baseband design queries are addressed.

4.1 Baseband Design Choices

In a digital communication system design, the most important phase is to
choose target technology, hardware software partitioning level, identifying
sub-blocks inside, and the interface among the sub-blocks. So first of all,
the choices made for the baseband design are listed along with the reasons
of making these choices.

• The SDR baseband design should be portable to different technologies.
The aim of the baseband architecture is to first come up with a research
tool or an experimental prototype platform, and is not meant for mass
scale production. Therefore the selected target technology is FPGAs
and not ASICs. This choice is based on reduced design cycle, flexibility,

47

48 Chapter 4 Flexible Baseband Hardware Design

ease of use and lower costs of FPGAs. For the same reasons the higher
layers are implemented in software only and run on a host PC. Once
validated this architecture will be reworked and adapted to a System
on Chip target technology.

• The choice of a specific target technology, i.e. FPGA in this case,
constraints the design slightly. The designer is supposed to take into
account the specific memory blocks and the DSP slices that come
with the specified technology. Thus the design is sub-optimal to some
extent in the global context, and the synthesis results must be used
with a cautiously approach. Given these facts, all the modules inside
the design are perfectly synthesizable with all the existing technologies
though optimized for a specific one in some cases.

• The proposed hardware architecture is subdivided in two main parts:
a high level control module and a Digital Signal Processing engine.
The separation of control and processing not only facilitates simpler
design but also makes the system scalable for arrival of new standards
or functionalities. The two modules, control and processing, are imple-
mented in high end Virtex-V FPGAs from Xilinx. Figure 4.1 depicts
the architectural overview of the system.

• The interface and control FPGA in figure 4.1 needs a general purpose
processor to handle all the processing inside and the communication
through external interfaces. The main processor is also supposed to
handle the in-order scheduling of the tasks to the processing blocks.
Since the Open Air Interface is an open source design, we chose SPARC
- LEON3 processor. Any other general purpose 32-bit processor would
have been as useful as is LEON3.

• To interconnect the processing units inside the processing engine re-
quires a generic, standardized and point to point interface. This can
be achieved by using any of the standard bus / methodology, we chose
Advanced VCI compliant bar which serves the purpose. More details
are listed later in this chapter.

• The processing blocks inside the processing engine FPGA have a lo-
cal micro controller to control the data transfers and processing com-
mands inside the block. This would also reduce the communication
over the interconnect crossbar. The choice of any small and less re-
source limited would suffice our needs and we chose 6502. To make

4.2 Open Air Interface Architecture 49

the design more generic, all the hardware blocks have the same 8-bit
6502 micro-controller.

• The generic design for each of the units inside the processing engine
and the interconnect would allow to add any other block or hardware
unit easily into the baseband design.

Pre−processor

VCIInterface

Interconnect (AVCI Crossbar)

b
rid

g
e

Custom

b
ri

d
g

e
A

H
B

/C
u

st
o

mC
u

sto
m

/V
C

I

VCIInterface

VCIInterface

processor

Front−end

VCIInterface

Interleaver /

deinterleaver

VCIInterface

Channel

encoder
Mapper

VCIInterface

LEON3

uprocessor

Peripherals

Ethernet,
UART,
JTAG ...

DDR,

Flash ...

PCI Express

Interface

Radio

Front−end

VCIInterface

Channel

decoder

Detector

GPIO

GPIO

GPIO

Interface & Control FPGA

Processing Engine FPGA

AHB

Figure 4.1: Baseband Processing Architectural Overview

After listing the design choices and the reason for the decisions made,
we move to the details of our baseband design in the next section.

4.2 Open Air Interface Architecture

The baseband processing takes place between the analog to digital (A/D)
and digital to analog (D/A) converters and the raw source coded samples. It
implements the digital part of the physical layer. In our baseband design, it
is controlled and driven by an embedded microprocessor running a software
application whose main purpose is to provide a convenient abstract interface
to the Media Access Control (MAC) and upper layers. The MAC and upper
layers are implemented as other software applications and run on the host
system.
The baseband architecture is separated into two FPGAs which can func-

50 Chapter 4 Flexible Baseband Hardware Design

tion as stand alone (i.e. without host PC). This helps to design and im-
plement the architecture, and is also fruitful to test the design later on.
The Interface & Control FPGA (control module) is responsible to transfer
MAC requests to the Processing-Engine FPGA and control data direction
flow. The Processing-Engine FPGA (DSP Engine) is responsible for all up-
link/downlink signal processing.

4.2.1 The Control Module

The control module is based on a SPARC CPU (LEON3 from Gaisler Re-
search) surrounded by its usual peripherals, external memories (DRAM,
Flash), a PCI-Express interface and a dedicated interface with the DSP en-
gine. The control module which is in charge of controlling the DSP engine,
implements some low-demanding processing (PHY and MAC) and interfaces
the system with the host PC through the PCI-Express / ExpressCard in-
terface. Most of the MAC layer processing runs on the host PC while the
DSP engine executes most of the PHY layer processing tasks.

4.2.2 The Processing Module

The processing engine or the DSP engine is a collection of data process-
ing IP blocks plugged on a crossbar interconnect. Each hardware block or
Intellectual property (IP) is a highly configurable and parameterizable pro-
cessing unit dedicated to one class of algorithms (Fourier transforms, channel
coding, channel decoding, modulation/demodulation, etc.) The chosen in-
terface between the IP blocks and the interconnect is a 64 bits Advanced
VCI interface. Each IP block embeds a direct memory access (DMA) engine
and an 8 bits micro controller. The synchronization (inter or intra-blocks)
is based on a set of interrupts signaling the end of memory transfers and of
data processing. The control module programs the DSP engine by config-
uring the parameters and local software routines of the IP blocks.
A study of the target air interfaces (mentioned in chapter 3), and the com-
munication systems for multi-standard applications (discussed in chapter 2)
led to the identification of a set of functional entities for the digital baseband
processing. The identified operations are implemented as seven independent
processing blocks, and can be called as hardware accelerators:

• Pre-processor

• Frontend Processor

• Mapper

4.2 Open Air Interface Architecture 51

• Detector

• Channel Encoder

• Channel Decoder

• Interleaver / De-interleaver

The pre-processor block is used as an Interface with the external A/D and
D/A converters (I/Q multiplexing, control signaling). It also provides sev-
eral basic signal processing functionalities like filtering, sample rate adjust-
ment, carrier frequency adjustment. The mapper and the detector imple-
ment all the modulation schemes ranging from BPSK to QAM256. The
(De)Interleaver block, apart from (de)interleaving the data streams with all
options in the different standards, performs the frame equalization and rate
matching operations. The Front-End-Processor provides the digital signal
processing operations at the air-interface, like channel estimation, data de-
tection, carrier phase offset (CPO) estimation etc. The channel encoder
implements convolutional encoding, block cyclic codes, turbo coding and
m-sequences. The channel decoder IP block realizes trellis-based decoding
algorithms; Viterbi and Turbo, to decode convolutional and turbo codes,
respectively.

4.2.3 Interconnect

The Interconnect [LIP] is a generic Advanced VCI (AVCI) compliant cross-
bar. AVCI details are provided in VCI documentation [VSI]. This point-to
point communication protocol is a split requests / responses one, support-
ing out-of-order response transactions. The cells are routed by decoding
the VCI address field. The configuration registers and the embedded local
memory area of each IP block is mapped in the global memory map of the
system. A round robin policy arbitrates between the masters (initiators)
requesting the same slave (target).

As shown in figure 4.1, our implementation is not hierarchical, it thus
routes all the requests and responses by decoding VCI address and response
source identification fields directly. The interconnect uses an internal ROM
to keep all the addresses/IDs of the processing blocks for decoding.

The Custom bridge provides interface between the two FPGAs. The
signal lines between them are going to be very few but enough to translate
the request/response from one FPGA to another in the standard protocols,
AVCI and AHB.

52 Chapter 4 Flexible Baseband Hardware Design

In order to configure external devices like RF transmitter/receiver com-
ponents, ADC/DAC chips, control modules or some external resources; some
I/O blocks are also plugged on the interconnect . They implement Serial
Parallel Interface (SPI) protocol to communicate with the external devices.

4.2.4 Generic IP Shell

In order to clearly separate the processing on one side and the control and
the communication on the other side, our IP blocks all share the same generic
model: the IP shell. The IP shell consists of 5 sub-components: an inter-
connect interface (VCIInterface), a memory sub-system (MSS), an internal
DMA engine, an 8-bit micro controller (6502) and a processing IP core. The
architecture of the IP shell is depicted in figure 4.2. The main benefits of
this organization is the reuse of most of the control and communication logic
and the ease of design of the processing IP cores. Only two sub-components
are IP-specific: the processing IP core and the memory sub-system. More-
over, the only IP-specific interface is the interface between the IP core and
the memory sub-system.

IRQ

6502

VCIInterface

Micro−Controller

DMA Engine

IP CORE

M
em

o
ry

 S
u

b
−

S
y

stem
 (M

S
S

)

VCIVCI

Figure 4.2: Generic IP architecture

The VCI-Interface sub-component is a generic module responsible for
interfacing any IP block with the Advanced VCI compliant interconnect. It
acts as a master controller of the processing block. In order to separate the
communication from the processing, the VCIInterface module has no knowl-
edge of the nature of the processing, neither its duration nor its particular
access needs to the shared resources. It implements a target Advanced in-

4.2 Open Air Interface Architecture 53

terface of the VCI (OCB 2.0) standard [VSI]. The VCIInterface module is
designed to ease timing closure of the system: every input signal is sampled
as soon as possible and every output signal is delivered as early as possible in
the master clock cycle. This ensures very short setup and hold times. From
IP core designer’s perspective, it offers a simple interface for communication
through the more complex AVCI protocol.

All the processing blocks contain a memory sub-system, mapped on the
global memory map. This distributed memory architecture is complemented
by a DMA engine, also embedded in each IP block. The DMA engine handles
most of the data transfers between the processing blocks. Each IP block is
also optionally controlled by a local small 8−bits micro-controller (6502)
capable of driving sequences of data transfers and processing commands.
This not only provides efficient and effective computation but also facilitates
local data transfers and low-level transactions among blocks without the
intervention of the control module. The memory space of this local micro-
controller is a subpart of the memory subsystem and is mapped on the global
memory map. The main micro-processor starts and halts the local micro-
controllers and it downloads and updates their code and data segments.

4.2.5 Software/OS architecture

As explained in the previous section our architecture embeds one main
micro-controller and several local micro-controllers inside each IP block.
Being a multi-standard application, the said architecture is supposed to be
capable of catering multiple air-interfaces at the same time. The software
thread for each standard is composed of three procedures: Tx (Transmit),
Rx (Receive), Sync (Synchronization). The system is capable of running
multiple threads at the same time, and this in-turn means running multiple
parallel procedures on the different IPs. This requires the parametrization
of each individual IP-micro-controller via the central processor. The com-
putation intensive procedures may introduce too many interrupts from the
IP blocks to the LEON3 processor, thus causing a lot of communication
overhead and delays. To reduce the number of interrupts generated, pro-
cedures for each thread (as defined above) are programmed in the local
micro-controllers, which de-localize a part of scheduling from the LEON3
processor to these micro-controllers.

LEON3 hosts Real Time Operating system called eCos [eCo], which is
highly configurable. The customized software that we run over eCos firstly
schedules the tasks over local and main micro-processors to fulfill the tim-
ing and throughput requirements for each and every task in the baseband

54 Chapter 4 Flexible Baseband Hardware Design

architecture. Secondly, it implements the PCI-Express MAC-layer interface
running on the host CPU.

In this section, we have presented an overview of the baseband design in
our Open Air Interface multi-standard platform. We gave the design details,
and next we give a short description of the each of the hardware accelerators
inside the Processing Engine of the baseband design.

4.3 Hardware Accelerators Inside Processing En-
gine

After discussing the design model for our baseband processing module, we
give a brief description of the hardware blocks on the DSP processing engine.

4.3.1 Pre-Processor Block

This block works as an interface of the DSP engine to the external periph-
erals. The pre-processing block provides the following functionality:

• Provide interface with the external A/D and D/A converters used for
I/Q multiplexing, control signaling

• Basic signal processing that includes filtering, sample rate adjustment,
and carrier frequency adjustment

• Dual-port swing buffer for transmission and reception of sample streams

• Timing functions i.e. framing, resynchronization and sample syn-
chronous interrupt generation

A re-timing filter with 8 filters in the polyphase filter bank, each com-
prising 19 filter coefficients, has been designed to cater the requirements
of multi-standard radio. The up sampling and down sampling factors can
be fractional, and the required resolution is 1Hz for a range of 3MHz ≤
fsampl ≤ 61.44MHz. The RTL model of this block requires 82 real multi-
pliers and achieves a frequency of 167MHz [SKKP10].

4.3.2 Channel Encoder and Decoder

The channel decoder implements trellis-based decoding algorithms; Viterbi
and Turbo, to decode convolutional and turbo codes, respectively. Viterbi is
maximum-likelihood (ML) algorithm and finds the most likely sequence to

4.3 Hardware Accelerators Inside Processing Engine 55

have been transmitted. Turbo, on the other hand, is maximum-a-posteriori
(MAP) algorithm and finds the most likely symbol to have been transmitted.
In practice the MAP algorithm is too complex to implement because of the
expensive operations (exponentiation, multiplications etc.), however there
exist some hardware-implementation friendly approximations. We thus have
chosen Max-Log-MAP (MLM) algorithm for Turbo decoding. The compu-
tational operations of Viterbi and MLM algorithms carry similarities and
thus a common hardware can be utilized in implementation. Moreover, the
channel decoder realizes traceback algorithm for Viterbi and sliding-window
algorithm for MLM turbo decoding, which allows efficient reuse of memory
resources in both modes.

The channel decoder is in compliance with, but not limited to, IEEE
802.11a/g (WLAN), IEEE 802.16 (WiMAX), 3GPP UMTS and 3GPP UMTS-
LTE. The channel decoder is configured with a set of pre-computed parame-
ters, and thus decodes any 64-states and 256-states convolutional codes and
8-states turbo codes. It accepts code rate 1/2 and 1/3, and codes produced
by any generator polynomial. The size of the traceback window is 5 × k,
where k is the constraint length of the code, and the depth of the sliding-
window is 16 samples. The number of iterations can be programmed from
1 to 8.

The channel decoder is synthesized with Precision RTL from Mentor
Graphics [men] for a Xilinx Virtex V5 VLX220FF1760 device (speed grade
-1) [xil]. It takes 6,920 logic cells (5% of total FPGA resouorces) and 24,576
memory bits (0.3% of the total resources). The synthesized operating fre-
quency is 110 MHz. Table 4.1 shows the latency and throughput of the
channel decoder in different operating modes [MRP+08].

Mode Latency (cycles) Throughput
(bits/cycles @ 100MHz)

Viterbi (k=7) 712 1/8 (12.5 Mbps)
Viterbi (k=9) 3072 1/32 (3.125 Mbps)
Turbo (k=4) 32 1/2 (50 Mbps) in 1 iteration

Table 4.1: Channel decoder results

The channel encoder implements convolutional encoding, block cyclic
codes and m-sequences. The tasks are basically carried out by programmable
linear control shift registers. For the interleaving, the channel encoder

56 Chapter 4 Flexible Baseband Hardware Design

and decoder both use internal interleavers instead of the general purpose
hardware block in the baseband design. The reason is to avoid high band-
width communications among the different hardware blocks, which other-
wise might become a performance bottleneck of the whole design. The
channel encoder uses bit based interleaving requiring 1-bit per frame, so the
communication with the interleaver unit is not that large. The channel de-
coder has multiple iterations using soft bits requiring large communication
with the interleaving unit. To keep the design generic, both encoder and
decoder use the internal interleavers.

As stated above, both encoder and decoder use hardwired interleavers
thus limiting the flexibility of the design. With the arrival of new interleaving
scheme, it would be really hard to include in the current design. The non-
regular and highly variant algorithms for the channel encoding and decoding
pose a great challenge for a flexible hardwired design.

4.3.3 Interleaver and De-Interleaver

The interleaver/de-interleaver hardware block of the baseband design can
be configured to multiple standards including 3GPP UMTS, WiMAX, WiFi
and DVB. It uses internal tables to carry out the interleaving and de-
interleaving operations for the specific standard, and also capable of per-
forming rate-matching and frame equalization.

4.3.4 Mapper and Detector

The mapper and detector perform the different modulation and demodu-
lation schemes opted by different standards. The blocks use the look up
table approach to carry out these operations and use small automata for the
control purpose. The schemes supported by these units are BPSK, QPSK,
8PSK, QAM-16, QAM-32, QAM-64 and QAM-256.

The front end processor (FEP), responsible for the digital signal process-
ing operations at the air-interface, like channel estimation, data detection,
carrier phase offset (CPO) estimation etc., is described in detail in the fol-
lowing chapter.

4.3 Hardware Accelerators Inside Processing Engine 57

Summary

In this chapter, we have provided the brief details for the digital baseband
design in our SDR platform. The prototype development procedure, along
with the different design options chosen are explained as well. Then a generic
IP shell model is presented that is followed by all the hardware blocks in the
processing module. The generic model not only helps to have rapid develop-
ment, easier testing but also will help to add modules in future if required.
We have also given a brief description of the individual hardware blocks in
the processing engine, and now we move on to one of the most computation
intensive processing block inside the baseband design i.e. FEP and explain
its design and implementation details in the next chapter.

58 Chapter 4 Flexible Baseband Hardware Design

Chapter 5

The Front End Processor

In this chapter, a detailed design of the digital front end processor (FEP)
is explained. We start with the identification of the operations that need to
be implemented based on the tasks designated to the FEP in the context
of flexible baseband design and explained in chapter 3. Then the analysis
of different operations, their design, and implementation is discussed. The
large size and complex nature of the functions lead to a multifaceted mem-
ory scheme. The memory access and its addressing schema are also part of
this chapter. The concluding remarks along with synthesis results of VHDL
implementation using MentorGraphics’ precision tool [men] mark the end
of the chapter.

5.1 Identification of Micro-Blocks

The air-interface algorithms explained in the chapter 3 make the basis of the
FEP design. The FEP is responsible to take care of air-interface operations
including channel estimation, data detection and carrier phase offset for
multiple standard baseband platform. The following operations over vectors
are defined for this block by the algorithms described earlier in the chapter
3.

1. Discrete Fourier Transform (DFT), Inverse DFT (IDFT)

59

60 Chapter 5 The Front End Processor

2. Energy Calculations

3. Maximum, arg-max Calculations

4. Dot Product

5. Component-wise-addition

6. Component-wise-subtraction

7. Component-wise-product

8. Component-wise-division

These functions are over complex input vectors with size range of {1 . . . 4096}.
So basically there are two type of operations in the FEP block: switching
between time and frequency domain, and the other processing either before
or after the time/frequency domain conversions. Thus the block operations
can be divided into two major categories: Time/Frequency conversion (FT
Mode) and Pre-Post Processing (PP Mode). Pre and Post here refers to
the operations carried out either before or after the domain conversion. It
is quite evident from the list of the functions that a lot of multiplications
would be taking place inside the FEP block. In the following sections, we
describe the design and implementation of both these modes.

As stated before in chapter 4, the development procedure for the said
baseband design is to first come up with a research based prototype platform
and later on move to the silicon chip; therefore for target technology selec-
tion we selected FPGAs. Among the latest technologies available, Virtex-V
FPGA by Xilinx was selected.

The selection of number of bits to represent each sample is based on
target technology, hardware resources, maximum achievable frequency of
end product, and dynamic range of ADC converters. Each complex element
of the input and output samples in all baseband blocks is represented by
32 bits with both real and imaginary part as 16 bits in Q1.15 format. The
least significant bits (LSBs) represent the imaginary part while the most
significant bits (MSBs) represent the real part of the complex element. Q1.15
means that 16 bits are used to represent the number with 15 LSBs give the
value of the real or imaginary part while the ’1’ MSB gives the sign of that
particular value. It is also worth mentioning that any of the baseband IP
can use another suitable data representation for its internal configurations
while following the global interface data representation.

5.2 Time / Frequency Domain Conversion 61

Next we describe the specifications and designs of the FEP macro blocks.

5.2 Time / Frequency Domain Conversion

The Direct and Inverse Fourier Tranforms of a complex vector X of size N
are defined as:

DFTN (X)[k] =
1√
N

N−1∑
n=0

X[n].e−
2πjnk
N , k ∈ [0, N − 1] (5.1)

IDFTN (Y)[n] =
1√
N

N−1∑
k=0

Y [k].e
2πjkn
N , n ∈ [0, N − 1] (5.2)

Thanks to the 1√
N

normalization term the propertyX = IDFT (DFT (X))

holds. IDFT is computed from IDFT (Y) = DFT (Y) by using the conju-
gate options. Optionally the conjugate of the input vector may be computed
before entering the DFT and the conjugate of the output of the DFT may
be computed before storage of the final result in the memory.

The FFT architectures being used in the communication systems can
be categorized in two main categories: the pipelined architectures and the
memory-based architectures [Coh76] [Ma99] [MW00]. Generally, the mem-
ory based architectures are simpler with respect to the hardware complexity.
They are composed of butterfly operations, a centralized memory block to
store input or intermediate data, and a control unit to handle memory ac-
cesses and data flow direction. To keep our design simple and scalable for
any changes in the future, we decided to use a memory based design.

The simple and direct computation of the Discrete Fourier Transform
(DFT) requires O(N2) operations where N is the input vector size. How-
ever, the Fast Fourier Transform (FFT) algorithm proposed by Cooley and
Tukey [CT65], in fact made the use of DFTs quite common in signal pro-
cessing applications by reducing the complexity from O(N2) to O(Nlog2N).
Following Cooley and Tukey’s algorithm, many other computation simpli-
fications have been proposed for the DFTs. These include radix-2m al-
gorithms, Winograd algorithm (WFTA) [Win86], Fast Hartley transform
(FHT) [KP77] and prime factor algorithms (FPA) [KP77]. However the
radix-2, radix-4, and split-radix algorithms [OS89] are most widely used by
the developers due to their simple structure, symmetric and periodic com-

62 Chapter 5 The Front End Processor

putation operations.

A thorough analysis of the DFT/IDFT, the most computation inten-
sive operation inside the FEP block, was carried out to select the DSP
slices for its mathematical operations. Candidate standards and ease of
operations suggest that the number of input samples can be limited as
powers of two between 8 and 4096. This allows to calculate DFT using
simpler and efficient algorithms such as radix-2 FFT, radix-4 FFT and/or
split-radix FFT. Thus the input vector size for the DFT/IDFT block is
{8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}.

The functionality of DFT macro-block can be globally viewed as DFT-pow-2
and DFT-pow-4, where DFT-pow-2 means the DFT operation for number of
input data samples that are power of 2 (i.e. {8, 32, 128, 512, 2048}). Similarly
DFT-pow-4 is meant for number of input samples that are power of 4 (i.e.
{16, 64, 256, 1024, 4096}). The algorithms used to compute each of these sets
are explained later in detail.

5.2.1 Roots of unity

With reference to equations 5.1 and 5.2, the factor e−
2πjnk
N represents the

twiddle factors. The roots of unity or the twiddle factors are the equi-spaced
roots of unity circle and are used in each multiplication for the computation
of the DFT / IDFT as shown in the equations. In the following, we list few
operations over the twiddle factors that will be used in the DFT computa-
tions. These operations over the twiddles would reduce the complexity of
the DFT operations and also reduce the resource utilization by reducing the
additions and/or multiplications.

Let ωN = e
−2jπ
N be a N th root of unity. The following relations are true:

5.2 Time / Frequency Domain Conversion 63

ωa+kN
N = ωaN

ω
a+N

4
N = −j.ωaN
ω
a+N

2
N = −ωaN

ω
a+ 3N

4
N = j.ωaN

ω−aN = ωaN

ω
N
4
−a

N = −j.ωaN
ω
N
2
−a

N = −ωaN
ω

3N
4
−a

N = j.ωaN

The preceding relations show that the N N th roots of unity can be

deduced from N
8 of them (ωN to ω

N
8
N). There are nine different cases to

consider:

a = 0 ⇒ ωaN = 1

0 < a ≤ N
8 ⇒ ωaN ∈

{
ωN . . . ω

N
8
N

}
N
8 < a ≤ N

4

(
0 ≤ N

4 − a < N
8

)
⇒ ωaN = −j.ω

N
4
−a

N

N
4 < a ≤ 3N

8

(
0 < a− N

4 ≤ N
8

)
⇒ ωaN = −j.ωa−

N
4

N

3N
8 < a ≤ N

2

(
0 ≤ N

2 − a < N
8

)
⇒ ωaN = −ω

N
2
−a

N

N
2 < a ≤ 5N

8

(
0 < a− N

2 ≤ N
8

)
⇒ ωaN = −ωa−

N
2

N

5N
8 < a ≤ 3N

4

(
0 ≤ 3N

4 − a < N
8

)
⇒ ωaN = j.ω

3N
4
−a

N

3N
4 < a ≤ 7N

8

(
0 < a− 3N

4 ≤ N
8

)
⇒ ωaN = j.ω

a− 3N
4

N
7N
8 < a < N

(
0 < N − a < N

8

)
⇒ ωaN = ωN−aN

These relations show, given N
8 of twiddle factors the remaining 7N

8 can be

computed with simple conjugation and negation operations. This helps to
store only 1

8 twiddle factors in the FEP memory. The saving is reasonable,
given the largest input vector size for our FT module being 4096.

64 Chapter 5 The Front End Processor

5.2.2 FT Mode Computations

In Fourier transform (FT) mode, the FEP computes the DFT and the IDFT.
Some of the key design issues in the variable length DFT computation are :

• High performance butterfly execution to meet throughput require-
ments

• Efficient data address generator that is capable to support variable
length inputs in the same input memory pattern

• Smart multi-bank memory organization to support conflict free fast
data access

• Efficient address generator for the variable length twiddle factor access

The throughput requirements, in view of the current and evolving wire-
less communication standards’ timing constraints, are 1 − sample/cycle.
The FEP uses Radix-4 (for input size power-of-4) and Mixed-Radix (for in-
put size power-of-2) algorithms to compute the DFT and the IDFT. The
throughput requirement, with the given input vector size range, forces FEP
to operate on 8 samples per cycle [MKKP07]. This, in turn, means mem-
ory access of eight input samples and eight twiddle factors in each cycle.
However, a close look at the twiddle access by radix-2 and radix-4 algo-
rithms reveals that for any number-of-input-samples N , 3 twiddles factors
per cycle (instead of 8 twiddle factors for 8 input samples) are enough to
compute DFT / IDFT with a simple alteration in the sample access scheme
and using the properties of twiddle factors (listed above). Thus the FEP
taking advantage of these two factors and using few more signals, accesses
3-twiddles per cycle and 8-input samples.
The input parameters required by DFT macro-block to carry out its opera-
tion are:

• size of the input vector (range 1 . . . 4k)

• memory addresses (for input samples, output samples and twiddle
factors)

• conjugation flags before and after DFT operation

5.2.3 Input Vector Size - Power of 4

When input vector size is power of 4, then radix-4 algorithm is used with
decimation in frequency mode. Radix-4 computes FFT for vector sizes that

5.2 Time / Frequency Domain Conversion 65

are powers of 4 in M stages (where M = log4N), N being size of the input
vector. Each stage is composed of complex number additions and multipli-
cations, known as butterfly operation. The radix-4 butterfly operates on 4
input samples and generate as many output samples as shown in figure 5.1.
The figure shows four input samples I0, I1, I2, I3 in Q1.15 data format and
the four resulting output samples in Q3.14 format (The data representation
for the resultant samples is explained later). There are N/4 butterfly oper-
ations per stage for radix-4 case.

The intermediate results of the DFT operation i.e. results of each and
every stage, are stored in the memory and read out in the next stage as
input samples for that particular stage. The Open Air Interface baseband
design allows the individual IPs to store the inner results in any format that
suits their respective requirements. To achieve reasonable efficiency, the in-
termediate butterfly results need to be stored with larger number of bits
than of input bits (because of multiplications and additions operations add
bits). We decided to use 50 bits for each element inside the DFT computa-
tion. The number 50 also comes from the fact that target technology Xilinx
V irtex−V has DSP48E multipliers that can operate up to 25∗18 bits wide
inputs. Thus the real and imaginary part of the samples in the FT mode
are stored as 25 bits in the intermediate stages of the computation. The
final results, as per global specifications, are saturated and / or truncated
back to 16 bits with Q1.15 format.

Decimation In Frequency

Let X be a complex vector of size N . DFTN (Y) is given by:

DFTN (Y)[k] =
N−1∑
n=0

X[n]ωnkN

66 Chapter 5 The Front End Processor

And DFTN (Y)[4k] can be written:

DFTN (Y)[4k] =
N−1∑
n=0

X[n]ωn4k
N

=

N
4
−1∑

n=0

X[n]ωnkN
4

+X

[
n+

N

4

]
ω
nk+N

4
N
4

+X

[
n+

N

2

]
ω
nk+N

2
N
4

+ X

[
n+

3N
4

]
ω
nk+ 3N

4
N
4

=

N
4
−1∑

n=0

(
X[n] +X

[
n+

N

4

]
+X

[
n+

N

2

]
+X

[
n+

3N
4

])
ωnkN

4

= DFTN
4

(
U0
)

[k], with

U0[n] = X[n] +X

[
n+

N

4

]
+X

[
n+

N

2

]
+X

[
n+

3N
4

]
,∀ 0 ≤ n < N

4

Similarly,

DFTN (X)[4k + 1] =
N−1∑
n=0

X[n]ωn(4k+1)
N

=

N
4
−1∑

n=0

(X[n]− j.X
[
n+

N

4

]
−X

[
n+

N

2

]
+ j.X

[
n+

3N
4

]
)ωnNω

nk
N
4

= DFTN
4

(
U1
)

[k], with:

U1[n] =
(
X[n]− j.X

[
n+

N

4

]
−X

[
n+

N

2

]
+ j.X

[
n+

3N
4

])
ωnN

=
(
X[n]−X

[
n+

N

2

]
− j

(
X

[
n+

N

4

]
−X

[
n+

3N
4

]))
ωnN

DFTN (X)[4k + 2] =
N−1∑
n=0

X[n]ωn(4k+2)
N

=

N
4
−1∑

n=0

(X[n]−X
[
n+

N

4

]
+X

[
n+

N

2

]
−X

[
n+

3N
4

]
)ω2n
N ω

nk
N
4

= DFTN
4

(
U2
)

[k], with:

U2[n] =
(
X[n]−X

[
n+

N

4

]
+X

[
n+

N

2

]
−X

[
n+

3N
4

])
ω2n
N

5.2 Time / Frequency Domain Conversion 67

DFTN (X)[4k + 3] =
N−1∑
n=0

X[n]ωn(4k+3)
N

=

N
4
−1∑

n=0

(X[n] + j.X

[
n+

N

4

]
−X

[
n+

N

2

]
− j.X

[
n+

3N
4

]
)ω3n
N ω

nk
N
4

= DFTN
4

(
U3
)

[k], with:

U3[n] =
(
X[n] + j.X

[
n+

N

4

]
−X

[
n+

N

2

]
− j.X

[
n+

3N
4

])
ω3n
N

=
(
X[n]−X

[
n+

N

2

]
+ j

(
X

[
n+

N

4

]
−X

[
n+

3N
4

]))
ω3n
N

Thus using decimation in frequency mode for radix-4 algorithm, the in-
put samples to the butterfly are at a distance of N

4 for input vector size of
N . The butterfly requires 3 instead of 4 twiddle factors. The three twiddle
factors are at starting index n, and then at twice and thrice of the starting
index i.e. 2n, 3n.
As each element of input-vector is represented as 32− bit with 16−MSBs
representing real part and 16−LSBs representing the imaginary part both in
Q1.15 format. Radix-4 FFT algorithm implementation is based on butterfly
operations, N/4 butterfly operations per stage, each of the butterfly oper-
ation requiring four complex additions and then a complex multiplication.
Four additions cause an addition of 2 bits to input data resolution, so if in-
put at any stage is represented by ’n.15’ bits, the output after four additions
would be ’(n+2).15’ bits. Then this output is multiplied with twiddle factor,
represented in Q1.15 format, resulting a representation of ’(n+2).30’, no bit
added on whole number portion of fractional number because multiplying by
twiddles means rotation of input over unity circle. Least significant 15-bits
can be ignored with an acceptable loss of accuracy, so a right truncation of
15 bits gives a result of ’(n+2).15’ bits as shown in figure 5.1.

To achieve the final result for DFT or IDFT, we also have to divide the
whole summation by

√
N at the end as shown in equations 5.1 and 5.2.

We spread this division over all the stages of our algorithms. Each radix-4
stage is divided by 2, while the last stage of mixed-radix is divided by

√
2

to achieve the required results. Thus at the end of each stage, we reduce
the data representation from ’(n+2).15’ to ’(n+2).14’ bits. This means that
starting from Q1.15 at any stage s, we will have samples in Q3.15 at the end
of a stage i.e. an increase of 1−bit per stage. The intermediate results stored

68 Chapter 5 The Front End Processor

in the internal memory of the FEP are of 50− bits each, 25− bits each for
real and imaginary part. Therefore, starting from Q1.15 format, an increase
of 1 − bit per stage and with 6 maximum number of stages (log44096), the
intermediate butterfly results never go outside the range which is 25 bits.
The results are sign extended at the end of each stage before storage in the
memory.
At the end, to store back the results in the input-output memory (IO Mem-
ory), all the resultant samples are saturated back to Q1.15 format.

3.153.303.15

I1

I2

n.15
n+2.15 n+2.30 n+2.15

I0(Q1.15)

I3

T1(Q1.15)

T2

T3

Truncation
3.14

n+2.14
Shift Right

Figure 5.1: Basic Radix-4 Operation

5.2.4 Input Vector Size - Power of 2

For this case, our implementation uses the radix-2 algorithm with decima-
tion in time domain. The details are described here.

Let X be a complex vector of size N . DFTN (Y) is given by:

DFTN (Y)[k] =
N−1∑
n=0

X[n]ωnkN

The summation above can be divided into two parts: even and odd. n = 2n′

for even half and n = 2n′ + 1 for the odd half where n′ = 0, 1, . . . , N/2− 1.

5.2 Time / Frequency Domain Conversion 69

Now the DFT can be re-written as:

DFTN (Y)[k] =

N
2
−1∑
n′

X[2n′]ω2n′k
N +

N
2
−1∑
n′

X[2n′ + 1]ω(2n+1)′k
N

=

N
2
−1∑
n′

X[2n′]ωn
′k
N
2

+ ωkN

N
2
−1∑
n′

X[2n′ + 1]ωn
′k
N
2

= DFTN
2
X[2n′] + ωkNDFTN

2
X[2n′ + 1] (5.3)

So the DFT can be computed by first computing the DFT over even and
odd indices and then having a last stage similar to basic radix-2 computation.
The computation of DFTN

2
in this case becomes a computation of DFT over

input vector size that is power of 4 as the size is divided by 2. Therefore,
the radix-4 algorithm to compute DFTN

2
X[2n′] and DFTN

2
X[2n′ + 1] can

be used here as well. Then at the end, in the last stage, the multiplication
with twiddles takes place.

The computation process for even and odd DFTs computations is ex-
actly the same as described above for power-of-4 case. The last stage also
accesses 8 samples per cycle from the memory to meet the throughput re-
quirements, 4 each from odd and even computation results. The samples
are accessed in such a manner that no more than 3 twiddle memory accesses
are required per cycle.
As per FEP functional specifications, when input vector size is power of 2,
then

√
N becomes n

√
2 where n = {2, 4, 8, 16, 32}. Thus we have to divide

the result with a natural number ’n’ and
√

2 as well. As explained in the
previous case, a division by 2 takes place every cycle. For a division by

√
2,

we multiply the results by 1√
2

in the second last stage. Here, the second last
stage is the last stage of radix-4 while computing the DFTN

2
. In the last

stage of a radix-4 computation, no twiddle factor multiplication is required.
To take advantage of this scenario, the multiplication with 1√

2
is shifted in

the previous stage. The division by 2 is switched to the last stage that sums
up the DFTeven and DFTodd.
In figure 5.2, the internal FEP Architecture in FT Mode is depicted, while
figure 5.3 shows the DFT/IDFT processing unit along with its internal op-
erations.
This completes the details for the FT mode design and implementation. In
the next section, the other computation mode of the FEP block i.e. PP
Mode is presented.

70 Chapter 5 The Front End Processor

multipliers
25bit x 18bit

3 x 4 = 12

multipliers
25bit x 18bit

3 x 4 = 12

FEP Core

Internal Memory

Butterfly #0

Butterfly #1

In
pu

t
B

an
k

T
em

p
B

an
k

#0

T
em

p
B

an
k

#1

O
ut

pu
t

B
an

k

VCI

Control register

Command register

(independent)
VCI access

concurrent

T
w

id
dl

e
M

em
or

yHost interface/DMA

Control
Address

Generation
FFT Mode

Figure 5.2: Internal FEP Architecture in FT Mode

5.2 Time / Frequency Domain Conversion 71

O
p

er
at

io
n

s

O
u

tp
u

t

B
u

ff
er

M
at

ri
x

No

O
p

er
at

io
n

s
B

u
tt

er
fl

y

Yes

T
ru

n
ca

te

C
o
n

ju
g
a
te

M
at

ri
x

M
em

o
ry

3
 T

w
id

d
le

s
fo

r
b

u
tt

er
fl

y
 −

 2

D
F

T
Y

es

(
S

am
p

le
s

)

G
en

er
at

o
r

T
w

id
d

le

4 Samples for butterfly − 2

A
d

d
re

ss

G
en

er
at

o
r

L
a
st

S
ta

g
e

N
o

T
w

id
d

le

M
em

o
ry

D
F

TN
o

C
o
n

ju
g
a
te

Y
es

In
p

u
t

B
u

ff
er

S
p

ac
e

D
IO

 M
em

o
ry

T
M

P

Intermediate Stages

F
ir

st
 S

ta
g
e

D
IO

 M
em

o
ry

S
p

ac
e

Figure 5.3: The DFT / IDFT Processing Unit

72 Chapter 5 The Front End Processor

Command Words

Parameters

Memory

Twd − In

Memory

Space

Interface
VCI

Twiddles

F E P

Core
Memory

Results
Intermediate

Data Out

Data In

Input − Output

 Interface

LEON − 3

Global Memory
Mapped to

DMA

LEON−3

Figure 5.4: Communication among the FEP Blocks

5.3 Pre Post Processing

All the pre-post processing operations in the FEP can be performed over
one whole vector and also over sub-band level. The sub-band concept can
easily be understood as partitioning inside a large vector. For a given large
vector U , there can be as many as 160 sub-bands or sub-vectors. The sub-
band span indicates the total length over which the sub-band is formed.
The size of sub-band can be less than or equal to its span. The size of sub-
band corresponds to the number of samples / complex numbers to be used
in the FEP computations. Inside each sub-band there are two important
parameters; one is the offset while the other is sub-sampling factor. The
offset means the distance between the start of sub-band span and the first
sample / complex number to be used in the FEP computations. If the value
is 0, then it means that we start from the very first sample i.e. start of the
sub-band span. The sub-sampling factor gives the value of the skip between
the two consecutive samples over the sub-band span. If the sub-sampling
parameter is set to 1, then it means that consecutive samples are read out
and used in the computations.

Figure 5.5 shows an example of the sub-band formations. Each filled
circle represents a sample inside a large vector, with indices ranging from 0
to 29. Here two sub-bands sb− 0 and sb− 1 are shown, the sub-band span
is 15. The red circles represent the samples over which the computation
should take place in the sub-band mode of the FEP. The offset for each

5.3 Pre Post Processing 73

sub-band is 4, while the sub-sampling factor is 3. If the size of the sub-band
is to be computed, it is not a part of the parameters passed to the FEP,
then it would be 4 in this case. Also it is worth mentioning that FEP has a
throughput of 2 samples per cycle in the pre-post processing mode; therefore
for this example case the FEP will take 2 cycles to compute the PP-Mode
computations. (apart from the set up and write back delays).

sb − 1sb − 0

2 10 3 4 5 7 8 9 10 11 12 136

2 10 3 4 5 7 8 9 10 11 12 136

sub−sampling factorOffset

Sub−band Span

sub−sampling factorOffset

Sub−band Span

14 15 16 17 18 19 20 21 22 23 25 26 27 28 29

0 1 3 4 5 6 7 8 9 10 11 12 13 1414 2

24

Figure 5.5: Formation of Sub-bands with parameters

In the pre-post processing mode, the next index inside each sub-band
will be computed by:

λ = a+m ∗ k (5.4)

where a represents the offset at the start of the sub-band, m is the sub-
sampling factor in the sub-band, and k is the natural index such that ’0 ≤
k ≤ spansb − 1’ while spansb is the span of the sub-band. Also λ ranges 0
to spansb − 1.
The next index inside the whole vector with multiple sub-bands can be
computed as :

γ = a+m ∗ k + spansb ∗ j
= λ+ spansb ∗ j (5.5)

a,m, spansb represent offset, sub-sampling factor, and sub-band span re-
spectively. k is the natural index such that ’0 ≤ k ≤ spansb−1’ and it is set
to 0 at the start of each sub-band. j is also a natural index that indicates
the sub-band-number in operation and is given by ’0 ≤ j ≤ nsb− 1’ and nsb
is the total number of sub-bands in the vector. These notations will be used
in the following sections.

The pre-post processing like DFT macro-block provides an option of con-
jugation of vector before and/or after the processing. Next a short descrip-

74 Chapter 5 The Front End Processor

tion of these macro-functions is presented along with the list of parameters
required.

5.3.1 Component-wise-addition

The complex vector U + V is component-wise additive of U and V :

(U+V)[i] = (U [i].real+V [i].real, U [i].imag+V [i].imag) ∀ 0 ≤ i ≤ N−1
(5.6)

In FEP module, if the sub-band parameters are set then all the component-
wise operations follow the sub-band definitions. This helps to reduce the
number of computations taking place for each of the operation because the
offset and sub-sampling factor for the sub-bands allow to skip the samples
inside the sub-bands (as depicted in figure 5.5). Component-wise-addition
(CWA) over sub-band level is given by:

CWAsb[i+spansb∗j] = U [i+spansb∗j]+V [i+spansb∗j], ∀i, i ∈ λ (5.7)

where λ = a+m ∗ k, and a,m, and k represent the offset, sub-sampling
factor and the natural index such that ’0 ≤ k ≤ spansb − 1’ respectively.
spansb is the sub-band span and j is the sub-band counter index i.e. the
current sub-band index.

Each input element of a complex number in FEP module is represented
in 32-bits, where real and imaginary both having 16-bits in Q1.15 format.
An addition of two complex numbers causes an increase of 1-bit each to real
and imaginary part. First the results are saturated, if required, and then
one LSB is truncated to keep the result back in standard format Q1.15 for
real and imaginary part (i.e. 32-bit complex number).

5.3.2 Component-wise-subtraction

The complex vector U − V is component-wise subtraction of V from U :

(U−V)[i] = (U [i].real−V [i].real, U [i].imag−V [i].imag) ∀ 0 ≤ i ≤ N−1
(5.8)

Component-wise-subtraction (CWSub)can be calculated over sub-band
level:

CWSubsb[i+ spansb ∗ j] = U [i+ spansb ∗ j]− V [i+ spansb ∗ j], ∀i, i ∈ λ
(5.9)

5.3 Pre Post Processing 75

The notations and operations are the same as of component-wise-addition
and the results are also written back in Q1.15 format.

5.3.3 Component-wise-product

The vector U � V is the component-wise product of U and V :

(U � V)[i] = U [i]× V [i], ∀ 0 ≤ i ≤ N − 1 (5.10)

This module also has the sub-band mode, where additional parameters off-
set, sub-sampling factor, number of sub-bands and span of sub-bands are
utilized.

CWPsb[i+spansb∗j] = U [i+spansb∗j]×V [i+spansb∗j], ∀i, i ∈ λ (5.11)

The data representation of the output vector(s) is similar to that of in-
put vectors. Each element of output is represented by 32 bits with equal
length real and imaginary parts in Q1.15 format.

The multiplication of two complex numbers (say X = a + jb and Y =
c+ jd), which in turn is four real multiplications and two additions, is given
by:

X.Y = (ac− bd) + j(ad+ bc) (5.12)

Both real and imaginary parts of complex multiplication are composed of
two real multiplication which are added to each other. As input vectors
are represented in Q1.15 data format, each real multiplication gives result
in Q1.30 format and the addition of two vectors in Q1.30 format results
each real and imaginary result in Q2.30 format. This result is saturated, if
required, back to Q1.30. The final result is 15-bit truncation of saturated
result, and is stored as Q1.15 format. Thus the final result of this module
follow the pattern of input similar to component-wise-addition and subtrac-
tion modules.

Component-wise-product with real vector

This module also offers component-wise multiplication with a real value
vector i.e. the second vector contains only the real part and no imaginary
part. This does not change the result format, and has no effect on the
user interface. The internal truncation and saturation processes differ a bit,
however the final results are stored in the same format.

76 Chapter 5 The Front End Processor

Component-wise-product with scalar

The module offers component-wise multiplication with a scalar i.e. the sec-
ond vector contains only one value and that is at the start address. This
does not change the result format, and has no effect on the user interface.
The internal truncation and saturation processes are the same, and the final
results are stored in the same format as well.

5.3.4 Component-wise-division

This module performs a division of complex vector by a real vector. The
exact operation performed is in fact multiplication using a look-up-table
(LUT) which has a listing of inverse values of parameters to be divided.
The width of each element in LUT is 8− bits, though this strategy provides
an approximate result but it is not that in-accurate to cause problems in
the data detection of the FEP module.

U ÷ V = U [i] ∗ LUT (truncated to 8-bits V̂ [i])
≈ U [i]÷ V [i] ∀i (5.13)

V̂ [i] represents the inverse value of V [i] stored in LUT.

5.3.5 Dot Product

The complex number U.V is the dot product of U and V :

U.V =
N−1∑
i=0

U [i]× V [i] (5.14)

The dot-product function Dsb provided by FEP is over sub-band level and
is given by:

Dsb =
∑
i∈λ

U [i+ spansb ∗ j]× V [i+ spansb ∗ j] (5.15)

where spansb is the span of sub-band, m is sub-sampling factor, and a is
offset inside each sub-band. The λ is given by:
λ = (a + m ∗ k), with a,m and k representing offset, sub-sampling factor
and index inside the sub-band span (0 ≤ k ≤ spansb − 1). The value of k is
set to 0 at the start of each sub-band. j is the sub-band-counter index such

5.3 Pre Post Processing 77

that 0 ≤ j ≤ nsb − 1

The resultant dot-product vector contains dot-product of each sub-band
with each entity of 64 − bits with 32 − bits each for real and imaginary in
Q17.15 format, with real part stored at address addrx and imaginary part
stored at address addrx+1. The result for successive sub-bands is stored one
after the other in the memory.

Dsb = D0D1 . . . Dnsb−1 (5.16)

The data format of dot-product can easily be explained with the help of
component-wise-product data format. The dot-product is in fact summation
of complex multiplication between the elements of two input vectors. As
stated above, the resultant for each complex multiplication are stored back
in Q1.15 format. All these results (2-results per cycle) are added up in
a sub-band or vector. The summation of two complex samples of format
Q1.15 results addition of ’1’ bit. The maximum size of vector elements
can be 4096 therefore the addition of bits can be log2(max − size) = 12.
Thus in the largest input vector size, the output will be of 28 bits in Q13.15
format. The FEP sign extends the result for all cases to 32 bits for both real
and imaginary part of the result and first write real part at address addrx
and then writes imaginary part of the resultant complex number at address
addrx+1. The intermediate results are stored in two temporary registers of
32 bits each.

5.3.6 Energy Calculations

The energy of vector U with N elements is given by:

E(U) =
N−1∑
i=0

|U [i]|2 (5.17)

where |U [i]|2 = Re(U [i])2 + Im(U [i])2 for 0 ≤ i ≤ N − 1.
For sub-band energy calculations, the summations would be over sub-band
size instead of whole vectors and is given by:

Esb(U) =
∑
i∈λ
|U [i+ spansb ∗ j]|2 (5.18)

j is the sub-band-counter index such that 0 ≤ j ≤ nsb − 1.

78 Chapter 5 The Front End Processor

Each of the resultant for energy calculations whether over whole vector
or sub-band results in 32 bits in sign extended Q17.15 format. In sub-band
energy calculations, the energy calculations result in a real vector of size nsb
(Number of sub-bands) elements with each element being 32− bits.

E(U) = E0(U)E1(U) . . . Ensb−1(U) (5.19)

The average energy over vector U with N elements is given by:

E(U) ≈ 1
N

N−1∑
i=0

|U [i]|2 (5.20)

The front-end-processor is capable to calculate average energy over sub-
bands as well.

Esb(U) ≈ 1
sizesb

∑
i∈λ
|U [i+ spansb ∗ j]|2 (5.21)

The data representation of the results is the same as for Energy calculation
explained above.

The approximation ’≈’ is used for the average energy calculations be-
cause the FEP uses the right shift operation over the approximate size of
the vector or sub-band. The approximation used is given by:

Esb(U) =
1
x

∑
i∈λ
|U [i+ spansb ∗ j]|2 (5.22)

where x = log2bsizesbc, and for whole vector x = log2bNc.

Each element of input-vector for energy calculation is represented as
32− bit with 16−MSBs representing real part and 16−LSBs representing
the imaginary part both in Q1.15 format. The calculation of |U(i)|2 for each
i requires two real multiplications and then an addition. Multiplication of
two elements in Q1.15 format results in Q1.30 format, then a real addition of
two resulting elements has a final result in Q2.30 format. The result is first
saturated, if needed, to Q1.30 format and then the 15−LSBs are truncated
to have results in Q1.15 format. This implies addition of log2(sizesb) bits
for a sub-band having size sizesb, as maximum sub-band size is 4096 so in
the largest sub-band size scenario, a total of 12 bits would be added making
the final summation result in Q13.15 format. However, the stored results in
the memory are sign extended to 32 bits.

5.3 Pre Post Processing 79

5.3.7 Maximum Calculations

The number max(U) of a vector U is the maximum of the energy level of
individual elements of the vector and is given by:

max(U) = max
0≤i≤N−1

(|U [i]|2) (5.23)

The natural argmax(U) is the smallest index i such that:

|(U [i]|2 = max(U), 0 ≤ i ≤ N − 1 (5.24)

For sub-band max-calculations, the vector traversal would be limited to
sub-band-size (and only at the samples defined by sub-band definition) and
module provides maximum value and arg-max for each sub-band. Similar to
Energy-vector, Max-vector has nsb elements with each element represented
by 16 bits.

max(U) = max(U0) max(U1) . . .max(Unsb−1) (5.25)

max(Usb) = max
i∈λ

(|U [i+ spansb ∗ j]|2) (5.26)

where 0 ≤ j ≤ nsb − 1 and nsb is number of sub-bands.
The resultant for each sub-band or the whole vector is 16− bit real value.

Similarly, argmax for sub-bands is a vector of naturals, length equal to
number of sub-bands with each element represented in 16− bits.

argmax(U) = argmax(U0) argmax(U1) . . . argmax(Unsb−1) (5.27)

and each of argmax(Usb) elements represents the smallest index i inside each
sub-band. Given the maximum size of input vector 4096, the argmax result
is stored as 13− bits right aligned.

The FEP carries out the energy calculations and the max calculations
together, and the results are stored in the following fashion: For each sub-
band or vector, the energy or the average energy result is stored at output
address addrX . It is 32 bit real number.
The argmax and max value inside the sub-band or vector are stored at out-
put address addrX+1. The max value is real number stored as LSBs, and
the argument is number stored at MSBs. The results for the next sub-band
start at address addrX+2 and addrX+3.

The FEP needs the following parameters to carry out the PP-Mode
computations. These parameters are passed via the VCI-Interface.

80 Chapter 5 The Front End Processor

• The operation code to be computed

• Number of sub-bands

• Span of each sub-band

• Offset inside the sub-bands

• Sub-sampling factor in the sub-bands

• Memory addresses (for input samples, output samples and twiddle
factors)

• Conjugation flags for input vectors

FEP Core

Internal Memory

Multipliers

In
pu

t
B

an
k

O
ut

pu
t

B
an

k

VCI

Control register

Command register

(independent)
VCI access

Host interface/DMA

Control
Address

Generation
Vector Processing Mode

16 bit operations

Multipliers

16 bit operations

Adders

Adders
Comp

Comp

Figure 5.6: FEP Internal Architecture in PP Mode

Figure 5.6 explains the FEP architecture in the PP-Mode. Only 16 bit
operations are carried out, and no internal memory bank is utilized in this
case. The temporary results in the sub-band operations are stored in the
local registers.

5.4 Memory Subsystem (MSS) 81

After describing the details of all the computation processes in the FEP
block along with their specification, the next step is to look for the appro-
priate memory scheme that can effectively handle the diverse requirements.
We explain the memory system of the FEP block in the next section.

5.4 Memory Subsystem (MSS)

The internal memory is used by the FEP to store the input data, intermedi-
ate and final results along with twiddle factors. From the external point of
view it is a contiguous memory space accessible to all the peripherals. The
memory is accessed by the VCI-Interface, DMA engine, micro-controller and
by the FEP-core, hence it is a shared memory. The core is always given the
highest priority followed by 6502, the DMA engine and the VCIInterface. It
is the responsibility of the software to take care of data / result over-writings
by any of the peripheries accessing the memory subsystem.

The FEP memory subsystem is composed of three main chunks, namely:

1. Input - Output data space

2. Internal data processing memory space

3. Twiddle factors memory space

The FEP memory sub-system is composed of ram blocks RAMB36,
RAMB18 (Configurable Synchronous True Dual Port Block RAMs) avail-
able in Xilinx V irtexV − FPGA [xil] each of size 36Kbits and 18Kbits
respectively. For FEP utility, these are configured as a 36-bit wide by 1-K
deep and 18-bit wide by 1-K deep true dual port RAMs.

The size of each of three blocks of the FEP memory subsystem is based
on input-output data storage, intermediate results storage, and the number
of memory-access and processing per cycle (i.e. the over-all performance
requirement of the processing block) for all computationally different oper-
ations.

Input-Output Memory Space

For the size of the input-output memory, we consider a sub set of command
words to be executed by the FEP core as shown in figure 5.7. The figure
lists the commands (at some point in time) that are to be loaded in the

82 Chapter 5 The Front End Processor

Energy (v6, v7)

CWP (v4, v5, v6)

CWA (v1, v2, v3)

DFT (N, v0, v1)

IDFT (N, v6, v1)

VCI
Command Word

FEP Core

Figure 5.7: Successive Command Words for the FEP Core

VCI command word memory space and then the FEP core reads it out to
compute the required operation. Once the FEP core has read out the com-
mand word from the VCI memory space, the VCI loads the next command
word. The FEP executes one command at a time, and in the mean while
the main control software makes sure that the next command starts its exe-
cution immediately after finishing the current command. This requires that
the data should also be in the local memory subsystem so that the FEP
can access it without any delay. Thus there are some constraints on the
memory size with respect to the possible order of different command words
of the FEP module. e.g. In the figure 5.7, the command words are listed
with the vectors to be used in the computation along with the sizes in case
of DFT operations. The command word CWA(v1, v2, v3) represents the
component-wise addition of input vectors v1 and v2 resulting in vector v3.
The remaining parameters required to compute the operation are left out
for ease of explanation here. The memory requirements for component-wise-
operations (addition, subtraction, product and division) are more than any
other operation in the FEP block, and hence enough memory is allocated
to process two consecutive component-wise-operations over maximum input
vector sizes. The memory allocation for the input-output space also con-
siders that the consecutive operations’ operands are mutually exclusive i.e.
none of the operands or memory space is re-used in the consecutive instruc-
tion. This ensures that all the successive tasks for IP-core can be processed
without any delay / lag between them, no matter what is the order of the
command words.

5.4 Memory Subsystem (MSS) 83

Maximum input vector size = 4096 samples
Memory requirement for one Input vector = 4096 * 32 bits = 128 K bits
Memory requirement for input = 2 * 128 K = 256 K bits (CWP has two
input vectors)
Memory requirement for output vector = 128 K bits
Memory requirement for one CWP operation = 256 + 128 = 384 K bits
Therefore, Total memory requirement for two CWP operations = 2 * 384 =
764 K bits

Some other results like energy, maximum and dot-products over sub-
bands may also be required to be stored over multiple operations duration.
Keeping this in view, we assign a total of 1−Mbits of memory for input-out
data space. Also almost one half of this memory is accessible by micro-
controller.

Intermediate Results Memory Space

The size for Internal memory space is based on the intermediate compu-
tation during different operations like DFT, Dot-product, Energy / Max
calculations etc. We take the most computation intensive task i.e. DFT
for maximum input vector size as the basis to decide the size of internal
memory. As per algorithmic implementation of our DFT scheme, the in-
termediate samples (results) are stored as 50− bits instead of 32− bits (as
is the case with input and output samples). The DFT implementation is a
pipeline based to meet the throughput and delay requirements; thus few in-
termediate results are being read while some others are being written in the
same clock cycle. With efficient in-place memory access algorithms, memory
equal to the maximum samples size can be allocated for the intermediate
results. However, to avoid the high performance cost of the in-place memory
access algorithms and also having the luxury of large memory space avail-
ability in the target technology, we reserve twice the maximum intermediate
samples size memory for internal results / processing in the first version of
the FEP. This can be reduced to half when we move to the system on chip
solution of our block.

The target technology Xilinx V irtexV − FPGA provides RAMB36
and RAMB18 which are 1 − K deep, while 32 − bits and 16 − bits wide
respectively. As our intermediate results are 50 − bits wide, we make use
of 2-parity-bits of RAMB18 to achieve a total efficient memory subsystem

84 Chapter 5 The Front End Processor

size. Hence the intermediate data representation used is on 48− bits.

Maximum vector size for DFT = 4096
Memory requirement for one vector = 4096 * 48 bits = 192 K-bits
Total Internal memory requirement = 2 * 192 = 384 K bits

Twiddle Factors Memory Space

The implementation scheme of DFT requires an access of 3 twiddle factors
in each cycle (out of total 512 twiddle factors), which are stored (duplicated)
in three different physical rams RAMB36 with one port access to IP-core
for twiddle factors while the other port and one-half of the memory space
for future usage and/or storing some vectors during debugging of IP-core.
Twiddle factor memory is written by VCI-Interface and FEP core can only
read it. One by eight of maximum size DFT i.e. 512 twiddle factors are
stored inside FEP memory. These twiddle factors are written every time
FEP is initialized. The twiddle factors are stored either in the upper half or
the lower half of all three RAMB36 blocks, and this information is passed
in the command word for DFT operations to facilitate the internal address
calculations. Memory requirement for Twiddle factors = 3 * 1024 *32 = 96
K bits

Thus total size of memory sub-system = 1024 + 384 + 96 = 1504 K bits.
The memory address space with byte-by-byte memory access and the struc-
tural overview of the FEP memory subsystem are shown in figures 5.8 and
5.9 respectively.

FEP Memory Size Dilemma

The total size of the FEP memory subsystem is huge, and is not obviously
suitable for the system on chip development. There are two solutions that
can be considered once we move to silicon:

• Reduce the memory size: It is possible for in-place execution of the re-
sults specially for the internal memory of the FEP. The current choice
is made because of large memory size available in the FPGAs, and
also because the in-place execution requires some complex memory
algorithms. The memory size for the IO memory space can also be
reduced by relaxing the strict conditions of the mutually exclusive

5.4 Memory Subsystem (MSS) 85

8 bits

0x1FFFF

0x2C000

0x2BFFF

0x20000

0x2EFFF

0x00000

@128K - 1

@176K-1

@188K - 1

Twiddle factors
memory space

Internal Processing
memory space

I / O Memory

@0

@128 K

@176 K

Figure 5.8: The FEP Memory Subsystem : Address Space

86 Chapter 5 The Front End Processor

Input / Output Data Space

Internal processing data space

Twiddle Factors Spcae

DIO1

32 bits

1k

32 bits

Tw0

32 bits

Tw1

32 bits

Tw2

1k

DIn2

32 bits

DIn1

16 bits

1k

32 bits

DIn0

DIO0

32 bits

DIO31

32 bits

32 bits

DIn14

DIn15

16 bits

DIn3

16 bits

1k

Figure 5.9: Structural view of the FEP memory subsystem

5.4 Memory Subsystem (MSS) 87

memory space for consecutive command words, as normally the con-
secutive commands are inter-dependent. The twiddle memory space
can be reduced to half without any changes in any of the internal al-
gorithms. The twiddle memory can also be reduced to 1

6 , by storing
only one set of twiddles, and using more intelligent access algorithm.

• External Memory: The external memories like double data rate dy-
namic random access memory (DDR DRAM) can be added to serve
the purpose, and the memory space can be shared by the other IPs
in the design as well. In this case, the external memory access might
become a bottleneck to the FEP high throughput requirements.

5.4.1 Memory Access Schema

To make the memory access scheme look more generic and simpler, we look
into the memory access of the two computation modes:

1. FT Mode Memory Access

2. PP Mode Memory Access

In the FT mode, the global throughput of 1-sample per cycle led to the
result that 8-samples should be read and processed in each cycle of all the
stages in DFT calculations. There are 8 resultant samples to be written
back in the memory as well. This means that two butterfly operations when
radix-4 algorithm and four butterfly operations when radix-2 algorithm is in
process. From the memory system point-of-view, this results in both reading
and writing 8-samples each cycle through out the DFT computation.

In a hardware system design, the arrangement of any of the input /out-
put samples should always be independent of the size of the input/output
vectors. Considering the radix-4 algorithm, which is more often used: the
samples accessed by a butterfly are at a distance of N/4 from each other
i.e. the i−th butterfly will access samples indexed i, i+N/4, i+N/2, i+3N/4.

The physical memory blocks at most can be used as dual ports, and hence
the samples should be arranged in such a manner that no matter what is
the size of the vector, the butterflies are capable to access the required sam-
ples without any latency from the memory. One simple solution can be to
store samples in such a way that every N/4 chunk of the input samples is
in different physical memory block, for each and every possible input vector
size. This requires the samples to be stored in as many as 32 memory banks

88 Chapter 5 The Front End Processor

and then block multiplexing for each and every sample access. In case of
Virtex-V FPGA of Xilinx, this requires almost 13% of logical functions to
perform such an operation, and becomes quite expensive. Some intelligent
operations at the input index of samples can reduce the number of banks
to 8 and multiplexing at 16 ports, but this requires special arrangements
for the smaller input vector sizes. In terms of logical functions, this doesn’t
improve much either.

In the PP-Mode, the throughput required is 2-samples/cycle. So an
access of 2 samples per cycle from each of the input vector. There are
2 samples per cycle to be written back in the IO memory. Thus in case of
PP-Mode, 6 memory accesses are required per cycle in the IO memory space.

The memory system in discussion is composed of ram blocks RAMB36,
(Configurable Synchronous True Dual Port Block RAMs) available in Xilinx
Virtex-V5 FPGA devices [12] each of size 36 k-bits. The blocks are config-
ured as a 32-bit wide by 1-K deep true dual port RAMs. The total size of
memory, which is far greater than the individual operations defined in this
article, is based on the analysis of all the standards considered which require
successive operations over vectors and storage of results for following oper-
ations without any latency. The memory is implemented in a matrix style
of four rows times eight columns of 1k32 RAMs. In the following, columns
are numbered from 0 for the leftmost to 7 for the rightmost and rows are
numbered from 0 for the top to 3 for the bottom, and are shown in figure 2.
The core operations access the memory through eight read-write channels,
plus a mode indicator: either ft mode or pp mode as described earlier.

Access for FT Mode

When in FT mode the eight sample accesses are configured as eight read
and eight write channels, one read-write pair per column. The addresses
are 32 bit words addresses in the column, which is 12 bits (4k) only. The
unused MSBs are discarded. The read addresses of the eight columns are
considered as equal. Only the read address of the first channel is used, the
others are ignored. The write addresses of the eight columns are considered
as equal. Only the write address of the first channel is used, the others are
ignored. The read and the write address are not necessarily equal. Address
0 points to the top most 32 bits word of the column, that is, the first 32 bits
word of the top RAM of the column (the RAM in row number 0). Address
4095 (0xfff) points to the bottom 32 bits word of the column, the last 32

5.4 Memory Subsystem (MSS) 89

bits word of the bottom RAM of the column (the RAM in row number 3).
When computing a DFT, the IP core reads eight samples per cycle in

the memory space in FT mode. These eight samples are eight consecutive
components of the input vector. It uses a small internal cache (described
below) to reorder the input samples before feeding them into its radix-4 /
radix-2 units. This simple memory access puts a condition on the way the
input vector has been stored in the memory space by a DMA transfer: the
starting sample (32 bits) address of the vector in the memory space must
be a multiple of 8.

We propose to use a set of simple 4x4 caches, shown in figure 5.10. The
size of each cache element is the same as of input / output vector’s element
i.e. 32-bits each, the cache can be looked as 16 registers of 32-bit each. Now
instead of using any fancy addressing schemes, the input samples are written
in consecutive order in the memory space. The memory is arranged in such
a manner that the consecutive samples are written in 8 different banks at
the same index. With the help of address generation scheme, the samples
accessed are first written in the two caches instead of directly feeding to the
butterfly. The samples are written row-wise i.e. in cycle-0 all the 8 samples
accessed are written in row-0 of cache-1 and cache-2. In the next cycle, the
samples are written in row-1 and so on. Once all the four rows are filled,
then the reading process from the butterfly operation starts. At the same
time, the access process continues, but it now writes the data in column-
wise. The address generation indices are such that the samples at a space
of N/4 to each other are at column-0 in all the 3 rows. Once all the rows
are written, then the butterfly operation reads column-wise and thus have
the required samples. Now the samples are written in column-wise fashion,
as the 0-th column is free to store the input samples. The row and column
operations are reversed every 4-cycles, the number of rows and columns in
the cache. Figure 5.10 [MKP09b] illustrates an example of using one of these
caches starting from cycle-0 of DFT computation.

This simple scheme ensures the DFT operation to be smooth with a small
latency of four cycles at the input phase. As per split-radix algorithm, the
samples after the last stage are required to be bit-reversed before being fed
to output. Once again the two 4x4 caches are utilized and avoid extra logic
or resources.

Access for PP Mode

When in PP mode the eight read-write channels are configured as eight read
or write channels, two per row. Each channel can be used either to read or to

90 Chapter 5 The Front End Processor

Cycle 7,15,...

Cycle 0,8,...

Cycle 1,9,...

Cycle 2,10,...

Cycle 3,11,...

Cycle 4,12,...

Cycle 5,13,...

Cycle 6,14,...

00 01 03

10

30 33

Cycles 4,12,... 5,13,... 6,14,... 7,15,...

Cycles

8,16,...

9,17,...

10,18,...

11,19,...

Figure 5.10: Cache at the Input / Output of FT operations

5.4 Memory Subsystem (MSS) 91

write but not both (exclusive, read-xor-write). The read or write addresses
are 32 bits words addresses in the row that is 13 bits (8k). Address 0 points
to the first 32 bits word of the leftmost RAM of the row (the RAM in column
number 0), address 1 points to the first 32 bits word of the second RAM in
the row (the RAM in column number 1), . . . , address 7 points to the first
32 bits word of the rightmost RAM in the row (the RAM in column number
7). Addresses 8184 to 8191 (0x1ff8 to 0x1fff) point to the last 32 bits words
of the eight RAMs in the row.

Thanks to these two exclusive modes and to the fact that there are at
most one read and one write channel per column (in FT mode) or two read-
xor-write channels per row (in PP mode), there are at most two accesses
per RAM in the DIO area. So, the two ports of the Xilinx block RAMs are
sufficient for the IO requirements of all the operations in the block.

5.4.2 The Addressing Schema

The most computation intensive task of the FEP is DFT/IDFT, and the
global throughput for the FEP block is set to be 1-sample/cycle. This re-
quires the processing of 8 samples per cycle for DFT/IDFT operations i.e.
both reading and writing of 8-samples in one clock cycle. DFT calcula-
tions are based on butterfly operations with each butterfly operating on
four samples, so this implies that in our case two butterfly operations are
to be performed in one clock cycle. The samples accessed by butterfly are
input-vector-size dependent, which in FEP case ranges from 8 to 4096. This,
in turn, means the arrangement of input / output samples for all the possi-
ble input vector sizes in such a manner that 8 samples can be operated in
one clock cycle. As stated before ram blocks RAMB36 are used in memory
sub-system of FEP, which are dual port RAM blocks and at most two sam-
ples can be accessed from each physical RAM block per clock cycle. The
memory arrangement scheme is invisible to FEP users, and only FEP core
has the exact knowledge of it.
The memory arrangement of samples puts the following conditions on the
users of FEP memory block:

• FT-Mode The input and output addresses must be multiple of 32
bytes (byte addressing).

• PP-Mode The three interface addresses, two input and one out ad-
dress, must be in different blocks. Also, all data of the individual
vector must be in one block i.e. it must not expand / spread over two
blocks. The pair of start and end-address of each individual vector

92 Chapter 5 The Front End Processor

Internal Processing Data Space

Twiddle Factors Space

Input / Output Data Space

32 bits32 bits

TWD1

32 bits

TWD01k

1k

DIO30

32 bits 32 bits

DIO07

DIO37

1k

1k

4k

dio(7)

dio(6)

dio(7)

pp mode

ft mode

twd(0)

8× 50 = 400 bits

tmp(0)

TMP7TMP0

50 bits50 bits

0x1ff8

0x000

0x000 0x000 0x000

0x3ff 0x3ff 0x3ff

0x3ff

0x000

0x3ff

0x000

0x3ff

0xc00

0xfff 0xfff

0x0000 0x0007

0x1fff

0x0007

0x1ff8 0x1fff

DIO00

dio(0)

dio(0)

dio(1)

twd(1) twd(2)

tmp(7)

0x000

0x3ff

0xc00 0x0000

TWD2

8× 32 = 256 bits

Figure 5.11: The memory layout from IP core point of view

5.5 Implementation Results 93

must be in the same block, while the three pairs must be in three
different blocks.

The addressing scheme analysis brings an end to the memory subsystem
discussion, and we presented the memory access details for all the possible
modes and operations inside the FEP. This also completes the design of the
FEP block and the implementation is carried out using VHDL. The results
are discussed in the next section.

5.5 Implementation Results

Using the Xilinx Virtex-5 FPGA as the target technology and Mentor Graph-
ics’ Precision as synthesis tool [men], 36DSP48E slices are used. This makes
19% of the total available in the FPGA, which is quite good considering the
fact that the FEP is one of the most computation intensive IP of the base-
band processor. The maximum achievable frequency for DFT operations
is 120 M Hz, and is quite acceptable considering the throughput of the
block. The number of cycles spent to calculate the different input vector
sizes of the DFT are shown in the table 5.1. The implementation of the
DFT macro-block is pipelined to achieve the higher throughput and even-
tually higher data rates. The higher values of cycles used for the smaller
pow-of-2 input sizes is due to the fact that in the Mixed-Radix algorithm
the power-of-2 input size requires log4

X
2 + 1 stages for an input vector size

of X. However for the larger values, the IP performs quite better than
the anticipated throughput of 1-sample-per-cycle. The throughput for the
component-wise-operation and sub-band-level-operations is 2-samples-per-
cycle, and is achieved in the implementation accordingly. The maximum
achieveable frequency for these modules is around 150MHz, and the num-
ber of complex multipliers used is 10 [MKP09a].

DFT Size # of Cycles DFT Size # of Cycles
8 20 16 18
32 46 64 60
128 107 256 174
512 372 1024 695
2048 1597 4096 3136

Table 5.1: DFT : Number of cycles used for different Input Vector Sizes

94 Chapter 5 The Front End Processor

5.5.1 Limitations of the Architecture

Though the FEP meets the functional specifications of its design and also
achieves good performance; there are few limitations to its design and are
listed here:

The matrix operation, small cache algorithm described earlier, puts a
condition on the way the input / output vector is written / read in the
DIO memory area by a DMA transfer or by a direct access through the
VCIInterface: the starting sample (32 bits) address of the vector in the DIO
area must be a multiple of 8. As a consequence the starting 64 bits word
address used by the DMA engine or by the VCIInterface must be a multiple
of 4. Symmetrically, when reading an output vector from the DIO area, the
sample starting address will always be a multiple of 8. This doesn’t require
any specific requirement at the higher control level, but still the software
has to take care of it while assigning the input and output addresses to the
FEP core.

The FEP functions are mutually exclusive i.e. only one set of macro-
blocks can run at the same time. e.g. In the channel estimation of OFDM
systems, the component-wise product can only start once the DFT has ter-
minated. However, this was foreseen while designing the IP and it doesn’t
cause any performance degradation in the overall baseband receiver design
thanks to the MSS design and higher throughput of the IP. It is also worth
mentioning that there is no lag or delay between the start of a task at the
termination of the previous task. The new tasks (commands) can always be
written in the IP and the memory space can be filled in for next task, while
the current task is in progress.

Summary

This chapter provided the hardwired design for the FEP block in the base-
band design. The design implements a wide range of operations including
DFTs and maximum calculations over vectors. The design specification
in line with the requirements of the evolving wireless standards are met.
Although the FEP design is flexible in the sense that multiple standards re-
quirements can be processed by parameterizing its command registers, still
we feel that more flexible solutions may be studied for the hardware blocks
in the SDR designs. A study to explore one such option is described in the
following chapter.

Chapter 6

ASIP design for Vector
Processor

The emerging digital communication systems and cellular networks require
multi-mode operations with increased flexibility and high performance. The
silicon area and power efficiency also stand high on the architecture design
consideration list. These factors lead to multiple trade off situation of map-
ping the complex transceiver design tasks on the target software / hardware
platform. The Application Specific Instruction Processors (ASIPs) are one
of the choices for a complex flexible platform design.

For ASIP design, if high flexibility and customization for the instruction
set architecture (ISA) is required then tools that focus on architecture level
optimization may be used. These tools use Architecture Description Lan-
guages (ADL). There has been numerous research approaches proposed in
this field, however the Language for Instruction Set Architecture (LISA) is
the one that gained commercial acceptance. We applied this approach to
design an ASIP core to evaluate its usefulness in baseband architectures for
SDR applications.

6.1 ASIP Design Methodology

Application Specific Integrated Circuits (ASICs) have traditionally been
used for the development of the embedded processors for variety of applica-

95

96 Chapter 6 ASIP design for Vector Processor

tions. The complexity and electrical design challenges are increase with the
arrival of new technology generation. It becomes more and more difficult
for the design tools to cope with these challenges, thus decreasing the de-
sign productivity. The expensive design tools and the high manufacturing
costs for the ASICs are not helping either. The programmable solutions
or the Application Specific Instruction Set Processors (ASIPs) have rapidly
emerged as an alternate to the ASIC designs. The ASIPs are defined as a
processor designed for a particular application or for a set of specific appli-
cations. An ASIP exploits special characteristics of application(s) to meet
the desired performance, cost and power requirements. Thus the ASIPs are
quite efficient when applied to a specific set of applications such as digital
signal processing, control systems, avionics, cellular phones etc. [SIH+91].
The programmability in the ASIPs provides the flexibility which is missing
in ASIC design. The ASIP solutions decrease the manufacturing cost and
time to market [KMN02].

The ASIP design is an attempt to look for a balance between two ex-
tremes : ASICs and general programmable processors. ASIPs offer the avail-
ability of custom sections for time critical tasks (e.g. a Multiply-Adder for a
real time DSP), and offer flexibility through an instruction-set [LMP94]. As
new standards / applications keep on arriving in wireless communications,
the operations in the SDR baseband design are becoming more complex.
These more complex procedures require more flexibility to accommodate
design changes, errors and specification changes; which may happen at the
later design stages. It is very hard to make many changes in the ASIC,
once the design is in place. In such a situation, the ASIPs offer the required
flexibility at lower cost [CKY+99].

In the beginning, the ASIPs and the relevant software development tools
have been designed manually [JBK01]. The manual processor design is long,
tedious, error prone and requires highly skilled engineers. The processor
architecture design can be viewed in four parts [HML02]:

• Architecture Exploration

• Architecture Implementation

• Software Application Design

• System Integration and Verification

6.2 ASIP for Flexible Baseband Design 97

Without any automation, it is really hard to have the expertise in all
these procedures and hence a reasonable ASIP. The LISA Processor Design
Platform (LPDP), using language for instruction set architecture (LISA),
provides a complete processor design process that is based on target ar-
chitecture description in LISA language [HKN+01]. The LPDP provides
the flexibility to model a processor from the most abstract level to the mi-
cro architecture level. The platform uses its HDL generator to implement
the architecture, once the micro architecture is finalized. The synthesizable
models can be generated both in VHDL and Verilog. Based on the success
of the LISA, as an automated processor design, we decided to explore the
ASIP design for the multi-standard baseband design

6.2 ASIP for Flexible Baseband Design

In the context of Open Air Interface architecture [ope], an analysis of the
functionalities in the baseband design is carried out to identify a set of oper-
ations that are used in the transceiver baseband and are a good candidate for
the ASIP design. It was noted that different blocks require basic arithmetic
operations such as addition, subtraction, multiplication etc. over large size
vectors. These operations are quite often used in different routines which
are implemented in the hardware accelerators of our baseband design. For
example in the digital front-end processor block, the energy calculations over
large vectors is carried out using multiplication, addition and division over
large complex vectors.

The dedicated routines composed of the vector operations in the base-
band design are stand alone and serve only the purposes inside the specific
block. To take the advantage of flexibility that ASIPs provide and also to
explore the effectiveness of ASIPs for our long term dedicated platforms,
we decided to design a Vector Processor as an ASIP. As a starting point,
the vector processor is to be embedded in the digital front end processor of
the baseband design. The FEP often uses the basic arithmetic operations
over large vector sizes in its routines for channel estimation, data detection
etc.; therefore we start the design with the aim that the proposed ASIP
would at least cater all the needs of the FEP application routines. Later on,
considering the performance and cost benefit analysis, the vector processor
(VP) might become a stand alone IP on the baseband board of the Open
Air Interface.

98 Chapter 6 ASIP design for Vector Processor

The current hard wired formation of the FEP is no doubt flexible and
parametrize but still lacks the flexibility in some aspects. We try to figure
out where flexibility or the programmability can be added in the hardware
block. As stated above, the FEP functions are composed of DFT unit and
the basic algebraic functions like multiplication, division, addition and com-
parison etc. In future, addition of functions to meet the new standard
requirements or changes in some specifications would be quite a tedious job.
So an ASIP design that carries out the basic algebraic functions over com-
plex vectors (with some control options) would be an appropriate candidate
to study the flexibility and design cost performance analysis in the context
of SDR applications.

With reference to the FEP block (as explained in chapter 5), there are
two computation modes namely: FT and PP. The FT carries out the DFT
and the IDFT for variable lengths; while the PP carries out operations over
large complex vectors such as energy calculations and vector products. The
initial functional requirements of the VP are specified to carry out the PP-
Mode operations. The existing DFT/IDFT module of the FEP will be used
along with the ASIP to run the macros specified by the LEON3 processor.
The ASIP formation is shown in Figure 6.1. As stated, the VP will be a
part of the FEP in the baseband board. Therefore, it follows the generic IP
shell design that is common to all the IPs in the board (details in chapter
4).

In the new formation with the VP, the highest level tasks of the FEP,
for example Channel Estimation, are first translated into functions like
component-wise-product, energy calculations, and FT etc. Next LEON3
decodes / translates these individual operations (products, energy calcula-
tions etc.) into pre-defined ASIP routines and these routines are loaded into
the program memory (PM) of the VP. e.g. the dot-product operation of the
ASIP is translated into a routine that requires complex multiplications and
complex additions over vectors, the energy calculations require the absolute
square operation over complex vectors and then division by a real value.

The ASIP formation not only fulfills the requirements of the current
specifications of the FEP but can cater other operations in our global de-
sign e.g. linear interpolation. The addition of functions based on algebraic
functions would just require writing the new libraries in the LEON3 which
can be loaded in the ASIP.

In the next section, we list the design features of the ASIP.

6.2 ASIP for Flexible Baseband Design 99

VCI

IRQ

FTASIP

VCIInterface

DMA Engine

VCI

M − Controller

Program Mem

M
em

o
ry

 S
u

b
−

S
y

stem
 (M

S
S

)

Figure 6.1: The ASIP Architecture with FT (of FEP module)

6.2.1 Vector Processor Design Features

The key design features of the vector processor are listed here:

• The FEP core currently is composed of a FT and a VP block, while the
micro controller works as the control processor. In the new formation,
VP is replaced by the ASIP while FT block of the current ASIC is
utilized to carry out operations requiring time-frequency conversions.

• The ASIP’ program memory takes care of its commands, however for
the other tasks such as data transfers to and from the FEP, we think
that the micro controller is necessary. Thus micro controller is also
part of the new formation. This enables coherent design throughout
in our global system (there are multiple IPs in the baseband receivers
[Figure 4.1]). The micro controller presence also ensures a simpler
ASIP without any overhead and only its own routines to take care of.
In later versions, this design formation can be altered, if required.

100 Chapter 6 ASIP design for Vector Processor

• The program memory of ASIP is inside the MSS, and from time to
time it is updated by LEON3. The instruction set for the ASIP is
composed of libraries that can be downloaded from LEON3. These
libraries can be loaded at the start-up time and also at the run time.
Therefore, the program memory of the ASIP is part of MSS and is
accessible by LEON3 (main processor) via the VCI and DMA.

• The memory access scheme by the ASIP must result a contention free
access to program memory inside the MSS.

• As the existing FT module of the FEP will be accessing the MSS, the
design and access of MSS will be the same in ASIP case as of the FEP
design. The details of the memory subsystem are given in chapter 5.

• The external interfaces of the modules will be the same, however the
ASIP can define its own interfaces / configuration registers as per
requirement with other modules of the FEP.

• The MSS priority list: FT is given the highest priority, then the ASIP
followed by micro controller, DMA, and VCI.

6.3 Functional Specifications of the Vector Pro-
cessor

The VP is designed to meet the functional requirements of the FEP block
except from DFT; which are explained in chapter 5 in detail. The VP has
additional options giving more flexibility and programability. The key design
features are:

• The throughput is 2 samples per cycle for all the vector operations
i.e. 4 input samples are read from memory in case of an operation
requiring 2 input vectors like vector product, and 2 input samples
are read for operations requiring 1 input vector like vector absolute
square. Depending on the operation either 1 or 2 output samples are
written back in the memory each cycle. However there are operations
like finding maximum over vector length where the results are written
back only at the end of vector or sub-vector.

• The vector length ranges from 1 to 8192. The vector can be composed
of any number of sub-vectors of same size and organization.

6.3 Functional Specifications of the Vector Processor 101

• Organization of the sub-vectors or vector means that the offset and
the skip remain same for all of them. Offset is the distance between
the start of a (sub)vector and the first sample to be read. The skip
represents the distance between two consecutive samples to be read by
the vector operation.

• The output vector can be written in the memory at consecutive ad-
dresses or can follow the input vector(s) pattern with offset a, and skip
m.

• The input vector(s) are complex with 32 - bits for each sample in
Q1.15 data format. One of the input vectors can have only real values
or have a constant value located at the start address.

• Since VP is to be accommodated in the FEP, therefore the memory
sub-system of the FEP is utilized. The address generation unit (AGU)
follows the constraints of the FEP memory subsystem which are ex-
plained in chapter 5 as well.

• The input vectors can be conjugated before any of the operations inside
the VP.

• The format of the output vectors, i.e. the number of truncation bits
for results, can be defined by the programmer.

Here is a list of the operations or functions that the ASIP should carry
out:

• Additions, Subtraction and Multiplication between two complex vec-
tors

• Multiplication between a complex vector and a scalar

• Multiplication between a complex vector and a real vector

• Division between a complex vector and a real vector

• Absolute square of each element of a complex vector

• Summation of all the elements in a vector

• Maximum or Minimum of a real vector with respective index

Once the functional specifications are in place, the next step in the pro-
cessor design is to identify the instructions required to carry out the func-
tionality. We present the instruction set of our design in the next section.

102 Chapter 6 ASIP design for Vector Processor

6.4 The Instruction Set

The instruction set of an ASIP includes control instructions and processing
instructions. For the proposed VP, the arithmetic operations are over large
vectors and there are normally more than one vectors with the same for-
mation. The parameters of the formation i.e. number of sub-vectors, size
of sub-vectors, skip and the offset are also of large size in terms of number
of bits required as explained in the previous section. It would be quite ex-
pensive to pass all the parameters with an instruction over a sub-vector and
then pass on the parameters again, as in normal mode these parameters are
to be repeated for many times. Therefore, we decided to have configuration
instructions that are passed before the processing / arithmetic instructions
and are used to configure the address generation unit of the ASIP. These in-
structions pass the required parameters for the following arithmetic instruc-
tion over large vectors or sub-vectors. On the other hand, the throughput
for the ASIP block is 2-samples per cycle, thus 2-samples are accessed from
each of the input vector per cycle. Therefore the arithmetic instructions
will continue for multiple cycles. To illustrate with an example: A vector-
product of input vectors v1 and v2 with 64 sub-vectors, each of size 32, lasts
for 1024 cycles with offset 0 and skip 1.

The instruction set of the VP can be viewed in three parts; control
instructions, configuration instructions, and the arithmetic operations in-
structions. The control instructions are NOP no-operation or stall, IRQ
the interrupt request, and JMP jump to a specific address. The input vec-
tor sizes, number of sub-vectors, offsets and skips inside the vectors are all
configured during the configuration instructions. The configuration instruc-
tions also set the starting addresses for the input and output vectors in the
memory. The arithmetic operation instructions list the desired operation
along with the different modes required such as conjugation, truncation etc.

To keep the number of instructions small and also to handle the large
addresses inside the instructions, the width of the instruction set is 32-
bits. Since the ASIP handles vectors of large size and also handles multiple
sub-vectors of similar formation, therefore we have multiple configuration
instructions. Once configured, the ASIP can operate over the vectors for
multiple cycles. If there are more than one operations with same vector
configuration, then the configuration instructions are not repeated. Single
instruction over multiple cycles also needs to be handled in the program
memory access mechanism and is described later in the concerning subsec-

6.4 The Instruction Set 103

tion.

Control Instructions:

• NOP (No operation)

• IRQ (The interrupt request)

• Jump-Program (Jump to a specific address inside the program mem-
ory)

Configuration Instructions:

• agu cfg vector (Configure the basic AGU processing parameters like
vector size, number of de-interleaved vectors,...)

• agu set vec0 addr (Start address of input vector 0)

• agu set vec1 addr (Start address of input vector 1)

• agu set res addr (Start address of the result)

• agu cfg sub vec a (Configure the number of sub-vectors and their
size)

• agu cfg sub vec b (Configure the offset and skip of the sub-vectors)

• agu set lut addr (Start address of the Look Up Table (LUT))

Arithmetic Instructions:

• vec mult (complex vector multiplication)

• vec add (complex vector addition)

• vec sub (complex vector subtraction)

• vec div (complex vector division with a real vector)

• vec mult r (complex vector multiplication with a real vector)

• vec abs square (absolute square of a complex vector)

• vec sum (sum over complex vector or real vector)

104 Chapter 6 ASIP design for Vector Processor

• vec shift (vector shift)

• vec square (vector square)

• vec max min (complex vector maximum or minmum along with arg-
maximum or arg-minimum)

6.4.1 Op-code

Configuration Commands

There are six configuration commands, which are used to prepare the data
samples for the following ALU operations. These commands include: con-
figuration of vectors, base addresses for input and output vectors and sub-
vector parameters. agu cfg vector is used to set the values of vector size and
the number of de-interleaved vectors. This option means writing back the
output samples in sub-vectors spaced at a distance of N

dn
, where N is the

input vector size while dn represents the number of de-interleaved output
vectors which can be {1, 2, 4, 8}.

The configuration commands for the addresses initialize the base ad-
dresses for input-0, input-1 and output vectors respectively. The AGU uti-
lizes this information to calculate the addresses for each and every cycle of
the processing.

The sub-vector configurations are split over two command words of 32-
bit each. The first one updates the number of sub-vectors and the size of
each sub-vector. The second command provides the offset value between
start address and the first element inside each sub-vector, and the value of
skip between every two elements inside each sub-vector.

Arithmetic Commands

The arithmetic command words (ALU command words) configure the ALUs
and activate the internal processing depending on the arithmetic instruction
(vec mult, vec add, ...). Each command has the same underlying structure:

instruction conjugate truncation crf maxmin constant info shift info

The arithmetic instruction that has to be processed by the ASIP is given
at the first place in the command (instruction) by its specific code.

6.4 The Instruction Set 105

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

 1 0 1 0

Truncation

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

2 Bits4 Bits

Conjugate

c c

c c

c c

c c

c c

c c

c c

Information

4 Bits

t3, ... ,t0

t3, ... ,t0

t3, ... ,t0

t3, ... ,t0

t3, ... ,t0

t3, ... ,t0vec_abs_square

vec_div

vec_sub

vec_add

vec_sum

cs
f

m
ax

m
in

2 bit

x x

x

x

x

x

x

x x x x

x

x

x

x

x

x

const_info

x x

x x

x x

x x

x xcr
f

ci ci

ci ci

shift_info
5 bit

unused

8 bit

vec_max_min 1 0 0 1 c c xx x x x x x

vec_square 1 0 0 0 c c x x x x x x x x

vec_shift 0 1 1 1 c c x x x x x x x x m s s s s

x

x

x

x

x

x

x

x

xx x

vec_mult

0 0 1 1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1
12 Bits

1 0 0 0

NOP

IRQ

jump_prog_mem

agu_cfg_vectors

agu_set_vec0_addr

agu_set_vec1_addr

agu_set_res_addr

agu_cfg_sub_vec_a

agu_cfg_sub_vec_b

agu_set_lut_addr

address program memory, 28 Bits

vector size

16 Bits

unused

7 Bits

d_n

4 Bits

1 Bit

2 Bits

15 Bits

skip

13 Bits13 Bits

offset

output address, 28 Bits

start address − 2, 28 Bits

start address − 1, 28 Bits

address LUT, 28 Bits

arithmetic

1 0 0 1
m

m

insn

num−sub−vector size sub−vector

1
 B

it

vec_mult_r

o
p
−

p

crf −> complex / real vector flag

cc −> complex conjugate bits

ci −> input vectors : vector or constant

d_n −> number of deinterleaved vectors

m −> shift mode

mm −> maximum or minimum operation select bit

op−p −> Output Samples Pattern in Memory

 = 0, Write Back at consecutive addresses

 = 1, Write Back as per Input Samples Pattern

s −> shift bits

t3 ... t0 −> truncation bits

x − > Don’t care

Figure 6.2: Instruction Set of the ASIP

106 Chapter 6 ASIP design for Vector Processor

The second parameter is ’conjugate’, represented by two flags that indicate
either one or both or none of the two input vectors needs conjugation before
operation.
Furthermore, the ASIP provides the flexibility of variable truncation over
the resultant. This is quite helpful, specially when input vector elements
have too small values to be significant for operations like multiplications.
The ’truncate’ parameter allows a flexible data truncation of the final re-
sults to Q1.X bit, where X is in the range between 1 . . . 15.
The 1-bit ’crf ’, Complex/Real flag for the operation vec sum, gives the
information about the input vector. If this bit is set to ’1’, it means that
the input vector is composed of complex numbers. Thus real and imaginary
part are added separately. If crf is set to ’0’, the input vector is composed
of real values, each with a size of 32 bits. Instead of 16 bit values, 32 bit
values are added in this mode.
The ’mm’ parameter is used for the vec max min operation to distinguish
between the maximum and the minimum determination.
In the case of a multiplication instruction, different options are possible.
Either complex vectors with complex vectors (vec mult) or complex vec-
tors with real vectors (vec mult r) are multiplied. Both these modes offer
multiplication with constant as well, and the parameters are set by con-
stant info flags.
The parameter ’s’ contains two different information and is used for the
vec shift operation. The MSB stands for the processing mode. If it is ’1’,
the input vector are shift to the left; if it is zero, a right shift operation is
performed. The remaining 4 bits contain the information about the number
of bits to shift. Table 6.1 illustrates the different possible parameter settings
and shows in which arithmetic operations they are used.

Next we look at the pipeline design, and list the different pipeline stages
in our design along with their functionality.

6.5 Pipeline Structure

For the architecture itself, we started with a 5 stage RISC like pipeline. Later
on, we split the execute stage into two stages to achieve high frequency and
efficiency. Figure 6.3 shows the layout of the pipeline. It is composed of six
different pipeline stages:

• Pre-Fetch (PFE):
In Pre-Fetch, the Program Counter (PC) is incremented to retrieve

6.5 Pipeline Structure 107

Parameter Values Description Arithmetic Opera-
tions

conjugate 11 both vectors need conjugation used in all
(c c) 10 vector 1 to be conjugated

01 vector 0 to be conjugated
00 Nothing to be done

truncation t3, t2, truncation to Q 1.x format vec mult, vec mult s
t1,t0 vec div s
value x vec abs square
(1 . . . 15) vec add, vec sub

crf 0 complex values vec sum
1 real values

max-min 0 get the maximum vec max min
(mm) 1 get the minimum
constant info 11 not supported vec mult, vec mult s
(ci ci) 10 vector-1 is constant

01 vector-0 is constant
00 Neither is constant

shift mode 0 left shift vec shift
(m) 1 right shift

Table 6.1: Instruction Set Modes

108 Chapter 6 ASIP design for Vector Processor

the next instruction from the program memory. If the configuration
instructions are decoded, the PC is incremented by one each cycle. In
case of an arithmetic operation, the PC keeps its value (no increment)
and is decremented by two when the next instruction is loaded. More
detailed information can be found in the subsection about Program
Memory Accesses.

• Fetch (FE):
This stage is kept empty due to the 2 cycles delay of the program
memory.

• Decode (DC):
In Decode, the instruction is loaded from the program memory and
interpreted. Based on it, the top level processes are activated. If
data has to be retrieved from the MSS (arithmetic operation), the
corresponding read signals are set.

• Execute 1 (EX1):
The data retrieved from the MSS is available in Execute 1 and pro-
cessed by the ALU. Furthermore, this stage contains several processes
of the AGU, that store the configuration data in the Local Registers.
If the LUT has to be accessed in case of a vec div operation, the read
signals are set and the data is retrieved two cycles later.

• Execute 2 (EX2):
The second part of the ALU is implemented in Execute 2. This stage
is only activated if an arithmetic operation has to be processed.

• Writeback (WB):
Writeback contains the part of the AGU, that generates the write ad-
dresses. The addresses are forwarded to the writeback result function,
that is connected with the ports to the MSS. The number of vectors
that has to be written back depends on the number of vectors read in
and on the processed instruction. Like Execute 2, this stage is only
activated if an arithmetic operation is processed.

The instruction set, op-code and pipeline design are complete, the only
missing element in the design is the memory system. The memory subsystem
design for VP design needs to consider the three elements and their access
by the processor, namely: Program Memory, Data Memory and Look Up
Table. The next section is dedicated to memory design and access schemes
in the different formations.

6.5 Pipeline Structure 109

P
C

C
o
n
tr

o
l

P
ro

g
ra

m
m

M
em

o
ry

p
re

_
d
ec

o
d
e

in
st

ru
ct

io
n

d
ec

o
d
e

n
o
p

A
G

U
_
co

n
fi

g

ch
an

g
e

o
p
er

an
d
s

if
 c

o
n
ju

g
at

e

re
al

lo
ca

te

v
ec

_
al

u
_
in

sn
_
E

X
1

A
L

U
_
ex

 1

8
 m

u
lt

ip
li

er

1
6
 *

 1
6
 b

it

ex
te

n
si

o
n

v
ec

_
al

u
_
in

sn
_
E

X
2

A
L

U
_
ex

2

2
 a

d
d
er

3
2
 +

 3
2
 +

 3
2
 b

it

2
 a

d
d
er

3
2
 +

 3
2
 b

it

m
axsh

if
t

m
in

le
ft

sh
if

t

ri
g
h
t

tr
u
n
ca

te

A
G

U
_
w

b

w
ri

te
b
ac

k

re
su

lt

L
o
ca

l
R

eg
is

te
rs

in
v
er

t

ar
it

h
m

et
ic

m
ai

n
 c

o
n
tr

o
l

re
ad

 d
at

a

fr
o
m

 L
U

T
 s

et
 r

ea
d

si
g
n
al

s
L

U
T

re
ad

 d
at

a

fr
o
m

 m
em

o
ry

M
em

o
ry

 S
u
b
sy

st
em

A
G

U
 s

et
 r

ea
d

si
g
n
al

s

A
G

U
_
ex

ag
u
_
co

n
fi

g

p
c

p
c

F
e

tc
h

P
r
e

 F
e

tc
h

p
c

in
sn

3
2
 b

it

3
2
 b

it

3
2
 b

it

3
2
 b

it

3
2
 b

it

3
2
 b

it

3
2
 b

it

3
2
 b

it

3
2
 b

it

3
2
 b

it

1
6
 b

it

1
6
 b

it

1
6
 b

it

1
6
 b

it

D
e

c
o

d
e

E
x

e
c

u
te

1
E

x
e

c
u

te
2

W
r
it

e
b

a
c

k

is
V

ec
A

ri
th

m

w
b
_
el

em
1

w
b
_
el

em
0

w
b
_
el

em
0

w
b
_
el

em
1

tr
u
n
c_

m
o
d
e

in
v
er

t_
el

em

co
d
in

g
in

sn

ac
ti

v
at

io
n

ad
d
er

v
ec

0
 e

le
m

0

ad
d
r

v
ec

0
 e

le
m

1

ad
d
r

v
ec

1
 e

le
m

0

ad
d
r

ad
d
r

v
ec

1
 e

le
m

1

1
2
8

1
2
8

2
5
6

2
5
6

2
5
6

3
2

3
2

1
2
8

6
4

ju
m

p
 p

ro
g
m

em

Figure 6.3: Pipeline Structure

110 Chapter 6 ASIP design for Vector Processor

6.6 Memory Access

The MSS consists of five different memory blocks: the program memory in
which the program code is stored, and four data memories. When reading
out of the blocks, the requested data is available after 2 cycles delay. The
delay for the write operation is the same. The FEP only required data mem-
ories thus the MSS contained only the data memories. In the ASIP version,
the program memory is part of the MSS, but designed as an independent
memory block with its own ports.

6.6.1 Program Memory Access & Instruction Decoding

The program memory is part of the MSS and contains the program code that
is executed by the ASIP. It takes two cycles after setting the address, till
the instruction is available in the DC stage. The address is represented by
the Program Counter (PC) in the PFE stage. There the function pre fetch
first checks if the pipeline registers between PFE & FE and between FE
& DC are not stalled. If this is the case, an arithmetic vector operation
is being processed, and the PC should not be incremented. Otherwise the
PC is incremented by one each cycle. Before the arithmetic operation has
finished processing, the PC has to be decremented by two to set it to the
next instruction that has to be processed. This is based on the fact, that
when the arithmetic operation is decoded, the PC has already passed the
next two addresses to the program memory. Thanks to this architecture, no
loop has to be part of the instruction set which simplifies the program code.
In DC, the instruction is fetched from the program memory and directly
processed, thanks to the output registered memory blocks in the MSS. The
empty FE stage provides one cycle of delay for program memory access.
The missing delay cycle is realized using pipeline registers. The function
pre decode in DC uses the PC value stored in the pipeline register between
DC and EX1 to fetch the instruction from the program memory. The in-
struction is then passed to the decode function from where the root operation
of the decoded operation is activated.

Figure 6.4 shows the the program memory access procedure along with
the pipeline registers.

6.6 Memory Access 111

PC

pre_fetch

Program

Memory

pre_decode

arithmetic_vec

jump_progmem
nop

agu_cfg

decode

Local Registers

pcpc pc

insn

FetchPreFetch Decode Execute 1

Figure 6.4: Program Memory Access

112 Chapter 6 ASIP design for Vector Processor

6.6.2 Data Memory Access

The Data Memory is accessed from EX1 and WB. Its addresses are gener-
ated by the Address Generation Unit (AGU) that is explained more detailed
later. After passing the first read addresses to the MSS, EX1 is activated
after two cycles when the first values are available. One address corresponds
to reading of 32 bits from the memory. These 32 bits represent either a 32
bit real element, a 16 bit real (stored in the LSBs) or a complex element
with the imaginary part stored in the 16 LSBs, and the real part at the 16
MSBs.
The addresses for the write back are generated in WB pipeline stage. If a
component wise operation is processed, then the results are to be written
back in each cycle and hence WB is always active. In case if sub-vector wise
operation, the results are only written at the end of each sub-vector and
hence WB is activated by EX2 when the end of a sub-vector is reached.

The data memory access process along with the pipeline functionality is
depicted in figure 6.5.

6.6.3 LUT Design

The Look Up Table (LUT) is used in the vec div operation, which uses
multiplication with inverse instead of a real division operation. The LUT
contains the possible division factors 1

x . The input X can be any value
in Q1.15 format and the system stores it at input vector location. In this
scenario, the value of X is first read from the data memory, and in the next
operation the read values becomes an address to be read from the LUT.
Without any optimization the required table would have a size of 64-Kbits
(216 bits), assuming a 15 bit resolution of its entries (signed 16 bit entry). To
decrease the required memory space, the table is optimized in the following
ways:

• Only positive values are stored reducing the size to half. For the
negative input values, the processor sets a flag when the data is read
and uses the information in the address generation and multiplication.

• The bigger the value of x, the smaller is its inverse 1
X . To obtain a

smaller LUT without a significant loss of performance, the efficient
schema is used and shown in table 6.2.

The final size of the LUT is 10.2-Kbits. The configuration command
agu set lut addr is used to define the start address (setting of lut start address),

6.6 Memory Access 113

AGU set read

addresses

get_vector_data_from_mem

writeback

result

AGU_wb

read data

from LUT

set read signals

LUT

Memory Subsystem

Execute 1Decode

Local Registers

AGU_ex

Execute2 Writeback

Figure 6.5: Data Memory Access

Start Address Last Address The Value / Address Scheme
0 29 − 1 All 1

x values
29 210 − 1 Each 8th entry stored
210 211 − 1 Each 16th entry stored
211 212 − 1 Each 64th entry stored
212 213 − 1 Each 512th entry stored
213 214 − 1 Each 2048th value stored
214 215 − 1 only one value stored

Table 6.2: Look Up Table (LUT) Schema

114 Chapter 6 ASIP design for Vector Processor

if the LUT is to be used in the operation.

In this section, we have listed the memory organization and access mech-
anism for different modes used in the VP. We give a brief description of the
address generation unit in the following section.

6.7 Address Generation Unit

The Address Generation Unit (AGU) is split over two pipeline stages; the
decode stage and the write back stage. The decode stage sub-unit generates
the addresses for the elements of input vectors to be read while the sub-unit
in the write back stage generates the addresses for the result elements to be
written back in the memory.

The AGU has two modes: Sub-vector Operations mode and the De-
Interleaved Output Mode. Based on the configuration commands, the AGU
sub-units choose the implementation mode. Each and every command of
the ASIP can have sub-vector operations, except from the case when the
component wise operation results are to be written back in de-interleaved
mode. The de-interleaved output mode is writing back the results spaced at
a distance of N

dn
instead of writing back contiguously; here N stands for the

input vector size, while dn represents the number of de-interleaved vectors.
In sub-vector operations mode, the output results are written back either

contiguously or follow the input vectors pattern. The input pattern may also
be contiguous or the samples are separated by the offset and the skip or sub-
sampling factor. The offset represents the distance between the start of the
each sub-vector and the first element to be read in the sub-vector. The
sub-sampling or the skip factor is the distance between each element of the
sub-vector. For contiguous samples in a vector, the offset value is 0, while
skip is set to 1.

The AGU description completes the ASIP design procedure. In the next
section, we give an overview of the verification process with the LISA tools
before finally providing the implementation results.

6.8 Design Verification Process

The design verification is accomplished on two different levels: During the
development phase with LISA, the Processor Debugger is used to simu-
late the described ASIP while on HDL level, a regression test is performed
to verify the generated code. The latter includes LISA tool generation,

6.8 Design Verification Process 115

LISA processor generation, LISA simulation, RTL simulation, verification
and synthesis.

LISA

FEP

RTL

LISA

results

HDL model

LISA model

results

files

mmap

linker

compare_results.cpp

compare_results.vhd

assembler file

Reference

C Model

Input Data
Ref. Output Data

Ref. Output Addresses

LISA

VCD

Regression

RTL

VCD

compare

pipeline registers

content

Figure 6.6: Verification Flow

The test environment of the ASIP is shown in Figure 6.6. On top, a refer-
ence C model is designed to create the input files for memory initialization,
reference output sample files for the basic ASIP operations and routines,
and reference read and write address files.

In case of simulations using the Processor Debugger, the simulation mem-
ories can be initialized using an assembler file that contains the data for each
memory. The comparison of the generated output samples and addresses is

116 Chapter 6 ASIP design for Vector Processor

performed using C++ functions, that compares the LISA output with the
reference values. For LISA simulation procedure, the C++ functions are
invoked. When performing the regression test, the memories are initialized
using memory map files. After generating the HDL code, the test compares
the content of the pipeline registers of the LISA and the HDL models and
returns all the mismatches. Furthermore, the LISA simulation is processed
again. To verify the output of the HDL simulation, the automatically gen-
erated simple test bench is modified to verify the various aspects of the
design. Similar to the LISA simulation, the output samples and addresses
are compared to their reference values.

The implementation results are described in the next section.

6.9 Implementation Results

The synthesis of the generated RTL code is carried out using Mentor Graph-
ics - Precision RTL Synthesis 2009a [men], and the target technology of our
baseband design i.e. Virtex5 LX330-1760 [xil]. The results are summarized
in table 6.3.

Resources VP - Usage
Global Buffers 1
Function Generators 7493 (3.61 %)
CLB Slices 1874 (3.61 %)
Dffs or Latches 1394 (0.66 %)
DSP48E 8 (4.17 %)
Maximum Frequency 78.6 MHz

Table 6.3: Summary of ASIP Implementation Results

The results apart from the maximum achievable frequency are quite en-
couraging. The ASIP design provides flexibility to the vector operations
compared to the FEP (earlier hardwired design of baseband), and also that
additional operations such as vector shift, vector minimum are supported
by the VP. Given these two facts, the resource utilization is good enough to
consider the ASIP designs for future IP development on the SDR platform.
The number of DSP slices used are as per expectation, as there are 8 real
multiplications taking place in the execute-1 pipeline stage of the VP. The
ASIP development time is also less than the ASIC’ design and development

6.9 Implementation Results 117

time.

Summary

This chapter gave the ASIP design approach using LISATeK, for the ba-
sic arithmetic operations over vectors with fancy addressing schemes. The
effort was to evaluate the use of ASIP based designs for the SDR plat-
forms, and assess the flexibility that they provide. The next chapter has a
more detailed comparative analysis of both approaches and also discusses
the hardware technologies for the flexible baseband SDR designs.

118 Chapter 6 ASIP design for Vector Processor

Chapter 7

Future Wireless Systems
Design Approaches

In this chapter we present the design guidelines for baseband architecture of
flexible multi-standard radio. We discuss the different hardware technologies
available for the baseband design, list the advantages they offer and make
comparison among those. We also discuss results of the two approaches,
ASIC and ASIP design, that we used for the design of digital front-end pro-
cessor as described in the previous chapters, are discussed. Next, We try
to come up with some recommendations for future flexible wireless systems’
baseband design in view of our results and analysis. This chapter also elab-
orates LTE channel estimation methodology, and lists the procedure that
our proposed hardware design adopts to compute the channel response.

7.1 Hardware Design for Baseband Processing

The digital hardware component performance in the software defined ra-
dio (SDR) is a key aspect to measure the radio’s capability. The set of
algorithms to be implemented in the hardware comes from diverse wireless
standards and waveforms thus providing a greater design challenge. On the
other hand, a very high digital processing power is required to implement
the flexible and efficient solutions for the SDR applications. The different
hardware components that can be used to carry out these digital processing

119

120 Chapter 7 Future Wireless Systems Design Approaches

include:

• digital signal processors (DSPs)

• field programmable gate arrays (FPGAs)

• general-purpose processors (GPPs)

• application specific integrated circuits (ASICs)

Considering the performance requirements of the SDR and then analyz-
ing the different options available to come up with the best solution is a
challenging system design task and is discussed in this section.

GPPs are generally designed for high performance computing solutions
performing mostly case-based reasoning operations or control algorithms.
GPPs have not been used for real-time signal processing tasks because of
their poor performance for the said tasks. In case of GPPs, its hard to pre-
dict the duration to execute a specific task at system design level because
of caches, branch prediction units, and multi-tasking. One more constraint
about the GPPs is their high power consumption per operation that would
almost exclude them for SDR applications given the number of operations
carried out in multi-standard platforms. However, the GPP-based systems
can be better utilized in stationary systems where power consumption is of
a bit less importance. Also the GPPs provide highest level of flexibility, and
are capable of carrying out highly variant tasks over a wide range.

The digital signal processors (DSPs) are microprocessors that efficiently
implement computational algorithms with high performance using special-
ized architectures thus reducing the number of computations for specific
operation compared to GPPs. The DSPs are used for the applications that
require higher performance execution than is typically found on standard
microprocessors or GPPs; the DSP processor architectures provide opti-
mized support for the high performance, repetitive, and numerically inten-
sive mathematical manipulation of digital signals [LBSL97]. The DSP pro-
cessors have several tailored dedicated operations, such as hardware multipli-
ers, dedicated address generation units, and large accumulators. The DSPs
also have special instructions available for common DSP operations with
the ability to execute these in parallel, if required. On the other hand, the
DSP processors become in-efficient for irregular control tasks because of un-
available specialized instructions and the flexibility is reduced as well. Both

7.1 Hardware Design for Baseband Processing 121

GPPs and the DSPs have low performance for the complex bit based opera-
tions as is the case in the interleaving and channel decoding in a transceiver
design.

The FPGAs are power hungry devices compared to their competitors
(often several times more than ASIC), making it hard to choose them as the
solution for baseband design. Though the FPGAs provide dynamic recon-
figurability but its usage is limited in the context of SDR platforms. Also
in almost all the scenarios, a software update would cost much less than
a complex time consuming dynamic hardware reconfiguration in the multi-
standard environment. The FPGAs also don’t provide any gain in terms of
speed or highest achievable frequency in the digital baseband design. How-
ever for rapid prototyping of an experimental platform such as [ope], FPGAs
are ideal candidate based on reduced design cycle, flexibility, ease of use and
lower costs of FPGAs. Once validated and a mass scale production is re-
quired, one has to switch to solutions such as ASICs or DSPs. So for on
going analysis of baseband design, we take out the FPGA option.

ASICs offer the most optimized, powerful and computationally efficient
digital hardware implementation for the signal processing applications at the
cost of flexibility. Generally customized ASICs are used to provide added
processing power when no other option is available due to design constraints
or when designing sufficiently high volume systems. Also the design of so-
phisticated ASICs requires significant development time and effort in verifi-
cation. Therefore, ASIC implementations tend to be better suited for highly
complex problems or high volume applications or high data throughput re-
quirements, such as cellular phones. On the other hand, following Moore’s
Law, manufacturers have been making almost 60% more transistors avail-
able per area of silicon each year providing large computational potential to
design highly efficient ASICs with high data rates.

The hardwired circuits i.e. ASICs are most energy efficient, followed by
the DSPs and then the General Purpose Processors. The flexibility moves
in the opposite direction to energy efficiency. If software only solutions are
adopted, then due to limited computational power of each individual unit
there would be a large number of nodes in the design making the interconnect
design quite complex. On the other hand, an all hardwired or ASIC based
design would have specialized nodes in the design and the interconnection
design would not be easier either. With the advantages and the drawbacks
of the hardware technologies listed above, it is quite evident to realize that

122 Chapter 7 Future Wireless Systems Design Approaches

every design is unique and there is no universal solution of selection among
the devices encompassing the entire range of baseband algorithms. For the
latest wireless standards, the four main digital hardware categories (GPPs,
DSPs, FPGAs, and ASICs) provide inadequate computational capability
and require a combination of technologies for implementation. These new
wireless standards require ASIC assistance for high throughput simple func-
tions and DSP software for complex control functions [Pul08]. In fact, most
designers use a combination of devices to implement the overall system, a
method often referred to as heterogeneous processing. The trade-offs come
in to picture while making the choice of most efficient device for a certain
set of algorithms. The parameters such as cost, speed, and flexibility, as
well as power and optimization, all have to be considered. Next we try to
map the set of algorithms to different hardware technology options.

Once we have discussed the pros and cons of the candidate hardware
technologies for baseband design, we move on to look at the different oper-
ations or algorithms that would be implemented in the SDR context. The
baseband design of the software defined radio (SDR) is composition of differ-
ent set of algorithms from various standards e.g. combining all the channel
coding schemes from all the standards and trying to merge them in one
unit that serves all standards. The basic design approach is to take the
advantage of the commonalities that exist among different standards and
then translate those into the hardware processing blocks. Once the set of
operations and the algorithms for each set of tasks is defined e.g. channel
decoder, interleaver or mapper; the next decision is to choose the hardware
technology for the said unit. The more important parameters in choosing
the hardware technology in the context of multi-standard baseband design
are:

• Operation Regularity

• Processing Power Requirements

• Operation Homogeneity across standards

The ASIC design is most power efficient design methodology but at the
same time requires the algorithms to be highly regular to take full design
advantage. Since the power consumption is lowest, so ideally the largest
chunk of the operations should be designed with the ASICs; given the avail-
able power resources for the baseband design. The operations that are highly
regular, require huge processing power, and are highly homogeneous across

7.1 Hardware Design for Baseband Processing 123

the standards become a good candidate for ASIC design. The operations
like Fourier Transforms (FTs), and digital filtering are ideal candidates for
the ASIC design.

The choice of DSPs is good for the operations which are less regular
though not irregular, and require dedicated specialized processing such as
multiplications and MACs. The regular operations like FTs or the vector
processors designed using the DSPs would also result in acceptable or mod-
erate design. Thus for specialized operation (e.g specific data width) and
less critical regular operations with medium processing requirements and en-
ergy consumption, the DSPs are good candidate in the baseband processing.

The GPPs are the most flexible and can serve hugely variant tasks. The
irregular operations should also be carried out by the GPPs, however it is
worth mentioning again that the power consumption is high in GPPs thus
only limited operations should be assigned to the GPPs in a hybrid design.
The control operations in the baseband design may typically be assigned to
the GPPs.

So the assignment of a specific set of algorithms to a hardware technology
depends on its computation nature, occurrence frequency and its behavior
across multiple standards. Next comes the question, how often can we as-
sign the algorithms to one category e.g. can all algorithms be carried out
with the DSPs. It may be answered by looking at the number of operations
per unit time (second) required in the final design and the energy resources
available per second for the baseband part in the product. We illustrate this
by an example and use the numbers given in [vB09].

The mobile terminals today have 3 watts of power available, out of which
1W is for digital baseband part of the handheld device. On the other hand,
the digital workload is 100GOPS (109 operations per second). Thus we
have a power budget of 10− pico− J/operation. Now if we have to design
the baseband with hardwired i.e. ASICs and DSPs, then we would be using
a combination of the two given that the power budget lies between the
power consumption of these two hardware technologies. If the average power
consumption of the hardwired is 2pJ/op and for DSP it is 20pJ/op; then
55% of the operations can be assigned to ASICs while 45% may be assigned
to DSPs. This example illustrates that not only the operation nature but
the power budget must also be included as parameter while allocating a set
of algorithms to a specific hardware technology.

124 Chapter 7 Future Wireless Systems Design Approaches

7.2 ASIC and ASIP Design Comparison

We have presented two hardware designs in the previous chapters, the front
end processor (FEP) in chapter 5 and the vector processor (VP) in chapter
6. The FEP design is a hardwired design i.e. an ASIC design, while the VP
design is an ASIP one. In this section, we present the comparison of both
of these designs on the basis of our observations and results.
The functional specifications of the ASIP were initially set to match that of
the FEP except from the Fourier Transforms (FT) i.e. the ASIP is supposed
to provide all the functions that the FEP had apart from the DFT / IDFT.
So basically ASIP is designed for arithmetic component-wise-operations over
the vectors such as addition, subtraction, multiplication and division. Then
there are functions such as Energy Calculations, Dot-Products and Max
Calculations over vectors or sub-vectors. The design methodology of the
ASIP to serve all these operation was different from the FEP approach.
The ASIP instruction set is composed of the simple operation over vectors
and composed of two or three instructions to carry out a bit complex oper-
ations such as Energy Calculations or Dot-Products. To illustrate with an
example, to compute the average energy of a vector, the VP would do it in
three steps: calculate the absolute square of the individual elements of the
vector, then computer the vector sum by adding all the elements calculated
in the previous step and finally using the division by the vector size. For
the performance of the ASIP with respect to the ASIC design we have the
following observations:

• The VP design provides higher programmability using the macro level
operations, as these operations can be used in different formations
with many options.

• The throughput for the component-wise-operations is the same as that
of the ASIC or FEP design.

• The throughput of VP is half for few FEP operations like Dot-Product
and Energy Calculations as it decomposed these operations in to sim-
pler vector operations that ASIP instruction set is composed of.

• These macro level basic vector operations in VP give high vector oper-
ation flexibility at the expense of lower throughput for few functions.

• The address generation unit (AGU) of the VP is more flexible with-
out loss of performance. In the VP, the output vector addresses for

7.2 ASIC and ASIP Design Comparison 125

the memory can either follow the input pattern or can be stored at
contiguous addresses.

• The VP provides some additional basic arithmetic operations e.g. Vec-
tor Multiplication with constants, Vector Shift, Vector Square; thus
enhancing the vector functionality of the baseband design.

• The memory utilization for both designs is the same apart from the
addition of 64Kbits program memory for the ASIP design.

Next is to compare both these designs on the different target tech-
nologies. To make a fair comparison, the FEP processing block is re-
synthesized without its FT unit and both the designs are synthesized with
Xilinx − V irtex − V and also with 65nm as the target technologies. The
synthesis results using both the target technologies are shown in table 7.1.
The parameter target frequency is the synthesis constraint passed to the
synthesis tool, while the maximum frequency is what design achieves at the
end of the synthesis. The silicon area in the table 7.1 is represented per
function generator (FG). In the results table, The parameter F/S (maxi-
mum frequency / silicon area) in the table is a classical quality criteria: the
larger the better. To achieve the optimal results, we used an aggressive
synthesis approach. We first set a very high target frequency to observe
the maximum achievable frequency by the target technology without any
other constraints. Once the highest achievable frequency is known then a
frequency with minimum silicon area close to the highest frequency observed
is looked for as is shown by the results in table 7.1. For the initial synthesis
with Virtex-V, the number of extreme DSP48E slices used by each of the
hardware block were different. Therefore, we disabled the option to use the
extreme DSPs to make a fair comparison and the results shown are without
using any DSP slice.

From the comparison of the results, the hardwired ASIC design is better
than the ASIP design in terms of the area and frequency. The silicon area
increases by 19% in case of 65nm target technology, while the increase in
case of FPGA synthesis is 70%. We could not find an exact reason for the
huge increase in case of Virtex-V synthesis, an in depth analysis is required
for this specific result. The decrease in maximum achievable frequency is al-
most 70% in both ASIP synthesis results compared to ASIC. The difference
in the maximum achievable frequency was not anticipated and the initial
investigation suggest that with some minor changes in the LISA design, an
acceptable frequency can be achieved. The difference is not huge in case of
the silicon area, ignoring the FPGA results, and ASIP can be chosen and

126 Chapter 7 Future Wireless Systems Design Approaches

Target
Technol-
ogy

Design Target
clock
period
(ps)

Target
freq
(MHz)

Silicon
area
µm2/FG

Slack
(ps)

Max
Fre-
quency
(MHz)

100 *
F / S

Norma-
lized
F/S

3300.00 303.03 107968 1585.00 204.71 1.90 51.27
VP 5400.00 185.19 97987 114.00 181.36 1.85 50.05

5430.00 184.16 99497 0.00 184.16 1.85 50.05
ASIC 2000.00 500.00 91686 1095.00 323.10 3.52 95.29
65 nm FEP 3095.00 323.10 93495 0.00 323.10 3.46 93.45

3291.00 303.86 82166 0.00 303.86 3.70 100.00
3350.00 298.51 82168 0.00 298.51 3.63 98.24

VP 3333.33 300.00 9737 9377.67 78.67 8.08 33.92
13157.89 76.00 9665 282.91 77.67 8.04 33.74

Virtex V 3333.33 300.00 5683 4054.65 135.36 23.82 100.00
5VLX330 FEP 4000.00 250.00 5709 3387.98 135.36 23.71 99.54

5000.00 200.00 5709 2387.98 135.36 23.71 99.54
7692.31 130.00 5707 304.33 135.36 23.72 99.58

Table 7.1: The synthesis results summary for FEP and VP design

replaced in the baseband design for vector processing once the maximum
achievable fequency is within acceptable range.

Once the ASIP design is reworked, we think that the performances of
both the design options would be comparable in terms of silicon area and
frequency. Though the results for the ASIC design would still be a bit bet-
ter but the ASIP design provides a higher degree of flexibility and increased
functionality; the parameters quite important in flexible radio design. One
more aspect that we would like to investigate in future is the power con-
sumption for both the designs.

The ASIP designs like the DSPs and other software solutions stand as
an alternative to the baseband designs when the complexity increases. Our
effort was to investigate the suitability of the ASIPs in the hybrid-platform
design for the SDR applications. Our baseband design, [ope] described in
chapter 3, is composed of the parameterizable ASICs. The first effort with
the prototype is to investigate that how far we can go with the hardwired
design keeping enough flexibility and acceptable silicon. The reasons for the

7.3 LTE Channel Estimation Approaches 127

hardwired are the same as explained in the previous section: high com-
putational power and lowest power consumption. The algorithms such as
channel encoder and channel decoder that are neither regular nor homoge-
neous across the standards have posed enough problems for the hardwired
design. The ASIC solutions for such complex blocks in the baseband de-
sign lack flexibility and require high performance. The percentage of logic
re-usability in the ASIC design of these blocks is not encouraging e.g. in
LDPC and Viterbi decoding. The better solution also requires higher pro-
grammability and the alternate solutions such as GPPs and DSPs (discussed
in the previous section) do not help in this scenario. The researchers have
already considered the ASIPs as a solution for decoder solution in multi-
standard environment with acceptable results [VW08] [KMF09] [BAS04].
The ASIPs may be a solution for complex set of algorithms such as flexible
encoder and decoder and stand as a strong candidate for exploration of such
set of algorithms.

7.3 LTE Channel Estimation Approaches

In this section, we elaborate how our designed digital front end processor
(FEP) can be used for the channel estimation of the 3GPP Long Term Evo-
lution (LTE). The schema is similar to what we have in the OFDM case, we
analyze the interpolation schemes based on the hardware resource utilization
with reference to our implementation as it can handle multiple interpolation
schemes.

We first look at the downlink frame arrangement and later analyze how
the different macro blocks in our design are used for channel estimation
procedure. The different possible interpolation schemes are also discussed
and relevant procedures both for the FEP and the VP are listed.

7.3.1 LTE Downlink Frame Arrangement

The 3GPP E−UTRA (Evolved Universal Radio Terrestrial Radio Access)
aims to achieve a peak data rate 100Mbps for the downlink. The OFDMA
modulation scheme is used at downlink to match the higher performance
requirements. Each radio frame consists of 10 sub-frames each of 1ms dura-
tion, while the sub-carrier spacing is 15KHz. Twelve sub-carriers are joined
together to form a resource block (RB). The set of allowed transmission
bandwidth consists of {1.4, 3, 5, 10, 15, 20}MHz. The number of resource

128 Chapter 7 Future Wireless Systems Design Approaches

blocks for each of the transmission bandwidth are {6, 15, 25, 50, 75, 100},
and the number of respective sub-carriers are {72, 180, 300, 600, 900, 1200}.

Figure 7.1 shows the arrangement of reference pilot signals inside one
subframe of LTE − Downlink scheme with one antenna port and normal
cyclic prefix (CP). Each subframe consists of 14-OFDM symbols and each
OFDM symbol is composed of 6 to 100 resource blocks with each resource
block composed of 12 sub-carriers. The channel estimation algorithm is first
run over each OFDM symbol in the subframe containing the reference pilot
symbols. For the channel estimate of symbols in between without reference
signals, the temporal interpolation is carried out on the symbols containing
reference signals.

The channel estimation is computed using the Least-Square method.
First of all, the received signal is converted into frequency domain by using
the DFT module of the FEP. The component-wise-multiplication at the pilot
positions between the received signal and the reference pilot signal gives the
channel estimate and is given by:

Ĥi,p = Ri,p � PHi (7.1)

where Ri,p is the received signal at the pilot positions for antenna i, while
PHi represents the Hermitian of the reference pilot signals for antenna i.
The component-wise multiplication with sub-band / sub-vector option of
the FEP is used here, and the skip factor is set to the distance between
the consecutive pilots for each antenna (which is 6). In case of the VP, the
vec mult is used by setting the appropriate sub-vector parameters.

The channel estimation for the sub-carriers in between the pilots can
be computed by the interpolation scheme. The interpolation method de-
pends on the scheme chosen, here we discuss three schemes and describe the
methodology to be used by our hardware processors to implement each of
these methods.

7.3.2 Linear Interpolation in Frequency Domain

In frequency domain linear interpolation scheme, the channel response in
a symbol over the sub-carriers positions (other than pilot positions) is cal-
culated by linear interpolation of the two pilots that are around these sub-
carriers on each side. On the edges of the resource block, the extrapolation
of the pilots in that particular resource block is carried out. In the following,
we define the operation for single and multiple antennas.

7.3 LTE Channel Estimation Approaches 129

Case: SISO with normal cyclic prefix

Figure 7.1 shows the arrangements for a single antenna case with normal
cyclic prefix. The pilots are distributed over the symbols {0, 4, 7, 11} in each
subframe. Inside each resource block there are two pilots out of total 12 sub-
carriers. Figure 7.2 explains the linear interpolation and extrapolation for a
SISO case with 25 resource blocks. As the distance between the consecutive
pilots is constant over the whole symbol length, therefore the fractional co-
efficients for pilots are periodic over the distance between the pilots i.e. 6.
The co-efficients listed are for the case, when the pilots are at positions {0, 6}
inside each resource block. The pilots position inside each resource block
varies depending on the cell ID and it may have any other value like {1, 7},
however the distance between the consecutive pilots is always the same. At
the edges of each symbol, for the sub-carriers that have pilot sub-carrier only
on one side, the extrapolation process is carried out to compute the channel
estimate for the sub-carriers at the edges. Since in this case (figure 7.2) the
first pilot is at position 0, therefore the extrapolation only takes place at
the other edge of the symbol and is depicted in the figure along with the
multiplicative co-efficients. The fractional co-efficients for the interpolation
are constant, while for extrapolation those are bit different for two different
pilot locations.

The channel estimate for the symbols without reference pilot sub-carriers,
(symbols {1, 2, 3, 5, 6, 8, 9, 10, 12, 13} in this case), is determined by temporal
linear interpolation between the symbols with reference pilot sub-carriers.
The channel estimate for the symbols {1, 2, 3} is given by:

Ĥ0,i(1) =
3
4
Ĥ0,i(0) +

1
4
Ĥ0,i(4) (7.2)

Ĥ0,i(2) =
1
2
Ĥ0,i(0) +

1
2
Ĥ0,i(4) (7.3)

Ĥ0,i(3) =
1
4
Ĥ0,i(0) +

3
4
Ĥ0,i(4) (7.4)

This is calculated once we have ˆH0,i(0) and ˆH0,i(3) for all sub-carrier
values i, antenna 0 and for symbols 0 and 3 respectively. The procedure is
repeated for the other non-pilot symbols as well.

The procedure using the ASIP based vector processor for the above ex-
plained operation is listed here:

• Load the calculated channel estimate for each antenna Ĥi over the
pilot positions, here only one antenna so Ĥ0.

130 Chapter 7 Future Wireless Systems Design Approaches

0

Pilot Sub−carrier

OFDM Symbol

1 2 3 4 5 6 7 8 9 10 11 12 13

R
es

o
u

rc
e

B
lo

ck

0

1

2

3

 4

 5

 6

7

 8

9

 1

0

1

1

Figure 7.1: Mapping of LTE Downlink Reference Signals for SISO with
normal prefix

7.3 LTE Channel Estimation Approaches 131

)6(ˆ)6/1()0(ˆ)6/5()1(ˆ 000 HHH

)0()0()0(ˆ *

0 RPH

)6(ˆ)6/2()0(ˆ)6/4()2(ˆ 000 HHH

)6(ˆ)6/3()0(ˆ)6/3()3(ˆ 000 HHH

)6(ˆ)6/4()0(ˆ)6/2()4(ˆ 000 HHH

)6(ˆ)6/5()0(ˆ)6/1()5(ˆ 000 HHH

)6()6()6(ˆ *

0 RPH

)12(ˆ)6/1()6(ˆ)6/5()7(ˆ 000 HHH

)12(ˆ)6/2()6(ˆ)6/4()8(ˆ 000 HHH

)12(ˆ)6/5()6(ˆ)6/1()11(ˆ 000 HHH

)12()12()12(ˆ *

0 RPH

)18(ˆ)6/1()12(ˆ)6/5()13(ˆ 000 HHH

PRB0

PRB1

)288()288()288(ˆ *

0 RPH

)294(ˆ)6/5()288(ˆ)6/1()293(ˆ 000 HHH

)294()294()294(ˆ *

0 RPH

)288(ˆ)6/1()294(ˆ)6/7()299(ˆ 000 HHH

)288(ˆ)6/2()294(ˆ)6/8()298(ˆ 000 HHH

)288(ˆ)6/3()294(ˆ)6/9()297(ˆ 000 HHH

)288(ˆ)6/4()294(ˆ)6/10()296(ˆ 000 HHH

)288(ˆ)6/5()294(ˆ)6/11()295(ˆ 000 HHH
PRB24

Figure 7.2: Liner Interpolation for SISO Case with RB = 25 and normal
prefix

132 Chapter 7 Future Wireless Systems Design Approaches

• Load the interpolation fractional constants α0 and α1 in the memory;
where α0 = {1, 5

6 ,
4
6 ,

3
6 ,

2
6 ,

1
6} and α1 = {0, 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6}

• Load the extrapolation fractional constants in the memory; β0 and β1;
where β0 = {11

6 ,
10
6 ,

9
6 ,

8
6 ,

7
6} and β1 = {5

6 ,
4
6 ,

3
6 ,

2
6 ,

1
6}

• Calculate X = α0 ∗ Ĥi starting at first pilot index inside the symbol
(index-0 in this case) and Y = α1 ∗ Ĥi staring at second pilot index in
the symbol (index-6 in this case).
Here the vec mult command of ASIP is used with the parameters set
to multiply a constant complex value with a real valued vector. The
results X and Y for the first 10 operations would look like:

X[0 : 9] = H0,
5
6Ĥ0,

4
6Ĥ0,

3
6Ĥ0,

2
6Ĥ0,

1
6Ĥ0, Ĥ6,

5
6Ĥ6,

4
6Ĥ6

Y [0 : 9] = 0, 1
6Ĥ6,

2
6Ĥ6,

3
6Ĥ6,

4
6Ĥ6,

5
6Ĥ6, 0, 1

6Ĥ12,
2
6Ĥ12

• Sum up the previous product results W = X + Y . This operation
uses the vec add i.e. component-wise vector addition over a length
(Np − 1) ∗ 6 + 1; where Np is the number of pilots in the symbol.
The remaining 5 sub-carrier positions are filled by the extrapolation
operations.

• Now the extrapolation operations for the sub-carriers at the edges of
the symbol, in this case the sub-carriers indices 295 - 299 as shown in
figure 7.2. Calculate X = Ĥ(Np−1)∗6 ∗β0 and Y = Ĥ(Np−2)∗6 ∗β1. This
uses the vec mult command as explained above with length equal to
5.

• Next calculate ĤNp∗6+1 : ĤNp∗6+5 = X−Y using the vec sub component-
wise subtraction of the ASIP module with length equal to 5.

• If the pilots are located at other indices (not at indices {0, 6}), the
extrapolation operations are the same with change in the fractional
co-efficients. The respective fractional co-efficients for all the possible
pilot locations are stored in the memory (as there are only 6 possible
combinations). The pilot index information is passed to the block by
the higher layers.

• Now we have the complete vector Ĥ0,i over sub-carrier length i and
for antenna 0. The procedure is repeated for symbols {4, 7, 11}

7.3 LTE Channel Estimation Approaches 133

• The temporal interpolation procedure is used for symbols {1, 2, 3, 5, 6, 8, 9, 10, 12, 13}.
The procedure for one symbol, lets say symbol-1 is:

• Calculate 3
4 ∗ Ĥ0,i(0) and 1

4 ∗ Ĥ0,i(3) using the vec mult.

• Use the vec sum for the two fractions calculated above.

• The procedure is repeated for all the other symbols without reference
pilots in the subframe.

To illustrate more, a part of the assembler code for the ASIP design
for the above operation is depicted here. The code shown computes the
channel estimate at pilot positions and then at the intermediate positions
using linear interpolation. The extrapolation for the remaining 6 sub-carriers
is computed with similar approach and is not shown here. Similarly, the
inter-symbol temporal interpolation is computed in the ASIP design.

In case of the FEP, the command words are passed to the VCI-Interface
of the FEP-Core. The FEP core reads out the commands from the VCI
after completing each task. The command words for the DFT/IDFT mode
is of 64 bits, while the command word for the pre-post processing are 128
bits and the parameters are explained in the chapter 5. Here we show a user
view of the commands to the FEP, the first command is to compute the
DFT of the received signal and the 2-nd is to calculate the component-wise-
multiplication of the received signal and the reference signal at the pilot
positions.

FT Mode Command{
DFT ; the operation to be computed, 1-bit
Size ; Input Vector Size

Addresses ; input, output addresses
}

134 Chapter 7 Future Wireless Systems Design Approaches

ASIP Assembler Code Comments
agu cfg vectors 300 0 0 0 1 Vector size = 300
agu set vec0 addr 0x0 Address for reference pilots
agu set vec1 addr 0x08000 Address for received signal (after DFT)
agu set res addr 0x10000 Output address
agu cfg sub vec a 1 300 Configure the sub-vectors, 1 with size 300
agu cfg sub vec b 0 6 start at index - 0, and skip 6 addresses at each

step
nop
vec mult 0 0 0 0 0 0 Vector Multiplication of 2 input vectors
nop So we have channel estimate at pilot positions :

Ĥi,p as per equation 7.1
Next is linear interpolation

agu cfg vectors 294 0 0 0 1 Set Vector Size for interpolation, for other 6 sub-
carriers the extrapolation process

agu set vec0 addr 0x10000 Location of Ĥi,p from previous step
agu set vec1 addr 0x18000 Address of co-efficients α0

agu set res addr 0x0 Result Address
agu cfg sub vec a 49 6 Number of sub-vectors = 49, Size of each sub-

vector= 6
agu cfg sub vec b 0 1 Start at index 0, and skip = 1 i.e. consecutive
nop
vec mult 0 0 0 0 1 0 Vector Multiplication with second input a real

valued vector
nop We have α0 ∗ Ĥi,p

agu cfg vectors 294 0 0 0 1
agu set vec0 addr 0x10018 Start from 2nd pilot at location 6 (Byte address-

ing 6*4 = 0x18)
agu set vec1 addr 0x18120 Location of co-efficients α1

agu set res addr 0x08000
nop
agu cfg sub vec a 49 6
agu cfg sub vec b 0 1
nop
vec mult 0 0 0 0 1 0 We have α1 ∗ Ĥi,p

nop
Now sum up the last two results

agu cfg vectors 294 0 0 0 1
agu set vec0 addr 0x0 α0 ∗ Ĥi,p

agu set vec1 addr 0x08000 α1 ∗ Ĥi,p

agu set res addr 0x10000
agu cfg sub vec a 1 294
agu cfg sub vec b 0 1
nop
vec add 0 0 0 0 0 0 The Linear Interpolation result

Table 7.2: Glimpse of the assembler code for linear interpolation in the ASIP
design

7.3 LTE Channel Estimation Approaches 135

PP Mode Command{
CWM ; The specific bit for component-wise-mult is set ’1’

Sub band count ; The number of sub-bands
Sub band span ; Span of each sub-band

sub sampling factor ; distance between 2 consecutive samples inside sub-band
offset ; at the start of each sub-band
conj 1 ; conjugate the 2-nd input

Addresses ; input-1, input-2, and output
}

So both the processing units are equally capable of computing the re-
quired operations. It is also worth mentioning that for any time frequency
conversions, only the FEP block can be used, the vector processor (VP) does
not compute DFT or IDFT. The approaches to compute the functions in
both cases are quite similar, and the reason is the similar functional specifi-
cations. However the mechanism to program the units and the computations
inside are processor specific, the performance comparison of the two blocks
has been presented earlier in this chapter. This section depicts how both
the blocks can serve the interpolation tasks. Next we consider the multiple
antenna case for LTE receiver.

Case: MIMO with normal cyclic prefix and 2 antennas

Figure 7.3 shows the downlink sub-carriers arrangements for two antennas
case with normal cyclic prefix. The pilots are distributed over the symbols
{0, 4, 7, 11} in each subframe. Inside each resource block there are two pilots
for each antenna. Figure 7.4 explains the linear interpolation and extrap-
olation for MIMO case with 2 antennas and 25 resource blocks. As the
distance between the consecutive pilots for respective antenna is constant
over the whole symbol length, therefore the fractional co-efficient for pilots
are periodic over the distance between the pilots i.e. 6 for both the anten-
nas. The extrapolation is also defined over the last resource block. The
co-efficients listed are for the case, when the pilots are at positions {0, 6}
inside each resource block. The pilots position inside each resource block
varies depending on the cell ID and it may have any other values as well.
Thus the fractional co-efficients for the interpolation are constant, while for

136 Chapter 7 Future Wireless Systems Design Approaches

0

Pilot Sub−carrier for Antenna − 0

OFDM Symbols

1 2 3 4 5 6 7 8 9 10 11 12 13

R
es

o
u

rc
e

B
lo

ck

0

1

2

3

 4

 5

 6

7

 8

9

 1

0

1

1

Pilot Sub−carrier for Antenna − 1

Figure 7.3: Mapping of LTE Downlink Reference Signals for MIMO (2-
antennas) with normal prefix

7.3 LTE Channel Estimation Approaches 137

-

)6(ˆ)6/1()0(ˆ)6/5()1(ˆ 000 HHH

)0()0()0(ˆ *

0 RPH

)6(ˆ)6/2()0(ˆ)6/4()2(ˆ 000 HHH

)6(ˆ)6/3()0(ˆ)6/3()3(ˆ 000 HHH

)6(ˆ)6/4()0(ˆ)6/2()4(ˆ 000 HHH

)6(ˆ)6/5()0(ˆ)6/1()5(ˆ 000 HHH

)6()6()6(ˆ *

0 RPH

)12(ˆ)6/1()6(ˆ)6/5()7(ˆ 000 HHH

)12(ˆ)6/2()6(ˆ)6/4()8(ˆ 000 HHH

)12(ˆ)6/5()6(ˆ)6/1()11(ˆ 000 HHH

)12()12()12(ˆ *

0 RPH

)18(ˆ)6/1()12(ˆ)6/5()13(ˆ 000 HHH

)9(ˆ)6/1()3(ˆ)6/5()4(ˆ 111 HHH

)3()3()3(ˆ
*

1 RPH

)9(ˆ)6/1()3(ˆ)6/7()2(ˆ 111 HHH

)9(ˆ)6/2()3(ˆ)6/8()1(ˆ 111 HHH

)9(ˆ)6/3()3(ˆ)6/9()0(ˆ 111 HHH

)9(ˆ)6/2()3(ˆ)6/4()5(ˆ 111 HHH

)9(ˆ)6/3()3(ˆ)6/3()6(ˆ 111 HHH

)9()9()9(ˆ
*

1 RPH

)15(ˆ)6/1()9(ˆ)6/5()10(ˆ 111 HHH

)15()15()15(ˆ
*

1 RPH

)288()288()288(ˆ *

0 RPH

)294(ˆ)6/5()288(ˆ)6/1()293(ˆ 000 HHH

)294()294()294(ˆ *

0 RPH

)288(ˆ)6/1()294(ˆ)6/7()299(ˆ 000 HHH

)288(ˆ)6/2()294(ˆ)6/8()298(ˆ 000 HHH

)288(ˆ)6/3()294(ˆ)6/9()297(ˆ 000 HHH

)288(ˆ)6/4()294(ˆ)6/10()296(ˆ 000 HHH

)288(ˆ)6/5()294(ˆ)6/11()295(ˆ 000 HHH

)291(ˆ)6/1()297(ˆ)6/7()299(ˆ 111 HHH

)291(ˆ)6/2()297(ˆ)6/8()298(ˆ 111 HHH

)297()297(ˆ)297(ˆ 11 RHH

)291(ˆ)6/1()297(ˆ)6/5()296(ˆ 111 HHH

PRB24

PRB1

PRB0

Figure 7.4: Liner Interpolation for MIMO Case (2-antennas) with RB = 25
and normal prefix

138 Chapter 7 Future Wireless Systems Design Approaches

extrapolation those are bit different for two different pilot locations.

The procedure for inter-symbol interpolation and intra-symbol interpo-
lation in MIMO case is similar to what we explained previously for SISO
case. The only difference is that the procedure is repeated for all the anten-
nas (in this case 2 as shown in Figure 7.4). First the Ĥ0,i(n) for antenna 0,
for all sub-carriers i, and for symbols n containing pilots is calculated as ex-
plained in the previous section. Then Ĥ1,i(n) for antenna 1 over sub-carriers
i for symbols n is computed. The temporal procedure is also repeated indi-
vidually for all the antennas.

Case: Extended Cyclic Prefix

In figure 7.5, the subframe arrangement for the reference pilots in case of
extended cyclic prefix is depicted. The only difference between the extended
prefix and the normal prefix is the number of the symbols per subframe which
is reduced to 12 from 14. This has an effect on the temporal interpolation
between the symbols while there is no effect on the linear interpolation inside
the symbols. The difference in the procedure is explained here:

• Calculate the linear interpolation and extrapolation sub-carrier values
using the procedure explained in SISO case for symbols {0, 3, 6, 9}.

• For the remaining symbols, use the temporal interpolation. The pro-
cedure for symbols {1, 2} is:

Ĥx,i(1) =
2
3
Ĥx,i(0) +

1
3
Ĥx,i(3) (7.5)

Ĥx,i(2) =
1
2
Ĥx,i(0) +

1
2
Ĥx,i(3) (7.6)

where Hx,i(1) is channel estimate for antenna x (can be 0 or 1 in
this case), sub-carrier i, and symbol 1. The changed procedure in
the temporal interpolation can be catered by our hardware unit easily
as only the fractional co-efficients are changed while the processing
units are the same. The similar procedure is repeated for all the other
symbols without reference pilots inside the subframe.

7.3.3 Pre-Defined Filter Interpolation in Frequency Domain

Another scheme in the frequency domain is to interpolate using a pre-defined
filter. e.g. sinc function which has been used to reconstruct the continuous

7.3 LTE Channel Estimation Approaches 139
R

es
o

u
rc

e
B

lo
ck

Pilot Sub−carrier for Antenna − 0

OFDM Symbols

Pilot Sub−carrier for Antenna − 1

1 2 3 4 5 6 7 8 9 10 110

0

1

2

3

 4

 5

 6

7

 8

9

 1

0

1

1

Figure 7.5: Mapping of LTE Downlink Reference Signals for MIMO (2-
antennas) with extended prefix

140 Chapter 7 Future Wireless Systems Design Approaches

signal or increase the sampling rate in the digital signal processing domain.
To map the calculated channel response at pilot positions to the whole re-
source block (sub-carriers):

Ĥ =
fl−1∑
i=0

Hp,iFi (7.7)

F is a predefined filter (a sinc function in this case), and its length fl is
dependent on coherence bandwidth of the channel. The filter length is ei-
ther 48 or 96 in our case. Ĥ values except from pilot positions are set equal
to zero. The filter is moved over all of the symbols (multiple resource blocks).

Lets consider the following case:
fl: Filter Length = 96
NRB: Number of Resource Blocks = 25
NP : Number of Pilots = 50
Nsc: Number of sub-carriers = 300

for(i = 0, i < (Nsc − 1), i+ 6)
Ĥ+ = Ĥ ∗ F (fl2 − i)
end for

The length of vector H is equal to number of sub-carriers i.e. 300. How-
ever the number of multiplications taking place in each step of loop are equal
to the length of filter fl which is less than the number of sub-carriers (96 in
this scenario). The loop is repeated NP (number of pilots) times, therefore
the total number of multipliers are NP ∗ fl. As the values of the filter are
real, the total number of real multipliers is 2 ∗NP ∗ fl.

At the start, the filter function is centered at fl
2 , so that the first pilot

is multiplied by the peak value of the sinc function. The filter is moved to
the next pilot position after each loop cycle, and the procedure is repeated
till the end. Then, Ĥ is summed up giving the final result for the channel
estimate.

For hardware implementation, the summation will take place after each
loop step as we have the 2− input adders for component-wise additions.
The number of adders for each loop cycle are equal to filter length and total
number of adders will be NP ∗ fl.

7.3 LTE Channel Estimation Approaches 141

The FEP and the VP both can handle the multiplication and addition
processes required by pre-defined filter. From the performance estimation
point of view, sinc might not be a good choice, however any other filter can
be chosen.

7.3.4 Interpolation by Zero Padding in Time Domain

Another scheme that can be used to compute the channel response at the
intermediate sub-carriers between the pilot position is by using the DFT
/ IDFT blocks of the FEP block. The fundamental principles of discrete
signals is that “zero padding” in one domain results in an increased sampling
rate in the other domain. For example, the most common form of zero
padding is to append a string of zero-valued samples to the end of some
time-domain sequence, and if we go to frequency domain the signal will be
sampled over string length plus the original length.
In our case, since we have the channel estimate at the pilot positions Ĥ
we go in the time domain and append the zeros. The number of appended
zeros per symbol per antenna is dependent on the number of resource blocks
being transmitted. Each resource block is composed of 12 sub-carriers and
has two pilots per antenna. The procedure followed is given by:

Ĥi,6Np = DFT 6Np(IDFT (Ĥi,Np)||ZE5Np) (7.8)

The ˆHi,Np represents the channel estimate vector for antenna i at the pilot
position and has length equal to number of pilots Np. First the IDFT takes
the channel estimate into the time domain and then zeros are appended.
The symbol || is used to represent the appending operation while ZE5Np

describes the zero stream with length 5Np. Once the zeros are appended
then the resultant vector is converted back in to frequency domain by taking
the DFT with vector length 6Np.

The hardware block, FEP, in our baseband design is well equipped to
carry out the above mentioned three step procedure. However, the Fourier
Transform (FT) unit of the FEP works only at the vectors with lengths that
are power of 2. So the number of zeros appended are increased to make the
vector length equal to power of two. e.g. in case of 15 resource blocks, in
the first step two zeros are added in the center of frequency domain signal
to get the vector length equal to 32 (2 pilots per resource block), then in
the time domain instead of appending 148 zeros to achieve the required size
of 180, we append 224 zeros to get vector size of 256 so that the DFT unit
of the FEP block can be applied. Thus the DFT vector is always 8 times

142 Chapter 7 Future Wireless Systems Design Approaches

than the IDFT vector contrary to 6 times as listed in equation 7.8, because
of the hardware limitation of the FEP block. The DFT, IDFT pair for all
the permissible transmission bandwidth of the LTE are shown in table 7.3.
The inter-symbol interpolation procedure remains the same where we used
the temporal linear interpolation for the channel estimate of the symbols
without any reference pilot symbols.
With a detailed discussion on LTE channel estimation (which uses diffused
pilot formation) and performance analysis [STB09], the linear interpolation
in frequency domain is better choice. It is simpler as well and performs
better.
Once the interpolation schemes are listed, the next step is to compare the
schemes on the basis of resource utilized by our hardware blocks. The next
section presents the comparative analysis.

7.3.5 Hardware Resource Utilization for the Interpolation
Schemes

In this subsection, we look at the resources required for the interpolation
schemes stated in the previous section. For the temporal interpolation be-
tween the symbols with the pilots, all the schemes use the same procedure;
therefore the analysis will focus on the interpolation inside the symbol.

In case of linear interpolation, the number of real multiplications per
symbol are in the order of 4Nsc per antenna; where Nsc is the number of
the sub-carriers. The number of real additions are in the order of 2Nsc.

The time domain zero padding uses the Fourier Transform mode of the
FEP block. The input vector size used to compute the DFT and IDFT is
known for each case of transmission bandwidth as explained in the interpo-
lation section. The comparison of the multipliers and adders usage is shown
in table 7.3.

The multiplier and accumulator count for the DFT / IDFT operations
has been calculated without using any of the fancy schemes available. It
is based on the simple implementation we have i.e. radix-4 algorithm and
mixed radix algorithm (as explained in chapter 5). The radix-4 algorithm
is used for the input vector size that is power of 4, while the mixed radix
is used for the vector size that is power of 2 and not power of 4. The num-
ber of complex multiplier used for radix-4 algorithm are 3

4N(log4N − 1),
while the number of multipliers for the mixed radix are 3

4N(log4
N
2 −1)+N ;

where N represent the size of input vector. The calculation also takes into

7.3 LTE Channel Estimation Approaches 143

Trans-
mission

RBs Linear Interpolation Time Domain Zero Padding

BW
(MHz)

Real Mult
Count

Real Accum
Count

DFT /
IDFT Pair

Real Mult
Count

Real Accum
Count

1.4 6 288 144 16, 128 1328 5312
3 15 720 360 32, 256 2528 10112
5 25 1200 600 64, 512 7040 28160
10 50 2400 1200 128, 1024 13568 54272
15 75 3600 1800 256, 2048 35072 140288
20 100 4800 2400 256, 2048 35072 140288

Table 7.3: Interpolation Schemes Comparison on the basis of arithmetic
operations count

account that each complex multiplier is equivalent to four real multipliers.
The number of real adders calculations are based on similar pattern.
To improve the results for the time domain zero padding interpolation algo-
rithms, the DFT and the IDFT algorithms can be implemented using some
efficient schemes with some added logic and complexity. However, the differ-
ence between the two schemes, on the basis of multiplier and accumulator
count, is huge and in our opinion that would not add any benefit in this
specific case. The linear interpolation scheme remain much more efficient
based on the arithmetic operation count.

From the above discussion, it is evident that linear interpolation in fre-
quency domain procedure is much more efficient than time domain method
using the proposed hardware blocks in our design. In the following, we con-
sider the memory requirements for the linear interpolation procedure and
try to work out the number of symbols that can be worked at the same time
inside our front end processor (FEP).

7.3.6 Memory Requirements for Linear Interpolation in Fre-
quency Domain Scheme

We consider the memory requirements for the linear interpolation scheme,
and analyze that how many symbols our hardware blocks can accommodate.
The aspects to be considered are :

144 Chapter 7 Future Wireless Systems Design Approaches

• The ASIC design i.e. FEP and the ASIP design i.e. VP use the same
internal memory, therefore the analysis will be the same for both of
the processors.

• If the linear interpolation scheme is used, then the internal memory
would be accessed in the PP-Mode as described in section Memory
Access Schema (5.4.1) of this thesis report.

• The memory subsystem of the FEP is composed of 4 chunks that can
be accessed separately as true dual port RAM i.e. two reads OR two
writes OR one read and one write operations are possible each cycle.
Therefore the total number of read and write operations per cycle with
the memory subsystem are 8.

• Considering the LTE Downlink Reference Signals for SISO and MIMO
case with normal prefix, five received symbols need to be inside the
internal memory of the FEP. This is due to the fact that the temporal
interpolation takes place between symbol one and five to compute the
channel estimation for the intermediate non pilot carrying symbols.
In case of extended prefix, 4 symbols would be loaded in the internal
memory of the FEP block.

• Less than 5 symbols for normal prefix may also be loaded in the in-
ternal memory but that would require some complex control of the
addressing schemes of the memory subsystem and might become inef-
ficient at the end.

• The memory subsystem also needs the reference signal inside the mem-
ory to compute the channel estimate. Memory space equal to that of
symbol size is required to store the channel estimate of the symbol and
as much space is required as working memory to store the intermediate
results or the multiplicative co-efficients etc.

• Once the channel estimate is computed for one symbol, the channel
compensation for that symbol is carried out and the DMA takes out
the final result for that specific symbol if the said symbol is not to be
used any further in the channel estimation procedure. This helps to
maintain only the minimum symbols inside the FEP memory subsys-
tem.

• If the memory size of symbol is given by memsy, then the internal
memory space requirement would be 8 ∗memsy. Five are the received

7.3 LTE Channel Estimation Approaches 145

Transmission BW Resource Blocks Memory Usage - Bits
SISO MIMO (2-Antennas)

1.4 6 18432 36864
3 15 46080 92160
5 25 76800 153600
10 50 153600 307200
15 75 230400 460800
20 100 307200 614400

Table 7.4: Memory Requirements for linear interpolation scheme with nor-
mal prefix

symbols, one reference symbol, one for the channel estimated symbol
and one for temporary results.

• The size of symbols varies with the transmission bandwidth, and the
table 7.4 summarizes the memory requirements for single antenna and
2-antennas.

• Thanks to the 4 independent chunks of the FEP memory subsystem,
no computation deadlock or added latency is expected between the
two consecutive computations for channel estimation or compensa-
tion. The operations require 2 input operands which are stored in two
different blocks, while the output is stored in the third block, thus at
most three memory sub-blocks out of four sub-blocks are used at a
time.

• The 2-antenna case has independent stream for each antenna, thus
requires extra memory to store the channel estimate for each antenna
and intermediate results.

The total memory size of the FEP or the VP block for the input and
output data is 1Mbits, therefore for the SISO case the memory size is not
sufficient for transmission bandwidth of {10, 15, 20}MHz if we load 5 sym-
bols at a time for normal prefix case. Therefore, a swapping with the outside
memory would be required. The external memories like double data rate
dynamic random access memory (DDR DRAM) can be added to serve the
purpose, and the memory space can be shared by the other IPs in the design,
when the FEP is performing other operations. Another option can be the
usage of the internal memory of the FEP block, that is otherwise used to

146 Chapter 7 Future Wireless Systems Design Approaches

store the intermediate results while computing the DFT or IDFT. Since the
DFT mode and pre-post processing mode of the FEP block are mutually
exclusive, therefore the internal FEP memory can be used with out an inter
dependency in the data. However, the use of external memories and moving
data out for the high data rate and computation intensive standards like
LTE is unavoidable. The usage of such memories along with access frame
work is an interesting research issue to study and stands as one of the future
tasks of the presented work.

Summary

This section described the channel estimation schemes for the LTE stan-
dard, and also listed the procedure that our hardware blocks follow to carry
out the operations. Then the comaprison of the processes with our design
lead to the conclusion to use the linear interpolation scheme for the chan-
nel estimation procedure for LTE. Further we depicted the memory space
utilization for the linear interpolation scheme and found out that swapping
would be required to compute the channel estimates with our current mem-
ory subsystem. The precise swapping mechanism and access methodologies
for the external memories are to be studied to make a final decision.

Chapter 8

Conclusions and Future
Work

The presented thesis has demonstrated a practical approach for implement-
ing the baseband radio architectures for flexible platforms. The multi-
standard baseband architecture poses great design challenges that include
but are not limited to diverse data throughput, latency, and timing con-
straints. The baseband design not only needs to address the different stan-
dards or specifications but the diverse set of functions / operations for each
and every wireless application. The digital front end processor (FEP) takes
care of operations at the air interface in the baseband design. We presented
the functional specifications, the hardware design, and implementation of
this block in detail. To make the analysis spectrum wider, we also presented
the ASIP design of a vector processor using LISA language. The vector
processor carries out the basic arithmetic operations over complex vectors.
We also discussed the hardware design approaches in the context of the
multi-standard designs and proposed some recommendations for different
categories of operations.

In this work, we first proposed a global baseband processing architecture
that can be configured to support almost all the existing and in-progress
wireless communication standards. The baseband design keeps the control
and processing separate to keep a hierarchy, and making the design sim-

147

148 Chapter 8 Conclusions and Future Work

pler and easy to implement and modify. The modification property is more
significant in the SDR or multi-standard context as the new wireless appli-
cations and standards keep pouring in. As far as the hardware technologies
are concerned, our baseband design is a hybrid solution. We use FPGAs
to implement the control and processing unit. The choice of the FPGAs is
solely based on the initial goal to first come up with an experimental plat-
form and once the prototype design is finalized, the baseband design would
be reworked and moved to the system on chip technology. The choice of
FPGA for prototyping is based on on its reduced design cycle, flexibility,
ease of use and lower costs.

Our proposed baseband design is composed of two main parts: a high
level control module and a Digital Signal Processing engine. Based on
our analysis of the hardware technologies and types of control / processing
tasks inside a multi-standard wireless communication system, the control of
the baseband design is assigned to a general purpose processor. Moreover,
the hierarchical control design takes care of multiple complex procedures /
threads running on the platform simultaneously. It is also worth mentioning
here that our design and implementation, both are open source and available
to research community. The design of the processing engine inside the base-
band design is based on flexible generic units in the wireless communication
systems such as Channel decoder, demodulator etc. Each of these units is
capable of carrying out the specific set of functions for all the standards in
an efficient manner i.e. meeting the performance requirements as specified
by the all the individual standards. Each of the individual block design
follows a global pattern, where the communication model with the global
design, memory system and the interfaces are pre-defined. This approach
helps to keep the global design as much synchronized as possible, and also
makes the additions of new units or blocks quite easy in case of emergence
of new applications or standards. The design approach for individual hard-
ware units or IPs is to identify small macro processing blocks based on the
functionalities required which can be re-used for multiple standards, thus
providing hardware flexibility and higher efficiency.

The front end processor (FEP), the flexible hardware unit inside the
processing engine, which is designed to cater all the operations at the air
interfaces is presented in detail in this report. The operations at the air-
interface include channel estimation, channel compensation, synchroniza-
tion, and data detection etc. First of all, the set of operations is defined
based on the analysis of the different air-interfaces in the wireless communi-

149

cation standards. The aim of this analysis was to find out the commonalities
that exist among the standards, and then identify the macro-blocks that are
required to carry out all the operations for all the air-interfaces. Once the
macro operations are defined, then the performance criteria was set for these
units considering the specifications of all the standards. The FEP carries
out the variable length DFT / IDFT operation along with arithmetic oper-
ations on long complex vectors. The FEP is also capable of computing the
dot product, energy and maximum calculations over complex vectors. The
design is implemented at RTL level and is synthesized with FPGA as target
technology, however the design is totally portable. The resource utilization
is quite reasonable and it meets the performance requirements easily as well.

Our baseband design is mainly composed of hardware blocks that are
flexible enough to adopt any existing communication standard. In the first
prototype, we designed these blocks as the hardwired or the ASIC units
while the flexibility comes from the fact that the units can be parametrized
as per the requirements of any standard. The units can serve any of such
requirements with no changes in the hardware, and usage of internal flexible
hardware macro blocks that support multiple set of inputs for each func-
tionality. e.g. the DFT block supports all the power of 2 input vector sizes
between 8 and 4096.

During the first prototyping, it was realized that more flexible solu-
tions are required to efficiently execute some of the operations in the multi-
standard transceiver design e.g. the channel decoder interleaving. The Ap-
plication Specific Instruction Processors (ASIPs) stand as one of the choices
for a complex flexible platform design. For the ASIP design, if high flexibility
and customization for the instruction set architecture (ISA) is required then
tools that focus on architecture level optimization may be used. We used
LIA, architecture description language, to design an ASIP core to evaluate
its usefulness in baseband architectures for SDR applications. We designed
a vector processor that carries out almost all the arithmetic operations on
complex vectors. Complex vector arithmetic operations are integral part of
the FEP and used in other blocks of baseband design as well. The design
results are encouraging and we think that the tool based programmable de-
sign can be quite handy in the rapid design of flexible baseband design. We
showed in our design that the ASIPs do provide higher flexibility with not
much cost on the performance. The ASIPs stand a strong candidate in a
hybrid design for flexible radio designs.

150 Chapter 8 Conclusions and Future Work

Based on our experience with global baseband design and hardware block
design using ASIC and ASIP approaches for the flexible radios, we did an-
alyze the hardware technologies being used for communication systems de-
sign. We analyzed the GPPs, DSPs, FPGAs, ASICs, and the ASIPs against
the key parameters of flexible baseband design such as flexibility, through-
put, complexity and regularity of the operations. We think that hybrid
solutions, where specific set of tasks are assigned to individual category in
the hardware technologies would be the most effective ones e.g. the control
tasks to GPPs, regular and frequently occurring tasks to the ASICs etc.

In short, the research work is an attempt to lay down a solid founda-
tion for a practical design of a multi-standard baseband design. We not only
explored the design options, but also provided the design and the implemen-
tations using the ASIC and ASIP approaches. The flexible, programmable
multi-standard baseband designs have a tremendous scope in the wireless
communication devices in the years to come. Our analysis, design and im-
plementation may be useful for the researchers to explore new horizons in
the fields of flexible baseband design for multi standard applications.

8.1 Future Work Directions

Like most of the research works, there are questions that still need to be
answered and there are features that need to be explored in the context of
the presented work. Some of those are listed here:

• How more flexibility may be added to the current design of the FEP.
The current design of the FEP block supports only one operation at
a time, and the next task has to wait till the completion of the in-
progress task. The FEP block should provide a feature to carry out
multiple operations at the same time, or at least switching between
the operations if a high priority task is assigned by the system.

• Though the ASIP design was compared with the hardwired RTL so-
lution, but still there is a lot of room for more rigorous analysis. The
both units must also be compared on the power consumption analysis
before making a final call for the use of hardware units in the baseband
design.

• The integration of the FEP and the ASIP design at the same time in
the Open Air Interface platform and the evaluation of the real time
results would also be a real plus to have.

8.1 Future Work Directions 151

• We recommended to use a hybrid structure for the flexible baseband
design. It would be really interesting to have an ASIP design for the
channel decoder unit, for example, in the baseband design and have a
performance evaluation. This would provide some practical results to
support our hypothesis.

152 Chapter 8 Conclusions and Future Work

Chapter 9

Résumé en Français

9.1 Abstarct

Les dernières décennies ont vécu un développement technologique rapide et
une diversité dans les services de communications sans fil. Ce développement
s’explique par l’utilisation de plus en plus répandue, dans la vie de tous les
jours, de dispositifs sans fil avec des nouvelles fonctionnalités. Cette diver-
sité technologique est due aussi à la diversité et la nouveauté des applica-
tions proposées. Aujourd’hui, il existe plusieurs standards pour les réseaux
des téléphones sans fil (GSM, EDGE, WCDMA etc.), également pour les
réseaux locaux sans fil (IEEE 802.11a, b, g). Actuellement, chaque stan-
dard possède sa propre fréquence porteuse, largeur de bande et modulation.
Le développement considérable de ces standards modernes et de leurs ap-
plications nécessite une plateforme matérielle flexible capable de gérer ces
standards divers dans toute la bande de fréquences de communication sans
fil. Donc, avoir des processeurs flexibles et efficaces est impératif pour sup-
porter des plateformes radio multistandards.

On présente un prototype d’architecture générique de traitement numérique
en bande de base pour une application radio logicielle compatible avec les
besoins actuels de traitement UMTS mais qui anticipe également d’une
manière efficace les besoins de traitement des standards émergents (3GPP
Long Term Evolution - LTE). L’architecture bande de base proposée est
capable d’implémenter les standards 2G, 3G, 4G de communication ainsi

153

154 Chapter 9 Résumé en Français

que les standards de réseau local sans fil. Le partitionnement entre matériel
et logiciel induit un compromis coût/complexité et rapidité. Le contrôle
s’effectue dans la partie logicielle qui passe les paramètres pertinents pour
des fonctionnalités spécifiques à la partie matérielle. Le matériel est conçu
de façon à effectuer la plus part des tâches de calcul intensif efficacement,
c’est-à-dire soutenir les débits requis et respecter les délais nécessaires. Le
matériel est aussi suffisamment flexible pour utiliser les mêmes ressources de
traitement en bande de base pour plusieurs standards. L’architecture con-
figurable présentée profite des ressemblances qui existent entre les différents
standards à implémenter d’une manière efficace. Les ressemblances et les
dissemblances sont traduites dans l’architecture matérielle et conduisent à
un système qui réalise tous les traitements nécessaires pour toutes les ap-
plications. Le produit final va permettre à l’utilisateur d’exécuter le stan-
dard désiré en fournissant seulement les paramètres sans intervenir dans les
détails de l’architecture. La solution proposée est largement plus efficace
que d’avoir des blocs dédiés à chaque application.

Les solutions multistandards doivent avoir une haute performance pour
se conformer avec le débit moyen et les contraintes temporelles de tous
les standards avec le même ensemble logiciel/matériel. Afin d’explorer les
critères de performance qui président à la conception de la bande de base,
nous présentons une spécification et une implémentation des blocs matériels
en utilisant deux approches : circuits intégrés spécifiques (ASIC) et pro-
cesseurs à jeu d’instruction spécifique (ASIP). L’ASIP offre plus de flexi-
bilité et programabilité au dépend d’une petite perte de performance. Nous
considérons également les autres cibles technologies existantes, leurs avan-
tages et défauts spécifiques et comparons ceux-ci pour différentes catégories
de type de calcul dans la bande de base et proposons quelques recomman-
dations sur la conception d’une bande de base multistandard.

9.2 Introduction

Les trois dernières décennies ont vu les communications sans fil comme le
plus grand succès de génie, pas seulement dans la recherche et développement,
mais aussi la taille du marché et l’impact sur la société. Les appareils
sans fil sont devenus une partie intégrante de notre vie quotidienne, et sont
également tirer un gros morceau de l’économie. Au début, les téléphones
cellulaires sont considérés comme des dispositifs de communication sans fil,
mais maintenant c’est changé beaucoup; des réseaux informatiques sans fil,
réseaux de capteurs sans fil et les systèmes de positionnement sans fil sont

9.2 Introduction 155

quelques-uns pour citer ici; qui ont changé la composition de leurs appli-
cations et, surtout, ont créé de nouvelles orientations de la recherche en
systèmes de communication.

Différents types d’applications et usages ont permis à l’élaboration de
différentes standards utilisées dans les systèmes de communications sans
fil. Bien que ces systèmes ont presque les mêmes blocs fonctionnels, mais
l’approche et, partant, les algorithmes utilisés diffère beaucoup de la stan-
dard à la standard. Dans les systèmes de communications sans fil, le spec-
tre radioélectrique, les technologies d’accès radio et des piles de protocoles
change leur comportement pour les différents systèmes et réseaux. Au-
jourd’hui, il existe plusieurs standards pour les réseaux cellulaires (GSM,
EDGE, WCDMA, etc), et réseaux locaux sans fil (IEEE 802.11a, b, g). Cha-
cun de ces standards a différentes fréquences, largeurs de bande et schémas
de modulation. Comme de nouvelles standards et applications ne cessent
d’augmenter, il ya un besoin pour une plate-forme matérielle flexible qui est
capable de supporter toutes les différentes standards dans toute la gamme
de fréquence de communication sans fil. Software Defined Radio (SDR), est
un système de communication radio reconfigurable qui peut être accordé
à une bande de fréquences, et peut gérer tous les schémas de modulation
dans un large gamme de fréquences; servant ainsi de multiples services et
protocoles de communication.

L’utilisation d’une architecture flexible qui peut servir de plusieurs stan-
dards de communication sans fil offre de nombreux avantages, notamment:

• Une fois une architecture configurable est en place, il est prévu pour
aider le déploiement rapide de nouvelles standard. En outre, il est fort
possible que la conception actuelle peut calculer les nouveaux algo-
rithmes sans aucune modification. Le coût d’entretien est également
prévu de descendre par un facteur raisonnable.

• Les nouvelles tendances du marché conduisant à de nouvelles exigences
de service et donc la conception et le développement de nouveaux
systèmes ne partira pas de zéro, mais plutôt ces systèmes configurables
aidera un développement plus rapide et les déploiements.

• L’effort de conception de SDR est d’aider les portables multi-radios à
adopter dans les environs qui changent fréquemment. Cela signifie le
concept de la radio cognitive ou opportuniste permettant d’utiliser le
spectre plus efficacement. Le passage d’un protocole d’accès à l’autre
devient transparent pour les utilisateurs.

156 Chapter 9 Résumé en Français

• Une conception évolutive de radio ne serait pas seulement utile pour
les terminaux, mais aussi des stations de base.

9.3 Contributions

Dans ce rapport de thèse, nous concentrons sur les options de conception
différente de l’architecture numérique de bande de base dans le contexte des
applications de SDR. L’architecture de bande de base numérique proposé est
capable de mettre en oeuvre 2G, 3G, 4G, de communication et de diffusion
des standards LAN sans fil utilisant les mêmes HW / SW architecture. Dans
notre conception, le traitement en bande de base numérique est effectuée
dans un HW / SW conception combiné capable de supporter toutes les ex-
igences fonctionnelles à tout l’air-interface et à chaque étape du traitement
des SDR, des niveaux les plus bas au plus petits. Le cloisonnement entre les
HW et SW suit un coût général et de complexité par rapport à la vitesse de
compromis. Le matériel est conçu de telle manière qu’il appuierait la tâche
la plus efficace de calcul intensif à savoir répondre aux exigences de débit
et de latence pour toutes les standards dans la conception. Le matériel est
également suffisamment souple pour utiliser les mêmes ressources de traite-
ment en bande de base pour les standards multiples. Le contrôle est en
partie logiciel de la conception, qui passe les paramètres pertinents à du
matériel pour des fonctionnalités spécifiques. Le défi dans la conception est
de synchroniser tous les traitements à l’air-interface de manière efficace avec
l’utilisation des ressources minimales et de grande précision. L’architecture
matérielle de bande de base est divisé en deux parties principales: un module
de haut niveau de contrôle et un traitement numérique du signal (DSP) du
engine. Le module de contrôle est chargé de transférer les demandes MAC
au DSP engine et la direction d’écoulement de contrôle des données. Le
DSP engine est responsable de tous traitement du signal up-link/downlink.
L’architecture de bande de base ainsi que son approche de conception est
décrite en détail dans ce travail. Pour répondre aux besoins des dispositifs
multi-standard sans fil, les diverses tâches du DSP engine de la gamme de
conception de bande de base du taux d’échantillonnage correspondant à un
décodage de Viterbi. Une étude approfondie de l’air cible interfaces conduit
à l’identification d’un ensemble d’entités fonctionnelles pour le traitement en
bande de base numérique. Les actions identifiées sont mises en oeuvre de sept
blocs de traitement indépendants, et peut être appelé comme accélérateurs
matériels. Il s’agit notamment de: Pré-processeur, Frontend Processeur,
Mapper, Détecteur, Channel Encoder, Channel Decoder, et Interleaver / De-

9.3 Contributions 157

Interleaver. La démarche de conception de chacun de ces blocs est de prof-
iter des points communs qui existent entre les différentes standards à mettre
en oeuvre. Les points communs et disjoints sont convertis en architecture
matérielle de trouver un système qui assure toutes les opérations requises
par toutes les applications. Le produit final permettra utilisateur d’effectuer
régime désiré / fonctionnement standard en fournissant les paramètres sans
entrer dans les détails de l’architecture. Le système proposé ne peut pas être
aussi efficace que d’un seul système dédié d’une standard particulière, mais
il serait certainement beaucoup plus efficace que d’avoir des blocs dédiés à
chaque application. Le Front End Processor (FEP) à l’intérieur du bloc DSP
engine est affectée à l’adresse de toutes les exigences au niveau de l’interface
air qui comprennent l’estimation de canal, les données de détection, Channel
Phase Offset (CPO) Estimation, et de synchronisation. Le mécanisme de
ces fonctions diffèrent de l’air-interface à l’air-interface et les différentes in-
terfaces utilisé pour les appareils de communication sans fil sont Orthogonal
frequency-division multiplexing/multiple-access (OFDM/A), Single Carrier
FDMA (SC-FDMA), Wideband Code Division Multiple Access (W-CDMA),
et Space-division multiple access (SDMA). Un bloc flexible FEP de la con-
ception de bande de base est capable d’effectuer les opérations mentionnées
ci-dessus pour toutes les standards d’une manière efficace et invisible à dire
à un utilisateur externe sans aucune obligation de changer de configuration
matérielle.

La Fast Fourier Transform (FFT) a été utilisé comme blocs de con-
struction pour des architectures de l’air-interface à la fois à l’émetteur et
le récepteur. Au cours des dix dernières années, différentes architectures
ont été proposées pour les récepteurs OFDM avec la FFT que le bloc de
traitement touche [LL07] [CN06]. Similaires à OFDM, différentes architec-
tures de calcul de domaine de fréquence pour le WCDMA / HSDPA ont été
proposés avec des prestations tout à fait semblable au classique égaliseurs
domaine temporel. Suivant la même méthode, FFT a été également utilisé
pour MMSE turbo equalization dans Global System for Mobile Communica-
tions (GSM) [LLBL05]. Sur la base de ces contributions, pour les standards
individuelles [YGC06], [LIMVS05], [LIZMP05], nous analysons et proposons
un bloc de traitement dans le domaine fréquentiel capable de la restauration
de toutes les opérations air-interface. Les implémentations de ces opérations
sont généralement adaptés à la standard en question. L’approche de concep-
tion détaillée, la description fonctionnelle et la mise en oeuvre de l’câblée,
FEP bloc paramétrable est discuté dans le rapport de thèse.

Les application specific integrated circuits (ASICs) sont plus optimisé et
efficace en termes de superficie, la vitesse et la consommation d’énergie par

158 Chapter 9 Résumé en Français

rapport à d’autres méthodologies de conception. D’autre part, la souplesse
offerte est à peu près rien, voire dans certains cas. L’Application Specific
Instruction Set processeurs (ASIP) se présenter comme l’un des choix de con-
ception de plate-forme flexible complexes pour gérer les tâches complexes de
conception émetteur-récepteur sur le logiciel cible / plate-forme matérielle.
L’ASIP également fournir une plus grande flexibilité qui est vraiment utile
pour la conception de matériel pour servir les applications de communica-
tion sans fil en constante évolution. Pour la conception ASIP, si une grande
flexibilité et de personnalisation de l’architecture de jeu d’instructions (in-
struction set architecture - ISA) est exigée, des outils qui mettent l’accent sur
l’optimisation niveau de l’architecture peut être utilisée. Ces outils utilisent
Architecture Description Langues (ADL). Il a été beaucoup de recherches
dans ce domaine, mais jusqu’à présent, la langue LISA est la seule qui a
gagné l’acceptation commerciale. Nous avons utilisé cette approche pour la
conception d’un noyau ASIP appelé vecteur processeur (VP) pour évaluer
son utilité dans les architectures de bande de base pour les applications de
SDR. Les détails de conception ainsi que les résultats sont présentés dans
ce document plus tard. Les deux approches de conception adoptée pour la
FEP, ASIC et ASIP, sont analysés en détail dans ce rapport de thèse ainsi.

Dans le cadre de la conception de bande de base de SDR, l’ensemble
des algorithmes à mettre en oeuvre le matériel proviennent de différents
standards sans fil et de formes d’onde offrant ainsi un plus grand défi de
conception. D’autre part, une puissance de traitement numérique de très
haute est nécessaire pour mettre en oeuvre les solutions souples et efficaces
pour les applications de SDR. Dans ce scénario, les performances du matériel
numérique composant dans la conception de logiciels radio devient un aspect
très important de mesurer la capacité de la radio. Les différents composants
matériels qui peuvent être utilisés pour effectuer ces traitements numériques
sont des processeurs de signaux numériques (Digital Signal Processors -
DSPs), prédiffusés programmables (field programmable gate arrays - FP-
GAs), processeurs à usage général (general-purpose processors - GPPs), et
circuits intégrés spécifiques (application specific integrated circuits - ASIC).
Les paramètres tels que le coût, la rapidité, la souplesse et la consomma-
tion d’énergie sont considérées pour chacune de ces technologies matérielles.
Compte tenu de ces options technologie matérielle contre l’ensemble des al-
gorithmes dans la conception de bande de base SDR avec les exigences de
performance, des lignes directrices de conception sont proposées à la fin du
rapport.

9.4 Open Air Interface 159

9.4 Open Air Interface

Dans cette section, la conception de bande de base de notre plateforme
émetteur-récepteur multi-standard est présenté. La base de notre conception
de l’architecture est expliqué ainsi que les choix de conception.

9.4.1 Les Choix De Conception

Dans une conception de système de communication numérique, la phase la
plus important est de choisir la technologie cible, le niveau de partition-
nement entre matériel et logiciel, l’identification à l’intérieur des sous-blocs,
et l’interface entre les sous-blocs. Alors tout d’abord, les choix effectués
pour la conception de bande de base sont énumérés, avec les raisons de ces
choix.

• La conception de bande de base SDR devraient être transférables à des
technologies différentes. L’objectif de l’architecture de bande de base
est d’abord de trouver un outil de recherche ou une plate-forme proto-
type expérimental, et n’est pas destinée à la production massive. Par
conséquent, la cible choisie est la technologie FPGA et pas ASIC. Ce
choix est basé sur de réduit le cycle de conception, flexibilité, facilité
d’utilisation et de réduire les coûts des FPGA. Pour les mêmes raisons
les couches supérieures sont implémentées dans des logiciels unique-
ment et exécuté sur un PC hôte. Une fois validé cette architecture
sera retravaillé et adapté à la technologie ASIC.

• Le choix d’une technologie cible spécifique, à savoir FPGA dans ce
cas, les contraintes du design légèrement. Le dessinateur est censé
prendre en compte les blocs de mémoire spécifiques et les tranches de
DSP qui viennent avec la technologie spécifiée. Ainsi, la conception
est sous-optimal dans une certaine mesure dans le contexte mondial, et
les résultats de synthèse doit être utilisé avec une approche prudente.
Compte tenu de ces faits, tous les modules à l’intérieur du conception
sont parfaitement synthétisable avec toutes les technologies existantes
mais optimisé pour un particulier, dans certains cas.

• L’architecture matérielle proposée est subdivisé en deux parties princi-
pales: un module de haut niveau de contrôle et une unité de traitement
numérique du signal. La séparation du contrôle et de traitement non
seulement de faciliter une conception plus simple, mais rend également

160 Chapter 9 Résumé en Français

le système évolutif pour l’arrivée de nouvelles normes ou de fonction-
nalités. Les deux modules, le contrôle et le traitement, sont mises en
oeuvre dans les FPGA Virtex-V de Xilinx. La figure 9.1 illustre la
présentation de l’architecture du système.

• Le FPGA d’interface et de contrôle dans la figure 9.1 a besoin d’un
processeur à usage général pour gérer tout l’intérieur de transformation
et de la communication à travers des interfaces externes. Le processeur
principal est également censé gérer la programmation en vue des tâches
à des blocs de traitement. Depuis la spécification Open Air Interface
est une conception open source, nous avons choisi SPARC - processeur
LEON3. Tout autre usage général processeur 32-bit aurait été aussi
utile que soit LEON3.

• Pour interconnecter les unités de traitement à l’intérieur de l’unité
de traitement nécessite une interface générique et standardisé. Ceci
peut être réalisé en utilisant l’un des bus standard / méthodologie,
nous avons choisi Advanced VCI Compliant bar, plus de détails sont
énumérés dans le chapitre 4.

• Les blocs de traitement à l’intérieur du Processing Engine FPGA unité
ont un contrôleur local (micro controller) pour contrôler les trans-
ferts de données et le traitement des commandes à l’intérieur du bloc.
Cela réduirait également la communication sur l’interconnexion cross-
bar. Le choix de toute ressource petites et moins limité suffirait à
nos besoins et nous avons choisi 6502. Pour rendre la conception
plus générique, tous les blocs matériels ont le même 8-bit 6502 micro-
contrôleur.

• La conception générique pour chacune des unités de l’intérieur de
l’unité de traitement et l’interconnexion permettrait d’ajouter n’importe
quel autre bloc ou unité de matériel facilement dans la conception de
bande de base

9.4.2 L’unité de traitement du DSP - DSP Processing Unit

Une étude des interfaces air cible (mentionné dans le chapitre 3), et les
systèmes de communication pour les applications multi-standard (voir le
chapitre 2) conduit à l’identification d’un ensemble d’entités fonctionnelles
pour le traitement en bande de base numérique. Les actions identifiées
sont mises en oeuvre de sept blocs de traitement indépendants, et peut être

9.4 Open Air Interface 161

Pre−processor

VCIInterface

Interconnect (AVCI Crossbar)

b
rid

g
e

Custom

b
ri

d
g

e
A

H
B

/C
u

st
o

mC
u

sto
m

/V
C

I

VCIInterface

VCIInterface

processor

Front−end

VCIInterface

Interleaver /

deinterleaver

VCIInterface

Channel

encoder
Mapper

VCIInterface

LEON3

uprocessor

Peripherals

Ethernet,
UART,
JTAG ...

DDR,

Flash ...

PCI Express

Interface

Radio

Front−end

VCIInterface

Channel

decoder

Detector

GPIO

GPIO

GPIO

Interface & Control FPGA

Processing Engine FPGA

AHB

Figure 9.1: Prsentation de l’architecture de processeur de bande de base

appelé comme accélérateurs matériels (Hardware Accelerators). Ces blocs
sont présentés dans la figure 9.1 et énumérés ici:

• Pre-processor

• Front End Processor

• Mapper

• Detector

• Channel Encoder

• Channel Decoder

• Interleaver / De-interleaver

Le bloc de pré-processeur est utilisé comme une interface avec l’externe
A/D et D/A convertisseurs. Il fournit également plusieurs fonctionnalités
de base de traitement du signal comme le filtrage, réglage du taux de
l’échantillon etc. Le mappeur et le détecteur mettre en oeuvre tous les
schémas de modulation allant de BPSK à QAM256. Le bloc interleaver four-
nit les données d’entrelacement avec toutes les options dans les différentes
normes. Il effectue également de la péréquation cadre et les opérations taux

162 Chapter 9 Résumé en Français

d’appariement. Le Front-End-processeur fournit les opérations de traite-
ment numérique du signal à l’interface aérienne, comme l’estimation de
canal, détection de données etc. Le codeur implémente codage convolu-
tionnel, turbo codage et de m- séquences. Le décodeur de canal réalise
algorithmes de décodage en treillis à base; Viterbi et Turbo, à décoder les
codes convolutifs et les turbo, respectivement. Dans cette thèse, la concep-
tion détaillée et de l’implémentation de Front-End-Processor est présenté.

9.5 Front End Processor (FEP)

L’enquête sur les algorithmes d’air-interface rend la base de la conception
FEP. Le FEP est responsable de prendre soin des opérations air-interface, y
compris l’estimation de canal, détection de données et de phase de porteuse
de compensation pour la plate-forme de bande de base multiple standard.
Les opérations suivantes sur les vecteurs sont définis pour ce bloc par la
spécification fonctionnelle de la conception de bande de base (Les détails
peuvent être trouvés dans le chapitre 3 de la thèse.

1. Discrete Fourier Transform (DFT), Inverse DFT (IDFT)

2. Les calculs de l’énergie - Energy Calculations

3. Les calculs de Maximale - Maximum, arg-max Calculations

4. Produit scalaire - Dot Product

5. L’addition (composant par composant) - Component-wise-addition

6. Soustraction - Component-wise-subtraction

7. Multiplication - Component-wise-product

8. Division - Component-wise-division

Ces fonctions sont sur vecteurs complexes avec une taille d’entrée allant
de {1 . . . 4096}. Donc, fondamentalement, il ya deux types d’opérations dans
le bloc de FEP: la commutation entre domaine temporel et fréquentiel, et
le traitement d’autres avant ou après le conversions de domaine (temps /
fréquentiel). Ainsi, les opérations de bloc peut être divisé en deux grandes
catégories: Conversion de Temps / Fréquence (FT Mode) et pré-post-traitement
(PP Mode). Pre et Post se réfère ici à des opérations effectuées avant
ou après la conversion de domaine. Les détails de la conception du FEP
bloc sont fournis dans le chapitre 5 de thèses. La mise en oeuvre RTL est

9.5 Front End Processor (FEP) 163

également expliquée lors de la conception de système de mémoire.

Utilisation de la Xilinx Virtex-5 FPGA que la technologie cible et Mentor
Graphics’ Precision comme outil de synthèse [men], 36DSP48E sont utilisés.
Cela fait 19% du total disponible dans le FPGA, ce qui est assez bon, compte
tenu du fait que le FEP est l’un des plus IP calcul intensif du processeur en
bande de base. La fréquence maximale possible pour les opérations de DFT
est de 120MHz, et est tout à fait acceptable compte tenu du débit du bloc.
Le nombre de cycles passé pour calculer les différentes tailles vecteur d’entrée
de la DFT sont indiqués dans le tableau 9.1. La mise en oeuvre de la macro-
bloc de DFT est pipeline pour atteindre les plus haut débit et des débits de
données éventuellement supérieur. Les valeurs plus élevées de cycles utilisés
pour les tailles plus petites entrée est à cause de initialiazation de pipeline,
qui a lieu pour toutes les valeurs d’entrée, mais devient important pour les
tailles plus petites d’entrée. Toutefois, pour les valeurs les plus élevées, l’IP
effectue tout à fait mieux que le débit prévu du 1-échantillons par cycle.
Le débit des operations composante par composante au niveau de sous-
bande est 2-échantillons-par-cycle, et est réalisé dans la mise en oeuvre en
conséquence. La fréquence maximaleréalisable de ces modules est d’environ
150MHz, et le nombre de multiplicateurs complexe qui est utilisée est de
10 [MKP09a].

Taille DFT Nombre de cycles Taille DFT Nombre de cycles
8 20 16 18
32 46 64 60
128 107 256 174
512 372 1024 695
2048 1597 4096 3136

Table 9.1: DFT : Nombre de cycles utilisés pour différentes tailles de vecteur
d’entrée

9.5.1 Limitations de l’architecture

Bien que le FEP est conforme aux spécifications fonctionnelles de sa con-
ception et réalise également une bonne performace, il ya peu de limites à sa
conception et qui sont énumérés ici:

L’opération de la matrice, l’algorithme de cache petites utilisé en mode

164 Chapter 9 Résumé en Français

DFT pour le stockage des échantillons à l’entrée et de sortie, impose une
condition sur la façon dont le vecteur d’entrée / sortie est écrit / lu dans la
zone de mémoire par un transfert DMA ou par un accès direct à travers le
VCIInterface: Les adresses (entrée et sortie) doit être un multiple de 8. Cela
ne nécessite aucune exigence spécifique au niveau supérieur de contrôle, mais
le logiciel doit prendre soin d’elle, tout en attribuant les adresses d’entrée et
de sortie à la base FEP.

Les fonctions de FEP sont mutuellement exclusifs dire un seul ensemble
de macro-blocs peuvent fonctionner en même temps. Par exemple, Dans
l’estimation du canal de systèmes OFDM, le produit composante par com-
posante ne peut commencer une fois que la DFT a pris fin. Cependant,
cela a été prévu lors de la conception de la propriété intellectuelle et elle ne
cause pas de dégradation des performances dans la bande de base grâce du
débit élevé de processeur bande de base. Il convient également de mention-
ner qu’il n’y a pas de lag ou décalage entre le début d’une tâche à la fin de
la tâche précédente. Les nouvelles tâches (commandes) peut toujours être
écrit dans la période d’enquête et de l’espace mémoire peut être rempli pour
tâche suivante, alors que la tâche actuelle est en cours.

9.6 Conception d’ASIP pour Vector Processor

Les nouveaux systèmes de communication numérique et les réseaux cellu-
laires nécessitent des opérations multi-mode avec une flexibilité accrue et
des performances élevées. La surface de silicium et d’efficacité énergétique
sont également des considérations très importantes pour la conception de
l’architecture. Ces facteurs conduisent à la situation de compromis multiples
de la cartographie des tâches complexes de conception émetteur-récepteur
sur le cible logiciel / matérielle plate-forme. L’Application Specific Instruc-
tion processeurs (ASIP) sont l’un des choix de conception de plate-forme
flexible complexes.

La conception ASIP est une tentative pour trouver un équilibre entre
deux extrêmes: les ASIC et les généraux des processeurs programmables
(GPP). ASIP offre la disponibilité des articles personnalisés pour le temps
des tâches critiques (par exemple un Multipliez-Adder pour un DSP en
temps réel), et offrent une flexibilité grâce à un ensemble d’instructions
[LMP94]. Comme de nouvelles normes et applications continuent à arriver
dans les communications sans fil, les opérations dans la conception de bande
de base de SDR sont de plus en plus complexe. Ces procédures plus com-

9.6 Conception d’ASIP pour Vector Processor 165

plexes exigent plus de flexibilité pour s’adapter aux changements de concep-
tion, des erreurs et des changements de spécifications, ce qui peut se produire
au stade de la conception plus tard. Il est très difficile de faire beaucoup
de changements dans l’ASIC, une fois la conception est en place. Dans une
telle situation, l’ASIP offre la flexibilité nécessaire à moindre coût [CKY+99].

Au début, l’ASIP et les outils pertinents de développement logiciel ont
été conçus manuellement [JBK01]. La conception de processeurs manuelle
est longue, fastidieuse, sujette aux erreurs et exige des ingénieurs hautement
qualifiés. La conception de l’architecture du processeur peut être consultée
dans les quatre parties [HML02]:

• L’exploration d’architecture

• L’implémentation d’architecture

• La conception d’applications de logiciels

• L’intégration et vérification du système

Sans automatisation, il est vraiment difficile d’avoir l’expertise dans
tous ces procédures et donc une ASIP raisonnable. Le LISA Processeur
Design Platform (LPDP), en utilisant language for instruction set archi-
tecture (LISA), prévoit un processus de traitement complet de concep-
tion qui s’appuie sur la description d’architecture cible dans un langage
LISA [HKN+01]. La LPDP offre la flexibilité d’un modèle de processeur
de niveau le plus abstrait au niveau micro-architecture. La plate-forme
utilise son générateur de HDL pour mettre en oeuvre l’architecture, une fois
l’architecture micro est finalisé. Les modèles synthétisables peut être généré
à la fois dans le VHDL et Verilog. Basé sur le succès de la LISA, comme
la conception de processeurs automatisés, nous avons décidé d’explorer la
conception ASIP pour la conception de bande de base multi-standard.

Dans le contexte d’architecture de Open Air Interface [ope], une analyse
des fonctionnalités dans la conception de bande de base est effectuée afin
d’identifier un ensemble d’opérations qui sont utilisés dans la bande de base
émetteur-récepteur et êtes un bon candidat pour la conception ASIP. Il a
été noté que les différents blocs nécessitent des opérations arithmétiques de
base telles que l’addition, soustraction, multiplication, etc sur les vecteurs
de grande taille. Ces opérations sont très souvent utilisés dans les différentes
routines qui sont mises en oeuvre dans les accélérateurs matériels de notre

166 Chapter 9 Résumé en Français

conception de bande de base. Par exemple dans le bloc Front End Processor
(FEP), les calculs d’énergie sur de grands vecteurs est réalisée en utilisant la
multiplication, l’addition et la division sur les vecteurs complexes de grande
taille.

Les routines dédié composé des opérations sur les vecteurs dans la con-
ception de bande de base sont autonomes et ne servent qu’à l’application à
l’intérieur du bloc spécifique. Pour prendre l’avantage de la souplesse que
ASIP fournir et aussi d’étudier l’efficacité d’ASIP pour nos plates-formes
dédiées à long terme, nous avons décidé de concevoir un processeur vecto-
riel comme ASIP. Comme point de départ, le processeur vectoriel doit être
intégré dans le Front End Processor (FEP) de Open Air Interface plate-
forme. Le FEP utilise souvent les opérations arithmétiques de base sur
la taille des vecteur important dans ses routines pour l’estimation de canal,
détection de données etc., donc on commence à la conception dans le but que
le projet de ASIP aurait au moins répondre à tous les besoins de l’application
des routines FEP. Plus tard, compte tenu de la performance et l’analyse
coût-bénéfice, le processeur vectoriel (VP) pourrait devenir un propriété in-
tellectuelle autonome de l’Open Air Interface.

La formation actuelle de la FEP (conception ASIC) ne fait aucun doute
souple et paramétrer mais il manque encore la flexibilité dans certains as-
pects. Nous essayons de déterminer où la flexibilité ou la programability
peut être ajouté dans le bloc de matériel. Comme indiqué plus haut, les
fonctions FEP sont composés de l’unité de DFT et les fonctions de base
algébriques comme la multiplication, division, addition et la comparaison
etc. à l’avenir, plus de fonctions pour répondre aux nouvelles exigences
standard ou des changements dans certaines spécifications serait tout à fait
un travail fastidieux . Ainsi, une conception ASIP qui réalise les fonctions
de base algébrique sur des vecteurs complexes (avec quelques options de
contrôle) serait un bon candidat pour étudier la flexibilité et l’analyse des
performances de conception des coûts dans le contexte des applications de
SDR.

En ce qui concerne le bloc de FEP, il existe deux modes de calcul
nommée: FT et PP. Le FT effectue le DFT et le IDFT pour des longueurs
variables, tandis que le PP effectue des opérations sur de grandes vecteurs
complexes par exemple les calculs de l’énergie et des produits vectoriels.
Les exigences initiales fonctionnelle de la VP sont spécifiés pour effectuer
les opérations de PP-Mode. L’actuel module DFT / IDFT de la FEP sera

9.6 Conception d’ASIP pour Vector Processor 167

utilisée en conjonction avec l’ASIP à exécuter les macros spécifiés par le
processeur LEON3. La formation ASIP est illustré à la figure 9.2. Comme
indiqué, le VP sera une partie de la FEP dans l’architecture d’Open Air In-
terface. Par conséquent, il suit la conception générique IP qui est commun
à toutes les IP dans le processeur de bande de base.

VCI

IRQ

FTASIP

VCIInterface

DMA Engine

VCI

M − Controller

Program Mem

M
em

o
ry

 S
u

b
−

S
y

stem
 (M

S
S

)

Figure 9.2: L’architecture ASIP avec FT

Dans la nouvelle formation avec le VP, les tâches plus haut niveau de
la FEP, par exemple l’estimation de canal, sont d’abord traduites en fonc-
tions comme component-wise-product sur vecteurs, les calculs de l’énergie,
et FT etc. Suivant LEON3 décode / traduit ces différentes opérations (vec-
tor products, les calculs de l’énergie, etc.) dans les pré-définies routines de
ASIP, et ces routines sont chargées dans la mémoire de programme (Pro-
gram Memory -PM) de la VP. Par exemple, l’opération de produit scalaire
(dot-product) de l’ASIP est traduit dans une routine qui nécessite multipli-
cations complexes et additions complexes sur les vecteurs.

168 Chapter 9 Résumé en Français

La formation ASIP non seulement répond aux exigences de la règlementation
de la FEP, mais peut accueillir d’autres opérations dans notre conception
globale, par exemple interpolation linéaire. L’ajout d’une fonction basée
sur les fonctions algébriques voudrais juste besoin d’écrire les nouvelles bib-
liothèques dans le LEON3 qui peut être chargé dans l’ASIP.

La synthèse du code RTL généré par LISATeK est réalisée à l’aide de
Mentor Graphics - Precision RTL Synthesis 2009a [men], et la technologie
cible de notre bande de base de conception Virtex5 LX330-1760 [xil]. Les
résultats sont résumés dans le tableau 9.2.

Resources VP - Usage
Global Buffers 1
Function Generators 7493 (3.61 %)
CLB Slices 1874 (3.61 %)
Dffs or Latches 1394 (0.66 %)
DSP48E 8 (4.17 %)
Maximum Frequency 78.6 MHz

Table 9.2: Résumé des résultats d’implémentation d’ASIP

Les résultats au-delà de la fréquence maximale atteignable sont assez
encourageants. La conception ASIP fournit la flexibilité pour les opérations
vectorielles par rapport à la FEP (précédemment conception ASIC), et
aussi que des opérations supplémentaires telles que Vector Shift et Vector
Minimum sont pris en charge par le VP. Compte tenu de ces deux faits,
l’utilisation des ressources est assez bon pour examiner les conceptions de
la propriété intellectuelle ASIP développement futur sur la plate-forme de
SDR. Le nombre de tranches DSP utilisées sont par l’attente, comme il ya
8 multiplications réelles prenant place dans la phase d’exécuter pipeline de
la VP. Le temps de développement ASIP est également inférieur à la con-
ception de l’ASIC et le temps de développement. Les deux approches de
conception, l’ASIC et ASIP, et leurs résultats sont comparés en détail dans
la section suivante.

9.7 Options de conception matériel pour le traitement en bande de base169

9.7 Options de conception matériel pour le traite-
ment en bande de base

La performance du partie matériel dans le Software Defined Radio (SDR)
est un aspect clé pour mesurer la capacité de la radio. L’ensemble des al-
gorithmes à mettre en oeuvre le matériel provient de diverses sans fil des
normes et des formes d’onde offrant ainsi un plus grand défi de concep-
tion. D’autre part, une puissance de traitement numérique de très haute
est nécessaire pour mettre en ouvre les solutions flexibles et effcient pour les
applications de SDR. Les différents composants matériels qui peuvent être
utilisés pour effectuer ces traitements numériques comprennent:

• processeurs de signaux numériques (DSPs)

• prédiffusés programmables (FPGAs)

• processeurs généralistes (GPPs)

• Application Specific Integrated Circuits (ASICs)

Considérant les exigences de performance du DTS et puis à analyser
les différentes options disponibles pour trouver la meilleure solution est une
tâche difficile système de conception et est discutée dans cette section.

Les GPP sont généralement conçus pour des solutions de haute perfor-
mance de calcul d’effectuer des opérations de raisonnement pour la plupart
fondées sur des cas ou des algorithmes de contrôle. GPP n’ont pas été
utilisés en temps réel des tâches de traitement du signal en raison de leur
piètre performance pour ces tâches. En cas de GPP, c’est difficile de prédire
la durée d’exécution d’une tâche spécifique au niveau de la conception du
système en raison des caches, des unités de prédiction de branchement, et
multi-tâches. Une autre contrainte sur la GPP est leur forte consommation
d’énergie par opération qui serait presque les exclure pour des applications
de SDR étant donné le nombre d’opérations effectuées dans les plates-formes
multi-standard. Toutefois, les systèmes à base de GPP pourraient être mieux
utilisées dans des systèmes stationnaires où la consommation d’énergie est
d’une importance peu moins. Aussi les patrons gradués fournir plus haut
niveau de flexibilité, et sont capables de réaliser des tâches très variante sur
une large gamme.

Les processeurs de signaux numériques (DSP) sont des microprocesseurs
qui oeuvre efficacement des algorithmes de calcul à haute performance à

170 Chapter 9 Résumé en Français

l’aide spécialisée architectures réduisant ainsi le nombre de calculs pour une
utilisation spécifique par rapport aux GPP. Les DSP sont utilisés pour les
applications qui exigent l’exécution de meilleures performances que se trouve
généralement sur les microprocesseurs standard ou GPP; les architectures
de processeurs DSP fournir prise en charge optimisée pour la haute perfor-
mance, répétitif, et numériquement intensive manipulation mathématique
des signaux numériques [LBSL97]. Les processeurs DSP sont adaptées
plusieurs opérations dédiées, tels que les multiplicateurs de matériel, des
unités spécialisées de génération d’adresses, et accumulateurs grande. La
DSP a également fourni des instructions spéciales disponibles pour les opérations
DSP commun avec la capacité d’exécuter ces en parallèle, si nécessaire.
D’autre part, les processeurs DSP deviennent en efficacité pour des tâches
de contrôle irrégulier en raison de indisponible instructions spécialisées et
la flexibilité est réduite ainsi. Les deux GPP et DSP ont de faibles perfor-
mances pour les opérations peu complexes basés, comme c’est le cas dans
l’entrelacement et de décodage de canal dans un design émetteur-récepteur.

Les FPGA sont des appareils gourmands en énergie par rapport à leurs
concurrents (souvent plusieurs fois plus ASIC), qui rend difficile de les choisir
comme solution pour la conception de bande de base. Bien que les FPGA
offrent reconfiguration dynamique, mais son utilisation est limitée dans le
contexte des plates-formes de SDR. Aussi dans presque tous les scénarios,
une mise à jour de logiciels coûterait beaucoup moins cher que consommer un
temps complexe reconfiguration du matériel dynamiques dans l’environnement
multi-standard. Le FPGA aussi ne fournissent aucun bénéfice en termes de
vitesse ou de fréquence la plus élevée possible dans la conception de bande de
base numérique. Cependant pour le prototypage rapide d’une plate-forme
expérimentale, comme [ope], les FPGA sont candidat idéal fondé sur le cycle
de conception réduit, flexibilité, facilité d’utilisation et de réduire les coûts
des FPGA. Une fois validé et une production à grande échelle de masse est
nécessaire, il faut passer à des solutions telles que des ASIC ou DSP. Donc,
pour aller sur l’analyse de la conception de bande de base, nous prenons à
l’option FPGA.

ASIC offre la plus optimisée, puissant et efficace de calcul mise en oeu-
vre de matériel numérique pour les applications de traitement du signal
au détriment de la souplesse. ASIC personnalisés général sont utilisés pour
fournir la puissance de traitement a ajouté lorsque aucune autre option n’est
disponible en raison des contraintes de conception ou lors de la conception
des systèmes volume suffisamment élevé. Aussi la conception des ASICs

9.7 Options de conception matériel pour le traitement en bande de base171

sophistiqués nécessite un temps de développement et des efforts importants
en matière de vérification. Par conséquent, les implémentations ASIC ont
tendance à être mieux adaptés à des problèmes très complexes ou des appli-
cations à volume élevé ou des exigences élevées débit de données, tels que
les téléphones cellulaires. D’autre part, à la suite la loi de Moore, les fabri-
cants ont fait près de 60 % transistors plus disponibles par zone de silicium
offrant chaque année un fort potentiel de calcul pour la conception ASIC
hautement efficaces avec des débits de données élevés.

Les ASIC sont plus économes en énergie, suivie par la DSP et les pro-
cesseurs à usage général (GPPs). La flexibilité se déplace dans la direction
opposée à l’efficacité énergétique. Si des solutions logicielles sont adoptées
seulement, puis en raison de la puissance de calcul limitée de chaque unité il
y aurait un grand nombre de noeuds dans le système qui rend la conception
d’interconnexion très complexe. D’autre part, la conception ne contenant
que des ASIC aurait noeuds spécialisés dans le système et la conception
d’interconnexion ne serait pas facile non plus. Avec les avantages et les
inconvénients de la technologie du matériel énumérés ci-dessus, il est bien
évident de réaliser que chaque modèle est unique et il n’y a pas de solution
universelle de sélection parmi les dispositifs qui englobe toute la gamme
d’algorithmes de bande de base. Pour obtenir les dernières normes sans fil,
les quatre principales catégories de matériel numérique (GPP, DSP, FPGA,
ASIC) n’apportent pas la capacité de calcul et nécessitent une combinai-
son de technologies pour la mise en oeuvre. Ces nouvelles normes sans
fil ont besoin d’aide pour les ASIC à haut débit des fonctions simples et
des logiciels DSP pour contrôler les fonctions complexes [Pul08]. En fait,
la plupart des concepteurs utilisent une combinaison de dispositifs à met-
tre en oeuvre l’ensemble du système, une méthode souvent appelée traite-
ment hétérogènes. Les arbitrages viennent d’image tout en faisant le choix
du dispositif le plus efficace pour un certain ensemble d’algorithmes. Les
paramètres tels que le coût, la rapidité et la flexibilité, ainsi que l’énergie
et l’optimisation, toutes doivent être considérées. Ensuite, nous essayons de
la carte l’ensemble des algorithmes pour différentes options de technologie
matérielle.

Une fois que nous avons examiné les avantages et les inconvénients des
technologies matérielles candidat pour la conception de bande de base, on
passe à regarder les différentes opérations ou des algorithmes qui serait mis
en uvre dans le cadre de SDR. La conception de bande de base de la ra-
dio réalisée par logiciel (SDR) est la composition ensemble d’algorithmes

172 Chapter 9 Résumé en Français

de normes différentes, par exemple combinant tous les canaux de codage de
toutes les normes et en essayant de les fusionner en un seul appareil qui
sert à toutes les normes. L’approche de conception de base est de pren-
dre l’avantage des points communs qui existent entre les différentes normes,
puis les traduire les blocs de traitement du matériel. Une fois l’ensemble
des opérations et les algorithmes pour chaque ensemble de tâches est définie
par exemple décodeur de canal, entrelacement ou mappeur, la décision suiv-
ante consiste à choisir la technologie du matériel pour l’unité a dit. Les
paramètres les plus importants dans le choix de la technologie du matériel
dans le cadre de la conception de bande de base multi-standard sont:

• Régularité de fonctionnement

• Exigences de traitement

• Homogénéité des opérations dans normes différentes

ASIC, méthodologie de conception, est le plus efficace par la puissance
mais en même temps exige des algorithmes d’être très régulièrement pour
profiter de conception complet. Parce que la consommation d’énergie est la
plus faible, si idéalement la plus grande part des opérations devraient être
conçus avec les ASIC, compte tenu des ressources de puissance disponible
pour la conception de bande de base. Les opérations qui sont très régulières,
exigent d’énormes puissance de traitement, et sont très homogènes à travers
les normes deviennent un bon candidat pour la conception ASIC. Les opérations
comme des transformées de Fourier (FTs), et filtrage numérique sont des
candidats idéaux pour la conception ASIC.

Le choix de la DSP est bon pour les opérations qui sont moins régulières
mais pas en situation irrégulière, et ont besoin de traitement dédié spécialisées
telles que des multiplications et MAC. Les opérations régulières comme FT
ou processeurs vectoriels conçu en utilisant le DSP se traduirait également
par la conception acceptable ou modérée. Ainsi, pour l’exploitation spécialisée
(par exemple la largeur des données spécifiques) et moins critique opérations
régulières avec les exigences de traitement moyen et la consommation d’énergie,
les DSP sont bon candidat dans le traitement en bande de base.

Les GPP sont les plus flexibles et peuvent servir énormément tâches
variante. Les opérations en situation irrégulière devraient également être
menées par GPP, mais il convient de mentionner à nouveau que la consom-
mation est élevée dans GPP ainsi que des opérations limitées devraient être

9.8 Comparaison des approches de conception (ASIC - ASIP) 173

affectés à la GPP dans une conception hybride. Les opérations de contrôle
dans la conception de bande de base peut généralement être affecté à la GPP.

Ainsi, la cession d’un ensemble spécifique d’algorithmes pour une tech-
nologie matérielle dépend de sa nature de calcul, fréquence d’occurrence et
son comportement à travers de multiples normes. Vient ensuite la question,
combien de fois peut-on attribuer les algorithmes à une catégorie, par ex-
emple tous les algorithmes peuvent être effectuées avec la DSP. Il peut être
répondu en regardant le nombre d’opérations par unité de temps (seconde)
nécessaire à la conception finale et les ressources énergétiques disponibles
par seconde pour la partie bande de base dans le produit. Nous illustrons
ceci par un exemple et utiliser les nombres donnés dans [vB09].

Les terminaux mobiles ont aujourd’hui 3 watts de puissance disponible,
à partir de laquelle 1W est disponible pour le traitement en bande de
base numérique de l’appareil de poche. D’autre part, la charge de tra-
vail numérique est 100GOPS ((10)9 d’opérations par seconde). Ainsi, nous
avons un budget de puissance de 10 − pico − J/operation. Maintenant, si
nous devons concevoir la bande de base avec les ASIC et DSP, nous serions
alors en utilisant une combinaison des deux, étant donné que le budget de
puissance se situe entre la consommation d’énergie de ces deux technolo-
gies matérielles. Si la consommation moyenne de ASIC est 2pJ/op et pour
les DSP, il est 20pJ/op, puis 55% des opérations peut être affecté à ASIC,
tandis que 45% peuvent être affectés à DSP. Cet exemple illustre le fait
que non seulement la nature mais le fonctionnement du budget de puissance
doivent également être inclus en tant que paramètre lors de l’allocation d’un
ensemble d’algorithmes pour une technologie matérielle spécifique.

9.8 Comparaison des approches de conception (ASIC
- ASIP)

Le travail de recherche a présenté deux modèles de matériel, le Front End
Processor (FEP) et le Vector Processor (VP). La conception FEP est une
conception câblée soit une conception ASIC, tandis que la conception VP
est un ASIP une. Dans cette section, nous présentons la comparaison de ces
deux modèles sur la base de nos observations et les résultats.

Les spécifications fonctionnelles de l’ASIP ont d’abord été réglé pour
correspondre à celle de la FEP à l’exception de la Fourier Transform (FT),
à savoir l’ASIP est censé fournir toutes les fonctions que la FEP a en de-

174 Chapter 9 Résumé en Français

hors de la DFT / IDFT. Donc, fondamentalement, ASIP est conçu pour
l’arithmétique opérations composante par composante sur les vecteurs tels
que l’addition, soustraction, multiplication et division. Ensuite, il existe des
fonctions telles que les calculs de l’énergie, Dot-Produits et calculs de Max
sur les vecteurs ou sous-vecteurs. La méthodologie de conception de l’ASIP
pour servir l’ensemble de ces opérations est différente de l’approche FEP. Le
jeu d’instructions ASIP est composé de la simple opération sur les vecteurs et
composé de deux ou trois instructions pour effectuer une opération sur bits
complexes tels que les calculs de l’énergie ou de produits scalaires. Pour
illustrer par un exemple, pour calculer l’énergie moyenne d’un vecteur, le
VP serait de le faire en trois étapes: calculer le carré absolu des différents
éléments du vecteur, alors la somme vectorielle en ajoutant tous les éléments
calculés dans la précédente étape et enfin l’aide de la division par la taille
du vecteur. Pour la performance de l’ASIP à l’égard de la conception ASIC,
nous avons les observations suivantes:

• La VP conception offre une plus grande programmabilité utilisant les
opérations au niveau macro, que ces opérations peuvent être utilisés
dans différentes formations avec de nombreuses options.

• Le throughput de les opérations composante par composante est est
la même dans les deux cas.

• Le throughput de VP est la moitié pour quelques opérations de FEP
comme Dot-produit et les calculs de l’énergie parce que VP se décompose
ces opérations en opérations vectorielles simple (ASIP Instruction Set).

• VP donne une grande flexibilité opération vectorielle au détriment du
plus faible throughput pour quelques fonctions.

• L’unité de génération d’adresse (Address Generation Unit - AGU) de
la VP est plus souple, sans perte de performance. Dans le VP, les
adresses vecteur de la mémoire peut soit suivre le modèle d’entrée ou
peuvent être stockées à des adresses contigus.

• Le VP fournit quelques opérations arithmétiques de base supplémentaires,
par exemple multiplication de Vecteur par des constantes, vecteur de
décalage, Vector Square; améliorant ainsi la fonctionnalité de vecteur
de la conception de bande de base.

• L’utilisation de la mémoire pour les deux modèles est la même en
dehors de l’ajout de 64 Kbits de mémoire de programme pour la con-
ception ASIP.

9.8 Comparaison des approches de conception (ASIC - ASIP) 175

La tâche suivante consiste à comparer ces deux modèles sur les technolo-
gies cibles. Pour faire une comparaison équitable, le bloc de traitement FEP
est resynthétisé sans son unité de FT et les conceptions sont synthétisés avec
Xilinx Virtex V et aussi avec 65 nm comme les technologies ciblées.

Les résultats de synthèse en utilisant les technologies cibles sont in-
diqués dans le tableau 9.3. La fréquence cible paramètre est la contrainte de
synthèse transmis à la outil de synthèse, tandis que la fréquence maximale est
de ce que réalise la conception à la fin de la synthèse. La surface de silicium
dans le tableau 9.3 est représenté par générateur de fonction (Function Gen-
erator - FG). Dans le tableau des résultats, le paramètre F / S (maximum
fréquence / surface silicium) dans le tableau est un des critères de qualité
classique: la plus la meilleure. Pour obtenir les meilleurs résultats, nous
avons utilisé un agressifs synthèse approche. Premier temps, nous fixer un
objectif très élevé de fréquence à observer la fréquence maximale atteignable
par la technologie sans cible d’autres contraintes. Une fois la fréquence la
plus élevée possible est connu alors une fréquence à la surface de silicium
moins proche de la fréquence la plus élevée observée est recherché, comme
le démontre les résultats dans le tableau 9.3. Pour la première synthèse
avec Virtex-V, le nombre de tranches DSP48E extrême utilisée par chacun
des bloc matériel étaient différents. Par conséquent, nous avons désactivé
l’option d’utiliser les DSP extrêmes de faire une comparaison équitable, et
les résultats indiqués sont sans en utilisant DSP.

Selon la comparaison des résultats, la conception ASIC est mieux que la
conception ASIP en termes de superficie et de la fréquence. La surface de
silicium augmente de 19% en cas de 65nm cible, tandis que l’augmentation
cas de la synthèse FPGA est de 70%. Nous n’avons pas pu trouver une rai-
son précise pour l’augmentation considérable des cas de la synthèse FPGA
Virtex-V, une analyse en profondeur est nécessaire pour ce résultat spécifique.
La diminution de la fréquence maximale atteignable est presque 70% dans
les deux résultats de la synthèse par ASIP que ASIC. La différence de la
fréquence maximale atteignable n’était pas prévu et les premiers enquête
suggèrent que, avec quelques modifications mineures dans la conception
LISA, une fréquence acceptable peut être atteint. La différence n’est pas
énorme en cas de la surface de silicium, en ignorant les résultats FPGA, et
ASIP peut être choisi et de le remplacer dans la conception de bande de
base pour le traitement vectoriel, une fois le maximum fréquence réalisable
est acceptable.

Une fois la conception ASIP est retravaillé, nous pensons que les per-
formances des deux options de conception serait comparable en termes de
surface de silicium et de la fréquence. Bien que les résultats de la conception

176 Chapter 9 Résumé en Français

Target
Technol-
ogy

Design Target
clock
period
(ps)

Target
freq
(MHz)

Silicon
area
µm2/FG

Slack
(ps)

Max
Fre-
quency
(MHz)

100 *
F / S

Norma-
lized
F/S

3300.00 303.03 107968 1585.00 204.71 1.90 51.27
VP 5400.00 185.19 97987 114.00 181.36 1.85 50.05

5430.00 184.16 99497 0.00 184.16 1.85 50.05
ASIC 2000.00 500.00 91686 1095.00 323.10 3.52 95.29
65 nm FEP 3095.00 323.10 93495 0.00 323.10 3.46 93.45

3291.00 303.86 82166 0.00 303.86 3.70 100.00
3350.00 298.51 82168 0.00 298.51 3.63 98.24

VP 3333.33 300.00 9737 9377.67 78.67 8.08 33.92
13157.89 76.00 9665 282.91 77.67 8.04 33.74

Virtex V 3333.33 300.00 5683 4054.65 135.36 23.82 100.00
5VLX330 FEP 4000.00 250.00 5709 3387.98 135.36 23.71 99.54

5000.00 200.00 5709 2387.98 135.36 23.71 99.54
7692.31 130.00 5707 304.33 135.36 23.72 99.58

Table 9.3: Le résumé des résultats de synthèse pour la conception de FEP
et VP

9.9 Conclusions et travaux futurs 177

ASIC serait encore un peu mieux, mais la conception ASIP fournit un degré
plus élevé de flexibilité et une fonctionnalité accrue, les paramètres très im-
portants dans flexible radio design. Un autre aspect que nous voudrions
étudier à l’avenir est la consommation électrique des deux conceptions.

Les dessins ASIP comme le DSP et d’autres solutions logicielles se présenter
comme une alternative à la conception de bande de base lorsque la com-
plexité augmente. Notre effort a été d’étudier la pertinence de l’ASIP dans
la conception hybride plate-forme pour les applications de SDR. Notre con-
ception de bande de base [OPE], décrit ci-dessus, est composé de l’ASIC
paramétrable.

Le premier effort avec le prototype est d’étudier que la manière dont
jusqu’où nous pouvons aller à la conception ASIC garder suffisamment de
flexibilité et de silicium acceptable. La raison de la conception ASIC sont les
mêmes que celles expliquées dans la section précédente: grande puissance
de calcul et une faible consommation de puissance. Les algorithmes tels
que codeur et le décodeur (Channel Encoding and Channel Decoding) qui
ne sont ni régulières ni homogène dans l’ensemble les normes ont posé des
problèmes assez pour la conception ASIC. Les solutions ASIC pour ces blocs
complexes dans le manque de souplesse de conception de bande de base et
nécessitent des performances élevées. Le pourcentage de réutilisabilité de
logique dans la conception ASIC de ces blocs n’est pas encourageant, par
exemple dans LDPC et Viterbi décodage. La meilleure solution nécessite
également plus élevé et le programability des solutions de rechange telles
que les patrons gradués et DSP (discuté dans la section précédente) n’aident
pas à ce scénario. Les chercheurs ont déjà envisagé l’ASIP comme une
solution pour décodeur solution dans un environnement multi-standard avec
des résultats acceptables [VW08] [KMF09] [BAS04]. L’ASIP peut être une
solution pour algorithmes complexe tels que codeur et le décodeur flexible
et de se présenter comme un candidat solide pour l’exploration d’un tel
ensemble d’algorithmes.

9.9 Conclusions et travaux futurs

La thèse présentée a démontré une approche pratique pour la mise en oeu-
vre des architectures radio en bande de base pour les plates-formes souples.
L’architecture multi bande de base standard pose défis de conception qui in-
cluent, mais ne se limitent pas à des données diverses débit, la latence et des
contraintes de temps. La conception de bande de base ne doit pas seulement
répondre aux différentes standards ou spécifications, mais l’ensemble varié

178 Chapter 9 Résumé en Français

de fonctions / opérations pour chaque application sans fil. Le processeur
numérique avant la fin (FEP) prend en charge des opérations à l’interface air
dans la conception de bande de base. Nous avons présenté les spécifications
fonctionnelles, la conception du matériel, et la mise en oeuvre de ce bloc
en détail. Pour faire l’analyse du spectre plus large, nous avons également
présenté la conception ASIP d’un processeur vectoriel en utilisant un langage
LISA. Le processeur vectoriel effectue les opérations arithmétiques de base
sur les vecteurs complexes. Nous avons également discuté des approches de
conception de matériel dans le cadre de la conception multi-standard et a
proposé des recommandations pour les différentes catégories d’opérations.

Le travail de recherche est une tentative d’établir une base solide pour
un design pratique d’une conception de bande de base multi-standard. Nous
n’avons pas seulement examiné les options de conception, mais aussi assuré
la conception et l’implémentation en utilisant les approches ASIC et ASIP.
Le flexible, programmable dessins de bande de base multi-standard ont une
portée considérable dans les dispositifs de communication sans fil dans les
années à venir. Notre analyse, la conception et la mise en oeuvre peut être
utile pour les chercheurs à explorer de nouveaux horizons dans les domaines
de la conception de bande de base flexible pour des applications standard.

Comme la plupart des travaux de recherche, il ya des questions qui
doivent encore être répondu et il ya des caractéristiques qui doivent être
explorés dans le contexte du travail présenté. Certains d’entre eux sont
énumérés ici:

• Comment une plus grande flexibilité peut être ajouté à la concep-
tion actuelle de la FEP. La conception actuelle du bloc FEP sou-
tient une seule opération à la fois, et la prochaine tâche doit attendre
l’achèvement de la tâche en cours. Le bloc FEP doit fournir une fonc-
tion pour effectuer des opérations multiples dans le même temps, ou
au moins la commutation entre les opérations, si une tâche prioritaire
est attribué par le système.

• Bien que la conception ASIP a été comparée avec la solution câblée
RTL, mais il ya encore beaucoup de place pour une analyse plus
rigoureuse. Les deux unités doivent être comparés à l’analyse de la con-
sommation électrique avant de faire un dernier appel pour l’utilisation
des unités de matériel dans la conception de bande de base.

• L’intégration de la FEP et la conception ASIP en même temps dans la
plate-forme Open Air Interface et l’évaluation des résultats en temps
réel serait également un réel plus à avoir.

9.9 Conclusions et travaux futurs 179

• Nous avons recommandé que l’aide d’une structure hybride pour la
conception de bande de base flexible. Il serait vraiment intéressant
d’avoir une conception ASIP pour l’unité de décodage canal, par ex-
emple, dans la conception de bande de base et avoir une évaluation de
la performance. Ce serait donner des résultats concrets à l’appui de
notre hypothèse.

180 Chapter 9 Résumé en Français

Bibliography

[Ala98] S. Alamouti, “A simple transmit diversity technique for wire-
less communications,” Selected Areas in Communications,
IEEE Journal on, vol. 16, no. 8, pp. 1451 –1458, oct. 1998.

[alt] Altera. [Online]. Available: http://www.altera.com/

[BAS04] A. Blaickner, S. Albl, and W. Scherr, “Configurable comput-
ing architectures for wireless and software defined radio - a
FPGA prototyping experience using high level design-tool-
chains,” in International Symposium on System-on-Chip,
2004, pp. 111 – 116.

[BCT99] C. Bergstrom, S. Chuprun, and D. Torrieri, “Adaptive spec-
trum exploitation using emerging software defined radios,”
in IEEE Radio and Wireless Conference, RAWCON, 1999,
pp. 113 –116.

[BDBM+04] M. Bocchi, C. De Bartolomeis, C. Mucci, F. Campi, A. Lodi,
M. Toma, R. Canegallo, and R. Guerrieri, “A XiRisc-based
SoC for embedded DSP applications,” in Proceedings of the
IEEE Custom Integrated Circuits Conference,, Oct. 2004, pp.
595 – 598.

[BHFN02] H. Blume, H. Hubert, H. Feldkamper, and T. Noll, “Model-
based exploration of the design space for heterogeneous sys-
tems on chip,” in The IEEE International Conference on
Application-Specific Systems, Architectures and Processors,,
2002, pp. 29 – 40.

[BMH+06] R. Bagheri, A. Mirzaei, M. Heidari, S. Chehrazi, M. Lee,
M. Mikhemar, W. Tang, and A. Abidi, “Software-defined ra-
dio receiver: dream to reality,” IEEE Communications Mag-
azine, vol. 44, no. 8, pp. 111 –118, Aug. 2006.

181

182 Bibliography

[Bon00] A. B. Bondi, “Characteristics of scalability and their im-
pact on performance,” in Proceedings of the 2nd international
workshop on Software and performance, Ottawa, Ontario,
Canada, 2000, pp. 195 – 203.

[Bra83] R. Bracewell, “Discrete hartley transfrom,” J. Opt. Soc.
Am., vol. 73, pp. 1832–1835, 1983.

[CEPA02] S. Colieri, M. Ergen, A. Puri, and B. A, “A study of chan-
nel estimation in OFDM systems,” in IEEE 56th Vehicular
Technology Conference, VTC Fall, vol. 2, 2002, pp. 894 – 898
vol.2.

[CEPB02] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel es-
timation techniques based on pilot arrangement in OFDM
systems,” IEEE Transactions on Broadcasting, vol. 48, no. 3,
pp. 223 – 229, Sep. 2002.

[CKY+99] H. Choi, J.-S. Kim, C.-W. Yoon, I.-C. Park, S. H. Hwang,
and C.-M. Kyung, “Synthesis of application specific instruc-
tions for embedded DSP software,” IEEE Transactions on
Computers, vol. 48, no. 6, pp. 603 –614, Jun. 1999.

[CN06] W.-H. Chang and T. Nguyen, “An OFDM-specified lossless
FFT architecture,” IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 53, no. 6, pp. 1235 –1243, June
2006.

[Coh76] D. Cohen, “Simplified control of FFT hardware,” IEEE
Transactions on Acoustics, Speech and Signal Processing,
vol. 24, no. 6, pp. 577 – 579, Dec. 1976.

[CRS+04] G. Cichon, P. Robelly, H. Seidel, E. Matus, M. Bronzel, and
G. Fettweis, “Synchronous transfer architecture (STA)s,” in
In proceedings of International Symposium on Systems, Ar-
chitectures, Modeling and Simulation (SAMOS) IV Work-
shop, Greece, Jul. 2004.

[CT65] J. Cooley and J. Tukey, “An algorithm for the machine com-
putation of the complex fourier series,” Math. Computat.,
vol. 19, pp. 297–301, 1965.

Bibliography 183

[CVSI06] A. Cortes, I. Velez, J. Sevillano, and A. Irizar, “AFORE: an
IFFT/FFT core generation tool different wireless communi-
cation standards,” in International Conference on Consumer
Electronics, Jan. 2006, pp. 193 – 194.

[DGW+03] L. Davis, D. Garrett, G. Woodward, M. Bickerstaff, and
F. Mullany, “System architecture and ASICs for a MIMO
3GPP-HSDPA receiver,” in The 57th IEEE Semiannual Ve-
hicular Technology Conference VTC-Spring, vol. 2, Apr.
2003, pp. 818 – 822 vol.2.

[eCo] eCos. Open Source Real Time Operating System. [Online].
Available: http://ecos.sourceware.org/

[EFX+04] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Im-
plementing an OFDM receiver on the RaPiD reconfigurable
architecture,” IEEE Transactions on Computers, vol. 53,
no. 11, pp. 1436 – 1448, Nov. 2004.

[GIL+03] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudg-
ill, “A software-defined communications baseband design,”
IEEE Communications Magazine, vol. 41, no. 1, pp. 120 –
128, Jan. 2003.

[GK10] R. Ghaffar and R. Knopp, “Low complexity metrics for bicm
siso and mimo systems,” in Vehicular Technology Conference
(VTC 2010-Spring), 2010 IEEE 71st, may. 2010, pp. 1 –6.

[Gol05] A. Goldsmith, Wireless Communications. Cambridge Uni-
versity Press, Aug 2005.

[HCC04] C.-P. Hung, S.-G. Chen, and K.-L. Chen, “Design of an ef-
ficient variable-length FFT processor,” in Proceedings of the
International Symposium on Circuits and Systems, vol. 2,
May. 2004, pp. II – 833–6 Vol.2.

[HKN+01] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch,
O. Wahlen, A. Wieferink, and H. Meyr, “A novel method-
ology for the design of application-specific instruction-set
processors (ASIPs) using a machine description language,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 20, no. 11, pp. 1338 –1354, Nov.
2001.

184 Bibliography

[HML02] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Explo-
ration for Embedded Processors with LISA. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2002.

[ice] Icera Semiconductors. [Online]. Available:
http://www.icerasemi.com/

[iee91] (1991) Ieee standard computer dictionary. a compilation
of ieee standard computer glossaries,. [Online]. Available:
http://ieeexplore.ieee.org/stamp/

[JBK01] M. Jain, M. Balakrishnan, and A. Kumar, “ASIP design
methodologies: survey and issues,” in Fourteenth Interna-
tional Conference on VLSI Design, 2001, pp. 76 –81.

[KMF09] S. Kunze, E. Matus, and G. Fettweis, “ASIP decoder archi-
tecture for convolutional and LDPC codes,” in IEEE Inter-
national Symposium on Circuits and Systems, ISCAS, 24-27
2009, pp. 2457 –2460.

[KMN02] K. Keutzer, S. Malik, and A. Newton, “From ASIC to ASIP:
the next design discontinuity,” in IEEE International Con-
ference on Computer Design: VLSI in Computers and Pro-
cessors,, 2002, pp. 84 – 90.

[Kno05] S. Knowles, “The SoC future is soft,” in IEE Cambridge
Processor Seminar, Dec. 2005.

[Kob01] B. Kobb, Wireless Spectrum Finder. McGraw Hill, NY,
2001.

[KP77] D. Kolba and T. Parks, “A prime factor FFT algorithm using
high-speed convolution,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 25, no. 4, pp. 281 – 294,
Aug 1977.

[KWD+02] J. Kneip, M. Weiss, W. Drescher, J. V. Aue, M.Bolle, and
G. Fettweis, “Hipersonic: Single-chip programmable base-
band assp for 5 GHz wireless LAN applications,” IEICE
TRANS. ELECTRON, vol. E85, no. 2, pp. 359 – 367, Feb.
2002.

Bibliography 185

[LBSL97] P. Lapsley, J. Bier, A. Shoham, and E. Lee, DSP Processor
Fundamentals (Architectures and Features). Wiley-IEEE
Press, 1997.

[LIMVS05] D. Lo Iacono, E. Messina, C. Volpe, and A. Spalvieri, “Serial
block processing for multi-code WCDMA frequency domain
equalization,” in IEEE Wireless Communications and Net-
working Conference,, vol. 1, 13-17 2005, pp. 164 – 170 Vol.
1.

[LIP] LIP6. Soclib modeling and simulation platform. [Online].
Available: http://soclib.lip6.fr/

[LIZM+06] D. Lo Iacono, J. Zory, E. Messina, N. Piazzese, G. Saia, and
A. Bettinelli, “ASIP architecture for multi-standard wire-
less terminals,” in Design, Automation and Test in Europe -
DATE, vol. 2, Mar. 2006, pp. 1 –6.

[LIZMP05] D. Lo Iacono, J. Zory, E. Messina, and N. Piazzese, “Block
processing engine for high-throughput wireless communica-
tions,” in 2nd International Symposium on Wireless Com-
munication Systems,, 5-7 2005, pp. 118 – 122.

[LL07] Y.-W. Lin and C.-Y. Lee, “Design of an FFT/IFFT processor
for MIMO OFDM systems,” IEEE Transactions on Circuits
and Systems I, vol. 54, no. 4, pp. 807 –815, April 2007.

[LLBL05] C. Laot, R. Le Bidan, and D. Leroux, “Low-complexity
MMSE turbo equalization: a possible solution for EDGE,”
IEEE Transactions on Wireless Communications, vol. 4,
no. 3, pp. 965 – 974, May 2005.

[LLiCC06] J. Lee, H. Lee, S. in Cho, and S.-S. Choi, “A high-speed, low-
complexity radix-2/sup 4/ FFT processor for MB-OFDM
UWB systems,” in IEEE International Symposium on Cir-
cuits and Systems, 2006.

[LMP94] C. Liem, T. May, and P. Paulin, “Instruction-set match-
ing and selection for DSP and ASIP code generation,” in
Proceedings of the European Design and Test Conference,
EDAC, Feb. 1994, pp. 31–37.

186 Bibliography

[LNPM05] Y.-C. Liang, S. Naveen, S. K. Pilakkat, and A. K. Marath,
“Reconfigurable signal processing and hardware architecture
for broadbandwireless communications,” EURASIP Journal
on Wireless Communications and Networking, pp. 323 – 332,
2005.

[LU95] R. Lackey and D. Upmal, “Speakeasy: the military software
radio,” IEEE Communications Magazine, vol. 33, no. 5, pp.
56 –61, May. 1995.

[LWB+08] T. Limberg, M. Winter, M. Bimberg, R. Klemm, E. Matus,
M. Tavares, G. Fettweis, H. Ahlendorf, and P. Robelly, “A
fully programmable 40 GOPS SDR single chip baseband for
LTE/WiMAX terminals,” in 34th European Solid-State Cir-
cuits Conference, ESSCIRC,, Sep. 2008, pp. 466 –469.

[Ma99] Y. Ma, “An effective memory addressing scheme for
FFT processors,” IEEE Transactions on Signal Processing,
vol. 47, no. 3, pp. 907 –911, Mar. 1999.

[Mel02] J. Melby, “JTRS and the evolution toward software-defined
radio,” MILCOM, vol. 2, pp. 1286 – 1290, Oct. 2002.

[men] Mentor Graphics. [Online]. Available:
http://www.mentor.com

[Mit95] J. Mitola, “The software radio architecture,” IEEE Commu-
nications Magazine, vol. 33, no. 5, pp. 26 –38, May 1995.

[MKKP07] N.-I. Muhammad, K. Khalfallah, R. Knopp, and R. Pacalet,
“Reconfigurable DSP architectures for sdr applications,” in
14th IEEE International Conference on Electronics, Circuits
and Systems, 2007. ICECS 2007., 11-14 2007, pp. 971 –974.

[MKP09a] N.-I. Muhammad, R. Knopp, and R. Pacalet, “On the hard-
ware design of front-end processings in the SDR systems,” in
SDR’09, Software Digital Radio, Technical Conference and
Product Exposition,, Dec 2009.

[MKP09b] ——, “Variable length DFT memory organization schemes
for communication systems applications,” in 12th SAME Fo-
rum,, Sep. 2009.

Bibliography 187

[MRP+08] N.-I. Muhammad, R. Rasheed, R. Pacalet, R. Knopp, and
K. Khalfallah, “Flexible baseband architectures for future
wireless systems,” in 11th EUROMICRO Conference on Dig-
ital System Design Architectures, Methods and Tools, 2008.
DSD ’08., 3-5 2008, pp. 39 –46.

[MSL+06] E. Matu, H. Seidel, T. Limberg, P. Robelly, and G. Fet-
tweis, “A GFLOPS Vector-DSP for broadband wireless ap-
plications,” in IEEE Custom Integrated Circuits Conference,
2006. CICC ’06., Sep. 2006, pp. 543 –546.

[MSM05] M. Morelli, L. Sanguinetti, and U. Mengali, “Channel esti-
mation for adaptive frequency-domain equalization,” Wire-
less Communications, IEEE Transactions on, vol. 4, no. 5,
pp. 2508 – 2518, sep. 2005.

[MW00] Y. Ma and L. Wanhammar, “A hardware efficient control of
memory addressing for high-performance FFT processors,”
IEEE Transactions on Signal Processing, vol. 48, no. 3, pp.
917 –921, Mar. 2000.

[ope] Open air interface. [Online]. Available:
http://www.openairinterface.org/

[OS89] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[Pro95] J. G. Proakis, Digital Communications. McGraw Hill Book
Co., Singapore, 1995.

[Pul08] D. Pulley, “Multi-core DSP for base stations: Large and
small,” in Asia and South Pacific Design Automation Con-
ference, ASPDAC, Mar. 2008, pp. 389 –391.

[RS04] G. Rauwerda and G. Smit, “Implementation of a flexible
RAKE receiver in heterogeneous reconfigurable hardware,”
in IEEE International Conference on Field-Programmable
Technology, Dec. 2004, pp. 437 – 440.

[san] Sandbridge technologies. [Online]. Available:
http://www.sandbridgetech.com/

188 Bibliography

[SIH+91] J. Sato, M. Imai, T. Hakata, A. Alomary, and N. Hikichi,
“An integrated design environment for application specific
integrated processor,” in IEEE International Conference on
Computer Design: VLSI in Computers and Processors,, Oct.
1991, pp. 414 –417.

[SKKP10] C. Schmidt-Knorreck, R. Knopp, and R. Pacalet, “Hardware
optimized sample rate conversion for software defined radio,”
in WSR - 6th Karlsruhe Workshop on Software Radios, Mar.
2010.

[SLHC10] S.-L. Su, Y.-C. Lin, C.-C. Hsu, and G. Chuang, “A DFT-
based channel estimation scheme for IEEE 802.16e OFDMA
systems,” in The 12th International Conference on Advanced
Communication Technology (ICACT), vol. 1, Feb. 2010, pp.
775 –779.

[STB09] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long
Term Evolution: From Theory to Practice. A John Wiley
and Sons, Ltd, Publication, 2009.

[Tut99] W. Tuttlebee, “Software-defined radio: facets of a developing
technology,” IEE Personal Communications, vol. 6, no. 2,
pp. 38 –44, Apr. 1999.

[UAB05] I. Uzun, A. Amira, and A. Bouridane, “FPGA implemen-
tations of fast Fourier transforms for real-time signal and
image processing,” IEE Proceedings on Vision, Image and
Signal Processing, vol. 152, no. 3, pp. 283 – 296, Jun. 2005.

[vB09] C. van Berkel, “Multi-core for mobile phones,” in Design,
Automation Test in Europe Conference Exhibition - DATE,,
Apr. 2009, pp. 1260 –1265.

[vBHM+04] K. van Berkel, F. Heinle, P. Meuwissen, K. Moerman, and
M. Weiss, “Vector processing as an enabler for software-
defined radio in handsets from 3G+WLAN onwards,” in
Software Defined Radio Technical Conference, Arizona -
USA, Nov 2004.

[vBHMKM05] K. van Berkel, F. Heinle, P. Meuwissen, and M. W. K. Mo-
erman, “Vector processing as an enabler for software-defined

Bibliography 189

radio in handheld devices,” EURASIP Journal on Applied
Signal Processing, vol. 16, pp. 2613 – 2632, 2005.

[VSI] VSIA. VSI Alliance. [Online]. Available:
http://www.vsi.org/

[VW08] T. Vogt and N. Wehn, “A Reconfigurable ASIP for Con-
volutional and Turbo Decoding in an SDR Environment,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 10, pp. 1309 –1320, Oct. 2008.

[WF96] M. H. Weiss and G. P. Fettweis, “Dynamic codewidth reduc-
tion for VLIW instruction set architectures in digital signal
processors,” in Proc. IWISP, Manchester, 1996, pp. 517–520.

[WIF] Wireless innovation forum. [Online]. Available:
http://www.wirelessinnovation.org

[Win86] S. Winograd, “On Computing the DFT,” Math. Computat.,
vol. 32, pp. 175–199, 1986.

[WVVW+02] M. Wouters, G. Vanwijnsberghe, P. Van Wesemael, T. Huy-
brechts, and S. Thoen, “Real time implementation on FPGA
of an OFDM based wireless LAN modem extended with
adaptive loading,” in Proceedings of the 28th European Solid-
State Circuits Conference,ESSCIRC, Sep. 2002, pp. 531 –
534.

[xil] Xilinx. [Online]. Available: http://www.xilinx.com/

[YGC06] D. M. Y. Guo, J. Zhang and J. R. Cavallaro, “An efficient
circulant MIMO Equalizer for CDMA Downlink: Algorithm
and VLSI Architecture,” EURASIP Journal on Applied Sig-
nal Processing, 2006.

