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Abstract. Blind Source Separation (BSS) arises in a variety of fields in
speech processing such as speech enhancement, speakers diarization and
identification. Generally, methods for BSS consider several observations
of the same recording. Single microphone analysis is the worst underde-
termined case, but, it is also the more realistic one. In this article, the
autoregressive structure (short term prediction) and the periodic signa-
ture (long term prediction) of voiced speech signal are modeled and a
linear state space model with unknown parameters is derived. The Expec-
tation Maximization (EM) algorithm is used to estimate these unknown
parameters and therefore help source separation.

Key words: blind audio source separation, EM, Kalman, speech pro-
cessing, autoregressive.

1 Introduction

Blind Source Separation is an important issue in audio processing. It helps solv-
ing ”‘the cocktail party problem”’ where each speaker needs to be retrieved
independently. Several works exploit the temporal structure of speech signal to
help separation. In literature, three categories can be listed : The first exploits
only the short term correlation in speech signal and models it with a short
term Auto-Regressive (AR) process [2]. A second category models the quasi-
periodicity of speech by introducing the fundamental frequency (or pitch) in
the analysis [3, 4]. Finally, few works combine the two aspects [5]. This article
is classified in the last category. In [5], The problem is presented like an over-
determined instantaneous model where the aim is to estimate jointly the long
term (LT)and short term (ST) AR coefficients, as well as the demixing matrix
in order to retrieve the speakers in a deflation scheme. An ascendant gradient
algorithm is used to minimize the mean square of the total estimation error
(short term and long term), and thus learn the parameters recursively. Our case
is more difficult, since only a single sensor is used. Therefore, the proposed model
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of speech propagation is rather simplified (the observation is the instantaneous
sum of sources). Nevertheless, this model is still relevant in several scenarios.
Using some mathematical manipulation, a state space model with unknown pa-
rameters is derived. Since the involved signals are Gaussians, Kalman filtering
can be used in the EM algorithm (Expectation step) to estimate the state. This
paper is organized as follows: The state space model is introduced in section 2. A
small recapitulation of the EM-Kalman algorithm is presented in section 3 and
the estimators’ expressions are then computed. Numerical results are provided
in section 4, and conclusions are drawn in section 5.

2 State Space Model Formulation

We consider the problem of estimating Ns mixed Gaussian sources. We use
a voice production model [6], that can be described by filtering an excitation
signal with long term prediction filter followed by a short term filter and which
is mathematically formulated

yt =
Ns∑
k=1

sk,t + nt,

sk,t =
pk∑

n=1

ak,n sk,t−n + s̃k,t

s̃k,t = bk s̃k,t−Tk
+ ek,t (1)

where

– yt is the scalar observation.
– sk,t is the kth source at time t, an AR process of order pk

– ak,n is the nth short term coefficient of the kth source
– s̃k,t is the short term prediction error of the kth source
– bk is the long term prediction coefficient of the kth source
– Tk is the period of the kth source, not necessary an integer
– {ek,t}k=1..Ns

are the independent Gaussian distributed innovation sequences
with variance ρk

– {nt} is a white Gaussian process with variance σ2
n, independent of the inno-

vations {ek,t}k=1..Ns

This model seems to describe more faithfully the speech signal, especially the
voiced part (the most energetic part of speech). It is because it uses the short
term auto-regressive model (AR) to describe the correlation between the signal
samples jointly with the long term AR model to depict the harmonic structure
of speech, rather than being restricted to just one of both [2, 3]. Let xk,t be the
vector of length (N+pk +2), defined like xk,t = [sk(t) sk(t−1) · · · sk(t−pk−1) |
s̃k(t) s̃k(t− 1) · · · s̃k(t− bTkc) · · · s̃k(t−N + 1)]T . This vector can be written in
terms of xk,t−1 as the following

xk,t = Fk xk,t−1 + gk ek,t (2)
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where gk is the (N+pk+2) length vector defined as gk = [ 1 0 · · · 0 | 1 0 · · · · · · 0]T .
The second non null component is at the position (pk + 3). The (N + pk + 2)×
(N + pk + 2) matrix Fk has got the following structure

Fk =
[
F11,k F12,k

O F22,k

]
where the (pk + 2) × (pk + 2) matrix F11,k, the (pk + 2) ×N matrix F12,k and
the N ×N matrix F22,k are given by

F11,k =



ak,1 ak,2 · · · ak,pk
0 0

...

I(pk+1)

...

...
0



F12,k =


0 · · · (1− αk) bk αk bk 0 · · · 0
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 0 · · · 0



F22,k =



0 · · · (1− αk) bk αk bk 0 · · · 0
...

I(N−1)

...

...
0


In matrices F12,k and F22,k, the variable αk, given by αk = (1 − b(Tk)c

Tk
), is

present to consider the case where pitches are not integer. It is noteworthy that
the choice of the F22,k matrix size N should be done carefully. In fact, the value
of N should be superior to the maximum value of pitches Tk in order to detect
the long-term aspect. It can be noticed that the coefficients (1−αk) bk and αk bk
are situated respectively in the bTkcth and dTketh columns of F22,k and F12,k.
Since Ns sources are present, we introduce the vector xt that consists of the
concatenation of the {xk,t}k=1:Ns

vectors (xt = [xT
1,t xT

2,t · · · xT
Ns,t]

T ) which
results in the time update equation 3. Moreover, by reformulating the expression
of {yt}, we introduce the observation equation 4. We obtain the following state
space model

xt = F xt−1 + G et (3)
yt = hT xt + nt (4)

where

– et = [e1,t e2,t · · · eNs,t]T is the Ns×1 column vector resulting of the concate-
nation of the Ns innovations. Its covariance matrix is the Ns ×Ns diagonal
matrix Q =diag(ρ1, · · · , ρNs

).
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– F is the
∑Ns

k=1(pk + N + 2) ×
∑Ns

k=1(pk + N + 2) block diagonal matrix
given by F = blockdiag (F1, · · · ,FNs

).
– G is the

∑Ns

k=1(pk+N+2)×Ns matrix given by G = block diag(g1, · · · ,gNs
)

– h is the
∑Ns

k=1(pk +N + 2)× 1 column vector given by h = [hT
1 · · ·h

T
Ns

]T

where hi = [1 0 · · · 0]T of length (N + pk + 2).

It is obvious that the linear dynamic system derived before depends on unknown
parameters recapitulated in the variable θ =

{
{ak,n}k∈{1,...,Ns}

n∈{1,...,pk}
, {bk}k∈{1,...,Ns} ,

{ρk}k∈{1,...,Ns} , σ
2
n

}
. Hence, a joint estimation of sources (the state) and θ is re-

quired. In literature([11, 10, 7]), the EM-Kalman algorithm presents an efficient
approach for estimating iteratively parameters and its convergence to the Max-
imum Likelihood solution is proved [9]. In the next section, the application of
this algorithm to our case is developed.

3 EM-Kalman Filter

The EM-Kalman algorithm permits to estimate iteratively parameters and sources
by alternating two steps : E-step and M-step [9]. In the M-step, an estimate of
the parameters θ̂ is computed. In our problem, there are two types of parame-
ters: the parameters of the time update equation 3 which consist on the short
term and long term coefficients and the innovation power of all the Ns sources,
and one parameter of the observation equation 4, the observation noise power.
From the state space model presented in the first part, and for each source k, the
relation between the innovation process at time t−1 and the LT+ST coefficients
could be written as

ek,t−1 = vT
k x̆k,t−1 (5)

where vk = [1 −ak,1 · · ·−ak,pk
− (1−αk) bk −αk bk]T is a (pk + 3)×1 column

vector and x̆k,t−1 = [sk(t−1, θ) · · · sk(t−pk−1, θ) s̃k(t−bTkc−1, θ) s̃k(t−bTkc−
2, θ)]T is called the partial state deduced from the full state xt with the help of a
selection matrix Sk. This lag of one time sample between the full and partial state
is justified later. After multiplying (5) by x̆T

k,t−1 in the two sides, applying the
operator E { |y1:t} and doing a matrix inversion, the following relation between
the vector of coefficients and the innovation power is deduced

vk = ρkR−1
k,t−1[1, 0 · · · 0]T (6)

where the covariance matrix Rk,t−1 is defined as E
{
x̆k,t−1x̆

T
k,t−1|y1:t

}
. It is

important to notice that the estimation of Rk,t−1 is done using observations
till time t, which consists on a fixed-lag smoothing treatment with lag = 1. As
mentioned previously, the relation between the partial state at time t − 1 and
the full state at time t is x̆k,t−1 = Skxt. This key relation is used in the partial
state covariance matrix computation

R−1
k,t−1 = SkE

{
xtxT

t |y1:t
}
ST

k (7)
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Notice here the transition from the fixed lag smoothing with the partial state
to the simple filtering with the full state. This fact justifies the selection of
the partial state at time t − 1 from the full state at time t. This selection is
possible due to the augmented form matrix Fk or more precisely F11,k. The
innovation power is simply deduced as the first component of the matrix R−1

k,t−1.
The estimation of the observation noise power σ2

n is achieved by maximizing the
loglikewood function logP

(
yt|xt, σ

2
n

)
relative to σ2

n. The optimal value can be
easily proved equal to

σ̂2
n

(t)
= y2

t − 2ythT x̂t|t + hT
(
x̂t|tx̂

T
t|t + Pt|t

)
h (8)

The time index in (t) in σ̂2
n

(t)
is to denote the iteration number. The computation

of the partial covariance matrix Rk,t−1 is achieved in the E − step. This matrix

depends on the quantity E
{
xk,txT

k,t|y1:t
}

the definition of which is

E
{
xtxT

t |y1:t
}

= x̂t|tx̂
T
t|t + Pt|t (9)

where the quantities x̂t|t and P̂t|t are respectively the full estimated state and
the full estimation error covariance computed using Kalman filtering equations.
The adaptive algorithm is presented as Algorithm 1. The algorithm needs an
accurate initialization, which will be discussed afterward. In the algorithm ŝk,t

is the estimation of the source k at time t.

Adaptive EM Kalman Algorithm

– E-Step. Estimation of the sources covariance

Kt = Pt|t−1h(hT Pt|t−1h + σ̂2
n)−1

x̂t|t = x̂t|t−1 + Kt(yt − hT x̂t|t−1)

Pt|t = Pt|t−1 −KthT Pt|t−1

x̂t+1|t = F̂x̂t|t

Pt+1|t = F̂Pt|tF̂
T

+ GQ̂GT

– M-Step. Estimation of the AR parameters using linear prediction.
k = 1, ...., Ns

ŝk,t = (x̂k,t|t)[1,1]

Rk,t−1 = λRk,t−2 + (1− λ)Sk(xt|txT
t|t + Pt|t)S

T
k

ρ
(t)
k = (R−1

k,t−1)−1
(1,1)

v(t)
k = ρkR−1

k,t−1[1, 0 · · · 0]T

σ̂2
n

(t)
= y2

t − 2ythT x̂t|t + hT
(
x̂t|tx̂

T
t|t + Pt|t

)
h
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The estimation of the pitches {Tk}k=1:Ns is done along with this algorithm
using a multipitch estimation algorithm [12].

4 Simulations

In this section, we present some results of our source separation algorithm. We
assume that the maximum number of sources is known. We limit our analysis to
the case of a mixture of two simultaneous sources corrupted by white noise. In
the most energetic parts of the mixture, the inconstant SNR is about 20 dB as
shown in Fig. 1. We work with real speech data to which we add artificially the
observation noise. The mixture consists of two voiced speech signals and is of
10 s duration. The parameters are initialized randomly, except the periods where
we use a multipitch algorithm [12] running in parallel to our main algorithm.
The estimated periods from the multipitch algorithm are updated in the main
algorithm every 64 ms. We do two experiments. The first one is the filtering case
in which all the parameters are initialized with values close to the true ones. The
results are close to perfect and are shown in Fig 2. In the second experiment,
the parameters are initialized randomly and estimated adaptively in the M-Step.
We can see the results in Fig 3. The separation looks not very good but, when
listening to the estimated sources, we find that they are under-estimated, leading
to a mixture of the original sources in which the interferences are reduced. This
is, in part, due to the fact that at a given moment we don’t know the number of
sources, so even when only one source is present, the algorithm seeks to estimate
two sources. During the separation process, the estimated correlations are still
polluted by the other source but the desired source is enhanced. The results can
be listened on the first author personal page [1].
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Fig. 1. Mixture and SNR evolution.
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Fig. 2. Source separation with fixed and known parameters.
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Fig. 3. Source separation adaptive estimation of the parameters.
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5 Conclusion

In this paper we use the adaptive EM-Kalman algorithm for the blind audio
source separation problem. The model takes into account the different aspects
of speech signals production and sources are jointly estimated. The traditional
smoothing step is included into the algorithm and is not an additional step.
Simulations show the potential of the algorithm for real data. Yet, this perfor-
mance depends a lot on the multipitch estimation quality. An error on tracking
the pitches may induce the performance decreasing drastically. This work would
be more complete if an other process aiming to estimate the number of active
sources is working in parallel.
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