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A comparative study of bottom-up and top-down
approaches to speaker diarization

Nicholas Evans, Simon Bozonnet, Dong Wang,
Corinne Fredouille and Raphaël Troncy

Abstract

This paper presents a theoretical framework to analyze the relative merits
of the bottom-up and top-down approaches to speaker diarization. Our com-
parative study shows how the two approaches are likely to exhibit different
behavior in speaker inventory optimization and model training: bottom-up
approaches capture more quickly a local maximum of the objective function
but are more sensitive to nuisance variation such as that related to the speech
content; top-down approaches, in contrast, potentially produce speaker mod-
els which are better normalized against nuisance variation, but which are
less discriminative in terms of speakers. We report experiments conducted
on two standard, single-channel NIST RT evaluation datasets which validate
our hypotheses. Results show that competitive performance can be achieved
with both bottom-up and top-down approaches (average DERs of 21% and
22%), and that neither approach is superior. Speaker purification, which aims
to improve speaker discrmination, gives more consistent improvements with
the top-down system than with the bottom-up system (average DERs of 19%
and 25%), thereby confirming that the top-down system is less discriminative
and that the bottom-up system is less stable. Finally, we report a new combi-
nation strategy that exploits the merits of the two approaches. Combination
delivers an average DER of 17% and confirms the intrinsic complementary
of the two approaches.
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1 Introduction

The ever-expanding volume of available audio and multimedia data has ele-
vated technologies related to content indexing and structuring to the forefront of
research. Speaker diarization [1], commonly referred to as the ‘who spoke when?’
task, is one such example. Speaker diarization involves identifying the number of
speakers within an acoustic stream and the labeling of intervals when each speaker
is active. Stemming partly from the internationally competitive Rich Transcription
(RT) evaluations [2] administered by the National Institute for Standards and Tech-
nology (NIST) in the U.S., speaker diarization has emerged as a prominent, core
enabling technology in the wider speech processing research community.

A general speaker diarization system schematic is illustrated in Fig. 1. The
first system elements involve noise reduction and beamforming, with the latter only
being applied to obtain a single pseudo channel when multiple input channels are
available. Following feature extraction speech activity detection is then normally
performed to remove non-speech segments before the core stage of the general
speaker diarization system which involves segmentation and clustering.

There are two principle approaches to segmentation and clustering: bottom-
up and top-down. All the speaker diarization systems submitted to the NIST RT
evaluations fit into one of these two categories. Bottom-up systems are initialized
with a large number of clusters which are gradually merged whereas the top-down
systems are initialized with a single cluster before more are introduced through
cluster splitting. Both processes are iterative and are repeated until the optimal
number of speakers is reached. The bottom-up approach is an example of agglom-
erative hierarchical clustering whereas the top-down approach is an example of
divisive hierarchical clustering.

The bottom-up approach is by far the most popular and systems based on this
approach have consistently achieved the best levels of performance in the NIST
RT evaluations, e.g. [3, 4], although top-down systems also achieve respectable
results [5]. While some have reported that bottom-up approaches are more ro-
bust than their top-down counterparts [1] our own work [6] shows that the two
approaches give comparable results, with neither being consistently superior to the
other. Purification techniques which aim to ‘purify’ clusters of speech from all
but the dominant speaker, are reported by many to give significant and consistent
improvements with bottom-up approaches [7–9]. Our experience, however, shows
that performance can sometimes deteriorate when purification is applied to bottom-
up strategies but that it leads to consistent improvements in top-down systems [6].
These observations led us to investigate the two diarization approaches more thor-
oughly and to study their relative merits.

In this paper, we present an original theoretical framework for speaker diariza-
tion and use it to compare the bottom-up and top-down approaches to speaker di-
arization. The study shows that the two clustering approaches are similarly ef-
fective in searching for the optimal number of speakers but behave differently in
discriminating between individual speakers and in normalizing unwanted acoustic
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Figure 1: An overview of a typical speaker diarization system with one or multiple
input channels.

variation, i.e. that which does not pertain to different speakers. This can make top-
down systems more stable but less discriminative, and vice versa for bottom-up
systems. We also explain why purification works well with top-down approaches
but why it can degrade results when applied to bottom-up systems. Finally, the
study leads to a combined approach to speaker diarization which exploits the ben-
efits of both bottom-up and top-down approaches.

The remainder of this paper is organized as follows. We first present a the-
oretical framework for speaker diarization in Section 2. This includes a formal
definition of the task and an analysis of the challenges that must be addressed by
practical speaker diarization systems. The bottom-up and top-down approaches are
reviewed and compared in Section 3. In Section 4, we describe our own experi-
mental systems and approaches to purification and system combination. Results
are reported in Section 5 before conclusions and some thoughts for future work are
presented in Section 6.

2 Speaker diarization: a theoretical framework

In this section we propose a theoretical framework for the speaker diariza-
tion task. Based on this framework, we analyze the main challenges that must be
addressed in a practical system. This analysis leads naturally to the two principal
approaches to speaker diarization, namely the bottom-up and top-down approaches
that are studied and compared later in this paper.

2.1 Task definition

Speaker diarization can be defined as an optimization task on the space of
speakers given the audio stream that is under evaluation. We first assume that
non-speech segments have been removed from the acoustic stream and that fea-
tures are extracted such that the remaining speech information is represented by
a stream of acoustic features O. Letting S represent a speaker sequence and G a
segmentation of the audio stream by S, then the task of speaker diarization can be
formally defined as follows:

(S̃, G̃) = argmax
S,G

P (S, G|O), (1)
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where S̃ and G̃ represent respectively the optimized speaker sequence and seg-
mentation, i.e. who (S) spoke when (G). We can factorize (1) into a posterior
probability by applying the Bayesian rule:

(S̃, G̃) = argmax
S,G

P (S, G)P (O|S, G)
P (O)

(2)

= argmax
S,G

P (S, G)P (O|S, G),

where P (O) is suppressed since it is independent of S and G. (3) shows that
two models are required in order to solve the optimization task: acoustic models
which describe the acoustic attributes of each speaker, constituting P (O|S, G), and
speaker turn models which describes the probability of a turn between speakers
with a given segmentation, constituting P (S, G).

Usually the acoustic models are implemented as Gaussian mixture models
(GMMs). Letting Si denote the i-th speaker in S, and Oi the corresponding speech
segment according to G, we have:

P (O|S, G) =
∏

i

P (Oi|λSi , G), (3)

where λSi denotes the GMM speaker model for speaker Si.
By applying various different assumptions one can obtain different forms of

the speaker turn model. For example, if we assume that the speaker labels either
side of the turn are irrelevant and take only the utterance duration into account then
we have the following duration model:

P (S, G) = P (G), (4)

where P (G) can be modeled with a normal or Poisson distribution for example.
Alternatively, and as is commonly done in practice, one may assume a uniform
distribution and thus omit the turn model entirely. Substituting (3) and (4) into (3)
we obtain a full solution:

(S̃, G̃) = argmax
S,G

P (G)
∏

i

P (Oi|λSi , G). (5)

2.2 Challenges

In practice, the implementation of a practical speaker diarization system is
rather more complex than may first appear from the basic framework presented
above. The first challenge involves the optimization of the speaker sequence S in
(5). This is not straight forward since the inventory of S is unknown, i.e. we do not
know how many speakers N there are within the acoustic stream. This means that
before optimizing the speaker sequence S and segmentation G, we must first find
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an optimal speaker inventory. Second, although we suppose that a set of acous-
tic models can reliably represent the acoustical characteristics of the speakers, the
speech signal O is rather complex. Whilst the acoustic models depend fundamen-
tally on the speaker, they also depend on a number of other nuisance factors such
as the linguistic content, for example the words or phones pronounced, which are
not related specifically to the speaker. In the following we assume for simplicity
that the major nuisance variation relates only to the phone class of uttered speech,
which we denote as Q, thought other acoustic classes are also valid. Due to its
significant effect on speech signal, Q should appear in the solutions and must be
addressed appropriately.

To formulate a solution which addresses these two challenges, we first intro-
duce the speaker inventory ∆, and let Γ(∆) represent all possible speaker se-
quences. Returning to (3) we derive the solution as follows:

(S̃, G̃, ∆̃) = argmax
S,G,∆:S∈Γ(∆)

P (S, G|O)

= argmax
S,G,∆:S∈Γ(∆)

P (S, G)
∑
Q

P (O,Q|S, G)

= argmax
S,G,∆:S∈Γ(∆)

P (S, G)
∑
Q

P (O|S, G,Q)P (Q|S)

= argmax
S,G,∆:S∈Γ(∆)

P (S, G)
∑
Q

P (O|S, G,Q)P (Q), (6)

where Q is naturally independent of G and we have further assumed it to be inde-
pendent of S. The solution reveals two important issues that any practical speaker
diarization system must address. First, the speaker inventory ∆ must be optimized
together with the speaker sequence S and the segmentation G. There is no ana-
lytical solution for ∆ and so a trial-and-error search is typically conducted. This
search can be either from a smaller inventory to a larger inventory, or from a larger
inventory to a smaller inventory. These strategies correspond respectively to the
top-down and bottom-up approaches to speaker diarization. Secondly, when com-
paring (3) and (6), we see that:

P (O|S, G) =
∑
Q

P (O|S, G,Q)P (Q). (7)

This means that in the optimization task one should either use a phone-independent
model P (O|S, G) and apply (3), or a phone-dependent model P (O|S, G,Q) with
prior knowledge of P (Q) and apply (6). Due to its simplicity and effectiveness,
most speaker diarization systems nowadays adopt the former approach. For such
a system P (O|S, G) must be trained with speech material containing all possi-
ble phones, otherwise Q will be not marginalized. In other words, for a phone-
independent system, acoustic speaker models must be normalized across phones
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Q to ensure that the resulting model is phone-independent, otherwise optimization
according to (3) will be suboptimal.

In summary, a practical diarization system should incorporate an effective search
strategy to optimize the speaker inventory ∆, and a set of well-trained speaker mod-
els to infer the speaker sequence S and segmentation G. Ideally, the models should
be most discriminative for speakers and fully normalized across phones. From this
perspective, the direction in which the optimal speaker inventory is searched for
(bottom-up or top-down) is inconsequential. Searching from either direction will
in any case arrive at the optimal inventory1. However, the merging (bottom-up)
or splitting (top-down) operations in the search process do impact upon the dis-
criminative power and phone-normalization of the intermediate and final speaker
models. Therefore, the two approaches tend to exhibit rather different behaviors
and demonstrate relative strengths and shortcomings in practice. This is the starting
point of our analysis for these two approaches.

3 Approaches to speaker diarization

In this section we review the bottom-up and top-down approaches to speaker
diarization and discuss their relative merits and shortcomings. They constitute the
segmentation and clustering component in Fig. 1, and encapsulate the trial-and-
error search for an optimal speaker inventory ∆ and thus the optimization of S
and G. In all cases, the aim is to model each of the N true speakers with a single
GMM. Speaker turns are represented by transitions between models thus forming
an ergodic hidden Markov model (HMM) in which each state represents a speaker
and where all states are fully connected. The difference between the bottom-up
and top-down approaches lies in where the trial-and-error search starts from and
how an optimal set of GMM speaker models is derived.

3.1 Bottom-up

The bottom-up approach is often referred to as agglomerative hierarchical clus-
tering (AHC). The procedure is illustrated to the left of Fig. 2 which shows how
clustering begins with a larger speaker inventory (bottom) before similar clusters
are merged to obtain a smaller, more optimal size (top). Only a single iteration is
illustrated in Fig. 2 and in this example the process stops when two clusters are ob-
tained. The resulting diarization hypotheses are illustrated in the left column with
the corresponding ergodic HMMs in the middle column.

The search procedure starts with a model initialization which involves over-
segmenting and under-clustering the acoustic stream into a larger number of clus-
ters than the assumed number of true speakers, and training a GMM model on the
acoustic data in each cluster. Various approaches can be applied to formulate the

1We assume that the number of speakers is known approximately so that the bottom-up approach
is initialized with more clusters than true speakers in order to avoid the risk of over-clustering.
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Figure 2: An illustration of the bottom-up (left) and top-down (right) approaches
to speaker diarization. Here there are N = 2 true speakers and the bottom-up
approach is initialized with 3 clusters.

initial segmentation but linear segmentation is commonly used [10]. In the artificial
example illustrated in Fig. 2 we assume that there are not more than N = 2 true
speakers. Initialization produces 3 GMMs which are connected to form a 3-state,
ergodic HMM2. Using the initial HMM/GMMs the acoustic stream is re-segmented
by Viterbi realignment before the models are refined according to the new seg-
mentation. New models are re-estimated with an expectation maximization (EM)
procedure which converges to a stable segmentation and a set of locally optimized
GMMs after several iterations. Next, the new models are examined pairwise, and
the two most similar are merged together to form a new GMM. Various distance
metrics can be used to estimate model similarity and hence control merging. The
most popular approaches involve the Bayesian information criterion (BIC) [11] and
its variants. After a number of iterations of realignment and re-estimation a new,
stable diarization hypothesis is obtained before the next cycle of model merging is
considered. This process is repeated until an optimal speaker inventory (2 speakers
in Fig. 2) is obtained according to some stopping criteria, which may also be based
upon a BIC criterion. In each iteration, the number of speakers is reduced by one,
and the speaker sequence (S) and segmentation (G) are optimized according to (1).

The bottom-up approach is the most popular and has achieved general success
in the NIST RT evaluations over recent years [12–16]. Nonetheless, some authors
report that instabilities related to initialization [17], model merging and the sensi-
tivity of the stopping criterion [18] might degrade its performance.

2In practice the number of initial clusters would be much greater than the assumed number of
true speakers.
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3.2 Top-down

The top-down approach operates from a smaller speaker inventory to a larger
speaker inventory and is a form of divisive hierarchical clustering (DHC). In the
example shown to the right of Fig. 2, the approach starts with a single general
speaker model and constructs an optimal speaker inventory by introducing new
speakers one-by-one.

Initialization involves the training of a general speaker model, denoted by S0,
with all the available acoustic data. A new speaker model, denoted by S1, is then
introduced and trained with some appropriate data from the general speaker model.
Various approaches may be used to select the segment but the single largest seg-
ment identified from the speech activity detection (SAD) output has proved to give
the most consistent performance [5]. As with the bottom-up approach, several it-
erations of Viterbi realignment and EM training are applied to iteratively refine the
model, until a stable segmentation is obtained. New speakers are then added in the
same way by the repeated splitting of existing models followed by several iterations
of Viterbi realignment and EM training. The process continues until the optimal
speaker inventory is obtained according to some stopping criteria, e.g. when there
is no longer sufficient data with which to introduce a new speaker or when an upper
limit on the size of the speaker inventory is reached. This process is illustrated in
Fig. 2, where the process starts with a single general speaker model and stops with
an inventory containing N = 2 speakers.

The top-down approach to speaker diarization is less popular than its bottom-
up counterpart but has nonetheless been shown to give competitive performance in
NIST RT evaluations [5,19]. Compared to the bottom-up approach, which reduces
the number of models at each iteration through cluster merging, the top-down ap-
proach increases the number at each iteration through cluster splitting. In the arti-
ficial example illustrated in Fig. 2 the diarization hypothesis obtained with the two
approaches is the same and thus the differences between the two approaches may
seem insignificant. In practice, however, they cause distinctly different behavior in
terms of diarization performance and system stability, as we now discuss.

3.3 A comparative study

The bottom-up and top-down approaches to speaker diarization are fundamen-
tally opposing strategies. The bottom-up approach is a specific-to-general strat-
egy whereas the top-down approach is general-to-specific. The latter tends to pro-
duce more reliably trained models as relatively more data are available for training.
However, the models are usually less discriminative until sufficient speakers and
their data are liberated to form distinct speaker models. In contrast the bottom-up
approach is more likely to discover specific speakers earlier in the process, however
the models may be weakly trained until sufficient clusters are merged.

The two approaches thus have their own strengths and weaknesses and can
accordingly exhibit different behavior and results. In the following we discuss
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some particular characteristics in further detail with the aim of better illuminating
their potential merits.

3.3.1 Discrimination and purification

A particular advantage of the bottom-up approach rests in the fact that it tends
to capture quickly the local maximum of the objective function. Whilst this may
correspond to a ‘pure’ cluster, or a single speaker, it may also correspond to some
other acoustic unit, for example a particular phone class. This is particularly
true when short-term cepstral-based features are used, though recent work with
prosodic features has potential to encourage convergence specifically toward speak-
ers [20]. In contrast, since it initially trains only a small number of models using
relatively larger quantities of data, the top-down approach effectively normalizes
phone classes, but it also normalizes speakers at the same time. To achieve the
best discriminative power across speakers, a purification step becomes essential for
both approaches: for the bottom-up approach, it is necessary to purify the resulting
models of interference from phone variation, whereas for the top-down approach it
is necessary to purify the resulting models of data from other speakers. Purifying
phones involves phone recognition which is usually rather costly; purifying speak-
ers, however, is much easier with some straightforward assumptions. We have
achieved significant improvements in diarization performance using purification in
our top-down approach. This recent work is presented in Section 4.4.

3.3.2 Normalization and initialization

Theoretically, the EM algorithm ensures that both the bottom-up and top-down
approaches will converge to a local maximum of the objective function for a fixed
size ∆. If the differences between speakers is the dominant influence in the acous-
tic space then we can safely assume that the local maximum represents an opti-
mal diarization on speakers, as opposed to any other acoustic class. In this case,
initial models are not predominantly important, and thus both bottom-up and top-
down approaches tend to provide similar diarization results. However, in addition
to the speaker the acoustic signal bears a significant influence from the linguis-
tic contents, and more specifically the phones. Therefore, the local maximums of
the objective function may correspond to phones Q instead of speakers S if the
speaker model is not well normalized, i.e. Q is not fully marginalized. This analy-
sis highlights a major advantage of the top-down approach to speaker diarization:
by drawing new speakers from a potentially well-normalized background model,
newly introduced speaker models are potentially more reliable than those generated
by linear initialization and model merging in the bottom-up approach.

An interesting point derived from the above analysis is that the bottom-up and
top-down approaches, which possess distinct properties in terms of model reliabil-
ity and discrimination, are likely to result in different local maximums of the objec-
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tive function, suggesting that their combination may thus provide for more reliable
diarization. We report our recent work on system combination in Section 4.5.

4 Experimental systems

Described in this section are the two different systems that we implemented in
order to assess the hypothesized characteristics of the bottom-up and top-down ap-
proaches to speaker diarization. Both baseline systems comprise a common SAD
component and a segmentation and clustering component. In both cases the latter
is a two-stage strategy involving an EM based segmentation and clustering pro-
cess to generate an initial, coarse diarization and then a maximum a posteriori
(MAP) based re-segmentation with feature normalization to refine the diarization
hypothesis. Also described here is our approach to speaker purification and system
combination. Both bottom-up and top-down speaker diarization systems were im-
plemented with the ALIZE toolkit [21], which ensures that the comparative study
better reflects core differences in the clustering strategies instead of any nuances
related to difference in estimation, decoding or adaptation algorithms.

4.1 Speech activity detection

SAD is a fundamental pre-processing step in all speaker diarization systems
and aims to remove non-speech segments from the audio stream so that down-
stream speaker segmentation and clustering concentrates only on segments con-
taining speech; furthermore, it provides an effective initialization for the top-down
approach as we will discuss shortly. Our SAD system follows standard noise sup-
pression [22] and is a simple model-based approach involving the alignment of
the acoustic data to a two-state HMM in which the two states represent speech
and non-speech data respectively. A large amount of speech and non-speech data
from a separate development dataset, mostly from the AMI conference meeting
corpus [23], are used to train the two 32-component GMMs with an EM-based al-
gorithm. An ergodic HMM is formed by connecting the two GMMs with transition
probabilities of 0.5. Key to good SAD performance is the sequential application of
Viterbi realignment and model re-estimation which are applied iteratively to ensure
that the models adjust to the prevailing ambient conditions. To ensure a realistic
segmentation, some heuristic rules are applied to prohibit rapid transitions between
speech and non-speech states. Table 1 illustrates SAD performance for the RT‘07
and RT‘09 datasets in terms of average false alarm (FA) and missed (Miss) speech
rates. The fourth column is the addition of the FA and Miss rates and indicates
overall SAD performance. Scores of 5.8% and 9.0% on the two datasets respec-
tively show that, despite its simplicity, this approach performs well compared to
other systems submitted to the NIST RT evaluations.
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Table 1: SAD performance on the RT‘07 and RT‘09 datasets.

Dataset FA Miss Total

RT‘07 4.7 1.1 5.8

RT‘09 7.2 1.8 9.0

4.2 Bottom-up

Except for a novel progressive training approach to model initialization, which
was proposed in [24] and referred to as sequential EM, the first stage EM-based
segmentation and clustering process is a conventional AHC approach as described
in Section 3.1. GMM speaker models contain 4 components but, in an otherwise
standard AHC approach, they are initially trained using only a small fraction of
the available data before several steps of re-estimation are performed with an in-
creasing amount of data at each step. This process is repeated until all the data are
used in the final training cycle. New speaker models with 16 components are then
estimated and used for the remaining merging steps. In our experience progressive
training can lead to significant improvements in performance over a conventional
AHC system. Cluster merging is controlled with the modified Information Change
Rate (ICR) criterion [18] and continues until the stopping criterion is met. In con-
trast to the exemplary, state-of-the-art system presented in [24], we find that the Ts

stopping criterion gives better results than the Rho criterion as used in [24, 25].
The second, MAP-based re-segmentation stage is common to both bottom-up

and top-down approaches. The diarization hypothesis from the EM stage is used to
train a new model for each speaker through the MAP adaptation of a generic back-
ground model which is trained on a large amount of external data. Speaker models
now contain 128 components and are more complex than for the first EM-based
segmentation and clustering stage. With the initial coarse segmentation from the
EM-stage, the MAP-based adaptation tends to deliver more reliable performance.
As in the EM stage, several iterations of Viterbi realignment and adaptation are
applied to obtain a stable diarization hypothesis. Speaker clusters with too few
speech data (less than 8 seconds) are removed. A final stage of re-segmentation is
then applied in exactly the same way but with features that are normalized to have
zero mean and unity variance, i.e. cepstral mean and variance normalization.

4.3 Top-down

The top-down system is a DHC approach according to the general procedure
described in Section 3.2. It is based on the evolutive hidden Markov model (E-
HMM) that was originally proposed in [26]. The current system has evolved sig-
nificantly from the original work and, with significant improvements to speaker
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modeling, the system was used for LIA-EURECOM’s submission to the most re-
cent NIST RT‘09 evaluation. As is the case for the bottom-up system there are two
stages. The first generates an initial, coarse diarization hypothesis through an EM
stage which is refined through a second MAP stage. The latter is identical to that
used in the bottom-up system.

Initialization involves the training of a single, 16-component root speaker model
S0 with an EM algorithm. New speakers are added to the model one-by-one by
training new models with an EM algorithm using the single longest segment of
speech that is assigned to S0 at any iteration. Following the addition of each
speaker several iterations of Viterbi realignment and model re-estimation are used
to refine the speaker models and diarization hypothesis. The quantity of data as-
signed to any new speaker must be sufficient to indicate a significant speaker; newly
added speaker models that are assigned less than 8 seconds of data are rejected. In
this case the system reverts to the previous hypothesis and the next largest segment
is used to add a new speaker. This process continues until no more segments of
greater than 6 seconds in length remain assigned to the root model, S0.

4.4 Purification

Purification is a data filtering technique; the central idea is to remove noisy
data so that models are trained on data that is indicative of the target class only and
not of unwanted variation. Purification techniques have been extensively studied
within bottom-up approaches to speaker diarization [7] but there is comparatively
very little work in the context of top-down approaches.

Our purification algorithm is based on the original work in [24] and is very
similar to the progressive training approach described in Section 4.2. The algo-
rithm operates between the first EM stage and the second MAP re-segmentation
stage. Each hypothesized cluster is split into sub-segments of 500ms in length.
The 55% of segments which best fit the corresponding GMM model are then used
to estimate new models with EM training. The process is repeated ten times where
at each iteration 45% of the data with the smallest likelihood are always discarded
before being reassigned to their nearest cluster with Viterbi decoding. The diariza-
tion hypothesis obtained in the final iteration is then used in the final MAP-based
resegmentation stage described above. Note that since purification is applied be-
fore the second stage MAP-based resegmentation it can influence the number of
clusters in the final diarization hypothesis.

4.5 Combination

As outlined above the bottom-up and top-down clustering strategies are likely
to produce different diarization outputs and it is thus of interest to combine their
outputs. We hypothesize that for both approaches, some models may reliably rep-
resent specific, individual speakers, whereas others may be relatively unreliable.
They may correspond to multiple speakers or to local maxima of the objective
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function which are not related to differences between speakers but to some other
acoustic phenomena. If it is possible to identify reliable models then better di-
arization performance may be achieved by re-clustering the data assigned to the
unreliable models.

A number of combination approaches have been proposed previously, at the
clustering stage [27, 28] or at the output stage [29–31]. Better performance is usu-
ally obtained but, with the exception of [32], none of the previous work considered
the combination of both bottom-up and top-down system outputs without further
re-segmentation. In our work, to leverage the respective merits of both the bottom-
up and top-down approaches, we treat the top-down output as a base segmentation
and apply the bottom-up output to purify it. Specifically, for each cluster contained
in the top-down system output Ci a cluster contained in the bottom-up system Cn is
chosen as a matching cluster if (i) they share a sufficient proportion of frames and
(ii) among all other clusters contained in the bottom-up system Cn is the closest
to Ci, where the inter-cluster distance is measured in terms of ICR. Each matched
cluster pair is accepted as a reliable speaker and is retrained with only those frames
that are common to both Ci and Cn. These set of reliable, matching clusters is
denoted Ξ. All unreliable, or unmatched clusters are then compared to Ξ in order
to identify additional reliable clusters, as follows:

Ξ← Cm (8)

if
`(Cm,Ξ) = max

k
`(Ck,Ξ) Ck /∈ Ξ (9)

and
`(Cm,Ξ) > θ (10)

where θ is a tunable threshold, and where ` is the minimum ICR distance defined
by:

`(Ck,Ξ) = min
t

ICR(Ck, Ct) Ck /∈ Ξ, Ct ∈ Ξ. (11)

Additionally there is no significant overlap between Cm and any of the clusters
in set Ξ. This procedure is conducted iteratively until no further reliable clusters
remain. For each new added cluster, the 50% best-fitting frames (according to
likelihood) are used to re-estimate a new speaker model. In contrast to previous
work [32] the outputs of both the bottom-up and top-down systems are utilised
in order to select frames for re-estimating new speaker models in the case of un-
matched clusters. This acts to purify the speaker models. Further purification is
achieved by training models using only the best fitting data and thus better speaker
diarization performance is expected. This approach can be regarded as an extension
to the work in [30, 32] which accepts matched clusters only.
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5 Results and Discussion

In this section we present our experimental work. We first introduce the stan-
dard evaluation protocols and performance metrics that are used in the NIST RT
evaluations, and then the different datasets that were used for development and
evaluation. We then report speaker diarization experiments for the baseline sys-
tems and the same systems with purification. Finally we analyze the results in
terms of phone normalization and cluster purity.

5.1 Protocols and metrics

The NIST RT evaluations [2] have an instrumental role in assessing the state-
of-the-art and in providing standard evaluation protocols, performance metrics and
common datasets. Each evaluation involves various experimental conditions in-
volving different microphone configurations. In order to assess the core segmen-
tation and clustering components independently from beamforming [33] or inte-
grated inter channel delay features [34, 35], all experiments reported here involve
the single distance microphone (SDM) condition; we expect that the observa-
tions and conclusions apply equally well to the core, multiple distant microphone
(MDM) condition.

To evaluate the performance of a speaker diarization system, NIST defines a
time-based metric known as the diarization error rate (DER). This is calculated as
the fraction of speaker time that is not correctly attributed based on the optimal
mapping between speakers in the reference and those hypothesized by the speaker
diarization system. The DER is formally defined as:

DER =
∑

i{DR
i · (max(NR

i , NS
i )−NC

i )}∑
i{DR

i ·NR
i }

(12)

where DR
i denotes the duration of the i-th reference segment, and where NR

i and
NS

i are respectively the number of speakers according to the reference or the num-
ber of speakers hypothesized by the diarization system. NC

i is the number of speak-
ers that are correctly matched by the diarization system. Note that with overlapping
speech, both NR and NS can be larger than one. Our speaker diarization systems
are not capable of detecting overlapping speech, and thus NS is either zero or
one. While NIST defines protocols to evaluate performance with or without the
scoring of overlapping speech, the primary metric includes overlap. Consequently
all results discussed in the text involve the scoring of overlapping speech. Corre-
sponding results where overlapping speech is not scored are included in the tables
for comparative purposes only.

5.2 Datasets

Following the protocols and metrics discussed above, our experimental systems
were optimized on a development dataset of 23 meetings from the NIST RT‘04, ‘05
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Table 2: DERs with (OV) and without (NOV) the scoring of overlapping speech,
with and without purification.

RT‘07 RT‘09
System OV NOV OV NOV

Bottom-up 23.8 20.8 19.1 13.5
Bottom-up + Pur. 22.7 19.6 27.0 21.8
Top-down 18.3 15.0 26.0 21.5
Top-down + Pur. 17.8 14.4 21.1 16.0
Combined 16.1 12.8 17.8 12.3

and ‘06 evaluation datasets. Performance was then assessed on the independent
RT‘07 and RT‘09 evaluation datasets. There is no overlap between development
and evaluation datasets and in all cases no prior knowledge is available except an
approximate idea of the number of speakers. This is used solely in the case of the
bottom-up system and only so that the system is initialization with a number of
clusters that exceeds the maximum number of true speakers. In all cases we report
only results obtained on the evaluation datasets.

5.3 Diarization performance

Speaker diarization performance using a bottom-up approach is illustrated on
row 3 of Table 2 in which results are presented with (OV) and without (NOV)
the scoring of overlapping speech. DER scores of 23.8% and 19.1% are obtained
on the RT‘07 and RT‘09 datasets respectively. Of note is the large difference in
performance with and without the scoring of overlapping speech for the RT‘09
dataset. This is due to the high degree of overlapping speech in this dataset (13.6%
for RT‘09 cf. 7.6% for RT‘07) which is well known to have a significant impact on
the performance of state-of-the-art speaker diarization systems [36].

Speaker diarization performance using a top-down approach is illustrated on
row 5 of Table 2. DERs of 18.3% and 26.0% are obtained on the RT‘07 and RT‘09
datasets respectively and thus indicate an inconsistency in the comparative perfor-
mance of top-down and bottom-up approaches: the top-down system gives superior
performance for the RT‘07 dataset whereas the bottom-up system is superior for
the RT‘09 dataset. The hypothesis is that factors unrelated to differences between
speakers lead to unstable performance. This hypothesis is discussed further in Sec-
tion 5.4. First though, we report the impact of purification on both system outputs.

The performance of the bottom-up system with purification is illustrated on
row 4 of Table 2. DERs of 22.7% and 27.0% show that, while there is a small
improvement over the baseline bottom-up system for the RT‘07 dataset, there is
a marked degradation in performance for the RT‘09 dataset. The performance of
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the top-down system with purification is illustrated on row 6. DERs of 17.8% and
21.1% show a consistent improvement over the baseline top-down system. This
suggests that, although purification may provide performance improvement for
both the bottom-up and top-down systems, it is rather unstable with the bottom-up
system and can lead to a degradation in performance in some cases. Compara-
tively, the top-down system achieves stable and consistent performance gains with
purification, which supports our conjecture that (i) clusters identified by top-down
systems are less discriminative and thus require purification, and (ii) those identi-
fied by bottom-up systems are less well normalized and that performance cannot
always be improved through purification.

Upon comparison of results for the best bottom-up and top-down systems, we
observe an inconsistency in performance. With purification, the top-down system
outperforms the bottom-up system for the RT‘07 dataset whereas it gives poorer
results for the RT‘09 dataset. This lends further support to the idea of combining
the outputs of the two different systems. Diarization results with the combined
system are illustrated on row 7 of Table 2. They correspond to the combination of
the outputs of the baseline bottom-up system and the top-down system with purifi-
cation. DERs of 16.1% and 17.8% for the RT‘07 and RT‘09 datasets respectively
show improved performance over both single systems. The combination strategy
is thus successful in exploiting the merits of each approach.

5.4 Phone normalization

In this section we aim to account for the inconsistencies in system performance
outlined above. According to the arguments presented in Section 3.3 bottom-up
approaches are relatively more likely than top-down approaches to convergence
to sub-optimal local maxima of (3). These are likely to correspond to nuisance
variation and, whilst other acoustic classes are also relevant, we hypothesize here
that the phones uttered are among the most significant competing influences in the
acoustic space.

To help confirm this, or otherwise, we measured the difference in the phone
distribution between each pair of clusters in the diarization hypothesis. The phone
distribution is computed as the fraction of speech time attributed to each phone
and thus requires a phone-level reference to determine the phone class of each
frame. This was accomplished by a forced alignment of the phone transcription
of each word in the reference annotation to the corresponding speech. The phone
distribution of each cluster is used to calculate the average inter-cluster distance D
as follows:

D =
(

N

2

)−1 N∑
n=1

N∑
m=n+1

DKL2(Cn||Cm),

where N is the size of the speaker inventory ∆, i.e. the number of clusters, and
where the binomial coefficient

(
N
2

)
is the number of unique cluster pairs. DKL2(Cn||Cm)
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Table 3: Inter-cluster phone distribution distances.

Mean Variance
System RT‘07 RT‘09 RT‘07 RT‘09

Bottom-up 0.17 0.14 0.167 0.013
Bottom-up + Pur. 0.13 0.12 0.017 0.005
Top-down 0.11 0.10 0.006 0.004
Top-down + Pur. 0.07 0.08 0.001 0.002
Combined 0.07 0.07 0.001 0.001

is the symmetrical Kullback-Leibler (KL) distance between the phone distributions
for clusters Cn and Cm, defined as:

DKL2(Cn||Cm) =
1
2

(
DKL(Cn||Cm) + DKL(Cm||Cn)

)
where DKL(Cn||Cm) is the KL divergence of Cn from Cm. We note that the sym-
metrical KL metric has been used for the segmentation and clustering of broadcast
news [37].

In the case where clusters are well normalized against phone variation then the
average inter-cluster distance is expected to be small, since the clusters should have
similar phone distributions. Significant differences between distributions, how-
ever, indicate poor phone normalization and possibly a sub-optimal local maxi-
mum of (3). This latter case might reflect a higher degree of convergence toward
phones, or other acoustic classes, rather than toward speakers.

The mean and the variance of the inter-cluster distances are presented in columns
2 and 3 of Table 3 for the RT‘07 and RT‘09 datasets respectively. For the baseline
bottom-up system average inter-cluster distances of 0.17 and 0.14 are obtained.
These fall to 0.13 and 0.12 with purification indicating improved normalization
against phones. For the top-down system the average distances are 0.11 and 0.10.
These fall to 0.07 and 0.08 with purification and are significantly better than for
the bottom-up system. Reassuringly, with combination the values remain stable at
0.07 and 0.07. Columns 4 and 5 of Table 3 show the corresponding variances in
all cases and show a consistent decrease moving down the table: reductions in the
mean are accompanied by reductions in the variation. These observations suggests
that on average, and as predicted, the clusters identified with the bottom-up sys-
tem are indeed less well normalized against phone variation than those identified
with the top-down system and that combination preserves the normalization of the
top-down system.
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5.5 Cluster purity

The observations reported above do not explain why, for the RT‘09 dataset,
the bottom-up system performance deteriorates with purification even though the
phone normalization improves. To help explain this behavior we analyzed the av-
erage speaker purity in each system output. The cluster purity is the percentage
of data in each cluster which are attributed to the most dominant speaker, as de-
termined from the ground-truth reference. Average, time-weighted cluster purities
are presented in columns 2 and 3 of Table 4. For the RT‘07 dataset purification
leads to marginal improvements: from 80.6% purity to 82.2% for the bottom-up
system and from 81.8% to 84.1% for the top-down system. Different behavior is
observed for the RT‘09 dataset. Whereas purification gives an improvement from
79.1% to 81.4% for the top-down system it leads to a degradation from 79.2% to
75.2% for the bottom-up system.

Whilst a reduction in cluster purity may account for the decrease in diarization
performance it is necessary to consider the number of clusters in the system output
to properly interpret cluster purity and its impact on diarization performance. As
explained in Section 4.4 purification influences the number of identified clusters.
A larger number of clusters may be associated with inherently higher purity (i.e.
with a single cluster for each sample the purity is 100%) and so purity statistics
alone do not fully reflect the effect of purification on diarization performance. The
number of clusters detected in each system output is illustrated in columns 4 and 5
of Table 4 in which the last row shows the statistics for the ground-truth reference.
All systems over-estimate the number of speakers and purification always reduces
the number toward the number of true speakers. When coupled with increases in
average purity, then improved diarization performance should be expected. For the
bottom-up system and the RT‘09 dataset the decrease in the number of clusters
when purification is applied is negligable, whereas the purity also decreases. This
can only result in poorer diarization performance.

Turning to the combination results for the RT‘07 dataset, even though the av-
erage purity decreases to 81.7% (below that for the top-down system with purifi-
cation) diarization performance still improves since the number of clusters more
accurately reflects the true number of speakers. For the RT‘09 dataset the com-
bined system produces clusters which are marginally more pure than any of the
single systems (81.6%) even though the number of clusters decreases below the
true number of speakers. Further investigation showed that the missed speakers
have relatively low floor time and thus do not contribute significantly to diarization
performance.

6 Conclusions and future work

This paper presents a theoretical framework for speaker diarization. It is used to
compare the relative merits of the bottom-up and top-down approaches to speaker
diarization. We argue that the two approaches are likely to exhibit different be-
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Table 4: Average cluster purity and number of clusters.

Cluster Purity (%) No. Clusters
System RT‘07 RT‘09 RT‘07 RT‘09

Bottom-up 80.6 79.2 7.0 7.0
Bottom-up + Pur. 82.2 75.2 5.8 6.9
Top-down 81.8 79.1 5.0 6.0
Top-down + Pur. 84.1 81.4 4.8 5.3
Combined 81.7 81.6 4.4 4.6
Ground-truth 100.0 100.0 4.4 5.4

havior in the face of significant variation from non-speaker-related factors and that
both have the potential to benefit from purification, particularly the top-down ap-
proach. We also argue that, since the two approaches involve entirely contrasting
search strategies to optimize the speaker inventory, they are likely to converge to
different local maxima of the objective function and thus there is potential for them
to be combined in order to improve speaker diarization performance.

These hypotheses are validated by experiments performed on two standard,
single-channel NIST RT evaluation datasets. Results show that, despite the dom-
inance in the literature of bottom-up systems, the two approaches deliver largely
comparable performance, with neither being consistently superior. With purifica-
tion consistent improvements are observed with a top-down system; with a bottom-
up system, however, purification leads to inconsistent improvements and even de-
grades performance for one dataset. This supports our conjecture that models pro-
duced by the top-down approach tend to be less discriminative and therefore are
likely to benefit from purification. Finally, the combined approach provides ad-
ditional and consistent performance improvements, and demonstrates the comple-
mentarity of the bottom-up and top-down approaches. This finding highlights the
importance of continuing research with both approaches to speaker diarization.

Future work should investigate new techniques to address the respective short-
comings of each approach. More effective purification approaches are needed to
enhance the discrimination of speaker models whereas new marginalization tech-
niques are required to attenuate nuisance variation that is unrelated to differences
between speakers. This is particularly important for bottom-up systems.
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