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Abstract

We consider a multiple access MAC fading channel with two users communi-
cating with a common destination, where each user mutually acts as a relay
for the other one as well as wishes to transmit his own information as opposed
to having dedicated relays. We wish to evaluate the usefulness of relaying
from the point of view of the system’s throughput (sum rate) rather than
from the sole point of view of the user benefiting from the cooperation as is
typically done. We do this by allowing a trade-off between relaying and fresh
data transmission through a resource allocation framework. Specifically, We
propose cooperative transmission scheme allowing each user to allocate a cer-
tain amount of power for his own transmitted data while the rest is devoted
to relaying. The underlying protocol is based on a modification of the so-
called non-orthogonal amplify and forward (NAF) protocol [1]. We develop
capacity expressions for our scheme and derive the rate-optimum power al-
location, in closed form for centralized and distributed frameworks. In the
distributed scenario, partially statistical and partially instantaneous channel
information is exploited.
The centralized power allocation algorithm indicates that even in a mutual
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cooperation setting like ours, on any given realization of the channel, coop-
eration is never truly mutual, i.e. one of the users will always allocate zero
power to relaying the data of the other one, and thus act selfishly. But in
distributed framework, our results indicate that the sum rate is maximized
when both mobiles act selfishly.

Key words: Cooperative diversity, NAF protocol, Power allocation

1. Introduction

In many wireless applications, wireless users may not be able to sup-
port multiple antennas due to size, complexity, power, or other constraints.
The wireless medium brings along its unique challenges such as fading and
multiuser interference, which can be combatted via the concept of cooper-
ative diversity [2, 3, 4, 5]. In traditional cooperative diversity setups, a
user is unilaterally designated to act as a relay for the benefit of another
one, at least for a given period of time. In certain scenarios, the relay is
an actual component of the infrastructure with no own data to be delivered
to the network [6, 7, 8, 9]. In cellular-type multiuser networks however,
there will be a compromise to strike by all users between transmitting their
own information and helping others by relaying their data to the destination
[10, 11, 12, 13, 14, 15, 16, 17, 18]. A simplified instance of this scenario is
given by a multiple access channel with two or more users trying to reach a
common destination (e.g. base station). Since each user wishes to send its
own information, it must allocate resource (the total of which is constrained
at each user) wisely between its own data transmission and the data it will
relay for the benefit of some other user.
In this paper we consider resource control in the form of power allocated
by a user across its own data and its relay data. The underlying protocol
considered here is similar to the one considered by Azarian et al. in [1],
which itself evolved from the early work by Laneman, Tse, and Wornell [2].
There, the authors imposed the half-duplex constraint on the cooperating
nodes and proposed several cooperative transmission protocols. All the pro-
posed schemes in [2] used a time-division multiple-access (TDMA) strategy,
where the two partners relied on the use of orthogonal signaling to repeat
each other’s signals. In this work relay and own transmission operations take
place in orthogonal resource slots but share a common average power resource
where the average is computed over two frames. Note that other (than power)
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types of resource division could also be considered, such as bandwidth [17].
Recently non-orthogonal signaling strategies have been proposed, e.g. [1],
in which a relay transmits delayed information by a user while this user si-
multaneously transmit fresh data. In this non-orthogonal amplify-forward
(NAF) scheme, the diversity-multiplexing trade-off is studied, showing the
superiority of the NAF scheme over the orthogonal counterpart. However in
[1] and much previous work, the relay network model is unbalanced in the
sense that the transmission of own data by the relay is not considered, and
the source node is not invited to act as a relay either. In multiuser networks,
it is desirable from a global capacity point of view that each user allocates
a fraction of its resource toward cooperation. Just how big is this fraction
should be is one of the questions addressed by this paper.
We consider the problem of maximizing the sum rate for this cooperative
MAC channel, as function of the power allocation toward own and relay
data, given certain knowledge of the channel for both users. We derive the
optimum power allocation policy in closed form for certain scenarios of inter-
est. We consider both centralized and distributed cases. In the centralized
case first explored in [19], the base initially collects instantaneous CSI from
both users and computes the optimum power allocation vector on behalf of
the two users.
In the distributed case, it is assumed that the complete fast-varying CSI can-
not be exchanged between the users and the base. In that case, the users
individually come up with a power allocation strategy based on a mix of local
CSI and non-local statistical CSI. We show that in fact, when the optimum
policy is used, one of the users always acts completely selfishly. Interestingly,
this type of selfish behavior by some users in multiuser cooperative MAC was
noted by [20], but in a different context with decode-and-forward signaling.
Also the problem of distributed power allocation was addressed in [21], how-
ever in this paper the algorithm is used to optimize the BER performance.
Furthermore, the power allocation is done across users rather than across
relay and data transmission operations.
Then we investigate the system gain (sum rate) of mutual cooperation in two
different network geometries. We show the system gain depends on the level
of symmetry in the user positions.
This paper is organized as follows. In section 2, we describe the system model.
In section 3 the sum-rate expression is derived and the optimal power allo-
cation algorithm is presented for the centralized framework. In section 4,
the distributed framework is investigated and the simulation results are pre-
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sented in section 5. We conclude by section 6.
Notations: All boldface letters indicate vectors (lower case) or matrices
(upper case). The operator det( ) is the determinant of matrix, with ( )H

denoting its conjugate-transpose and ( )∗ denoting its conjugate. E[.] is the
expectation operator.

2. System Model

We consider a two user fading Gaussian Multiple Access Channel (MAC),
where both the receiver and the transmitters receive noisy versions of the
transmitted messages. Each receiver maintains channel state information
and employs coherent detection. The channels between users (inter-user
channels) and from each user to the destination (uplink channels) are mu-
tually independent. Time is divided in two consecutive frames. Each frame
is further divided in two half-frames T1 and T2. We use a combination of
TDMA and non-orthogonal signaling: In the first half of frame 1, user 1
sends its first half packet (containing N

2
bits) while user 2 listens. In the

second half, user 2 relays the overheard data with power level β, while user
1 simultaneously sends fresh information (its second half packet) with power
level 1−α where α is chosen in [0, 1]. In frame 2 we proceed just as in frame
1, but with the roles of user 1 and 2, α, β are reversed. Thus we maintain
a constant average power across the two frames, for each user, regardless of
the choice of α, β.

2.1. Signal model

The signal received by the common destination during the first frame
(first and second half) is given by,

{
y1(n) = h01x1(n) + z0(n)
y1(n + N

2
) =

√
1− αh01x1(n + N

2
) +

√
βh02A1 [h21x1(n) + w2(n)] + z0(n + N

2
)

(1)
During the second frame, the received signal is:

{
y2(n) = h02x2(n) + z0(n)
y2(n + N

2
) =

√
1− βh02x2(n + N

2
) +

√
αh01A2 [h12x2(n) + w1(n)] + z0(n + N

2
)

(2)
where n = 1, .., N

2
and hij captures the effects of fading between transmitter

j and receiver i.
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Thus, in (1) and (2), α and β can be seen as cooperation levels for user 1
and user 2 respectively. xj∈{1,2}(n) ∈ C is the nth coded symbol, wi∈{1,2}(n)
and z0(n) are respectively the noise sample (of variance Ni∈{1,2}) observed
by the transmitter j ∈ {1, 2} and the noise sample (of variance N0) observed
by the destination. h21 and h12 represent the inter-user channel gains, and
h01 and h02 denote the user-destination channel gains, which are maintained

constant during T1 + T2. A1 ≤
√

P2

|h21|2P1+N2
and A2 ≤

√
P1

|h12|2P2+N1
are the

relay repetition gains, where Pj∈{1,2} is the sample energy. Clearly, the choice
α = 0, 0 < β < 1, would result in a classical 3 node relay scenario with user
1 acting as a source of information and user 2 being a source as well as
a relay node. We remark that (1) and (2) are reduced to equations of an
orthogonal direct transmission (non-cooperative protocol) if α = β = 0, and
to an amplify-and-forward protocol if α = β = 1 [2].
We hereby focus our attention on how the relay operation can improve the
sum rate of the cooperative MAC system, by proper choices of α and β. We
argue that sum rate (rather than the traditional diversity-oriented measures)
is a valuable performance metric when degrees of freedom for diversity can
be acquired at other layers of the protocol stack, such as via scheduling.

3. Centralized power allocation

3.1. Analysis of sum rate

In the proposition below, we assume a central control unit (located e.g at
the base) with knowledge of all CSI, we develop the expression for the sum
rate for the above protocol and power allocation system in a way similar to
developments by Laneman et al. and others.

Proposition 1. For the Gaussian memoryless multiple-access channel with
user cooperation, if the rate pair (R1,R2) is achievable, then the sum-rate
R1 + R2 ≤ Iα,β where

Iα,β,log2

[
1 + γ01 + (1− α)

K1

l1(β)
+ f(βγ02, γ21)

]

+log2

[
1 + γ02 + (1− β)

K2

l2(α)
+ f(αγ01, γ12)

]
(3)

5



where
K1 = [γ2

01 + γ01] [γ21 + 1]
K2 = [γ2

02 + γ02] [γ12 + 1]
l1(β) = 1 + γ21 + βγ02

l2(α) = 1 + γ12 + αγ01

f(x, y) = xy
x+y+1

(4)

and γij is defined as |hij|2 Pj

Ni
where Pj is the power of the transmitted signal

from user j, Ni is the noise power at the receiver i and i, j ∈ {1, 2}.
Proof : Please refer to the Appendix.
Note that the expression above requires channel information at the receiver
but not the transmitter. However the optimization with respect to power
control coefficients α and β, will require full channel knowledge. We can
consider in the sequel that P1 = P2 = P and γ21 = γ12 = γ since the same
frequency is used in both directions of inter-user communication.

3.2. Optimization of relay power allocation

We now address the problem of optimizing the power allocated by each
user toward either transmission of its own data or relay data. The objective
function taken here is the multiuser sum rate defined in eq. (3). We start
by characterizing the sum rate in some border points of the power region.
The lemma below comes handy in the more general characterization of the
optimal power allocation policy.

Lemma 1. We characterize the sum-rate over the feasible power allocation
region by :

{
Iα,0 > Iα,1 ∀ α ∈ [0, 1]
I0,β > I1,β ∀ β ∈ [0, 1]

(5)

Proof : Please refer to the Appendix.
This shows that, from the point of view of global throughput performance,
the system would rather have all users act selfishly.

3.2.1. Power Allocation Algorithm

We now proceed to give a complete characterization of the optimal power
allocation policy for an arbitrary realization of the multiuser channels.
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Proposition 2. The optimal power allocation which maximizes the sum-rate
(3) is given by,

1. α = α∗ 6= 0 and β = 0 if

{
γ > γ2

02 + γ02

γ01 > (1+γ02)2(1+γ)

γ−(γ2
02+γ02)

− 1

2. α = 0 and β = β∗ 6= 0 if

{
γ > γ2

01 + γ01

γ02 > (1+γ01)2(1+γ)

γ−(γ2
01+γ01)

− 1

3. α = 0 and β = 0 if neither condition above is met.

where optimal values α∗, β∗ are detailed in the appendix, and shown below.
Proof : Please refer to the Appendix.
Interpretations: We remark that zero or at most one user out of the two
cooperates with the other one. Hence the two users will never both take the
role of relay on a given channel realization. In fact the user with ”worse”
channel conditions always acts selfishly and concentrates all its power for its
own data, while the other user will graciously help the selfish user or possible
be itself selfish also. Of course, the roles of selfish users and cooperative
users will be alternating randomly as the channel changes, so that in the
long run both users are going to participate in the cooperation at some
points and benefit from it at some other points. Interestingly, this result
deprives the otherwise appealing concept of mutual cooperation from much
of its sense. However a truly mutual cooperation remains possible on the
basis of averaging across many realization of the fading channel.
We now examine the interesting particular case of instantaneously symmetric
channel:

Lemma 2. In the particular case, when γ = γ01 = γ02, the two users act
selfishly.
Algorithm 1 : Power allocation with instantaneous CSI.
The implementation of the algorithm below requires a centralized power al-
location procedure done by e.g. the base.
The following intermediate quantities are computed:
A1 = K1γ

2
01(1 + γ + γ02)

A2 = K1γ01(1 + γ)(1 + γ + γ02)

C = K1

[
γ K1

γ01
− K2

γ02
(1 + γ)−K2(2 + γ + γ01)

]

A
′
1 = K2γ

2
02(1 + γ + γ01)

A
′
2 = K2γ02(1 + γ)(1 + γ + γ01)
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C
′
= K2

[
γ K2

γ02
− K1

γ01
(1 + γ)−K1(2 + γ + γ02)

]

cond1 = K2

1+γ
, condp1 = K1

1+γ
, cond2 = (1+γ02)2(1+γ)

γ−(γ2
02+γ02)

−1 and condp2 = (1+γ01)2(1+γ)

γ−(γ2
01+γ01)

−
1.
if γ > cond1 & γ01 > cond2, then

α∗ = −A2

A1
+

√
C
A1

+
(

A2

A1

)2

user 1 cooperates with a level given by α∗ and resulting in a sum-rate of Iα∗,0.
else
if γ > condp1 & γ02 > condp2, then

β∗ = −A
′
2

A
′
1

+

√
C′

A
′
1

+
(

A
′
2

A
′
1

)2

user 2 cooperates with a level given by β∗ and resulting in a sum-rate of I0,β∗ .
else
Decision : No cooperation, [α∗, β∗] = [0, 0], sum-rate = I0,0.

4. Distributed cooperative power allocation

In the distributed framework, each node has a hybrid channel state infor-
mation. So instead of considering the global knowledge of the instantaneous
channel realizations, each mobile has only a local CSI knowledge i.e, each
mobile has the perfect knowledge of its links with the base station and the
other mobile, but only a statistical knowledge of the link between the other
mobile and the base station.
In this framework, each user is optimizing on an individual basis the amount
of power allocated to relaying the other user data. We draw the reader’s at-
tention on the fact that, although the users optimize their power allocation
in a distributed manner, they will do so in a cooperative fashion since each
user has the average sum rate as an objective function to maximize rather
than its own individual rate. To perform the optimization, user 1 (resp. user
2) must estimate the complete vector [α, β], following which it implements a
power control based on α (resp. β) while the other variable plays an auxiliary
role only.
Before proceeding to give the optimal distributed power allocation solution,
we provide a characterization of the objective function that each user sets out
to maximize. Let Īi the expected sum rate seen by mobile i. By construc-
tion, the expected sum rate is function of the local CSI, known determinis-
tically by mobile (i), and averaged over all realizations of the channel gains
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which are non-locally observable by this mobile. In this paper, the example
of distributed scenario considered assumes that mobile i has instantaneous
knowledge of γ0i and γ, while only the statistics of γ0j, j 6= i are known to
this mobile. Thus we can define:

Ī1(α, β) = Eγ02 [Iα,β] (6a)

Ī2(α, β) = Eγ01 [Iα,β] (6b)

where E is the expectation operator.
In order to seek the optimal distributed power allocation, we start by devel-
oping the expressions in (6).

Lemma 3. For the mobile 1, Ī1(α, β) is defined ∀α as





log2(a)− Φ(0)− log2(l2(α)), if β = 0

−
[

exp( a
b(1))Ei(− a

b(1))−ln(a)

ln(2)

]
+

[
exp( 1

ξ(1))Ei(− 1
ξ(1))

ln(2)

]
−

[
exp( c

d(1))Ei(− c
d(1))−ln(c)

ln(2)

]

− log2(l2(α)), if β = 1

−
[

exp( a
b(β))Ei(− a

b(β))−ln(a)

ln(2)

]
+

[
exp( 1

ξ(β))Ei(− 1
ξ(β))

ln(2)

]
− log2(l2(α))− Φ(β), if 0 < β < 1

(7)
where l2(α) has been previously defined and

a = (1 + γ01)(1 + (1− α)γ01)

ξ(β) = βγ02

1+γ

b(β) = ξ(β)(1 + γ + γ01)
c = (1 + γ)(1 + αγ01)
d(β) = [(2− β)(1 + γ) + αγ01] γ02

f(β) = (1− β)(1 + γ) (γ02)
2

∆(β) = [d(β)]2 − 4cf(β)

Λ1(β) =
d(β)−

√
∆(β)

2f(β)

Λ2(β) =
d(β)+

√
∆(β)

2f(β)

Φ(β) =
[

exp(Λ1(β))Ei(−Λ1(β))
ln(2)

]
+

[
exp(Λ2(β))Ei(−Λ2(β))

ln(2)

]
− log2(c)

(8)

where Ei(.) is the exponential integral defined as Ei(x) =
∫ x

−∞
exp(t)

t
dt. The

notation of the dependence on α in (8) is omitted.
We deduce the relation for mobile 2 by changing γ01 in (7) by γ02, γ02 in (7)
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by γ01, α by β and vice versa.
Proof : Please refer to the Appendix.

4.1. Optimal Distributed Power Allocation

Taking (6a) and (6b) respectively, for mobile 1 and 2 as the objective
functions, the optimal distributed power allocation problem can be stated as

{
(α1

∗, β
1
∗) = arg maxα,β Ī1(α, β)

(α2
∗, β

2
∗) = arg maxα,β Ī2(α, β)

(9)

where mobile 1 (resp. mobile 2) is mainly concerned with α1
∗ (resp. β2

∗).
Therefore the distributed power allocation vector resulting from our scheme
will be (α1

∗, β
2
∗). Due to the complex expressions in (7), it appears difficult

at first glance to give a closed-form solution for the optimal power alloca-
tion vector. However, the following result helps reach a surprisingly simple
solution to our problem.

Proposition 3. ∀α0 6= 0, ∀β0 6= 0, (α0, β0) cannot be an optimal solution for
power allocation for mobile 1 nor mobile 2.
Proof : Please refer to the Appendix.
Consequently, in a distributed scenario with hybrid CSI at the users, we
find that from the point of view of each mobile, at least one of the two
users should not cooperate. In order to determine which one shall cooperate,
mobile 1 considers the two following cases: either it shall not cooperate,
or the other mobile shall not cooperate. In each case, a power allocation
coefficient is determined. Thus, for mobile 1, the following problem is solved:

{
α1
∗ = arg maxα Ī1(α, 0)

β1
∗ = arg maxβ Ī1(0, β)

(10)

and for mobile 2, the following problem is solved :
{

α2
∗ = arg maxα Ī2(α, 0)

β2
∗ = arg maxβ Ī2(0, β)

(11)

The following lemma helps further simplify the problem:

Lemma 4. In eq. (10) α1
∗ = 0 and in eq. (10) β2

∗ = 0.
Proof : Please refer to the Appendix.
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Proposition 4. In the distributed power allocation problem written in eq. (9),
the optimal strategy is for each user to act selfishly.
Proof : Lemma 4 indicates that from the point of view of mobile 1 (resp.
mobile 2), the optimal power allocation strategy takes the form (0, β1

∗) (resp.
the form (α2

∗, 0), hence neither mobile is going to cooperate. Note that this
result is valid for any individual value of the average SNR on all links, this
for any position of the nodes. Our results mean that, in order to gain from
relaying in terms of sum rate, access to instantaneous knowledge of all channel
links is crucial.
We provide examples of this behavior through 3D plots of the sum rate for
particular instances of the channels. As depicted in figures 5 and 6, mobile
1 has (0, 0.447) as optimal power allocation, while (0, 0) as optimal power
allocation for mobile 2. Therefore the distributed algorithm allocates zero
power for each mobile to relaying the data of the other one, and thus act
selfishly.

5. Simulation results

5.1. Channel Model
We model all channels as Rayleigh block flat fading with additive white

Gaussian noise. Channel coefficients hij are modeled as zero-mean, cir-
cularly symmetric complex Gaussian random variables with different vari-
ances. Noises are modeled as zero-mean mutually independent, circularly-
symmetric, complex Gaussian random sequences with variance N0.

5.2. Network Geometry
We anticipate that cooperation will perform differently as function of the

positions of the users with respect to destination. We study two particular
different network geometries, denoted by symmetric and asymmetric or lin-
ear, depicted respectively by figures. 2 and 3. In the asymmetric case, we
model the path-loss, i.e. the mean channel powers σ2

ij, as a function of the
relative relay position d by

σ2
01 = 1 , σ2

12 = d−ν , σ2
02 = (1− d)−ν (12)

where ν is the path loss exponent and 0 < d = d12 < 1. The distances
are normalized by the distance d01. In these coordinates, the user 1 can be
located at (0,0), and the destination can be located at (1,0), without loss of
generality. User 2 is located at (d,0) [22]. In the symmetric case, all channels
are drawn with same unit-variance.
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5.3. Simulation Results
We report results for path loss exponent ν = 4 and we model all channels

as Rayleigh block flat fading with additive white Gaussian noise. Figs. 7-10
show the outage capacity behavior for the new cooperation scheme with cen-
trally optimized power allocation, compared with the regular MAC channel
with no cooperation. We look at the sum rate performance but also plot
for information the corresponding individual user rate performance. We take
SNR = P

N0
= 10dB. In the symmetric case , Fig. 7 shows a marginal im-

provement in sum rate due to cooperation in the MAC channel, although the
worst case behavior of the individual user rate is improved (for low outage
probabilities, less than 0.04). This is due to the fact that in many cases
for the symmetric network both users will tend to act selfishly (as per our
result in Proposition 2), and when they don’t, the gains made by the user
benefiting from cooperation tend to be offset by the losses incurred by the
relaying user (the roles of benefitor and relayer alternating randomly with
new channel realizations).
Figs. 8-10 show the simulation results for an asymmetric (linear) network
when user 2 is located between user 1 and the destination at (0.1,0), (0.5,0)
and (0.9,0) respectively. The gains due to centrally optimized power alloca-
tion in the cooperation are clearly more significant for the user further away
from the base. However this gain also translates into a sum-rate (system)
gain. For instance when d = 0.1, the sum-rate benefits from cooperation by
0.33 bit/s/Hz and the user 1 benefits by up to 1 bit/s/Hz. User 2 which is
closer to the destination than user 1, still benefits on average, but to a lesser
extent.
When user 2 is located close to the destination (d = 0.9) both the sum-rate
and user 1’s rate benefit from the cooperation, while user 2 almost never uses
user 1 as a relay. Still, this user has negligible loss of rate in relaying because
the amount of power it allocates to relaying user 1’s data corresponds a very
small rate loss to him, while a significant gain to user 1 who undergoes severe
channel conditions.
The figures 4-6 serve to illustrate the shape of the sum-rate, function of the
power allocation coefficients in both centralized and distributed frameworks.
For SNR = 10 dB and when mobile 2 is placed at (0.1, 0), fig.4 gives an
example where mobile 2 must allocate a fraction β∗ = 0.446 to relay infor-
mation for mobile 1, while mobile 1 allocates zero power to relaying as this
maximizes the sum-rate in centralized framework.
In the distributed framework, we plot the expected sum rates ”seen” respec-
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tively by user 1 and 2 in Fig. 5 and 6. In each case, the expected sum
rate is maximized locally by assigning zero power to relaying, resulting in a
completely selfish behavior by both users, as predicted by our Proposition 4.

6. conclusion

We have addressed the problem of mutual cooperation between data-
carrying users in a wireless MAC channel. Via a power allocation framework,
we proposed a scheme allowing each user to balance transmission of own data
with a relaying operation, so as to maximize the sum rate received at the
base station. We have characterized analytically the optimum cooperation
levels, and we showed that cooperation is never mutual on an instantaneous
basis as at most one user acts as a relay for the other but never both at the
same time.
In the case where gathering complete CSIT is problematic we have addressed
the problem of distributed power allocation in the cooperative MAC channel,
where the users adjust their cooperation power levels as function of a mix of
local channel state information and statistical non-local channel information.
We showed that, unlike in the centralized case, both users should act selfishly
in the distributed framework.

7. appendix

In this appendix, we collect all the proofs.

7.1. Proof of Proposition 1

For simplicity, we formulate (1) and (2) respectively as

[
y1(n)

y1(n + N
2
)

]

︸ ︷︷ ︸
y1

=

[
h01 0√

βA1h02h21

√
1− αh01

]

︸ ︷︷ ︸
M1

[
x1(n)

x1(n + N
2
)

]

︸ ︷︷ ︸
x1

+

[
0 1 0√

βA1h02 0 1

]

︸ ︷︷ ︸
B1




w2(n)
z0(n)

z0(n + N
2
)




︸ ︷︷ ︸
z1

(13)
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and
[

y2(n)
y2(n + N

2
)

]

︸ ︷︷ ︸
y2

=

[
h02 0√

αA2h01h12

√
1− βh02

]

︸ ︷︷ ︸
M2

[
x2(n)

x2(n + N
2
)

]

︸ ︷︷ ︸
x2

+

[
0 1 0√

αA2h01 0 1

]

︸ ︷︷ ︸
B2




w1(n)
z0(n)

z0(n + N
2
)




︸ ︷︷ ︸
z2

(14)

and, without loss of generality, we compute the maximum average mutual
information during T1 + T2.

I(x1, ỹ1) = I(x1;M1) + I(x1;y1/M1)
= I(x1;y1/M1)
≤ log2 det(I2 + M1Λx1M

H
1 Σ−1

n1
)

(15)

where n1 = B1z1 and Λx1 = E(x1x
H
1 ) = P1I2.

Therefore, Σn1 = B1E(z1z
H
1 )BH

1 and equal to

Σn1 =

[
N0 0
0 N0 + β(A1)

2|h02|2N2

]
(16)

M1M
H
1 =

[
A B
C D

]
(17)

where
A = |h01|2
B =

√
βA1h01(h02)

∗(h21)
∗

C =
√

βA1(h01)
∗h02h21

D = (1− α)|h01|2 + β(A1)
2|h02h21|2

(18)

Therefore

log2 det(I2 + P1M1M
H
1 Σ−1

n1
) = log2

[
1 + |h01|2 P1

N0

+
(1− α)|h01|2P1 + β(A1)

2|h02h21|2P1

N0 + N2β(A1)2|h02|2

+
(1− α)|h01|4P 2

1

N0(N0 + N2β(A1)2|h02|2)
]

(19)

14



and after substitutions and algebraic manipulations, we obtain

log2 det(I2 + P1M1M
H
1 Σ−1

n1
) = log2

[
1 + γ01 + (1− α)

K1

l1(β)
+ f(βγ02, γ21)

]

(20)
so, (3) is straightforward.

7.2. Proof of Lemma 1

We show without loss of generalities that Iα,0 > Iα,1.

Iα,0 = log2

[
1 + γ01 + (1− α)

K1

l1(0)

]
+ log2

[
1 + γ02 +

K2

l2(α)
+ f(αγ01, γ)

]

(21)

Iα,1 = log2

[
1 + γ01 + (1− α)

K1

l1(1)
+ f(γ02, γ)

]
+ log2 [1 + γ02 + f(αγ01, γ)]

(22)
In order to demonstrate that Iα,0 > Iα,1 it is enough to show that

[
1 + γ01 + (1− α)

K1

l1(0)

] [
1 + γ02 +

K2

l2(α)
+ f(αγ01, γ)

]

︸ ︷︷ ︸
π1

>

[
1 + γ01 + (1− α)

K1

l1(1)
+ f(γ02, γ)

]
[1 + γ02 + f(αγ01, γ)]

︸ ︷︷ ︸
π2

(23)

where



π1 = (1 + γ01)(1 + γ02) + (1 + γ01)
K2

l2(α)
+ (1 + γ01)f(αγ01, γ)

+(1− α) K1

l1(0)
(1 + γ02) + (1− α) K1

l1(0)
K2

l2(α)
+ (1− α) K1

l1(0)
f(αγ01, γ)

π2 = (1 + γ01)(1 + γ02) + (1 + γ01)f(αγ01, γ) + (1− α) K1

l1(1)
(1 + γ02)

+(1− α) K1

l1(1)
f(αγ01, γ) + f(γ02, γ)(1 + γ02) + f(γ02, γ)f(αγ01, γ)

(24)
First we have l1(0) < l1(1), so 1

l1(0)
> 1

l1(1)
. Therefore

{
(1− α) K1

l1(0)
(1 + γ02) > (1− α) K1

l1(1)
(1 + γ02)

(1− α) K1

l1(0)
f(αγ01, γ) > (1− α) K1

l1(1)
f(αγ01, γ)

(25)

and after some manipulations, we obtain

(1− α)
K1

l1(0)

K2

l2(α)
+ (1 + γ01)

K2

l2(α)
= (1 + γ01)

K2

l2(α)
[1 + (1− α)γ01] (26)
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and

f(γ02, γ)(1+γ02)+f(γ02, γ)f(αγ01, γ) =
γK2

(1 + γ + γ02)l2(α)
+

αγγ01γ02

l2(α)
(27)

we remember that K2 − γ2
02γ = γ02(1 + γ + γ02), therefore

f(γ02, γ)(1+γ02)+f(γ02, γ)f(αγ01, γ) =
K2

l2(α)

γ(1 + αγ01)

(1 + γ + γ02)
− αγ01γ

2γ2
02

(1 + γ + γ02)l2(α)
(28)

We can say that 0 < γ
1+γ+γ02

< 1 and 0 < 1 + αγ01 ≤ (1 + γ01). So,
K2

l2(α)
γ(1+αγ01)
(1+γ+γ02)

≤ (1+γ01)
K2

l2(α)
then K2

l2(α)
γ(1+αγ01)
(1+γ+γ02)

≤ (1+γ01)
K2

l2(α)
[1+(1−α)γ01].

Therefore we can say finally that

K2

l2(α)

γ(1 + αγ01)

(1 + γ + γ02)
−α

γ01γ
2γ2

02

(1 + γ + γ02)l2(α)
≤ (1+γ01)

K2

l2(α)
[1+(1−α)γ01] (29)

and from (25),(26), and (29) we conclude that Iα,1 < Iα,0.
The relation I1,β < I0,β is straightforward.

7.3. Proof of Proposition 2

In order to seek (α∗, β∗) for which Iα,β is maximized,

(α∗, β∗) = arg max
α,β∈[0,1]

Iα,β (30)

we must solve this system of equations :

{
∂Iα,β

∂α
= 0

∂Iα,β

∂β
= 0

(31)

The partial derivatives of Iα,β,
∂Iα,β

∂α
and

∂Iα,β

∂β
respectively to α and β give

∂Iα,β

∂α
=

1

ln(2)




−K1

l1(β)

1 + γ01 + (1− α) K1

l1(β)
+ f(βγ02, γ)

+
(1− β)K2

−∂l2(α)
∂α

[l2(α)]2
+ γγ01(1+γ)

[l2(α)]2

1 + γ02 + (1− β) K2

l2(α)
+ f(αγ01, γ)




(32)
and

∂Iα,β

∂β
=

1

ln(2)




−K2

l2(α)

1 + γ02 + (1− β) K2

l2(α)
+ f(αγ01, γ)

+
(1− α)K1

−∂l1(β)
∂β

[l1(β)]2
+ γγ02(1+γ)

[l1(β)]2

1 + γ01 + (1− α) K1

l1(β)
+ f(βγ02, γ)




(33)
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after some simplifications, α∗ and β∗ are determined as solutions of
{

A1α
2 + 2αA2 − C −B2β −B1β

2 = 0
A
′
1β

2 + 2βA
′
2 − C

′ −B
′
2α−B

′
1α

2 = 0
(34)

where

A1 = K1γ
2
01(1 + γ + γ02)

A2 = K1γ01(1 + γ)(1 + γ + γ02)
B1 = K2γ01γ02(1 + γ + γ01)
B2 = K1K2(2 + γ + γ01) + γ01γ02(1 + γ + γ01)(γ(1 + γ)−K2)

C = K1

[
γ K1

γ01
− K2

γ02
(1 + γ)−K2(2 + γ + γ01)

]
(35)

and

A
′
1 = K2γ

2
02(1 + γ + γ01)

A
′
2 = K2γ02(1 + γ)(1 + γ + γ01)

B
′
1 = K1γ01γ02(1 + γ + γ02)

B
′
2 = K1K2(2 + γ + γ02) + γ01γ02(1 + γ + γ02)(γ(1 + γ)−K1)

C
′
= K2

[
γ K2

γ02
− K1

γ01
(1 + γ)−K1(2 + γ + γ02)

]
(36)

therefore, the system (31) becomes
{

α̃2

B1
− β̃2

A1
= κ1

β̃2

B
′
1

− α̃2

A
′
1

= κ2

(37)

where {
α̃ = α + A2

A1

β̃ = β + B2

2B1

(38)

and 



κ1 = C
A1B1

+ 1
B1

(
A2

A1

)2

− 1
A1

(
B2

2B1

)2

κ2 = C
′

A
′
1B

′
1

+ 1

B
′
1

(
A
′
2

A
′
1

)2

− 1

A
′
1

(
B
′
2

2B
′
1

)2 (39)

In (37), we have two equations of hyperboles. When we replace α̃ in the
second equation by its expression derived from the first one in order to solve
this system we obtain

β̃2

(
1

B
′
1

− A1

A
′
1B1

)
= κ2 +

B1

A
′
1

κ1

︸ ︷︷ ︸
6=0

(40)
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and because we have
B1

A1

=
A
′
1

B
′
1

(41)

it is straightforward that there are no solutions, graphically traduced by the
no intersection between these hyperboles where eq. (41) shows the equality
of the slopes of the asymptotes, unless on the plans Pα,0 = {β = 0,∀α},
Pα,1 = {β = 1,∀α}, P0,β = {α = 0, ∀β} and P1,β = {α = 1, ∀β}.
Using Lemma 1, we are interested only by Iα,0 and I0,β. Therefore at most
one user cooperate, so

{
α∗ = arg maxα∈[0,1] Iα,0

β∗ = arg maxβ∈[0,1] I0,β
(42)

The derivatives of Iα,0 and I0,β, dIα,0

dα
and

dI0,β

dβ
give





α̃2 = C
A1

+
(

A2

A1

)2

β̃2 = C
′

A
′
1

+
(

A
′
2

A
′
1

)2 (43)

Therefore, α∗ exists when





C
A1

+
(

A2

A1

)2

> 0

−
(

A2

A1

)
+

√
C
A1

+
(

A2

A1

)2

∈]0, 1]
(44)

and it becomes easy to lead to

{
γ > γ2

01 + γ01

γ02 > (1+γ01)2(1+γ)

γ−(γ2
01+γ01)

− 1
(45)

and the same method is intended for β∗.

7.4. Proof of Lemma 3

We start by some mathematical analysis and according to [23]

∫ ∞

0

log2 (A + Bλ) exp (−λ) dλ = −
[

exp
(

A
B

)
Ei

(−A
B

)

ln(2)

]
+ log2(A) (46)
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where Ei(.) is the exponential integral defined as Ei(x) =
∫ x

−∞
exp(t)

t
dt, and

∫ ∞

0

log2

(
A + Bλ + Cλ2

)
exp (−λ) dλ = −

[
Υ− ln(A)

ln(2)

]
(47)

where
Υ = exp (R1) Ei (−R1) + exp (R2) Ei (−R2)

R1 = B−√B2−4AC
2C

R2 = B+
√

B2−4AC
2C

(48)

Iγ02(α, β) will have different forms according to the value of β, and the no-
tation of the dependence on α in (49) is omitted. Therefore if:

β = 0 , Iα,0 = log2 (a) + log2 (c + d(0)λ + f(0)λ2)− log2 (l2(α))

β = 1 , Iα,1 = log2 (a + b(1)λ)−log2 (1 + ξ(1)λ)+log2 (c + d(1)λ)−log2 (l2(α))

else , Iα,β = log2 (a + b(β)λ)−log2 (1 + ξ(β)λ)+log2 (c + d(β)λ + f(β)λ2)−
log2 (l2(α))

where
a = (1 + γ01)(1 + (1− α)γ01)

ξ(β) = βγ02

1+γ

b(β) = ξ(β)(1 + γ + γ01)
c = (1 + γ)(1 + αγ01)
d(β) = [(2− β)(1 + γ) + αγ01] γ02

f(β) = (1− β)(1 + γ) (γ02)
2

λ = γ02

γ02

(49)

So using the relations (46) and (47) we will have the result in Lemma 1.

7.5. Proof of Proposition 3

A subtle technical point is under which conditions the first order deriva-
tive of Eγ02 [Iα,β] can be taken inside the expectation operator :





∂
∂α
Eγ02 [Iα,β] = Eγ02

[
∂Iα,β

∂α

]

∂
∂β
Eγ02 [Iα,β] = Eγ02

[
∂Iα,β

∂β

] (50)

For simplicity, and without loss of generality, we consider mobile 1.
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Theorem 1. If the following two conditions hold at a point α (resp β), then
Ī1(α, ·) (resp Ī1(·, β)) is differentiable at α (resp β) and equations (50) hold
[24]:
(i) The function I·,β (resp Iα,·) is differentiable at α (resp β) w.p.l.
(ii) There exists a positive valued random variable K(γ02) such that Eγ02(K(γ02))
is finite and the inequality

|Iα1,β − Iα2,β| ≤ K(γ02)|α1 − α2| (51)

resp.
|Iα,β1 − Iα,β2| ≤ K(γ02)|β1 − β2| (52)

holds w.p.l for all α1,α2 (resp β1,β2) in a neighborhood of α (resp. β).
Note I·,β satisfies the conditions (i) and (ii).
Now, suppose that α0 6= 0 and β0 6= 0, therefore (α0, β0) is an optimal power
allocation for mobile 1 if

{
∂

∂α
Eγ02 [Iα,β] |α=α0 = 0

∂
∂β
Eγ02 [Iα,β] |β=β0 = 0

(53)

Therefore the equations(6) become

{ ∫ ∂Iα,β

∂α
|α=α0pγ02dγ02 = 0∫ ∂Iα,β

∂β
|β=β0pγ02dγ02 = 0

(54)

But (α0, β0) cannot maximize Iα,β (see Proposition 2), therefore
∂Iα,β

∂α
|α=α0 6=

0 or
∂Iα,β

∂β
|β=β0 6= 0, and γ02 is exponentially distributed (pγ02(γ02) > 0∀γ02)

so this leads to a contradiction with (54) because at least one among the two
equations cannot be held.

7.6. Proof of Lemma 4

Suppose that α0 6= 0, therefore α0 will be allocated to mobile 1 if

∂Iγ02(α, 0)

∂α
|α=α0 = 0 (55)

Therefore, we derive the following expression of
∂Iγ02 (α,0)

∂α

− 1

ln(2)

[
γ01

1 + (1− α)γ01

+
γ01

1 + γ + αγ01

]
− ∂Φ(0)

∂α
(56)
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Using the relation below

∂ (exp(ε)Ei(−ε))

∂α
=

(
∂ε

∂α

)[
exp(ε)Ei(−ε) +

∂ε

∂α

]
(57)

Replacing ε by Λ1(0) and Λ2(0) in (55), it becomes easy to show that

∂Iγ02(α, 0)

∂α
< 0, ∀α 6= 0 (58)

and because Iγ02(α, 0) is differentiable in 0, decreases in [0, 1], therefore α1
∗ =

0.
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Table 1: Power allocation coefficients over two frames for 2 users transmitting to a base
using TDMA scheme. Power levels are used to either send own or relay data. T1 (resp.T2)
is first (resp. second) half of the frame.

T1 T2 T1 T2

user 1 1 1− α 0 α
user 2 0 β 1 1− β

 


 


 


M
1


M
2


D


h
01


h
02


h
12
 = h
21


Figure 1: Cellular model.
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Figure 2: Symmetric network.
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Figure 3: Asymmetric (or linear) network.
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Figure 4: The sum-rate, in centralized case and linear network, when the mobile 2 is
located at (0.1,0) and SNR equal to 10 dB. The centralized algorithm gives (0,0.446) as
optimal power allocation indicating that only mobile 2 will cooperate.

26



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
7

7.5

8

8.5

9

9.5

βα

 E
γ 02

[I α,
β] [

b/
s/

H
z]

Figure 5: Expected sum-rate seen by mobile 1 (distributed processing) when the mobile 2
is located at (0.1,0) in linear network and SNR equal to 10 dB. The relations in (10) give
(0,0.447) as optimal power allocation for mobile 1, therefore it doesn’t cooperate.
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Figure 6: Expected sum-rate seen by mobile 2 (distributed processing) when it is located
at (0.1,0) in linear network and SNR equal to 10 dB. The relations in (11) give (0,0) as
optimal power allocation for mobile 2, therefore it should not cooperate.
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Figure 7: Outage capacity in centralized case and symmetric network in which we consider
equal channel gains (σ2 = 1) : In this situation, individual users’s worst-case rates are
slightly improved, while the sum rate is almost unchanged.
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Figure 8: Outage capacity in centralized case and asymmetric network, with user 2 lo-
cated at (0.1,0), i.e, close to the user 1; Both users as well as the sum rate benefit from
cooperation, especially mobile 1.
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Figure 9: Outage capacity in centralized case and asymmetric network, with user 2 lo-
cated at (0.5,0), i.e, halfway between user 1 and destination; Only user 1 benefits from
cooperation, however the sum rate is also improved.
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Figure 10: Outage capacity in centralized case and asymmetric network with user 2 located
at (0.9,0), i.e, close to the destination; both the sum-rate and user 1’s rate benefit from
the cooperation, while user 2 almost never uses user 1 as a relay.
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