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Abstract—In this letter, we address the problem of distributed
multi-antenna cooperative transmission in a cellular system. Most
research in this area has so far assumed that base stations not
only have the data dedicated to all the users but also share the full
channel state information (CSI). In what follows, we assume that
each base station (BS) only has local CSI knowledge. We propose
a suboptimal, yet efficient, way in which the multicell MISO
precoders may be designed at each BS in a distributed manner, as
a superposition of so-called virtual SINR maximizations: a virtual
SINR maximizing transmission scheme yields Pareto optimal
rates for the MISO Interference Channel (IC); its extension to
the multicell MISO channel is shown to provide a distributed
precoding scheme achieving a certain fairness optimality for the
two link case. We illustrate the performance of our algorithm
through Monte Carlo simulations.

I. INTRODUCTION

MIMO cooperation in cellular networks is receiving a lot of
attention in the research community due to the ability of this
technique to effectively exploit inter-cell interference in reuse-
one wireless networks, yielding gains both in terms of average
system capacity, and quality of service fairness for cell-edge
users (see for example [1]). From the point of view of their
impact on overall wireless network design, multicell MISO
schemes can be categorized according to how much feedback
and inter-cell signaling is required for their implementation.
For instance, in the full multicell MIMO implementation,
sharing of the user data symbols is needed across the bases
engaged in downlink cooperation (an assumption akin to soft-
handoff in CDMA networks for instance). Moreover feedback
is needed to carry channel state information (CSI) from the
receivers to the transmitters, while so-called backhaul signal-
ing is necessary for base stations to share the CSI needed to
derive the downlink precoding vectors.

The ability of deriving schemes that can cope with local CSI
only has a profound impact on the scalability and the spectrum
efficiency of cooperative schemes. In the most optimistic case,
data and CSI of all users in a system can be shared by all
transmitters and these can transmit jointly to serve the users
thereby forming, assuming no synchronization issues arise, a
giant MIMO broadcast channel (BC): the only difference to
a traditional MIMO BC is the individual power constraints at
each BS [2], [3]. In a more realistic setup, it remains to be
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seen how backhaul signaling can be reduced while still reaping
multicell MIMO benefits.

The issue of user data sharing amongst the transmitters was
addressed in a few recent publications. For example, in [4]
an iterative message passing procedure is suggested so that
the final transmitted signal is obtained by having neighbor-
ing transmitters exchange information. A more information
theoretical approach was taken in [5] for example, which
considers, for a given model of the network (Wyner-based
model) the impact of having finite backhaul links between a
central processor and the different base stations in the system.
However there is still a need to develop concrete precoding
schemes suited to the problem of multicell MIMO precoding
with limited exchange of CSI among base stations.

In the present work, we assume a downlink multicell MISO
system where the bases share the data symbols but unlike most
previous work on the subject we investigate the possibility of
a drastic reduction in the sharing of CSI, so as to derive a
distributed precoding approach. More precisely, we assume
each transmitter has only local knowledge, in the form of the
channel coefficients between itself and each of the users in its
neighborhood. This could for example correspond to a TDD
system, where CSI is obtained from uplink training.

In order to derive the distributed precoder we build upon
work previously done for the case of the MISO interference
channel (IC) [6], ie. where each of the interfering bases serve
their home user only (unlike the multicell MISO case). In that
work, a distributed beamforming coordination scheme for the
MISO IC was presented based on the concept of so-called
virtual SINR: the idea of maximizing such ratios appears in
the context of the MIMO broadcast channel in [7], [8] for
example, and in that of MISO interference channels in [9],
[10] among others. However, the originality of [6] lies in the
claim (and proof) that such an approach is Pareto optimal in
general and sum rate optimal in some cases of interest.

We derive a novel approach suited to the multi-base MISO
channel based on layering multiple precoders each solving
a different IC rate maximization problem. Our intuition for
doing this is that the channel under consideration may be
viewed as the superposition of a set of IC channels, where
assuming there are as many users being served as there are
transmitters, the transmitter-receiver matching in each IC is
a different permutation of the possible matchings. A power
allocation problem across the layers is also presented. For ease



of exposition, we restrict our presentation to the representative
two-cell MISO case, but the ideas can be extended to N > 2
cells in a straightforward fashion.

The rest of the paper is organized as follows. Section II de-

fines the system model and performance measures considered.
Section III introduces the layered virtual SINR framework
and gives the proposed power allocation heuristic. Simulations
in Section IV illustrate the performance of the proposed
algorithm via Monte Carlo simulations.
Notation In what follows we use the following notation. £
denotes statistical expectation. C is the complex number field.
Boldface lowercase letters represent vectors, and boldface
uppercase matrices. CA/(m, 02) is the probability distribution
of a circularly symmetric complex Gaussian random variable
of mean m and variance 2. I N, denotes the identity matrix
of dimension V;.

II. SYSTEM MODEL

Our basic setup consists of two transmitters (e.g. base
stations in a cellular system), denoted B.S; and B.S,, with
N; > 2 antennas each, communicating with two single-
antenna receivers (mobile terminals), denoted M S; and M .Ss.
This is illustrated in Figure 1, and could be generalized to the
N > 2 cell case.

BS;

BS,

Fig. 1. CSI scenario considered for two transmitters. hy1,hjo are known
at BSq, h21,h22 at BSo.

Unlike in the MISO IC channel, we assume that data
symbols for the two users are available at both transmitters,
thus joint multibase precoding is possible.

We adopt a narrow-band channel model with frequency-flat
block fading. Under linear precoding at each transmitter, the
signal transmitted by BS;, x;, is given by:

2
Xj = Z VDiEW jk Sk (D
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where s ~ CA(0,1) is the symbol being transmitted intended
for M Sy, wji is a unit-norm precoding vector used to carry
this symbol from BS;, ie. ||w;x|| = 1, and pj;; is the

corresponding transmit power used. Each BS is subject to
an average transmit power constraint of P, in other words:
H _ 2
E{tr(xf'x;)} = Shoypjp < P
The signal received at user k is given by:

2
Yk = Z hjex; + ny 2
j=1
where hjj is the channel between MS) and BS;, np ~
CN(0,0?) is the noise at the considered receiver.

We assume that receivers have full CSI (CSIR) and do not
attempt to decode the interfering signals. For notational con-
venience, we define j as the user not being j (in mathematical
terms, j = mod (j,2)+1, for j € {1,2}). The rate achieved
at user k is given by:

Ry, = logy (1 + k), 3)
where the SINR ~;, is equal to:

2
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A. Channel model

Channels are assumed to be Rayleigh fading, so that hj; ~
CN(0,0%,1n,). 03, can account for path loss and shadowing,
which vary on a larger time-scale relative to the fast fading.

B. Distributed CSIT Assumptions

Partial instantaneous CSI is assumed at each BS, which can
be assumed to be obtainable locally: this corresponds to the
channel coefficients between a BS and each of the users, i.e.
BS; knows hji, k = 1,2. This model of CSI is consistent
with that used in a number of works such as [11], [12].

C. Optimization under Distributed CSIT knowledge

Under full CSIT at both transmitters, a joint transmission
scheme which takes into consideration the individual power
constraints at each BS can be implemented (for example
[2], [3]): in fact sharing the CSIT reduces the setup to a
MIMO broadcast channel. The case is more complicated for
the distributed CSIT case considered here. Assuming the
transmitters had statistical knowledge of the links they do
not know locally, maximizing the expected sum rate under
the above distributed CSIT assumptions would lead to an
intractable functional optimization problem. We thus propose
to instead make use of this distributed information in a simple
but as will be shown in our simulation results effective way,
by generalizing the virtual SINR framework applied to the IC
in [6] to the joint precoding scenario.

III. JOINT PRECODING WITH LOCAL CSIT: VIRTUAL SINR
APPROACH

A. Virtual SINR Revisited for the MISO IC
In [6], the MISO IC was considered and the following

algorithm was introduced to design for the beamforming vector
to use at BS, denoted wy, to serve user k:
hkkW 2
mae )
wl?=1 % + Zj;ék |hy;wi

Wi = arg



and full power was used. Note that a single index is used for
the beamforming vector as each base serves a single user. This
algorithm effectively consists of each transmitter maximizing
a ’virtual SINR’ defined as the ratio of the useful signal power
at one’s own user and the sum of noise plus interference power
generated at the other users.

One of the main results of that paper is Theorem 1 restated
for convenience below. It was also shown that both at low
and high SNR, SNR = %, the above beamforming vectors
tend to the sum rate maximizing schemes of maximum ratio
transmission and zero-forcing, respectively.

Theorem 1. The rate pair obtained by beamforming using
Wy, as in (5), lies on the Pareto boundary of the two-link rate
region.

Proof: The details are provided in [6]. |

We now turn to the key problem addressed in this paper

which is no longer the IC but a multi-base MISO channel,

i.e. where the transmitters are both given the data symbols
intended to all users.

B. Multicell MISO: Layered Virtual SINR

Given the local channel knowledge assumption, it is not pos-
sible for base stations to jointly design the whole beamforming
matrix to carry symbols si, k& = 1,2 (cf. (1)). They can
however still cooperate to transmit to the users in the system,
as they have access to their data. One way to think of the
thus defined channel is as a superposition of two interference
channels: a first in which BS; serves M S, and BS, serves
M S5 and a second where BSs serves M S; and BS; serves
M Ss; the difference from a regular superposition of ICs is
that the data being transmitted to each user is effectively the
same.

Guided by this view of the channel, we propose to use
the concept of virtual SINR maximization introduced in the
previous section to design the beamforming vectors at each
base. What this means is that BS; will design a virtual SINR
beamformer to target M S; and another one to target M S,
i.e. it applies the above algorithm (5) twice, thereby obtaining
Wik, j,k € {1,2} defined in (1) as:

Layered Virtual SINR maximizing beamforming solution:

hj,wl|?

wil?z1 2t [hywl?

(6)

W = arg

Note that we replace P in (5) by Djk in the above equation,
where, as specified in section II, p;, refers to the power
allocated to MSy’s at BSS;. A heuristic method for how to
determine the p;; follows in the next subsection. We first give
some intuitions to justify our approach.

Maximizing a virtual SINR effectively balances between
the useful signal at the target user and the interference power
generated at others. Moreover, one can do so while ensuring
that, assuming synchronization in the system as we do here,
the useful signal arriving at a given user from the different base
stations does so constructively. In fact, one can show that the
above virtual SINR maximization (6) yields a solution that

may be written as [6]:

Il ;hil - hil
Wik = /Grh T G
Tt T bl

where 0 < (jp < 1,4,5 = 1,2, IL;; denotes the projection
matrix onto h;;’s range, and HL the projection matrix onto its

hJHkhM hh
null space. Thus, ;5 = "=,  and H = = Iy, Hh EE
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It is easy to verify that the product hjrw; k W111 be a p0s1t1ve
real value.

The formulation in (7) splits each transmit vector into a fully
interfering and a non-interfering term. The splitting factor, (;x,
is given by:

(1T b ||
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which shows that as 24

placed on the non- 1nterfer1ng component, whereas for low
the solution reduces to maximum ratio transmission.

increases, more emphasis will be
p;k

C. Power Allocation

Here we address the question of how to allocate the power
between the two data streams at each BS. To find an answer,
we first note the following:

Proposition 1. Given the layered virtual SINR scheme, full
power at each transmitter should always be used, i.e.:

2
> pik=P, forj=1.2 9)
Proof: The proof is quite similar to that in the MISO IC
case (see the proof of Proposition 1 in [13]) and relies on the
fact that given that NV, > 2, it is always possible to increase
the rates of one user by focusing more power orthogonally to
the other user’s channel. ]
Given Proposition 1, the power allocation problem is thus
reduced to determining a single splitting parameter 0 < \; <1
at BS;, j = 1,2, whereby:

pjl = P)\] and ij = P(]. — )\J) (10)

One would theoretically like to determine \;,7 = 1,2 so
as to maximize some expected performance metric, the sum
rate for example, given the channel knowledge at each user
and the adopted layered virtual SINR transmission scheme.
Maximizing the expected sum rate for the adopted beam-
forming structure requires finding optimal distributed power
allocation strategies: for a given base station, these will be
functions of its instantaneous local channel knowledge, but
also need to take into account the statistics of the knowledge
and of the strategy at the other transmitter. Similar to the
more general optimal distributed precoding scheme design,
determining such optimal power allocation strategies is an
intractable functional optimization problem. We thus instead
resort to heuristics which, though suboptimal, have the added
benefit of not requiring the statistical knowledge of the links
between the other transmitter and the users.



1) Statistical power splitting:
An intuitive approach is to split the power according to
the following rule:
A= L (an
! Ei:l ‘732'1@
The intuition behind this is that a transmitter should
allocate more power to the users that will benefit more
from it, i.e. that it has stronger links to. Thus if the
strength of the link to a user is quite low, there will be
little use of allocating it any power.
2) Channel aware power splitting:
Pushing further the idea proposed in (11), another ap-
proach would be to split the power according to the
instantaneous channel strength, as these are available
locally, i.e.:

by 2

A= — 12)

2 k=1 [yl
Complexity-wise, using (11) implies power splitting to be
recomputed when the channel statistics change which would
normally occur at much slower rate than the instanteneous
change in the channel, which (12) follows.

1) Interference fairness: Although the power splitting
above is not designed to maximize any fairness criterion,
it turns out interestingly that it coincidentally provides an
interference fair solution, where interference fairness is defined
as a measure of the difference between the interference powers
incurred at each user: in fact, the interference power at both
users is the same, which leads us to the following lemma.

Lemma 1. The power splitting (12) is strictly interference fair.

Proof: The interference power at user k is equal to (cf.
the SINR expression in (4)):

2

2
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(13)

Using the power allocation in (12) and the corresponding
layered virtual SINR beamforming vectors as expressed in
equations (7) and (8), the terms in the above summation may
be written as:

\/ﬁcose»eﬁéh”hfﬁ
\/pjlzhjkwjl; = ! 2 ) k= 1727
\/1 + Psin?e, (24 20)
(14)
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and, as a result,
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From (14), one can also show that the interference power
scales (provided h;; and hjy are not fully aligned, which
occurs with probability 0) as 1/P.

IV. NUMERICAL RESULTS

We compare the performance of our layered virtual SINR
approach (LVSINR in the figures) to a fully centralized
scheme, namely joint zero-forcing (i.e. both base stations pool
their antennas together and do downlink zero-forcing) with op-
timal power allocation (JZF-PA in the figures): note that this is
discussed under per-antenna power constraints in [14], among
others; one can show that in the case considered here as well,
this is a convex optimization problem which is relatively easy
to solve. We further compare our results to a fully distributed
case, where no data is shared among the transmitters, which
uses the VSINR-based algorithm introduced in [6].

The results below are obtained by averaging over 10000
channel realizations, generated according to the specified
distributions.

Figure 2 illustrates performance in terms of average sum rate
for a symmetric channel: we define a symmetric channel as
one where the variances of the channel coefficients of the links
between M Sy and BSk, k = 1,2 (direct links) are equal and
fixed at 1, whereas the variances of the channel coefficients of
the links between M Sy and BSy, for k = 1,2 (cross-links)
are also equal and their value 3 is varied. The results are
shown for N; = 2 and for two power values: 0 and 10 dB.
We note that at lower SNR, our distributed scheme performs
as well as or even better, depending on the power allocation
scheme used than zero-forcing even with power allocation (for
the number of antennas considered): this is because at low
SNR, the system is noise rather than interference-limited and
the benefit of no inter-user interference by joint zero-forcing
comes at too high a cost in terms of reduction in the useful
signal power at the users. This is no longer the case at higher
SNR. Moreover, at low SNR, the instantaneous heuristic (PA 2
in the figures) performs significantly better than the statistics-
based heuristic (PA 1 in the figures) whereas the performances
of both are comparable at higher SNR. More importantly, for
any SNR regime, the higher the [, the stronger the cross-
link and the more beneficial the cooperation. In fact, using
the VSINR algorithm leads to lower sum rate for higher [, as
in the absence of cooperation more interference is generated,
whereas the opposite occurs for LVSINR and JZF-PA.

Figure 3 shows the performance comparison for a given
arbitrary set of variances of the different links. Here too,
one can see that as long as the “cross-links” are relatively
strong there are rate gains to be obtained by sharing the



data. Moreover, as the number of antennas increases the gap
between our scheme and the JZF-PA scheme decreases. This
is because we are increasing the number of antennas but only
one user per base station is scheduled. Thus the dimensions
of the null space of an interfered user’s channel is increasing.

One can extend the LVSINR approach to NV > 2 cells. This
is illustrated for K = 4 users served by N = 3 base stations
with Ny = 4, such that 0%, j = 1,...,3,k = 1,...,4, is
given by the jth entry in the kth column in the following
matrix

1 5 .05
2 1 2
05 5 1 {17)
3 .3 .08

As there are fewer users to serve than there are base stations,
comparing to a MISO IC (and applying the VSINR scheme)
is no longer possible.
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Fig. 2. Performance comparison for symmetric case for different SNR values:
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V. CONCLUSION

In this paper, a layered virtual SINR maximization approach
was proposed for cooperatively serving users in a multicell
MISO environment, where data is shared by the transmitters
but only local knowledge of CSI is available. Monte Carlo
simulations illustrate the benefit of such an approach.
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