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ABSTRACT In stochastic games with perfect information, in each state at most one
player has more than one action available. We propose two algorithms whichfind the
uniform optimal strategies for zero-sum two-player stochastic games withperfect
information. Such strategies are optimal for the long term average criterion as well.
We prove the convergence for one algorithm, which presents a higher complexity
than the other one, for which we provide numerical analysis.
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1 Introduction

Stochastic games are multi-stage interactions among several participants in an en-
vironment whose conditions change stochastically, influenced by the decisions of
the players. Such games were introduced by Shapley (1953), who proved the exi-
stence of the discounted value and of the stationary discounted optimal strategies
in two-player zero-sum games with finite state and action spaces. The problem of
long term average reward games was addressed first by Gillette (1957). Bewley
and Kohlberg (1976) proved that the field of real Puiseux series is an appropri-
ate class to study the asymptotic behavior of discounted stochastic game when
the discount factor tends to one. Mertens and Neyman (1981) showed the exi-
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stence of the long term average value of stochastic games. Then, Parthasarathy
and Raghavan (1981) first introduced the notion of order fieldproperty. This pro-
perty implies that the solution of a game lies in the same ordered field of the game
data. Solan and Vieille (2009) presented an algorithm to findthe ε-optimal uni-
form discounted strategies in two-player zero-sum stochastic games, whereε > 0.

Perfect information games were addressed by several researchers (e.g. see Thui-
jsman and Raghavan, 1997, Altman and Feinberg, 2000), sincethey are the most
elementary form of stochastic games: the reward and the transition probabilities
in each state are controlled at most by one player. Recently,Raghavan and Syed
(2002) provided an algorithm which finds the optimal strategies for two-player
zero-sum perfect information games under the discounted criterion for a fixed
discount factor.

Markov Decision Processes (MDPs) can be seen as stochastic games in which
only one player can possess more than one action in each state. It is well known
(see e.g. Filar and Vrieze, 1996) that the optimal strategy in an MDP can be com-
puted with the help of a linear programming formulation. Hordijk, Dekker and
Kallenberg (1985) proposed to find the Blackwell optimal strategies (uniform op-
timal discount strategies) for MDPs by using the simplex method in the ordered
field of rational functions with real coefficients. Altman, Avrachenkov and Fi-
lar (1999) analysed singularly perturbed MDP using the simplex method in the
ordered field of rational functions. More generally, Eaves and Rothblum (1994)
studied how to solve a vast class of linear problems, including linear program-
ming, in any ordered field.

In this paper we propose two algorithms to determine the uniform optimal di-
scount strategies in two-player zero-sum games with perfect information. Such
strategies are optimal in the long run average criterion as well. The proposed ap-
proaches generalize the works by Hordijk, Dekker, Kallenberg (1985) and Ragha-
van, Syed (2003) to the game model in the fieldF(R) of the non-archimedean
ordered field of rational functions with coefficients inR.

Let Γ be a two-player zero-sum stochastic game with perfect information and
Γi(h), i=1,2 be the MDP that playeri faces when the other player fixes his own
strategyh. Our first algorithm can be summed up in the following 3 steps:

1. Choose a stationary pure strategyg for player 2.
2. Find the uniform optimal strategyf for player 1 in the MDPΓ1(g).
3. Find thefirst state controlled by player 2 in which a change of strategyg′ is a

benefit for player 2 for all the discount factors close enoughto 1. If it does not
exists, then(f,g) are uniform optimal, otherwise setg:=g′ and go to step 2.

It is evident that player 1 is left totally free to optimize the MDP that he faces at
each iteration of the algorithm in the most efficient way.
Our second algorithm is a best response approach, in which the two players alter-
natively find their own uniform optimal strategies:
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1. Choose a stationary pure strategyg for player 2.
2. Find the uniform optimal strategyf for player 1 in the MDPΓ1(g).
3. If g is uniform optimal for player 2 in the MDPΓ2(f), then(f,g) are uniform

optimal. Otherwise, find the uniform optimal strategyg′ in Γ2(f), setg :=g′

and go to step 2.

The convergence in a finite time of the first algorithm is proven, while for the
second we provide numerical analysis. We also show that the second algorithm
has a lower complexity.

This paper is organized as follows. In section 2 we introduceformally the prop-
erties of stochastic games, section 3 is dedicated to the description of the field of
rational functions with real coefficients, while in section4 we recall the linear pro-
gramming procedures in the fieldF(R) in order to find a Blackwell optimal policy
for MDPs. We present some new useful results on perfect information games in
section 5 and section 6 is dedicated to the description and tothe validation of
our first algorithm. In section 7 we provide a numerical example. In section 8 we
introduce an algorithm whose convergence is only conjectured; we report some
considerations and numerical results about the complexityof our algorithms in
section 8.1.

Some notation remarks: the ordering relation between vectors of the same
lengtha≥ (≤)b means that for every componenti, a(i)≥ (≤)b(i). The discount
factor and the interest rate are barred (β ,ρ) if they are a fixed value; the symbols
β ,ρ represent the related variables.

2 The model

In a two-player stochastic gameΓ we have a set of statesS= {s1,s2, . . . ,sN}, and
for each states the set of actions available to thei-th player is calledA(i)(s) =

{a(i)1 (s), . . . ,a(i)mi(s)
}, i = 1,2. Each triple(s,a1,a2) with a1 ∈ A(1), a2 ∈ A(2) is

assigned an immediate rewardr(s,a1,a2) for player 1,−r(s,a1,a2) for player 2
and a transition probability distributionp(.|s,a1,a2) onS.

A stationary strategyu∈US for thei-th player determines the probabilityu(a|s)

that in statesplayeri chooses the actionsa∈ [a(i)1 , . . . ,a(i)mi(s)
].

We assume that both the number of states and the overall number of available
actions are finite.

It is evident that a couple of strategiesf ∈ FS, g ∈ GS for player 1 and 2, re-
spectively, sets up a Markov chain in which the transition probability equals

p(s′|s, f,g) =
m1(s)

∑
p=1

m2(s)

∑
q=1

p(s′|s,a(1)p ,a(2)q ) f(a(1)p |s)g(a(2)q |s)
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∀s,s′ ∈ S, while the average immediate rewardr(s, f,g) equals

r(s, f,g) =
m1(s)

∑
p=1

m2(s)

∑
q=1

r(s,a(1)p ,a(2)q ) f (a(1)p |s)g(a(2)q |s)

Let β ∈ [0;1) be the discount factor andρ be the interest rate such thatβ (1+
ρ) = 1. Note that whenβ ↑ 1, thenρ ↓ 0. We defineΦβ (f,g) as a column vector

of lengthN such that itsi-th component equals the expectedβ -discounted reward
when the initial state of the stochastic game issi :

Φβ (f,g) =
∞

∑
t=0

β t
Pt(f,g)r(f,g)

whereP(f,g) andr(f,g) are theN-by-N transition probability matrix and theN-
by-1 average reward vector associated to the couple of strategies(f,g) respec-
tively.

Definition 1 Theβ -discounted value of the gameΓ is such that

Φβ (Γ ) = sup
f

inf
g

Φβ (f,g) = inf
g

sup
f

Φβ (f,g). (1)

Definition 2 An optimal strategyf∗
β

for player 1 assures to him a reward which

is at leastΦβ (Γ )

Φβ (f
∗
β ,g)≥ Φβ (Γ ) ∀g∈ G

whileg∗
β

is optimal for player 2 iff

Φβ (f,g
∗
β )≤ Φβ (Γ ) ∀ f ∈ F.

Let Φ(f,g) be the long term average value of the gameΓ associated to the
couple of strategies(f,g):

Φ(f,g) = lim
T→∞

1
T +1

T

∑
t=0

Pt(f,g)r(f,g)

andΦ(Γ ) be the value vector for the long term average criterion of thegameΓ ,
defined in an analogous way to expression (1).

The existence of optimal strategies in discounted stochastic games is guaran-
teed by the following theorem (Filar and Vrieze, 1996):

Theorem 1 Under the hypothesis of discounted pay-off, stochastic games pos-
sess a value, the optimal strategies(f∗

β
,g∗

β
) exist among stationary strategies and

moreoverΦβ (Γ ) = Φβ (f
∗
β
,g∗

β
).
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Definition 3 A stationary strategyh is said to be uniformly discount optimal for
a player ifh is optimal for everyβ close enough to 1 (or, equivalently, for allρ
close enough to 0).

In the present paper we deal with perfect information stochastic games.

Definition 4 Under the hypothesis of perfect information, in each state at most
one player has more than one action available.

LetS1= {s1, . . . ,st1} be the set of states controlled by player 1 andS2= {st1+1, . . . ,
st1+t2} be the set controlled by player 2, witht1+t2≤N.

3 The ordered field of rational functions with real
coefficients

Let P(R) be the ring of all the polynomials with real coefficients.

Definition 5 The dominating coefficient of a polynomial f= a0+a1x+ · · ·+anxn

is the coefficient ak, where k= min{i : ai 6= 0} and we denote it withD( f ).

Let F(R) be the non-archimedean ordered field of fractions of polynomials
with coefficients inR:

f (x) =
c0+c1x+ · · ·+cnxn

d0+d1x+ · · ·+dmxm f ∈ F(R)

where the operations of sum and product are defined in the usual way (see Hordijk,
Dekker and Kallenberg, 1985). Two rational functionsh/g, p/q are identical (and
we sayh/g=l p/q) if and only if h(x)q(x) = p(x)g(x) ∀x∈ R.

The following lemma (Hordijk et al., 1985) introduces the ordering in the field
F(R):

Lemma 1 A complete ordering in F(R) is obtained by the rule

p
q
>l 0 ⇐⇒ D(p)D(q)> 0 p,q∈ P(R)

In the same way, we can also define the operations of maximum (maxl ) and min-
imum (minl ) in F(R).

The ordering law defined above is useful when one wants to compare the be-
havior of rational functions whose indipendent variable ispositive and approaches
to 0 (see Hordijk et al., 1985).

Lemma 2 The rational function p/q is positive(p/q >l 0) if and only if there
exists x0 > 0 such that p(x)/q(x)> 0 for every x∈ (0;x0].
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3.1 Application to stochastic games

From the next theorems the reader will start perceiving the importance of dealing
with the fieldF(R) in stochastic games.

Theorem 2 Let f,g be two stationary strategies respectively for players 1 and
2 andΦρ(f,g) : R → R

N be the discounted reward associated to the couple of
strategies(f,g) expressed as a variable ofρ . Then,Φρ(f,g) ∈ F(R).

Proof For any couple of stationary strategies(f,g), we can write

N

∑
s′=1

[(1+ρ)δs,s′ − p(s′|s, f,g)]Φρ(f,g,s′) = (1+ρ)r(s, f,g) s∈ [1;N] (2)

whereρ is a variable. By solving the above system of equations in theunknown
Φρ by Cramer rule, it is evident thatΦρ(f,g) ∈ F(R).

Generally, the discounted value of a stochastic game for allthe interest rates close
enough to 0 belongs to the field of real Puiseux series (see Filar and Vrieze, 1996).
From Theorems 1 and 2 it is straightforward to obtain the following important
Lemma.

Lemma 3 Let Γ be a zero-sum stochastic game which possesses uniform di-
scount optimal strategies for both players. Then, there exist ρ∗>0 andΦ∗

ρ(Γ ) ∈
F(R) such thatΦ∗

ρ(Γ ) is the discounted optimal value for all the interest rates
ρ ∈ (0;ρ∗].

Proof Let (f∗,g∗) be a couple of uniformly discount optimal strategies for players
1 and 2 respectively. Then, by definition, there existsρ∗>0 such that(f∗,g∗) are
discounted optimal for all the interest ratesρ ∈ (0;ρ∗]. From Theorem 2 we know
that Φρ(f∗,g∗) ∈ F(R) and, from Theorem 1, the optimum uniform discounted
valueΦρ(Γ ) = Φρ(f∗,g∗) ∀ρ ∈ (0;ρ∗]. So,Φ∗

ρ(Γ ) ∈ F(R) represents the di-
scounted value ofΓ for all the interest rates sufficiently close to 0.

Lemma 4 Let Γ be a zero-sum stochastic game which possesses uniform di-
scount optimal strategiesf∗,g∗ for players 1 and 2 respectively. Then,

Φρ(f,g∗)≤l Φρ(f∗,g∗) =l Φ∗
ρ(Γ )≤l Φρ(f∗,g) ∀ f,g (3)

where
Φ∗

ρ(Γ ) =l maxl
f

minl
g

Φρ(f,g) =l minl
g

maxl
f

Φρ(f,g). (4)

Proof From Theorem 1 and by the definition of uniform discount optimal stra-
tegy, we assert that

∃ρ∗ > 0 : ∀ρ ∈ (0;ρ∗] ⇒ Φρ(f,g
∗)≤ Φρ(f

∗,g∗)≤ Φρ(f
∗,g) ∀ f,g

which coincides with (3) for Lemma 2. The equation (4) is a direct consequence
of (3).

Definition 6 Φ∗
ρ(Γ ), defined as in(4), is the uniform discount value of the sto-

chastic gameΓ .
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4 Computation of Blackwell optimum policy in MDPs

In this section we will discuss about some concepts of linearprogramming, which
can be easily found on any book on linear optimization (e.g. see Luenberger and
Ye 2008).

Let Ψ be a Markov Decision Process, which can be seen as a two-player sto-
chastic game in which one of the two players either fixes his own strategy or has
only one available action in each state. We callΦρ(f) the value of the discounted
MDP associated to the strategyf with interest rate variableρ .

It is known (Puterman, 1994) that the interval of interest rate (0;∞) can be bro-
ken into a finite numbern of subintervals, say(0≡ α0;α1],(α1;α2], . . . ,(αn−1;∞)
in such a way that for each one there exists an optimal pure strategy.

A Blackwell optimal policy is an optimal strategy associated to the first sub-
interval.

Definition 7 We say that the strategyf∗ is Blackwell optimal iff there exists̄ρ∗>0
such thatf∗ is optimal in the(1/ρ̄ −1)-discounted MDP for all the interest rates
ρ̄ ∈ (0;ρ̄∗].

Since for Theorem 2Φρ(f)∈F(R) for anyf∈FS, we can say

Φρ(f∗)≥l Φρ(f) ∀ f ∈ F

whereF is the set of all possible strategies.
Hordijk, Dekker and Kallenberg (1985) provided a useful algorithm to compute
the Blackwell optimum policy in MDPs. It consists in solvingthe following para-
metric linear programming problem:











max
x l

∑N
s=1 ∑m(s)

a=1 xsa(ρ)r(s,a)

∑N
s=1 ∑m(s)

a=1 [(1+ρ)δs,s′ − p(s′|s,a)]xs,a(ρ) =l 1, s′ ∈ S
xs,a(ρ)≥l 0, s∈ S, a∈ A(s)

(5)

in the ordered field of rational functions with real coefficientsF(R). This means
that

i) ρ is the variable of polynoms;
ii ) all the elements of the related simplex tableau belong toF(R);

iii ) all the algebraic and ordering operations required by the simplex method are
carried out in the fieldF(R).

The practical technique to solve the linear optimization problem (5) proposed by
Hordijk et al. (1985) is the so-calledtwo-phases method.
In thefirst phasethe artificial variablesz1, . . . ,zN are introduced as basic variables
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and the tableau of the following linear programming problem










max
x l

∑N
s=1 ∑m(s)

a=1 xsa(ρ)r(s,a)

∑N
s=1 ∑m(s)

a=1 [(1+ρ)δs,s′ − p(s′|s,a)]xs,a(ρ)+zs′(ρ) =l 1, s′ ∈ S
xs,a(ρ)≥l 0, s∈ S, a∈ A(s)

(6)

is built. Then,N successive pivot operations on all the artificial variablesare car-
ried out so that the feasibility of the solution is preserved. We callentering varia-
blesthe basic variables of the tableau at the end of the first phase. In thesecond
phasethe columns of the tableau associated to the artificial variablesz1, . . . ,zN

(which are now all non-basic) are removed and the simplex method is performed
in the ordered fieldF(R) on the obtained tableau.

We note that another approach for the solution of the parametric linear program
(5) is given by simplex method in the field of Laurent series (see Filar, Altman
and Avrachenkov, 2002).

The optimal Blackwell stationary pure strategyf∗ is computed as:

f∗(a|s) =
x∗s,a(ρ)

∑m(s)
a=1 x∗s,a(ρ)

∀s∈ S, a∈ A(s) (7)

where{x∗s,a(ρ) ∀s,a} is the solution of the optimization problem. The simplex
method guarantees that the optimum strategyf∗ is well-defined and pure (see
Filar and Vrieze 1996).

5 Uniform optimality in perfect information games

As we said before, in a perfect information game in each stateat most one player
has more than one action available. A stationary strategy for the playeri = 1,2 is
a functionf i : S→

⋃N
k=1Ai(sk) with fi(.|st) ∈ Ai(st).

Theorem 3 For a stochastic game with perfect information, both players possess
uniform discount optimal pure stationary strategies, which are optimal for the
average criterion as well.

The Theorem 3 (see Filar and Vrieze, 1996) guarantees the existence of the
optimal strategies for both players in the average criterion for games with per-
fect information. Moreover, it suggests that in order to findthe optimal strategies
for the average criterion one has to find the optimal strategies in the discounted
criterion for a discount factor sufficiently close to 1.

Definition 8 We call two pure stationary strategies adjacent if and only if they
differ only in one state.

Then the following property holds, which proof is analogousto the one in the
field of real numbers.
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Lemma 5 Let g be a strategy for player 2 andf, f1 be two adjacent strategies
for player 1. Then eitherΦρ(f1,g) ≥l Φρ(f,g) or Φρ(f1,g) ≤l Φρ(f,g), which
means that the two vectors are partially ordered.

The property above allows us to give the following definition.

Definition 9 Let(f,g) be a pair of pure stationary strategy respectively for player
1 and 2. We callf1 (g1) a uniform adjacent improvement for player 1(2) in state
st if and only if f1 (g1) is a pure stationary strategy which differs fromf (g)
only in state st andΦρ(f1,g)≥l Φρ(f,g) (Φρ(f,g1)≤l Φρ(f,g)) where the strict
inequality holds in at least one component.

As in the case in which the discount interest rate is fixed, we achieve the fol-
lowing results.

Lemma 6 LetΓ be a perfect information stochastic game. A couple of pure sta-
tionary strategies(f∗,g∗) is uniform discount optimal if and only if no uniform
adjacent improvement is possible for both players.

Proof Theonly if implication is obvious. If the strategies(f∗,g∗) are such that no
uniform adjacent improvements are possible for both players, then no improve-
ments are possible also for the first stage of the game too, that is

f∗(s) = argmax
l

a∈A1(s)

{

r(s,a)+(1+ρ)−1
N

∑
s′=1

p(s′|s,a)Φρ(s
′, f∗,g∗)

}

s∈ S1

g∗(s) = argmin
l

a∈A2(s)

{

r(s,a)+(1+ρ)−1
N

∑
s′=1

p(s′|s,a)Φρ(s
′, f∗,g∗)

}

s∈ S2

It is known (see Filar and Vrieze, 1996) that if the strategies (f∗,g∗) satisfy such
equations then they are uniform discount optimal.

In perfect information games, the following result (see Raghavan and Syed,
2002) holds

Lemma 7 In a zero-sum, perfect information, two-player discountedstochastic
gameΓ with interest rateρ > 0, a pair of pure stationary strategies(f∗,g∗) is
optimal if and only ifΦρ(f∗,g∗) = Φρ(Γ ), the value of the discounted stochastic
gameΓ .

From the above result we can easily derive the analogous property in the or-
dered fieldF(R).

Lemma 8 In a zero-sum, two-player stochastic gameΓ with perfect information,
a pair of pure stationary strategies(f∗,g∗) are uniform discount optimal if and
only if Φρ(f∗,g∗) =l Φ∗

ρ(Γ ) ∈ F(R), whereΦ∗
ρ(Γ ) is the uniform discount value

of Γ .
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Proof The only if statement coincides with the assertion of Theorem 1. Theif
condition is less obvious. If a pair of strategies(f∗,g∗) has the propertyΦρ(f∗,g∗)=l

Φ∗
ρ(Γ ), then there existsρ∗>0 such that∀ρ ∈ (0;ρ∗], Φρ(f∗,g∗) coincides with

the value of the gameΓ , ∀ρ ∈ (0;ρ∗]. Then, thanks to Lemma 7, we can say
that∀ρ ∈ (0;ρ∗] the strategiesf∗,g∗ are optimal in the discounted gameΓ , which
means that they are discount optimal.

Let st be a state controlled by playeri (i=1,2) andX⊂Ai(st). Let us callΓ t
X

the stochastic game which is equivalent toΓ except in statest , where playeri
has only the actionsX available. Analogously to the result of Raghavan and Syed
(2002), we propose the following Lemma.

Lemma 9 Let i=1,2and st ∈Si , X⊂Ai(st), Y⊂Ai(st), X∩Y= /0. ThenΦ∗
ρ(Γ t

X∪Y)∈
F(R), which is the uniform value of the gameΓ t

X∪Y, equals

Φ∗
ρ(Γ t

X∪Y) = maxl {Φ∗
ρ(Γ t

X),Φ∗
ρ(Γ t

Y )} if i = 1

Φ∗
ρ(Γ t

X∪Y) = minl {Φ∗
ρ(Γ t

X),Φ∗
ρ(Γ t

Y )} if i = 2.

Proof Let us suppose that the statest is controlled by player 2. We indicate with
Gt

X the set of pure stationary strategies in which the choice in statest is restricted
to the setX. We note that the restriction in statest does not affect player 1. Thus,
Ft

X = F.
If it is possible to find optimal strategies for player 2 both in Gt

X and inGt
Y, then

Φ∗
ρ(Γ t

X) =l Φ∗
ρ(Γ t

Y ) =l Φ∗
ρ(Γ t

X∪Y) for Lemma 8.
Otherwise, the uniform discount pure strategy of gameΓ t

X∪Y for player 2 belongs
either toGt

X or to Gt
Y. For example, let us suppose that the optimal discount

strategy in the stochastic gameΓ t
X∪Y for player 2 is found inY. Then we have

Φ∗
ρ(Γ t

Y ) =l Φ∗
ρ(Γ t

X∪Y)

=l minl
g∈G

maxl
f∈F

Φρ(f,g)

≤l minl
g∈Gt

X

maxl
f∈F

Φρ(f,g)

=l Φ∗
ρ(Γ t

X)

The proof for the situation in whichst ∈S1 is analogous.

6 Algorithm description

Our task is to find an algorithm which allows to find the uniformdiscount optimal
strategies for both players in a perfect information stochastic gameΓ , which co-
incide with the optimal strategies for the long term averagecriterion for Theorem
3. Following the lines of the algorithm of Raghavan and Syed (2002) for optimal
discount strategy, we propose an algorithm suitable to the ordered fieldF(R).

Let Γ be a zero-sum two-player stochastic game with perfect information.
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Algorithm 1

Step 1 Choose randomly a stationary deterministic pure strategyg for player 2.
Step 2 Find the Blackwell optimal strategy for player 1 in the MDPΓ1(g) by solving

within the field F(R) the following linear programming:










max
x l

∑N
s=1 ∑m1(s)

a=1 xs,a(ρ)r(s,a,g)

∑N
s=1 ∑m1(s)

a=1 [(1+ρ)δs,s′ − p(s′|s,a,g)]xs,a(ρ) =l 1, s′ ∈ S
xs,a(ρ)≥l 0, s∈ S, a∈ A1(s)

(8)

and compute the pure strategyf as

f (a|s) =
x∗s,a(ρ)

∑m1(s)
a=1 x∗s,a(ρ)

∀s∈ S, a∈ A1(s) (9)

where{x∗s,a(ρ), ∀s,a} is the solution of (8).
Step 3 Find the minimum k such that in st1+k ∈ {st1+1, . . . ,st1+t2} there exists an adja-

cent improvementg′ for player 2, with the help of the simplex tableau asso-
ciated to the following linear programming:











max
x l

−∑N
s=1 ∑m2(s)

a=1 xs,a(ρ)r(s, f,a)

∑N
s=1 ∑m2(s)

a=1 [(1+ρ)δs,s′ − p(s′|s, f,a)]xs,a(ρ) =l 1, s′ ∈ S
xs,a(ρ)≥l 0, s∈ S, a∈ A2(s)

(10)

where the entering variables are{xs,a : g(a|s) = 1, ∀s}.
If no such improvement for player 2 is possible then go to step4, otherwise
setg:=g′ and go to step 2.

Step 4 Set(f∗,g∗) :=(f,g) and stop. The strategies(f∗,g∗) are uniform discount and
long term average optimal in the stochastic gameΓ respectively for player 1
and player 2.

�

Note that all the algebraic operations and the order signs (<,>) are to be in-
tended in the fieldF(R).

Remark 1Unlike Raghavan and Syed’s solution, the algorithm 1 does not require
the strategy search for player 1 to be lexicographic. Player1, in fact, faces in step
2 a classic Blackwell optimization.

Remark 2Obviously, the roles of player 1 and 2 can be swapped in the algorithm
1. For simplicity, throughout the paper the player 1 will be assigned to step 2.

Remark 3In step 3, once the statest1+k is found, the adjacent improvement in-
volves the pivoting of any of the non basic variablexst1+k,a to which corresponds
a reduced costcst1+k,a ≤l 0.
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Now, we prove the appropriateness of the algorithm 1. The proof is analogous
to the one by Raghavan and Syed (2002).

Theorem 4 The algorithm stops in a finite time and the couple of strategies
(f∗,g∗) are uniform discount optimal in the stochastic gameΓ .

Proof We assume that the overall number of actions

µ =
t1

∑
k=1

m1(sk)+
t2

∑
k=1

m2(sk+t1)

is finite.
Without loss of generality, let us reorder the states so thatin the first t1 states
player 1 has more than one action and the secondt2 states are controlled by player
2. Of course,t1+t2≤N.

We can proceed by induction onµ . Trivially µ≥2N, becauseµ=2N is equiva-
lent to the situationt1=t2=0. In this case the algorithm finds the average optimal
couple of strategies because it is the only existing.

Now we suppose by induction that the algorithm findswithout cycling(that
is, all pure stationary strategies are visited at most once)the couple of uniform
optimal strategies when the number of actions isµ ≥2N. We have to prove that
the thesis is valid when the number of actions equalsµ+1.

If t2=0, then again there is nothing to prove, because, as we showedin section
4, the step 1 of our algorithm finds the Blackwell optimal policy f∗ for player 1 in
the MDPΓ1(g).

If t2 ≥ 0, then we focus on the statest1+t2 = sτ , which is the last examined
by our algorithm. The actions available in statesτ are A2(sτ)≡X ∪ ai , where
X = {a1 . . .ai−1,ai+1 . . .an} and n ≥ 2 by hypothesis. By induction hypothesis,
we suppose that the algorithm finds the uniform discount optimal strategies for
both players in the gameΓ τ

X without cycling. Since no uniform improvements
are possible inΓ τ

X by definition of uniform optimal strategies, then the algorithm
looks for an uniform adjacent improvementg′, whereg′(ai |sτ)=1. There are now
two possibilities.

If the uniform optimal strategyg for player 2 found inΓ t
X is also optimal inΓ ,

then the algorithm terminates because still no adjacent improvements are possible
for player 2 inst .

Otherwise, any uniform optimal strategyg∗ for player 2 inΓ includes the action
aτ and the algorithm necessarily finds an adjacent improvementin statesτ for
Theorem 6 and it finds by induction hypothesis the uniform discount optimal
strategies in the gameΓ t

an
. So we have

Φρ(Γ ) =l min
l
{Φρ(Γ t

X),Φρ(Γ t
an
)}=l Φρ(Γ t

an
)

where the second equality holds because otherwise the optimal strategies ofΓ t
X

would be uniform optimal in the gameΓ for Lemma 8. Again thanks to Lemma
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8, we can assert that the uniform discount optimal strategies (f∗,g∗) found inΓ t
an

are optimal also forΓ , becauseΦρ(f∗,g∗) =Φ∗
ρ(Γ ), which is the uniform di-

scount value of the game.
Moreover, the algorithm terminates because for Theorem 6 noimprovements are
available to both players.

We gave a constructive proof of the fact that the algorithm passes through a
path of pure strategies, it never cycles and it finds the uniform discount optimal
strategies for both players. Since the overall number of actions is finite, then also
the cardinality of pure strategies is finite; hence, the algorithm must terminate
in a finite time and the strategies(f∗,g∗) are uniform discount optimal, and for
Theorem 3 they are long term average optimal as well.

6.1 Computing the optimality range factor

The algorithm presented in section 6 suggests a way to determine the range of
discount factor in which the long term average optimal strategies(f∗,g∗) are also
optimal in the discounted game. Before, we report the analogous result to Lemma
6 when the discount factor is fixed (see Raghavan and Syed, 2002).

Lemma 10 Let Γ be a perfect information stochastic game andβ ∈ [0;1). The
pure stationary strategies(f∗,g∗) are β -discount optimal if and only if no uni-
form adjacent improvements are possible for both players inthe β -discounted
stochastic gameΓ .

Let us define withζ ( fρ), where fρ ∈F(R), the set of positive roots offρ such

that
d fρ
dρ

∣

∣ρ=u < 0 , ∀u∈ζ ( fρ). Now we are ready to state the following Lemma.

Lemma 11 Let C be the set of the reduced costs associated to the two optimal
tableaux obtained at the step 2 and 3 of the last iteration of the algorithm 1 and

ρ∗ = min
c

ζ (c), c∈C.

Then,β ∗
=(1+ ρ∗)−1 is the smallest value such that the strategies(f∗,g∗) are

β -discount optimal in the gameΓ , ∀β ∈ [β ∗
;1).

Proof The existence of suchρ∗ is guaranteed by Theorem 3. For all the value
of the interest factorρ ∈(0;ρ∗], the reduced costs are positive, hence no adjacent
improvements are possible for both players. So, for Lemma 10they are discounted
optimal. If ρ > ρ∗ andρ∗ < ∞, then at least one reduced cost is negative, hence at
least an adjacent improvement is possible and(f∗,g∗) are notβ -discount optimal,
whereβ =(1+ρ)−1.

6.2 Round-off errors sensitivity

The role of the first non-null coefficients of the polynomials(numerator and de-
nominator) of the tableaux obtained throughout the algorithm unfolding is essen-
tial: they determine the positiveness of the elements of thetableaux themselves in
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TABLE 1. Immediate rewards and transition probabilities for each player,state and stra-
tegy.

(s,a) r p(s1|s) p(s2|s) p(s3|s) p(s4|s) p(s5|s)

pl. 1

(1,1) 5 0 0 0 0 1

(1,2) 4 0 0 0.2 0 0.8

(1,3) 3 0 0 0.6 0 0.4

(2,1) 6 0 0 0 0 0.1

(2,2) 1 1 0 0 0 0

(2,3) 0 0 0 0.1 0 0

pl. 2

(3,1) 4 0 0 0 0.9 0.1

(3,2) 2 0.1 0 0 0 0

(3,3) 0 0.3 0 0.2 0.5 0

(4,1) 2 0 0.1 0.6 0.3 0

(4,2) 2 0.2 0 0.4 0.4 0

(4,3) 3 0 0 0 0.9 0.1
5 0 0 0.1 0.2 0.3 0.4

the fieldF(R). This knowledge is fundamental to choose the most suitable pivot
elements.
The reader can easily understand that the algorithm is highly sensitive to the
round-off errors that affect the null coefficients.

If the data of the problem (rewards and transition probabilities for each stra-
tegy) are rational, then it is possible to work in the exact arithmetic and such
unconveniences are completely avoided. In fact, if all the input data are rational,
they will stay rational after the algorithm execution.

Instead, if the data are irrational, a simple way to circumvent the round-off
errors is to fix a tolerance valueε, and set to 0 all the polynomial coefficients of
the tableaux obtained throughout the algorithm whose absolute value is smaller
thanε.

7 An example

Here we present a run of our algorithm 1, where the input data are taken from
Raghavan and Syed (2002). There are 5 states, the first two arecontrolled by
player 1 and states 3 and 4 are for player 2; in the final state both players have
no action choice. The immediate rewards and the probabilitytransitions for every
couple (state,action) for both players are shown in table 1.

We choose the initial strategy (g(a2|s3) = 1,g(a3|s4) = 1) for player 2. We re-
port the optimum tableau obtained by player 1 at the end of step 2 of the first
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iteration of our algorithm (tab.4) and the tableau of player2 after the first im-
provement at step 3 (tab.5). Analogously, the tableaux 6 and7 are associated to
the second and last iteration of our algorithm. It is known (see Hordijk et al. 1985)
that all the elements of simplex tableaux have a common denominator, stored in
the top left-hand box. The last column of each tableau contains the numerator of
the value of the basic variables, which are listed in the firstcolumn. The last row
indicates the numerator of the reduced costs.

The optimum long term average strategy for player 1 isf ∗(a1|s1)= 1, f ∗(a2|s2)=
1, and for player 2 isg∗(a2|s3) = 1,g∗(a1|s4) = 1.

By computing the first positive root of the reduced costs of the two last optimal
tableaux we find that the strategies(f∗,g∗) are alsoβ -discount optimal for all the
discount factorβ ∈ [β ∗

;1), whereβ ∗ ∼= 0.74458.

Note that the optimal strategies differ from the ones of Raghavan and Syed (2002),
in which the discount factor is set to 0.999. We suspect that this is due to some
clerical errors.

8 A lower complexity algorithm

Let Γ be a zero-sum two-player stochastic game with perfect information. Con-
sider the following algorithm:

Algorithm 2

Step 1 Choose a stationary pure strategyg0 for player 2. Set k:=0.
Step 2 Find the Blackwell optimal strategyfk for player 1 in the MDPΓ1(gk).
Step 3 If gk is Blackwell optimal inΓ2(fk), then set(f∗,g∗):=(fk,gk) and stop. Other-

wise, find the Blackwell optimal strategygk+1 for player 2 in the MDPΓ2(fk),
set k:=k+1 and go to step 2.

This is essentially a best reponse algorithm, in which at each step each player al-
ternatively looks for his own Blackwell optimal strategy.
Obviously, if the above algorithm stops,(f∗,g∗) forms a couple of uniform di-
scount and long term average optimal strategies, since theyare both Blackwell
optimal in the respective MDPs,Γ1(g∗) andΓ2(f∗).
The proof that the algorithm 2 never cycles is still an open problem. It is quite
natural to try to prove thatΦρ(fk+1,gk+1) ≤l Φρ(fk,gk), but it is not difficult to
find a counterexample.
Raghavan and Syed (2002) conjecture as follows:

Conjecture 1Let Γ be a two-player zero-sum stochastic game with perfect infor-
mation andα = (f,g) a couple of pure stationary strategies for the 2 players. For
every discount factorβ ∈ [0;1), there are no sequencesα0,α1, . . . ,αk such that
Φβ (αk) = Φβ (α0), whereαi is an adjacent improvement with respect toαi−1 in

theβ -discounted stochastic gameΓ for only one player for anyi>0.
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If Conjecture 1 were valid, then we could conclude that the algorithm 2 terminates
in finite time.

8.1 Complexity

In our first algorithm 1, player 1 faces at each step an MDP optimization problem
in the field of rational functions with real coefficients, which is solvable in poly-
nomial time. Player 2, instead, is involved in a lexicographic search throughout
the algorithm unfolding, whose complexity is at worst exponential in time.

Player 2 lexicographically expands his search of his optimum strategy, and at
thek-th iteration the two players find the solution of a subgameΓk which mono-
tonically tends to the entire stochastic gameΓ .

Analogously to what Raghavan and Syed (2002) remark, we can assert that the
efficiency of our algorithm 1 is mostly due to the fact that most of the actions dom-
inate totally other actions. In other words, it occurs very often that the optimum
actiona∗ ∈ A(s), s∈ S, found in an iterationk such thatA(s) ⊂ Γk, is optimum
also inΓ , and consequently remains the same in all the remaining iterations. This
exponentially reduces the policy space in which the algorithm needs to search.

Remark 4As discussed in section 6, in the algorithm 1 players’ roles are inter-
changeble. Since most of the actions dominate totally otheractions, we suggest
to assign the step 2 of the algorithm to the player whose totalnumber of available
actions is greater.

Differently from Raghavan and Syed (2002), the search for player 1 does not
need to be lexicographic, and player 1 is left totally free tooptimize the MDP that
he faces at each iteration of the algorithm in the most efficient way.

Let us compare in terms of number of pivoting the following three algorithms:

M1: Algorithm 1, in which in step 2 player 1 pivots with respect to the variable with
the minimum reduced cost until he finds his own Blackwell optimal strategy.

M2: Algorithm 1, in which in step 2 player 1 pursues a lexicographic search, pivo-
ting iteratively with respect to thefirst non-basic variable with a negative (in
the fieldF(R)) reduced cost. This method is analogous to the one shown by
Raghavan and Syed (2002), but in the fieldF(R).

M3: Algorithm 2.

The results are shown in tables 2 and 3. The simulations were carried out on 10000
randomly generated stochastic games with 4 states, 2 for player 1 and 2 for player
2. In each state 5 actions are available for the controlling player.

It is evident that the algorithmM3 is much faster than the other two, but unfor-
tunately its convergence is not proven yet. However, in our numerical experiment
with 10000 randomly generated stochastic games, it never cycles. The difference
betweenM1 andM2 is due to the more efficient simplex method used by player 1
in M1.
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TABLE 2. Average number of pivotings for the 3 methods.

n. pivoting
M1 40.59
M2 41.87
M3 24.93

TABLE 3. Mi >M j when, fixing the game, the number of pivotings inMi is strictly smaller
than the number of pivoting inM j .

> (%) M1 M2 M3
M1 - 52.85 18.57
M2 42.18 - 15.26
M3 80.05 82.75 -

TABLE 4. Optimum tableau for player 1 at the first iteration.

0.018+0.658ρ+
3.07ρ2+5.13ρ3+

3.7ρ4+ρ5

x1,2 x1,3 x2,1 x2,3

x1,1 0.0198+0.6698ρ+
3.06ρ2+5.11ρ3+

3.7ρ4+ρ5

0.0234+0.6934ρ+
3.04ρ2+5.07ρ3+

3.7ρ4+ρ5

0.0288+0.7468ρ+
2.418ρ2+2.7ρ3+ρ4

0.0297+0.7527ρ+
2.413ρ2+2.69ρ3+ρ4

0.087+1.707ρ+
4.42ρ2+3.8ρ3+ρ4

x2,2 0.0018+0.022ρ+
0.042ρ2+0.02ρ3

0.0054+0.066ρ+
0.126ρ2+0.06ρ3

0.027+0.756ρ+
3.149ρ2+5.12ρ3+

3.7ρ4+1ρ5

0.0279+0.767ρ+
3.17ρ2+5.13ρ3+

3.7ρ4+1ρ5

0.059+ρ+2.75ρ2+

2.8ρ3+ρ4

x3,1 −0.084ρ−0.402ρ2−

0.5ρ3−0.2ρ4

−0.252ρ−1.206ρ2−

1.5ρ3−0.6ρ4

0.018+0.196ρ+
0.158ρ2−0.02ρ3

0.018+0.154ρ−
0.043ρ2−0.27ρ3−

0.1ρ4

0.1+1.36ρ+3.07ρ2+

2.9ρ3+ρ4

x4,1 0.054+0.174ρ+
0.18ρ2+0.06ρ3

0.162+0.522ρ+
0.54ρ2+0.18ρ3

0.27+0.51ρ+0.21ρ2−

0.03ρ3

0.297+0.597ρ+0.3ρ2 1.41+4.51ρ+6ρ2+

3.9ρ3+1ρ4

x5,1 0.018+0.238ρ+
0.64ρ2+0.62ρ3+

0.2ρ4

0.054+0.714ρ+
1.92ρ2+1.86ρ3+

0.6ρ4

0.09+1.07ρ+1.77ρ2+

0.69ρ3−0.1ρ4

0.099+1.189ρ+
2.09ρ2+ρ3

0.41+4.01ρ+6.8ρ2+

4.2ρ3+ρ4

0.1908+1.2838ρ+
3.891ρ2+7.028ρ3+

7.53ρ4+4.3ρ5+1ρ6

0.5544+3.1754ρ+
7.945ρ2+12.884ρ3+

13.76ρ4+8.2ρ5+2ρ6

0.909+3.373ρ+
0.229ρ2−14.525ρ3−

25.79ρ4−18.5ρ5−

5ρ6

1.1034+7.7329ρ+
22.6785ρ2+

34.089ρ3+26.54ρ4+

9.5ρ5+1ρ6

4.924+30.709ρ+
74.775ρ2+88.29ρ3+

50.3ρ4+11ρ5
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TABLE 5. Optimum tableau for player 2 at the first iteration.

0.288+2.308ρ+
6.04ρ2+7.32ρ3+

4.3ρ4+ρ5

x3,1 x3,3 x4,3 x4,2

x1,1 −0.0576−0.0416ρ+
0.246ρ2+0.33ρ3+

0.1ρ4

−0.1404−0.5904ρ−
0.93ρ2−0.68ρ3−

0.2ρ4

−0.0036+0.0964ρ+
0.26ρ2+0.16ρ3

−0.0432−0.2472ρ−
0.544ρ2−0.54ρ3−

0.2ρ4

1.11+4.54ρ+6.83ρ2+

4.4ρ3+1ρ4

x2,1 −0.0576−0.208ρ−
0.254ρ2−0.1ρ3

−0.054−0.152ρ−
0.15ρ2−0.05ρ3

−0.0036+0.056ρ+
0.216ρ2+0.26ρ3+

0.1ρ4

0.0144+0.152ρ+
0.356ρ2+0.32ρ3+

0.1ρ4

0.662+2.85ρ+
4.68ρ2+3.5ρ3+ρ4

x3,2 1.088ρ+4.584ρ2+

6.76ρ3+4.3ρ4+1ρ5

1.136ρ+4.416ρ2+

6.36ρ3+4.1ρ4+1ρ5

0.368ρ+1.404ρ2+

1.6ρ3+0.6ρ4

0.192ρ+0.608ρ2+

0.6ρ3+0.2ρ4

1.6+4.92ρ+6.5ρ2+

4.1ρ3+ρ4

x4,1 −0.432−2.442ρ−
4.38ρ2−3.27ρ3−

0.9ρ4

−0.306−1.466ρ−
2.46ρ2−1.8ρ3−0.5ρ4

0.018+0.658ρ+
3.07ρ2+5.13ρ3+

3.7ρ4+ρ5

0.216+1.956ρ+
5.5ρ2+6.96ρ3+

4.2ρ4+ρ5

1.41+4.51ρ+6ρ2+

3.9ρ3+ρ4

x5,1 −0.144−0.214ρ−
0.24ρ2−0.27ρ3−

0.1ρ4

−0.234−0.594ρ−
0.56ρ2−0.2ρ3

−0.054−0.134ρ−
0.35ρ2−0.37ρ3−

0.1ρ4

−0.072−0.292ρ−
0.42ρ2−0.2ρ3

2.33+7.53ρ+8.9ρ2+

4.7ρ3+1ρ4

2.3616+14.7176ρ+
35.132ρ2+43.526ρ3+

30.65ρ4+11.9ρ5+

2ρ6

1.368+5.132ρ+
4.652ρ2−4.782ρ3−

11.87ρ4−8.2ρ5−2ρ6

0.8496+5.1836ρ+
11.99ρ2+15.096ρ3+

11.64ρ4+5.2ρ5+1ρ6

0.3456+1.7496ρ+
3.632ρ2+4.128ρ3+

2.6ρ4+0.7ρ5+

2.3008e−006ρ6

−12.232−56.642ρ−
108.24ρ2−105.33ρ3−

51.5ρ4−10ρ5

TABLE 6. Optimum tableau for player 1 at the second iteration.

0.288+2.308ρ+
6.04ρ2+7.32ρ3+

4.3ρ4+ρ5

x1,2 x1,3 x2,1 x2,3

x1,1 0.306+2.324ρ+
6.018ρ2+7.3ρ3+

4.3ρ4+ρ5

0.342+2.356ρ+
5.974ρ2+7.26ρ3+

4.3ρ4+ρ5

0.4068+2.1148ρ+
4.008ρ2+3.3ρ3+ρ4

0.4158+2.1228ρ+
3.997ρ2+3.29ρ3+ρ4

1.11+4.54ρ+6.83ρ2+

4.4ρ3+ρ4

x2,2 0.018+0.058ρ+
0.06ρ2+0.02ρ3

0.054+0.174ρ+
0.18ρ2+0.06ρ3

0.378+2.478ρ+
6.11ρ2+7.31ρ3+

4.3ρ4+ρ5

0.387+2.507ρ+
6.14ρ2+7.32ρ3+

4.3ρ4+ρ5

0.662+2.85ρ+
4.68ρ2+3.5ρ3+ρ4

x3,1 −0.24ρ−0.66ρ2−

0.62ρ3−0.2ρ4

−0.72ρ−1.98ρ2−

1.86ρ3−0.6ρ4

0.288+0.436ρ+
0.128ρ2−0.02ρ3

0.288+0.316ρ−
0.202ρ2−0.33ρ3−

0.1ρ4

1.6+4.92ρ+6.5ρ2+

4.1ρ3+ρ4

x4,1 0.054+0.174ρ+
0.18ρ2+0.06ρ3

0.162+0.522ρ+
0.54ρ2+0.18ρ3

0.27+0.51ρ+0.21ρ2−

0.03ρ3

0.297+0.597ρ+0.3ρ2 1.41+4.51ρ+6ρ2+

3.9ρ3+ρ4

x5,1 0.126+0.586ρ+ρ2+

0.74ρ3+0.2ρ4

0.378+1.758ρ+3ρ2+

2.22ρ3+0.6ρ4

0.63+2.09ρ+2.19ρ2+

0.63ρ3−0.1ρ4

0.693+2.383ρ+
2.69ρ2+ρ3

2.33+7.53ρ+8.9ρ2+

4.7ρ3+ρ4

0.504+2.818ρ+
7.344ρ2+11.15ρ3+

10.02ρ4+4.9ρ5+ρ6

1.224+5.858ρ+
13.684ρ2+20.09ρ3+

18.44ρ4+9.4ρ5+2ρ6

1.8+2.896ρ−
8.318ρ2−29.624ρ3−

36.71ρ4−21.5ρ5−

5ρ6

3.636+18.583ρ+
41.268ρ2+49.431ρ3+

32.21ρ4+10.1ρ5+ρ6

12.232+56.642ρ+
108.24ρ2+105.33ρ3+

51.5ρ4+10ρ5
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TABLE 7. Optimum tableau for player 2 at the second iteration.

0.288+2.308ρ+
6.04ρ2+7.32ρ3+

4.3ρ4+ρ5

x3,1 x3,3 x4,2 x4,3

x1,1 −0.0576−0.0416ρ+
0.246ρ2+0.33ρ3+

0.1ρ4

−0.1404−0.5904ρ−
0.93ρ2−0.68ρ3−

0.2ρ4

−0.0432−0.2472ρ−
0.544ρ2−0.54ρ3−

0.2ρ4

−0.0036+0.0964ρ+
0.26ρ2+0.16ρ3

1.11+4.54ρ+6.83ρ2+

4.4ρ3+ρ4

x2,1 −0.0576−0.208ρ−
0.254ρ2−0.1ρ3

−0.054−0.152ρ−
0.15ρ2−0.05ρ3

0.0144+0.152ρ+
0.356ρ2+0.32ρ3+

0.1ρ4

−0.0036+0.056ρ+
0.216ρ2+0.26ρ3+

0.1ρ4

0.662+2.85ρ+
4.68ρ2+3.5ρ3+ρ4

x3,2 1.088ρ+4.584ρ2+

6.76ρ3+4.3ρ4+ρ5

1.136ρ+4.416ρ2+

6.36ρ3+4.1ρ4+ρ5

0.192ρ+0.608ρ2+

0.6ρ3+0.2ρ4

0.368ρ+1.404ρ2+

1.6ρ3+0.6ρ4

1.6+4.92ρ+6.5ρ2+

4.1ρ3+ρ4

x4,1 −0.432−2.442ρ−
4.38ρ2−3.27ρ3−

0.9ρ4

−0.306−1.466ρ−
2.46ρ2−1.8ρ3−0.5ρ4

0.216+1.956ρ+
5.5ρ2+6.96ρ3+

4.2ρ4+ρ5

0.018+0.658ρ+
3.07ρ2+5.13ρ3+

3.7ρ4+ρ5

1.41+4.51ρ+6ρ2+

3.9ρ3+ρ4

x5,1 −0.144−0.214ρ−
0.24ρ2−0.27ρ3−

0.1ρ4

−0.234−0.594ρ−
0.56ρ2−0.2ρ3

−0.072−0.292ρ−
0.42ρ2−0.2ρ3

−0.054−0.134ρ−
0.35ρ2−0.37ρ3−

0.1ρ4

2.33+7.53ρ+8.9ρ2+

4.7ρ3+ρ4

2.3616+14.7176ρ+
35.132ρ2+43.526ρ3+

30.65ρ4+11.9ρ5+

2ρ6

1.368+5.132ρ+
4.652ρ2−4.782ρ3−

11.87ρ4−8.2ρ5−2ρ6

0.3456+1.7496ρ+
3.632ρ2+4.128ρ3+

2.6ρ4+0.7ρ5

0.8496+5.1836ρ+
11.99ρ2+15.096ρ3+

11.64ρ4+5.2ρ5+ρ6

−12.232−56.642ρ−
108.24ρ2−105.33ρ3−

51.5ρ4−10ρ5
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