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ABSTRACT In stochastic games with perfect information, in each stat@at one
player has more than one action available. We propose two algorithms fividche
uniform optimal strategies for zero-sum two-player stochastic gamespeitiect
information. Such strategies are optimal for the long term average critasiovell.
We prove the convergence for one algorithm, which presents a higheplexity
than the other one, for which we provide numerical analysis.
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1 Introduction

Stochastic games are multi-stage interactions amongadeaaticipants in an en-
vironment whose conditions change stochastically, inftedrby the decisions of
the players. Such games were introduced by Shapley (1958)pvoved the exi-
stence of the discounted value and of the stationary digedwptimal strategies
in two-player zero-sum games with finite state and actioeagar he problem of
long term average reward games was addressed first by &{9567). Bewley
and Kohlberg (1976) proved that the field of real Puiseuxeseis an appropri-
ate class to study the asymptotic behavior of discountechagtic game when
the discount factor tends to one. Mertens and Neyman (198ted the exi-
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stence of the long term average value of stochastic games, Harthasarathy
and Raghavan (1981) first introduced the notion of order fietgberty. This pro-
perty implies that the solution of a game lies in the samerextiield of the game
data. Solan and Vieille (2009) presented an algorithm to thect-optimal uni-
form discounted strategies in two-player zero-sum stdahgames, where > 0.

Perfectinformation games were addressed by several chezare.g. see Thui-
jsman and Raghavan, 1997, Altman and Feinberg, 2000), giegeare the most
elementary form of stochastic games: the reward and thseiti@am probabilities
in each state are controlled at most by one player. RecdRalghavan and Syed
(2002) provided an algorithm which finds the optimal straedor two-player
zero-sum perfect information games under the discountierion for a fixed
discount factor.

Markov Decision Processes (MDPs) can be seen as stochastiesgn which
only one player can possess more than one action in eachlsiateell known
(see e.qg. Filar and Vrieze, 1996) that the optimal strategniMDP can be com-
puted with the help of a linear programming formulation. #ijk, Dekker and
Kallenberg (1985) proposed to find the Blackwell optimaatggies (uniform op-
timal discount strategies) for MDPs by using the simplexhudtin the ordered
field of rational functions with real coefficients. Altmanyrachenkov and Fi-
lar (1999) analysed singularly perturbed MDP using the &mmethod in the
ordered field of rational functions. More generally, Eaved &othblum (1994)
studied how to solve a vast class of linear problems, inalydinear program-
ming, in any ordered field.

In this paper we propose two algorithms to determine theoamifoptimal di-
scount strategies in two-player zero-sum games with peifiéermation. Such
strategies are optimal in the long run average criterionels Whe proposed ap-
proaches generalize the works by Hordijk, Dekker, Kallegl§£985) and Ragha-
van, Syed (2003) to the game model in the fiEI(R) of the non-archimedean
ordered field of rational functions with coefficientslin

Let " be a two-player zero-sum stochastic game with perfectindédion and
li(h),i=1,2 be the MDP that playdrfaces when the other player fixes his own
strategyh. Our first algorithm can be summed up in the following 3 steps:

1. Choose a stationary pure stratepipr player 2.

2. Find the uniform optimal stratedyfor player 1 in the MDH(Q).

3. Find thefirst state controlled by player 2 in which a change of stratgdy a
benefit for player 2 for all the discount factors close enotagh If it does not
exists, ther(f,g) are uniform optimal, otherwise sgt=g’ and go to step 2.

It is evident that player 1 is left totally free to optimizestMDP that he faces at
each iteration of the algorithm in the most efficient way.

Our second algorithm is a best response approach, in whéctnihplayers alter-
natively find their own uniform optimal strategies:
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Choose a stationary pure stratepipr player 2.

Find the uniform optimal stratedyfor player 1 in the MDH7(0Q).

3. If g is uniform optimal for player 2 in the MDIP»(f), then(f,g) are uniform
optimal. Otherwise, find the uniform optimal strategfyin I>(f), setg:=¢d
and go to step 2.

n

The convergence in a finite time of the first algorithm is prowehile for the
second we provide numerical analysis. We also show thatdbensl algorithm
has a lower complexity.

This paper is organized as follows. In secfion 2 we introdaomally the prop-
erties of stochastic games, secfidn 3 is dedicated to tteigtsn of the field of
rational functions with real coefficients, while in secti®we recall the linear pro-
gramming procedures in the fididR) in order to find a Blackwell optimal policy
for MDPs. We present some new useful results on perfectrimdtion games in
section[b and sectidd 6 is dedicated to the description artdetovalidation of
our first algorithm. In sectiofl 7 we provide a numerical exlemim sectioi B we
introduce an algorithm whose convergence is only conjediwve report some
considerations and numerical results about the compl@tigur algorithms in
sectior 8.11.

Some notation remarks: the ordering relation between v&aib the same
lengtha > (<)b means that for every componena(i) > (<)b(i). The discount
factor and the interest rate are barr@dg) if they are a fixed value; the symbols
B, p represent the related variables.

2 The model

In a two-player stochastic ganiewe have a set of stat&= {s,%,...,5}, and
for each states the set of actions available to tlwth player is calledA®) (s) =
{a(li)(s),...,as‘)(s)}, i = 1,2. Each triple(s,az,az) with a; € AY, ay € A@ is
assigned an immediate rewar(, a1, ap) for player 1,—r(s,az,ap) for player 2
and a transition probability distributiop(.|s,a;,a2) on S

A stationary strategy € Usfor thei-th player determines the probabilitya|s)
that in states playeri chooses the actiorasc [a<1>, 6\(;\)(3)]-
We assume that both the number of states and the overall mwhlasailable
actions are finite.

It is evident that a couple of strategies Fs, g € Gg for player 1 and 2, re-
spectively, sets up a Markov chain in which the transitiosbaibility equals

my (S) my(s)

p(sls.f.g) = )IpY p(sls.ap’.af)f(af’|s) a(ai’|s)
q



iv

Vs,s € S while the average immediate reward, f, g) equals

r(sf.g) = Z Z (s.ap’.a) f(af”|s)a(ai’|s)

=1 g=1
Let B € [0;1) be the discount factor ar@ be the interest rate such tha¢1 +
P) = 1. Note that wherB 1 1, thenp | 0. We defined, (f g) as a column vector

of lengthN such that it3-th component equals the expecﬁdmcounted reward
when the initial state of the stochastic gamg is

o.(f.9) = S BP (o,
5(f.9) t;ﬁ (f,9)r(f,9)

whereP(f,g) andr (f,g) are theN-by-N transition probability matrix and thid-
by-1 average reward vector associated to the couple okgtest(f,g) respec-
tively.

Definition 1 TheB-discounted value of the ganfieis such that

®5(r )—SU[]I”IfCD (f,g) = mfsupd) (f,9). 1)

Definition 2 An optimal strateg;f*B for player 1 assures to him a reward which
is at IeastCDE(I' )

®p(f5.9) > @p(r)  VgeG

Whileg;‘? is optimal for player 2 iff

5(f,g;) < P5(1)  VieF.

Let @(f,g) be the long term average value of the gamessociated to the
couple of strategief,g):

- t
o(f,0) TI|an Z}Pfg (f,0)
and®(I") be the value vector for the long term average criterion ofgd@el”,
defined in an analogous way to expressidn (1).

The existence of optimal strategies in discounted stohgames is guaran-
teed by the following theorem (Filar and Vrieze, 1996):

Theorem 1 Under the hypothesis of discounted pay-off, stochasticegapos-
sess a value, the optimal strateg(é%, g%) exist among stationary strategies and

moreover®s(I") = @p (fB’ B>
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Definition 3 A stationary strategy is said to be uniformly discount optimal for
a player ifh is optimal for everyB close enough to 1 (or, equivalently, for @l
close enough to 0).

In the present paper we deal with perfect information stetbgames.

Definition 4 Under the hypothesis of perfect information, in each statmast
one player has more than one action available.

LetS ={s,...,5, } be the set of states controlled by player 1 &ne- {s,+1, ...,
S, +t, + be the set controlled by player 2, withtt; <N.

3 The ordered field of rational functions with real
coefficients

Let P(R) be the ring of all the polynomials with real coefficients.

Definition 5 The dominating coefficient of a polynomiakfag +aijx+- - - +apx"
is the coefficientjg where k= min{i : & # 0} and we denote it witl¥(f).

Let F(R) be the non-archimedean ordered field of fractions of polyiatsm
with coefficients inR:
F(x) = Co+ C1X+ -+ -+ CpX"
~ do+ diX+ -+ DX
where the operations of sum and product are defined in théwaygsee Hordijk,
Dekker and Kallenberg, 1985). Two rational functidrig, p/q are identical (and

we sayh/g = p/q) if and only if h(x)q(x) = p(x)g(x) ¥x € R.

f e F(R)

The following lemma (Hordijk et al., 1985) introduces thelering in the field
F(R):

Lemma 1 A complete ordering in FR) is obtained by the rule

ap>| 0« 2(p2(q) >0  pqeP(R)

In the same way, we can also define the operations of maximuar Yand min-
imum (min) in F(R).

The ordering law defined above is useful when one wants to acenje be-
havior of rational functions whose indipendent variableasitive and approaches
to O (see Hordijk et al., 1985).

Lemma 2 The rational function pq is positive(p/q > 0) if and only if there
exists ¥ > 0 such that fx) /q(x) > O for every xe (0;Xo].
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3.1 Application to stochastic games

From the next theorems the reader will start perceivingrigoirtance of dealing
with the fieldF (R) in stochastic games.

Theorem 2 Let f,g be two stationary strategies respectively for players 1 and
2and®,(f,g): R— RN be the discounted reward associated to the couple of
strategiesf,g) expressed as a variable pf Then,®,(f,g) € F(R).

Proof For any couple of stationary strategi¢sgy), we can write

N
> [(1+p)dsg — p(s[s,f.9)]Pp(f.9.5) = (1+p)r(sf,0) se[LN] (2
d=1

wherep is a variable. By solving the above system of equations irutilenown

@, by Cramer rule, itis evident thak, (f,g) € F(R).

Generally, the discounted value of a stochastic game fonalhterest rates close
enough to 0 belongs to the field of real Puiseux series (saedfl Vrieze, 1996).
From Theorem§E]1 arld 2 it is straightforward to obtain theofeihg important
Lemma.

Lemma 3 Let I’ be a zero-sum stochastic game which possesses uniform di-
scount optimal strategies for both players. Then, therst@i>0 and @, (I") €

F(R) such that®(I") is the discounted optimal value for all the interest rates
p e (0;p7]).

Proof Let (f*,g*) be a couple of uniformly discount optimal strategies foypla

1 and 2 respectively. Then, by definition, there exXists- 0 such thatf*,g*) are
discounted optimal for all the interest rafgs (0;p*]. From Theorerfil2 we know
that @, (f*,g*) € F(R) and, from Theoreril1, the optimum uniform discounted
value @5(I") = @5(f*,9") Vp € (0;p*]. So, @,(I") € F(R) represents the di-
scounted value af for all the interest rates sufficiently close to 0.

Lemma4 Let I’ be a zero-sum stochastic game which possesses uniform di-
scount optimal strategids, g* for players 1 and 2 respectively. Then,

Pp(f,g") <1 Pp(f*,9") =1 Pp(IN) <) Pp(f,0) Vi, 3)
where
@, (") = max min, @, (f,g) = min max ®,(f,q). 4)
f g g f

Proof From Theoreni]l and by the definition of uniform discount optirstra-
tegy, we assert that

3p*>0:Vp e (0;p*] = @p(f,g") < @p(f*,g") < @5(f*,9) Vi,g
which coincides with[{B) for Lemnid 2. The equatih (4) is adirconsequence
of ().

Definition 6 @, (I"), defined as irf), is the uniform discount value of the sto-
chastic gaméd .
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4 Computation of Blackwell optimum policy in MDPs

In this section we will discuss about some concepts of lipeagramming, which
can be easily found on any book on linear optimization (eeg.lsuenberger and
Ye 2008).

Let ¥ be a Markov Decision Process, which can be seen as a twordtye
chastic game in which one of the two players either fixes his strategy or has
only one available action in each state. We @aj|(f) the value of the discounted
MDP associated to the stratefjwith interest rate variablp.

Itis known (Puterman, 1994) that the interval of intereg (8;) can be bro-
ken into a finite numbenm of subintervals, say0 = ap; a1], (01; 02, .., (0n—1; )
in such a way that for each one there exists an optimal puxtegyy.

A Blackwell optimal policy is an optimal strategy associhte the first sub-
interval.

Definition 7 We say that the stratedy is Blackwell optimal iff there exiss* >0
such thaf* is optimal in the(1/p — 1)-discounted MDP for all the interest rates
p € (0;0%].
Since for Theorenl@, (f) € F(R) for anyf € Fs, we can say
Dy (%) > Pp(f) VieF

whereF is the set of all possible strategies.

Hordijk, Dekker and Kallenberg (1985) provided a usefuloaignm to compute
the Blackwell optimum policy in MDPs. It consists in solvittge following para-
metric linear programming problem:

max 581 57 xsa(p)r(s.a)

SN S(1+p)Sss — PE[sa)|xsalp) =11, S€S ®)
%sa(p) 210, seS acA(s

in the ordered field of rational functions with real coeffitigF (R). This means
that

i) pis the variable of polynoms;
ii) all the elements of the related simplex tableau belorfg(i®);
iii) all the algebraic and ordering operations required by timplex method are
carried out in the fieldr (R).

The practical technique to solve the linear optimizatioobpem [%) proposed by
Hordijk et al. (1985) is the so-callddo-phases method
In thefirst phasehe artificial variableg,, . .., zy are introduced as basic variables
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and the tableau of the following linear programming problem

max Yo 22151) Xsa(P)r (s,a)

SN ™14 p) g — pElsA)]xsalp) +2z(p) =1 1, Ses O
Xsa(p) >10, se€S acA(s)

is built. Then,N successive pivot operations on all the artificial varialalescar-
ried out so that the feasibility of the solution is preservéf callentering varia-
blesthe basic variables of the tableau at the end of the first phaske second
phasethe columns of the tableau associated to the artificial bbegr, ..., zy
(which are now all non-basic) are removed and the simplekatkis performed
in the ordered fieldr (R) on the obtained tableau.

We note that another approach for the solution of the pargaieear program
(®) is given by simplex method in the field of Laurent seriese(&ilar, Altman
and Avrachenkov, 2002).

The optimal Blackwell stationary pure stratefgyis computed as:

Xsal(P)
S %a(p)
where {x{,(p) Vs a} is the solution of the optimization problem. The simplex
method guarantees that the optimum stratégis well-defined and pure (see
Filar and Vrieze 1996).

f*(als) = Vse S acA(s) @)

5 Uniform optimality in perfect information games

As we said before, in a perfect information game in each stiateost one player
has more than one action available. A stationary strategthéoplayeri = 1,2 is
a functionf; : S— UR; Ai(s¢) with fi(.|s) € Ai(s).

Theorem 3 For a stochastic game with perfect information, both playgossess
uniform discount optimal pure stationary strategies, vihare optimal for the
average criterion as well.

The Theorenil]3 (see Filar and Vrieze, 1996) guarantees tiséeage of the
optimal strategies for both players in the average critefa games with per-
fect information. Moreover, it suggests that in order to fine optimal strategies
for the average criterion one has to find the optimal strategi the discounted
criterion for a discount factor sufficiently close to 1.

Definition 8 We call two pure stationary strategies adjacent if and ofilshey
differ only in one state.

Then the following property holds, which proof is analogtaushe one in the
field of real numbers.
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Lemma5 Letg be a strategy for player 2 anfif; be two adjacent strategies
for player 1. Then eithem,(f1,9) > @, (f,9) or @p(f1,09) <| Pp(f,g), which
means that the two vectors are partially ordered.

The property above allows us to give the following definition

Definition 9 Let(f,g) be a pair of pure stationary strategy respectively for playe
1 and 2. We calf; (g1) a uniform adjacent improvement for playe(32) in state

s if and only iff; (g1) is a pure stationary strategy which differs froim(g)
only in state sand @, (f1,9) > @, (f,9) (Pp(f,01) <) Pp(f,9)) where the strict
inequality holds in at least one component.

As in the case in which the discount interest rate is fixed, greexe the fol-
lowing results.

Lemma 6 Letl be a perfect information stochastic game. A couple of pwae st
tionary strategieqf*,g*) is uniform discount optimal if and only if no uniform
adjacent improvement is possible for both players.

Proof Theonly if implication is obvious. If the strategi¢&’,g*) are such that no
uniform adjacent improvements are possible for both pEytien no improve-
ments are possible also for the first stage of the game taoistha

f*(s) = argmax {r(s,a) + (1+p)1s§ p(ss, a)CDp(s’j*,g*)} sc§
=1

acA1(s)

g'(s) = argmin {r<s,a>+(1+p)‘lﬁ p(S’|s,a)¢p(§7f*,g*)} SES

achAy(s) =1

It is known (see Filar and Vrieze, 1996) that if the strategfé, g*) satisfy such
equations then they are uniform discount optimal.

In perfect information games, the following result (see Ragn and Syed,
2002) holds

Lemma 7 In a zero-sum, perfect information, two-player discourgemthastic
gamel” with interest ratep > 0, a pair of pure stationary strategie$*,g*) is
optimal if and only if®5(f*,g*) = ®5(I"), the value of the discounted stochastic
gamel .

From the above result we can easily derive the analogouspyom the or-
dered fieldr (R).

Lemma 8 In a zero-sum, two-player stochastic gamavith perfect information,

a pair of pure stationary strategied*,g*) are uniform discount optimal if and
only if @, (f*,g") = @,(I") € F(R), where®} (I") is the uniform discount value
of I'.
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Proof The only if statement coincides with the assertion of Theorém 1.iThe
condition is less obvious. If a pair of strategi{&s g*) has the propert@, (f*,g*) =
@5, (I"), then there exist* >0 such that/p € (0;p*], ®5(f*,g*) coincides with
the value of the gam€, Vp € (0;p*]. Then, thanks to Lemnid 7, we can say
thatVp € (0;p*] the strategief’, g* are optimal in the discounted garfigewhich
means that they are discount optimal.

Let s be a state controlled by playeti =1,2) andX C Ai(s;). Let us callly{
the stochastic game which is equivalent/tcexcept in states, where playei
has only the actionX available. Analogously to the result of Raghavan and Syed
(2002), we propose the following Lemma.

Lemma9 Leti=1,2ands € S, XCA(s), YCA(S), XNY =0. Then®;, (I y) €
F(R), which is the uniform value of the garfi¢ ,, equals

@, (MXuy) = max{ @, (%), @)} if i=1

@, (Mxuy) = min {@4 (M%), @(Y)}  if i=2
Proof Let us suppose that the statds controlled by player 2. We indicate with
G the set of pure stationary strategies in which the choic¢sites is restricted
to the sefX. We note that the restriction in stagedoes not affect player 1. Thus,
F, =F.
If it is possible to find optimal strategies for player 2 batt@}, and inG!,, then
@5 (k) =1 @5(I}) =1 @5 (M y) for Lemma8.
Otherwise, the uniform discount pure strategy of gdihe, for player 2 belongs
either to G}, or to G!,. For example, let us suppose that the optimal discount
strategy in the stochastic gamig  for player 2 is found irY. Then we have

AMELAGIY
=) min, max, ®,(f,g)
geG feF
< min, max, ®,(f,g)
ggG& feF
= @5 (Ix)

The proof for the situation in whickg € § is analogous.

6 Algorithm description

Our task is to find an algorithm which allows to find the unifadimcount optimal
strategies for both players in a perfect information stgthayame™, which co-
incide with the optimal strategies for the long term averederion for Theorem
[B. Following the lines of the algorithm of Raghavan and Sy&0DR) for optimal
discount strategy, we propose an algorithm suitable to tlered fieldr (R).

Let be a zero-sum two-player stochastic game with perfectnndion.



Xi

Algorithm 1

Step 1 Choose randomly a stationary deterministic pure stratgdyr player 2.
Step 2 Find the Blackwell optimal strategy for player 1 in the MDRg) by solving

Step 3

Step 4

within the field HR) the following linear programming:

max 58, 55" Xsa(0)r(s.2.0)

SN S™MO(14 p)ay — p(s]sag)xalp) =1, ses 8
Xsa(p) >10, s€S acAs)

and compute the pure stratefjas

Xsa(P)
S % o(0)

where{x{,(p), Vs,a} is the solution ofl(B).

Find the minimum k such that ig $x € {S;,+1,.--,S,+t, } there exists an adja-
cent improvemeny’ for player 2, with the help of the simplex tableau asso-
ciated to the following linear programming:

f(als) = Vse S ae A9 9

max — 3% 53% xsa(P)r(sf.2)

SN ST (14 p)8g — pS]sfa)xap) = 1, ses (10
Xsa(p) >10, seS acAx(s)

where the entering variables afesa : g(als) = 1, Vs}.

If no such improvement for player 2 is possible then go to 4tegtherwise
setg:=¢g and go to step 2.

Set(f*,g*) :=(f,g) and stop. The strategid$*,g*) are uniform discount and
long term average optimal in the stochastic gamesspectively for player 1
and player 2.

O

Note that all the algebraic operations and the order signs-J are to be in-

tended in the fieldr (R).

Remark 1Unlike Raghavan and Syed’s solution, the algoritAm 1 do¢satuire
the strategy search for player 1 to be lexicographic. Playar fact, faces in step
2 a classic Blackwell optimization.

Remark 20bviously, the roles of player 1 and 2 can be swapped in thaitthgn

@

For simplicity, throughout the paper the player 1 will lssigned to step 2.

Remark 3In step 3, once the stasg_ is found, the adjacent improvement in-

VO

Ives the pivoting of any of the non basic varial&;%k@ to which corresponds

a reduced cosistﬁk,a < 0.
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Now, we prove the appropriateness of the algorithm 1. Thefpsoanalogous
to the one by Raghavan and Syed (2002).

Theorem 4 The algorithm stops in a finite time and the couple of stra&egi
(f*,g") are uniform discount optimal in the stochastic game

Proof We assume that the overall number of actions

ty to
H= mu(s)+ )y Mp(Scy)
K=1 K=1
is finite.
Without loss of generality, let us reorder the states so ithalte firstt; states
player 1 has more than one action and the setpsi@dites are controlled by player
2. Of courset;+to <N.

We can proceed by induction @n Trivially g > 2N, becauset=2N is equiva-
lent to the situatiom, =t,=0. In this case the algorithm finds the average optimal
couple of strategies because it is the only existing.

Now we suppose by induction that the algorithm fivdghout cycling(that
is, all pure stationary strategies are visited at most ottee)ouple of uniform
optimal strategies when the number of actiong is 2N. We have to prove that
the thesis is valid when the number of actions eqiajdl.

If t,=0, then again there is nothing to prove, because, as we sliovgedtion
[4, the step 1 of our algorithm finds the Blackwell optimal pgli* for player 1 in
the MDPI1(g).

If to >0, then we focus on the stagg ¢, =S;, which is the last examined
by our algorithm. The actions available in stateare Ax(s;) =X U &, where
X={a1...4-1,8+1...an} andn > 2 by hypothesis. By induction hypothesis,
we suppose that the algorithm finds the uniform discountugdtistrategies for
both players in the gamB; without cycling. Since no uniform improvements
are possible iy by definition of uniform optimal strategies, then the altjum
looks for an uniform adjacent improvemegit whereg' (aj|s;) = 1. There are now
two possibilities.

If the uniform optimal strategy for player 2 found i} is also optimal in™,
then the algorithm terminates because still no adjacentdugments are possible
for player 2 ing.

Otherwise, any uniform optimal strateg¥/for player 2 inl" includes the action
a; and the algorithm necessarily finds an adjacent improverinestates; for
Theorem6 and it finds by induction hypothesis the uniforntalimt optimal
strategies in the ganfg. . So we have

®p(I7) =1 Min{ @ (1), Pp ()} =1 Pp(Ty,)

where the second equality holds because otherwise the apginategies of}
would be uniform optimal in the gamie for Lemma[8. Again thanks to Lemma
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[8, we can assert that the uniform discount optimal strasddifeg*) found in I'atn
are optimal also forf”, because®P,(f*,g*) = ®,(I"), which is the uniform di-
scount value of the game.

Moreover, the algorithm terminates because for Thegdemifhpoovements are
available to both players.

We gave a constructive proof of the fact that the algorithrespa through a
path of pure strategies, it never cycles and it finds the umifdiscount optimal
strategies for both players. Since the overall number édasts finite, then also
the cardinality of pure strategies is finite; hence, the rétlgm must terminate
in a finite time and the strategi€s’,g*) are uniform discount optimal, and for
Theoren B they are long term average optimal as well.

6.1 Computing the optimality range factor

The algorithm presented in sectibh 6 suggests a way to dieteriine range of
discount factor in which the long term average optimal eges(f*,g*) are also
optimal in the discounted game. Before, we report the amaiegesult to Lemma
when the discount factor is fixed (see Raghavan and Sye&).200

Lemma 10 Let " be a perfect information stochastic game ghd [0;1). The

pure stationary strategie§f*,g*) are B-discount optimal if and only if no uni-
form adjacent improvements are possible for both playerthégB-discounted
stochastic game .

Let us define with{(f,), wheref, € F(R), the set of positive roots of, such
that% lp—u <0, Yuel(f,). Now we are ready to state the following Lemma.
Lemma 11 Let C be the set of the reduced costs associated to the twmalpti

tableaux obtained at the step 2 and 3 of the last iteratiomefalgorithnil and
= mCinZ(c), ceC.

Then,ﬁ* =(14+p*)~tis the smallest value such that the strategisg*) are
B-discount optimal in the gam@, VB € [B";1).

Proof The existence of such* is guaranteed by Theorenh 3. For all the value
of the interest factop € (0;p*], the reduced costs are positive, hence no adjacent
improvements are possible for both players. So, for Lemrftadyare discounted
optimal. Ifp > p* andp™ < o, then at least one reduced cost is negative, hence at
least an adjacent improvement is possible @hdy*) are notB-discount optimal,
whereB=(1+p) L.

6.2 Round-off errors sensitivity

The role of the first non-null coefficients of the polynomi@tsimerator and de-
nominator) of the tableaux obtained throughout the algoritinfolding is essen-
tial: they determine the positiveness of the elements ofahleaux themselves in



Xiv

TABLE 1. Immediate rewards and transition probabilities for each platate and stra-
tegy.

| (s&) | r | p(safs) | p(sels) | p(ssls) | p(sals) | p(ssls)
f@n[5] 0 | 0 [ o | o | 1
|12 |4] 0 | 0o | 02 | 0 | 08
Pl @3)[3] o | o | 06 | 0 | 04
@y (6] o | o0 | o | o1
@21 1 | o | I Y
| 23)]0] 0 | o [ 01| 0 | o0
TGO 4] 0 | 0 | 09 | o1
132 2] 01 | 0 | o0 | o
Pl.-2 133 0] 03 | 0o | 02 | 05 | O
| 412 0 | o1 | 06 | 03 | O
| 42)|2| 02 | O | 04 | 04 | O
|43 [3] 0 | o | 0o | 09 | 01
"5 [0 0 | 01 | 02 | 03 | 04

the fieldF (R). This knowledge is fundamental to choose the most suitalate p
elements.

The reader can easily understand that the algorithm is ynighihsitive to the
round-off errors that affect the null coefficients.

If the data of the problem (rewards and transition probtidifor each stra-
tegy) are rational, then it is possible to work in the exadtharetic and such
unconveniences are completely avoided. In fact, if all tiput data are rational,
they will stay rational after the algorithm execution.

Instead, if the data are irrational, a simple way to circuniwbe round-off
errors is to fix a tolerance valug and set to 0 all the polynomial coefficients of
the tableaux obtained throughout the algorithm whose atesotlue is smaller
thane.

7 An example

Here we present a run of our algorithith 1, where the input dagaaken from
Raghavan and Syed (2002). There are 5 states, the first tweoatelled by
player 1 and states 3 and 4 are for player 2; in the final state fayers have
no action choice. The immediate rewards and the probakiéitysitions for every
couple (state,action) for both players are shown in fable 1.

We choose the initial strategg(@z|ss) = 1,9(az|s4) = 1) for player 2. We re-
port the optimum tableau obtained by player 1 at the end qf 3tef the first
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iteration of our algorithm (tabl4) and the tableau of plageafter the first im-

provement at step 3 (tab.5). Analogously, the tablédux @7aak associated to
the second and last iteration of our algorithm. It is knowae(blordijk et al. 1985)

that all the elements of simplex tableaux have a common devadaon, stored in

the top left-hand box. The last column of each tableau costie numerator of
the value of the basic variables, which are listed in the fiodtmn. The last row
indicates the numerator of the reduced costs.

The optimum long term average strategy for playerfl'igu|s1) =1, f*(ax|s2) =
1, and for player 2 ig*(az|s3) = 1,0"(au|) = 1.

By computing the first positive root of the reduced costs efttho last optimal
tableaux we find that the strategigé, g*) are alsg3-discount optimal for all the

discount facto € [B;1), wheref” = 0.74458.

Note that the optimal strategies differ from the ones of Ragh and Syed (2002),
in which the discount factor is set to9d®9. We suspect that this is due to some
clerical errors.

8 A lower complexity algorithm

Let " be a zero-sum two-player stochastic game with perfect imédion. Con-
sider the following algorithm:

Algorithm 2

Step 1 Choose a stationary pure strategy for player 2. Set k=0.

Step 2 Find the Blackwell optimal stratedy for player 1 in the MDP (gk).

Step 3 If gk is Blackwell optimal in»(fy), then setf*, g*) :=(fx, gk) and stop. Other-
wise, find the Blackwell optimal strategy. ; for player 2 in the MDP(fy),
set k=k+ 1 and go to step 2.

This is essentially a best reponse algorithm, in which ah estep each player al-
ternatively looks for his own Blackwell optimal strategy.

Obviously, if the above algorithm stopf;*,g*) forms a couple of uniform di-
scount and long term average optimal strategies, sinceatrepoth Blackwell
optimal in the respective MDP$; (g*) and/lp(f*).

The proof that the algorithii] 2 never cycles is still an opesbfem. It is quite
natural to try to prove tha®, (fi11,0k+1) <1 Pp(fk,9k), but it is not difficult to
find a counterexample.

Raghavan and Syed (2002) conjecture as follows:

Conjecture 1Let " be a two-player zero-sum stochastic game with perfectinfor
mation anda = (f,g) a couple of pure stationary strategies for the 2 players. For
every discount factop € [0;1), there are no sequencas, as, ..., ak such that
CDE(ak) = cDE(ao), whereq; is an adjacent improvement with respecttos in

the B-discounted stochastic gariefor only one player for any> 0.
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If Conjecturd 1 were valid, then we could conclude that tigeathm[2 terminates
in finite time.

8.1 Complexity

In our first algorithnil, player 1 faces at each step an MDPhapétion problem
in the field of rational functions with real coefficients, whiis solvable in poly-
nomial time. Player 2, instead, is involved in a lexicograptearch throughout
the algorithm unfolding, whose complexity is at worst exgotial in time.

Player 2 lexicographically expands his search of his optinstrategy, and at
the k-th iteration the two players find the solution of a subgdmehich mono-
tonically tends to the entire stochastic game

Analogously to what Raghavan and Syed (2002) remark, we gsarighat the
efficiency of our algorithri]1 is mostly due to the fact that traf¢he actions dom-
inate totally other actions. In other words, it occurs veftg that the optimum
actiona* € A(s), se S, found in an iteratiork such thatA(s) C [, is optimum
also inl", and consequently remains the same in all the remainirgtioers. This
exponentially reduces the policy space in which the alforiheeds to search.

Remark 4As discussed in sectidd 6, in the algorithin 1 players’ rolesiater-
changeble. Since most of the actions dominate totally aitbons, we suggest
to assign the step 2 of the algorithm to the player whose motadber of available
actions is greater.

Differently from Raghavan and Syed (2002), the search faygl 1 does not
need to be lexicographic, and player 1 is left totally freeptimize the MDP that
he faces at each iteration of the algorithm in the most efftcieay.

Let us compare in terms of number of pivoting the followingethalgorithms:

M1: Algorithm([d, in which in step 2 player 1 pivots with respezttie variable with
the minimum reduced cost until he finds his own Blackwell wgtli strategy.

My:  Algorithm[dl, in which in step 2 player 1 pursues a lexicodpiasearch, pivo-
ting iteratively with respect to thfirst non-basic variable with a negative (in
the fieldF (R)) reduced cost. This method is analogous to the one shown by
Raghavan and Syed (2002), but in the fiEI®R).

Ms:  Algorithm[2.

The results are shown in tablds 2 and 3. The simulations vegried out on 10000
randomly generated stochastic games with 4 states, 2 fgeplaand 2 for player
2. In each state 5 actions are available for the controlliaggy.

It is evident that the algorithrivlz is much faster than the other two, but unfor-
tunately its convergence is not proven yet. However, in aumerical experiment
with 10000 randomly generated stochastic games, it nexaesyThe difference
betweerM; andM; is due to the more efficient simplex method used by player 1
in My.
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TABLE 2. Average number of pivotings for the 3 methods.

n. pivoting
M1 40.59
Mo 41.87
M3 24.93

TABLE 3. M; > M; when, fixing the game
than the number of pivoting iM;.

, the number of pivotingdMnis strictly smaller

> (%) Mq Mo M3
M1 - 52.85| 18.57
Mo 42.18 - 15.26
M3 80.05 | 82.75 -

TABLE 4. Optimum tableau for player 1 at the first iteration.

0.018+0.6580+ X1,2 X1,3 X21 X23
3.07p?+5.130%+
3.7p%+p°
X1,1 0.0198+0.6698+ 0.0234+0.69340+ 0.0288+0.7468+ 0.0297+0.7527p+ 0.087+1.707p+
3.06p2+5.11p3+ 3.040245.07p%+ 2.4180242.7p3+p* 2.4130242.6903+p* 4.4202+3.8p3+p*
3.7p%+p5 3.7p%+p°
X2.2 0.0018+0.0220+ 0.0054+0.0660+ 0.027+0.7560+ 0.0279+0.76 70+ 0.059+p+2.750%+
0.042024-0.020°% 0.126024-0.06p% 3.1492+5.120%+ 3.17p%+5.1303+ 2.8p%+p%
3.7p%+1p° 3.7p%+1p°
X31 —0.0840—0.40202— ~0.2520—1.20602— 0.018+0.1960+ 0.018+0.1540— 0.141.36p+3.07p%+
0.5p3—0.2p% 1.503-0.6p% 0.15802-0.02p3 0.04302-0.27p3— 2.903+p4
0.10%
X4.1 0.054+0.174p+ 0.162+0.5220+ 0.27+0.51p+0.21p2— | 0.297+0.597p+0.3p? 1.41+4.510+6p%+
0.1802+0.06p°% 0.5402+0.180% 0.0303 3.903+1p4
X5.1 0.018+0.2380+ 0.054+0.714p+ 0.09+1.07p+1.77p%+ 0.099+1.18%+ 0.41+4.01p+6.80%+
0.64p2+0.6203+ 1.9202+1.86p3+ 0.6903—0.1p* 2.09024p3 4.2p31p*
0.2p* 0.6p*
0.1908+1.2838+ 0.5544+3.17540+ 0.909+3.3730+ 1.1034+7.732+ 4.924+30.70%+
3.891p2+7.02803+ 7.94502412.884p3+ 0.22902 1452503~ 22678502+ 74.7750°+88.290%+
7.530%+4.3p5+1p® 13.76p%+8.205+208 25.79p%—185p5— 34.08903+26.540%+ 50.3p%+11p°
5p% 9.50541p8
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TABLE 5. Optimum tableau for player 2 at the first iteration.

0.288+2.3080+ X31 X33 X4,3 X422
6.04p2+7.3203+
4.3p%4p°
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TABLE 6. Optimum tableau for player 1 at the second iteration.
0.288+2.3080+ X1,2 X1,3 X2,1 X233
6.04p2+7.3203+
4.3p%+p°
X11 0.306+2.324p+ 0.342+2.3560+ 0.4068+2.1148+ 0.4158+2.12280+ 1.11+4.54p+6.83p%+
6.01802+7.3p%+ 5.974p2+7.26p%+ 4.00802+3.3p3+p* 3.997p2+3.2903+p* 4.4p3p*
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4.3p%+p5 4.3p%+p°
X3.1 —0.24p—0.66p%— —0.720—1.980%— 0.288+0.4360+ 0.288+0.3160— 1.6+4.920+6.50%+
0.6203-0.2p* 1.86p3-0.6p% 0.12802-0.02p3 0.20202-0.3303— 4.1p3+p%
0.1p%
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X51 0.126+0.5860+p2+ 0.378+1.7580+3p%+ | 0.63+2.090+2.190%+ 0.693+2.3830+ 2.33+7.530+8.9p2+
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TABLE 7. Optimum tableau for player 2 at the second iteration.

0.288+2.3080+ X31 X33 X4.2 X433
6.04p2+7.3203+
4.3p%4p°
X1.1 —0.0576-0.04160+ —0.1404-0.59040— —0.0432-0.24720— —0.0036+0.09640+ 1.11+4.54p16.83p%+
0.24602+0.33p3+ 0.9302-0.6803— 0.544p2—0.54p3 0.26p2+0.16p3 4.4p31p*
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0.90% 4.2p%+p5 3.7p%+p°
X5,1 —0.144-0.214p— —0.234-0.594p— —0.072-0.292p— —0.054-0.134p— 2.3347.530+8.90%+
0.24p2-0.27p3— 0.56p2-0.2p3 0.4202-0.2p3 0.35p2-0.37p3— 4.7p3+p*
0.1p* 0.1p*
2.3616+14.71760+ 1.368+5.1320+ 0.3456+1.74960+ 0.8496+5.18360+ —12232-56.6420—
35.13202+435260%+ 4.65202—4.78203— 3.63202+4.12803+ 119902+15.09603+ 10824p2-10533p%—
30.650%+11.90%+ 11.87p%—-8.205—208 2.6p%+0.7p5 11.640%45.2p5+p 515p4—10p5
208

[5] B.C. Eaves, U.G. Rothblum, Formulation of linear prabkand solution by a
universal machine, Mathematical Programming, Vol. 65, N8, pp. 263-309
(1994).

[6] J. Filar, K. Vrieze, Competitive Markov Decision Proses, Springer (1996).

[7] J.A. Filar, E. Altman and K. Avrachenkov, An asymptotimplex method
for singularly perturbed linear programs, Operations BeseLetters, Vol. 30,
No. 5, pp. 295-307 (2002).

[8] D. Gillette, Stochastic games with zero stop probaiksit Contributions to
the theory of games, Princeton University Press, Vol. 3j78-187 (1957).
[9] A. Hordijk, R. Dekker, L.C.M. Kallenberg, Sensitivity walysis in Discoun-
ted Markov Decision Processes, OR Spektrum, Vol. 7, No. 3,1d3-151

(1985).

[10] D.G. Luenberger, Y. Ye, Linear and nonlinear programgn{Third ed.),
Springer (2008).

[11] J.F. Mertens, A. Neyman, Stochastic games, Internatidournal of Game
Theory, Vol. 10, pp. 53-66 (1981).

[12] T. Parthasarathy, T.E.S. Raghavan, An orderfield pitgpier stochastic
games when one player controls transition probabilitiesrdal of Optimiza-
tion Theory and Applications, Vol. 33, No. 3, pp. 375-392¢1}

[13] M. L. Puterman, Markov Decision Processes: Discretel®istic Dynamic
Programming, Wiley (1994).

[14] T.E.S. Raghavan, Z. Syed, A policy-improvement typgoathm for solving
zero-sum two-person stochastic games of perfect infoonatViathematical
Programming, Vol. 95, No. 3, pp. 513-532 (2003).




XX

[15] L.S. Shapley, Stochastic games, Proceedings of thioiNdtAcademy of
Sciences USA, Vol. 39, pp. 1095-1100 (1953).

[16] E. Solan, N. Vieille, Computing uniformly optimal stegies in two-player
stochastic games, Economic Theory, Vol. 42, No. 1, pp. Z87{2010).

[17] F. Thuijsman, T.E.S. Raghavan, Perfect informatiatkastic games and
related classes, International Journal of Game Theory, 2&| pp. 403-408
(1997).

Acknowledgements This reasearch was supported by "Agence Nationale de ladReod’ with re-
ference ANR-09-VERS-001.



	Introduction
	The model
	The ordered field of rational functions with real coefficients
	Application to stochastic games

	Computation of Blackwell optimum policy in MDPs
	Uniform optimality in perfect information games
	Algorithm description
	Computing the optimality range factor
	Round-off errors sensitivity

	An example
	A lower complexity algorithm
	Complexity

	References

