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Abstract: We consider a slow frequency selective fading multiple access chan-
nel (MAC) where 2 independent transmitters are simultaneously communicating with
a receiver using orthogonal frequency division multiplexing (OFDM) over N sub-
carriers. Each transmitter has partial knowledge of the channel state. In such a context,
the system is inherently impaired by a nonzero outage probability. We propose a low
complexity distributed algorithm for joint rate and power allocation aiming at max-
imizing the individual throughput, defined as the successfully-received-information
rate, under a power constraint. As well known, the problem at hand is non-convex
with exponential complexity in the number of transmitters and subcarriers. Inspired
by effective almost optimum recent results using the duality principle, we propose a
low complexity distributed algorithm based on Bayesian games and duality. We show
that the Bayesian game boils down to a two-level game, referred to as per-subcarrier
game and global game. The per-subcarrier game reduces to the solution of linear
system of equations while the global game boils down to the solution of several con-
strained submodular games. The provided algorithm determines all the possible Nash
equilibria of the game, if they exist.

Keywords: Bayesian Games, OFDM, Nash equilibrium

1. Introduction
The main role played by OFDM in the 4th generation (4G) mobile networks fueled a
very intense research on resource allocation algorithms for ODFM-based wireless net-
works. The information theoretical foundations of this problem are established in [1].
A large variety of studies deepened different aspects of this topic, just to mention some,
joint rate and power allocation rather than suboptimal disjoint approaches, resource
allocation for broadcast rather than multiple access channels, slow fading or fast fading
channels, different modulation sets, etc. A complete overview exceeds the scope of this
work and the interested reader could refer to [2, 3]. Approaches for joint power and
rate allocation need to cope with the intrinsic high complexity of the problem which
is exponential in both the number of subcarriers N and the number of users. An ef-
fective answer to this issue has been proposed in [4] for OFDM system with a large
number of subcarriers. In the asymptotic conditions when N → +∞ optimal resource
allocation can be obtained with linear complexity in N by making use of the proper-
ties of time-sharing functions in constrained optimization problems. The approach in
[4] has been specialized to several different OFDM scenarios [5]. The next generation
wireless network will be characterized by dynamic resource allocation from a common
pool while maintaining decentralized control functions, high level of efficiency in the
use of resources, and an acceptable signaling level. These requirements for future wire-
less networks shift the research interest onto distributed resource allocation algorithms
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(to decentralize the control functions) based on a limited amount of information (to
limit the signalling). The Bayesian games provide a possible framework for a rigorous
derivation of distributed resource allocation algorithms based on a partial knowledge
of the channel state at the transmitters. Applications of the Bayesian game to wireless
communications are limited to CDMA systems [6], two-user interference channels [7]
and two-user multicarrier interference channels [8]. Bayesian games for OFDM multiple
access channels are considered in [9] under the assumption of fast fading channels. In
this article we consider the joint rate and power allocation in a two-user OFDM system
with a large number of subcarriers and partial channel state information at the trans-
mitters for slow frequency selective fading. Each transmitter has knowledge of its own
link, which can be estimated locally, but no information about the other transmitter
power attenuations. In these conditions, the transmitters are interested in maximizing
the throughput, i.e. the rate of information successfully received, allowing for out-
age events. The total throughput of the system satisfies the time sharing conditions
in [4] and the duality approach yields optimum resource allocation asymptotically as
N → +∞. However, the complexity of an optimization algorithm is still significantly
high. Then, we consider a Bayesian game based on suboptimal dual cost functions.
The Bayesian game boils down into per subcarrier games and a global game. The first
games determine Nash equilibria for power and rate allocation parametric in the La-
grangian coefficients of the dual utility functions. The following global game, based
on the solution of a set of submodular games, provide the values of the Lagrangian
coefficients at the Bayesian Nash equilibria. We propose an algorithm for the search
of all the Bayesian Nash equilibria of the game. The performance of the joint power
and rate allocation game is assessed and compared to the performance of the optimum
power allocation and uniform power allocation for the two cases of complete and partial
channel knowledge at the transmitters, respectively. Although for the whole dual game
the existence of a Nash equilibrium is not proven, numerical simulations show that
a Nash equilibrium exists for all the considered systems over a large range of power
constraints.

Due to space constraints, proofs of lemmas, theorems and properties are omitted in
this contribution.

2. System Model
We consider a frequency selective multiple access channel (MAC) with K = 2 indepen-
dent transmitters and a receiver. Orthogonal frequency division multiplexing (OFDM)
modulation over N subcarriers is applied. In each subcarrier the channel is flat fad-
ing. The power attenuation of the channel between transmitter k and the receiver over
subcarrier n is denoted by gn

k . The channel attenuations take values in a discrete set
Φn

k with a certain probability distribution γn
k (gn

k ). We assume that the channel is block
fading, i.e. the channel is constant during the transmission of a codeword and changes
from a codeword to the following one. Furthermore, we assume that each transmitter
has a perfect knowledge of the channel attenuations of its own link, i.e. transmitter
k knows exactly gn

k , n = 1, . . . N, and has statistical knowledge of the channel atten-
uations on all the links, i.e. γn

k (gn
k ), k ∈ {1, 2} and n = 1, . . . N. Note that this is a

realistic assumption for time division duplex (TDD) systems without feedback channels
where the channels gains gn

k from transmitter k to the destination can be estimated at
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the transmitter via the received signal from the destination assuming that the power
attenuation in the two directions is identical (reciprocity principle). Let R+ be the
set of nonnegative reals. We denote by pn

k ∈ R+ the power transmitted by user k on
subcarrier n and by Rn

k ∈ R+ the information rate over the same subcarrier. The signal
at the receiver is impaired by additive Gaussian noise with variance σ2 and the receiver
adopts single user decoding on each subcarrier. When the realizations of the channel
attenuation vector and the transmitted power vector on subcarrier n are gn = (gn

1 , gn
2 )

and pn = (pn
1 , p

n
2 ), respectively, the maximum achievable rate on subcarrier n by user

k is1

rn
k (pn, gn) = log

(
1 +

pn
kgn

k

σ2 +
∑

j 6=k pn
j gn

j

)
. (1)

If transmitter k transmits on subcarrier n with a rate Rn
k greater than rk

n(pn, gn) the
transmitted information cannot be decoded reliably and an outage event happens. Be-
cause of the system assumptions, transmitter k has only statistical knowledge of the
interference term

∑
j 6=k pn

j g
n
j which can be arbitrarily large or bounded by a maximum

value IMAX,k. For any finite rate Rn
k > log

(
1 +

pn
j gn

j

σ2+IMAX,k

)
there is a nonzero outage

probability

Pr

{
Rn

k > log

(
1 +

pn
j gn

j

σ2 +
∑

j 6=k pn
j gn

j

)}
. (2)

If the transmitter can tolerate a nonzero information loss2 and considers too restrictive
the guaranteed transmission rate log

(
1 +

pn
j gn

j

σ2+IMAX,k

)
, it can transmits at a rate Rn

k to
attain a throughput

ρn
k = Rn

kPr{Rn
k ≤ rn

k (gn, pn)} (3)

defined as the the average rate of information that can be successfully transmitted by
transmitter k over subchannel n.

In this context, we study joint power and rate allocation strategies for a transmitter
k under a power constraint for each transmitter3 k

N∑
n=1

Egn
k
{pn

k(gn
k )} ≤ P k. (4)

3. Optimum Joint Power and Rate Allocation
In the case of complete channel state information (CSI) at all the transmitters, it is well
known (see e.g. [4]) that the optimum rate allocation is given by Rn

k = rn
k (gn,pn) and

the joint source and rate allocation reduces to the power allocation for the following
1Throughout this work log(·) is the natural logarithm and the rates are expressed in nat/sec.
2This depends typically on the services supported by the communication, for example voice services can

tolerate a certain level of information loss.
3In the asymptotic case, N →∞, this is equivalent to

∑N
n=1 pn

k ≤ P k.
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constrained optimization problem

max
p

v(p, g) (5)

subject to
N∑

n=1

pn
k ≤ P k k ∈ {1, 2} (6)

where p = (p1, . . . pN), g = (g1, . . . gN) is given, and the objective function is defined
as v(p, g) =

∑2
k=1

∑N
n=1 rn

k (gn,pn). This problem is intrinsically non-convex and nu-
merical optimization is difficult. As observed in [4], an exhaustive search would have a
complexity exponential in the number of variables which is 2N. In order to introduce
a low complexity solution for this numerical problem we briefly recall the definition of
time-sharing condition for an optimization problem of the form (5).

DEFINITION 1 [4] Let p∗ and p4 be the optimal solutions of the optimization problem
(5) with P = (P 1, P 2) equal to P

∗
= (P

∗
1, P

∗
2) and P

4
= (P

4
1 , P

4
2 ), respectively.

An optimization problem of the form (5) satisfies the time sharing condition if for any P
∗

and P
4

, and for any 0 ≤ ν ≤ 1, there always exists a feasible solution p¦ such that∑
n pn¦

k ≤ νP
∗
+ (1− ν)P

4
, and v(g,p¦) ≥ νv(g,p∗) + (1− ν)v(g,p4).

By observing that [4], (I) The dual problem (see e.g. [10] for a definition) of a primary
problem of the form (5) has zero duality gap if the primary problem satisfies the time
sharing conditions (see Theorem 1 in [4]); and (II) The problem (5) with v(g,p) =∑

k

∑
n rn

k (gn,pn) satisfies the time sharing condition (see Theorem 2 in [4]) as N →∞,
the optimization (5) reduces to the optimization over the dual problem as N → ∞.
The dual problem has linear complexity in the number of subcarriers. Note that the
complexity is still exponential in the number of transmitters K.

In the case of partial channel knowledge at the transmitters the joint power and
rate allocation is solution to the optimization problem

max
(p,R)

u(p, R, g) (7)

subject to
N∑

n=1

pn
k ≤ P k k ∈ {1, 2} (8)

where R=(R1, . . . , RN), Rn =(Rn
1 , Rn

2 ), gk = (g1
k, . . . g

N
k ) and

u(p,R, g) =
2∑

k=1

N∑
n=1

Egk
ρn

k(gn
k , pn

k(gk), R
n
k(gk)). (9)

Note that ρn
k(gn

k , pn
k(gk), R

n
k(gk)) coincides with the function defined in (3) but here we

underline the dependence of the optimization variables pn
k and Rn

k on gk, the partial
knowledge of transmitter k on the channel.

Similarly to the optimization (5), the optimization (7) is not convex and has expo-
nential complexity in the variables 2N. As in [4], a low complexity approach based on
the dual problem can be proposed and justified by the following Theorem 1.

THEOREM 1 The optimization problem (7) satisfies the time-sharing condition in the limit as
N →∞.
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The proof of this theorem follows along the same lines as Theorem 1 in [4] and is omitted
here.

Let us define the Lagrangian

L(p,R,λ) = u(p, R, g) +
K∑

k=1

λk(P k −
N∑

n=1

pn
k), (10)

with λ = (λ1, . . . λK), and the dual function

q(λ) = max
(p,R)

L(p,R,λ). (11)

The dual optimization problem is defined as

min
λ

q(λ) (12)

subject to λk > 0. (13)

It is worth noticing that the optimization in (11) boils down to N independent opti-
mization problems

max
pn,Rn

K∑

k=1

Egn (ρn
k(gn

k , pn
k(gk), R

n
k(gk))− λkp

n
k) . (14)

The optimization (14) focuses on power and rate allocation in a single subcarrier and
pn

k and Rn
k depend only on the knowledge of gn

k . The optimization (14) is still complex.
In order to further reduce the complexity of the problem we introduce a Bayesian game.

4. Equilibria for Joint Power and Rate Allocation
The previous resource allocation problem can be formulated as a 2-player Bayesian game
G ≡ (S, T ,D,U ,P), where S ≡ {1, 2} is the set of players/transmitters, T ≡ T1 × T2

is the type set consisting of all possible realizations of the channel attenuation g with
Tk = {gk} being the type set for transmitter k, D is the action set defined by

D ≡
K⋃

k=1

{
dk|dk = (d1

k, d
2
k, . . . d

N
k ), dn

k = (Rn
k , pn

k), Rn
k ∈ R+, pn

k ∈ R+,

N∑
n=1

Egn
k
{pn

k} ≤ P k

}
. (15)

Note that the set of strategies of each transmitter is orthogonal to the strategies of
the others and consists of a vector of rate-power pairs, with the powers satisfying the
average power constraint (4). In game G, U is the set of payoff functions with the payoff
for transmitter k defined by

ρk(d) = Eg

(
N∑

n=1

Rn
k(gk)1

{
Rn

k(gk) ≤ log

(
1 +

pn
k(gk)g

n
k

σ2 +
∑

j 6=k pn
j (gj)g

n
j

)})
(16)

= Egk

(
N∑

n=1

Rn
k(gk)Pr

{
Rn

k(gk) ≤ log

(
1 +

pn
k(gk)g

n
k

σ2 +
∑

j 6=k pn
j (gj)g

n
j

)∣∣∣∣∣gk

})
(17)
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where d = (d1,d2), 1(E) is the indicator function equal to 1 if the event E is verified
and equal to zero elsewhere. Finally, in G, P is the probability set consisting of the
probability functions of gn

k .
Similarly to the optimization problem in Section 3., the game G is not convex and a

numerical solution is too demanding. By following the same approach as in Section 3.
we look at an approximation of the solutions of game G by considering the dual game
GD ≡ (S, T ,DD,UD,P), where the set UD consists of the cost functions

CD
k (λ) = Egk

max
(Rk(gk),pk(gk))∈D

Lk(p, R, λ) (18)

with

Lk(p,R, λ) =
N∑

n=1

Rn
k(gk)Pr

{
Rn

k(gk) ≤ log

(
1 +

pn
k(gk)g

n
k

σ2 +
∑

j 6=k pn
j (gj)g

n
j

)∣∣∣∣∣gk

}

+ λk

(
P k −

∑
n

Egn
k
{pn

k}
)

, (19)

and the action set DD is based on the sets DD
k = {λk|λk > 0} . The dual game GD is

convex in λ. The Nash equilibrium is the vector λ such that

CD
k (λ∗k,λ−k

∗) ≤ CD
k (λk, λ−k

∗), ∀λk > 0 (20)
λ−k ≡ (λ1, ..., λk−1, λk+1, ..., λK). (21)

Note that, for each strategy λ, the solutions of the system given by

max
(Rk(gk),pk(gk))∈(D)

Egk
{Lk(p, R,λ)}, ∀k ∈ S. (22)

are required. These solutions are the Nash equilibria of the game G̃λ ≡ (S, T ,D, Ũ ,P),
where the set of utility functions Ũ consists of the functions Egk

{Lk(p,R,λ)}, k ∈ S.

By following the same lines as in the optimization problem, game G̃λ can be decom-
posed into N games, one for each subcarrier. Therefore, the solution of the game GD

can be decomposed into the solutions of two level of games, a game for each subcarrier
whose solutions are functions of the strategy λ, and a global game based on the solu-
tions of the games for the subcarriers. In the following, we analytically define these two
level of games.

Per Subcarrier Game – We define N independent games, one for each subcarrier,
in the parameter λ, Gn

λ ≡ (S, T n,Dn,Un
λ ,Pn), where the type set of transmitter k

is the set of possible realizations of gn
k and T n is the product of the type sets of all

transmitters. The set of actions Dn is based on the feasible strategies of user k on
subcarrier n, Dn

k ≡ (dn
k |dn

k = (Rn
k , pn

k), Rn
k , pn

k ∈ R+). The set of payoffs Un
λ is given by

qn
k (dn; λ)=Egk

{
Rn

k(gk)Pr

{
Rn

k(gk)≤ log

(
1+

pn
k(gk)g

n
k

σ2+
∑

j 6=k pn
j (gj)g

n
j

)∣∣∣∣∣gk

}
−λkp

n
k(gk)

}
(23)

Finally, the probability set Pn consists of the probability of channel attenuations gn
k for

k = 1, 2.
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Global Game – It is the game defined by Gglob ≡ (S,Dglob,UD) where the cost
function set is UD. The action set is

Dglob ≡
(

λ

∣∣∣∣∣λk ∈ R+, k = 1, 2, and P k −
N∑

n=1

Egn
k
{pn

k(gn
k ,λ)} ≥ 0

)
,

where pn
k(gn

k ,λ) are the solutions of the per subcarrier games parametric in λ. Then,
the definition of Dglob implies that only values of λ yielding solutions for Gn

λ satisfying
the constraint P k −

∑N
n=1 Egn

k
{pn

k(gn
k ,λ)} ≥ 0 are of interest for the game Gglob. The

cost functions CD
k (λ) can be expressed as

CD
k (λ) =

N∑
n=1

qn
k (d

n
(λ); λ) + λkP k k = 1, 2 (24)

with d
n
(λ) being the solution of the per subcarrier game Gn

λ. In the following subsec-
tions 4.1 and 4.2 we analyze independently the games Gn

sub and the global game Gλ,
respectively. In Section 5. we provide an algorithm to determine all the Bayesian-Nash
equilibria.

4.1 Per Subcarrier Games Gn
λ

For the sake of notation, we concatenate the power vectors of the two transmitters
to form a 4-dimensional column vector, p =

[
p11, p12, p21, p22

]T
. The same notation is

used later for channel gains and their probabilities, i.e. g =
[
g11, g12, g21, g22

]T and
γ =

[
γ11, γ12, γ21, γ22

]T
. Moreover, we assume that the number of fading states per

subcarrier per transmitter is equal to 2. Thus, S ≡ {1, 2}, the type set of transmitter
k on subcarrier n is T n ≡ {gn

k,1, g
n
k,2} and the corresponding probability set is Pn ≡

{γn
k1, γ

n
k2}. We denote the user of interest by subscript k ∈ {1, 2} and the interfering

user by subscript m ∈ {1, 2}, m 6= k.
In this section, we focus on the resource allocation of any arbitrary subcarrier. The

payoff function (23) specializes as follows

qn
k (pn,Rn;λ)=γn

k1Wn
k1(p

n,Rn,λ)+γn
k2Wn

k2(p
n,Rn,λ) (25)

with

Wn
kh(R

n,pn,λ)=Rn
kh

(
γn

m11

(
Rn

kh≤ log

(
1+

pn
khg

n
kh

σ2+pn
m1g

n
m1

))

+γn
m21

(
Rn

kh ≤ log

(
1 +

pn
khg

n
kh

σ2 + pn
m2g

n
m2

)))
−λkp

n
kh. (26)

Here, Rn
kh = Rn

k(gn
kh,λ) and pn

kh = pn
k(gn

kh,λ) are the rate and power allocated by
transmitter k on subcarrier n when the channel realization is gn

kh, and Rn and pn are the
pairs (Rn

k1, R
n
k2) and (pn

k1, p
n
k2). Throughout this section, we consider a single subcarrier

and omit the index n.
By considering the possible values of the indicator functions, (26) boils down to the

following piecewise function

Wkh(p, R, λ) =





Rkh − λkpkh
gkhpkh

eRkh−1
− σ2 ≥ gmgpmg

γmsRkh − λkpkh gm`pm` ≤ gkhpkh

eRkh−1
− σ2 ≤ gmgpmg

−λkpkh
gkhpkh

eRkh−1
− σ2 ≤ gm`pm`

(27)
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where gmgpmg = max(gm1pm1, gm2pm2) and gm`pm` = min(gm1pm1, gm2pm2). In other
words, index g and ` denote the greatest and the lowest interference, respectively.

When we aim at maximizingWkh, it is straightforward to recognize that the decision
variables pkh and Rkh are not independent, but for a certain value pkh of the transmitted
power,Wkh is maximized for Rkh = log(1+ pkhgkh

N0+pm∗gm∗
), being ∗ ∈ {g; `}. Therefore, our

problem reduces to consider the following functions in p and λ

Wkh(p,λ) =





(I) log(1 + gkhpkh

gmgpmg+σ2 )− λkpkh.

(II) γm` log(1 + gkhpkh

gm`pm`+σ2 )− λkpkh.

(III) − λkpkh.

(28)

Taking into account the dependency of the decision variables Rkh and pkh, the payoff
function (25) reduces to

qk(p,λ) = γk1Wk1(p,λ) + γk2Wk2(p, λ) (29)

Note thatWkh(p,λ) depends on pkh, the power to be allocated in the channel state gkh.
Now, we assume that the power allocation of the interfering user and consequently the
interference pairs (gm1pm1, gm2pm2) are known. Therefore, the greatest and the lowest
interference can be obtained, i.e. pmggmg and pm`gm`. Then, the best response of user
k to this interference would be given by

p̃kh = arg max
pkh

Wkh(p,λ), ∀h ∈ {1, 2} (30)

and the Nash equilibrium p of the per subcarrier game satisfies the following condition

qk(pk,pm,λ)≥qk(pk,pm,λ) ∀k,m∈{1, 2},k 6=m,∀pk∈R+. (31)

Let us denote the three branches of the function (28) byW(x)
kh where x ∈ {(I), (II), (III)}.

In addition, we denote the best response in a specific branch x by p̃
(x)
kh and by p−kh the

vector obtained from p by suppressing pkh. In the following, we define three disjoint
regions for the best response p̃kh corresponding to the three branches of the function,
i.e. R(x)

kh , x ∈ {(I), (II), (III)}. In other words, if p̃kh = arg maxpkh
Wkh(p,λ) belongs

to the region R(x)
kh , it satisfies p̃kh = arg maxpkh

W(x)
kh (p,λ).

The following disjoint regions for the best response p̃kh can be defined: (1) R(I)
kh

where W(I)
kh is the maximizing function, i.e. p̃kh = arg maxpkh

W(I)
kh (p,λ). The function

W(I)
kh ((p̃

(I)
kh ,p−kh),λ) should be positive and the following inequality should be satisfied:

W(I)
kh ((p̃

(I)
kh ,p−kh),λ) > W(II)

kh (p̃
(II)
kh ,λ); (2)R(II)

kh whereW(II)
kh is the maximizing function,

i.e. p̃kh ∈ arg maxpkh
W(II)

kh (p,λ). The functionW(II)
kh ((p̃

(II)
kh ,p−kh), λ) should be positive

and the following inequality should be satisfied: W(II)
kh ((p̃

(II)
kh , p−kh),λ) > W(I)

kh (p̃
(I)
kh ,λ);

(3)R(III)
kh where both functionsW(I)

kh ((p̃
(I)
kh ,p−kh),λ) andW(II)

kh ((p̃
(II)
kh ,p−kh),λ) are non-

positive. The maximum value of Wkh is equal to zero and p̃kh = 0.
Note that, in a single piece, the function W(x)

kh (p,λ) is a concave function of pkh.
Therefore, the argument p̃kh which maximizes Wkh(p,λ) in each piece can be obtained
directly by the first derivative. The resulting best response of player k is

p̃kh =





1
λk
− gmg

gkh
pmg − σ

gkh
∈ R(I)

kh
γm`

λk
− gm`

gkh
pm` − σ

gkh
∈ R(II)

kh

0 ∈ R(III)
kh

(32)
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Wkh((p̃kh, p−kh), λ) =





log gkh

λk(gmgpmg+σ) − 1 + λk

gkh
(gmgpmg + σ) pm ∈ R(I)

kh

log γm`gkh

λk(gm`pm`+σ) − γm` + λk

gkh
(gm`pm` + σ) pm ∈ R(II)

kh

0 pm ∈ R(III)
kh

(33)

R(I)
kh ≡{pm |̃pkh > 0,pmggmg≤ p̃khgkh

eλk p̃kh − 1
−σ, log(

pm`gm`+σ

pmggmg + σ
)−1−log γm`+γm`+

λk

gkh
(pmggmg−pm`gm`)>0}

R(II)
kh ≡{pm |̃pkh > 0,pm`gm` ≤

p̃khgkh

e
λkp̃kh

γm` − 1

−σ, log(
pm`gm`+σ

pmggmg + σ
)−1−log γm`+γm`+

λk

gkh
(pmggmg−pm`gm`)<0}

R(III)
kh ≡ {pm|pmggmg ≥ p̃khgkh

eλk p̃kh − 1
− σ, pm`gm` ≥

p̃khgkh

e
λkp̃kh

γm` − 1

− σ} (34)

M =




1 0 {0, 0, g21
g11

, g21
g11

, 0} {0, g22
g11

, 0, 0, g22
g11
}

0 1 {0, 0, g21
g12

, g21
g12

, 0} {0, g22
g12

, 0, 0, g22
g12
}

{0, g11
g21

, 0, 0, g11
g21
} {0, 0, g12

g21
, g12

g21
, 0} 1 0

{0, g11
g22

, 0, 0, g11
g22
} {0, 0, g12

g22
, g12

g22
, 0} 0 1


 (35)

The corresponding utility of user k, Wkh((p̃kh, p−kh),λ), is given by the piecewise func-
tion in (33) at the top of next page. Note that the pieces implies constraints on the
power value p̃kh specified in (34) at the top of next page.

The pieces are defined by conditions which are functions of the interfering elements
(pm`gm`, pmggmg). Now, by making use of the best responses we determine the Nash
equilibria for the per subcarrier game as the intersections of the best responses.

The following theorem provides the set of all power allocations which jointly max-
imize {W11,W12,W21,W22}. These are the Nash equilibria of the per subcarrier game
Gn

sub.

THEOREM 2 The per subcarrier game for a 2-transmitters network with the best responses
defined as (30), has a unique NE if and only if the two following conditions are satisfied: (I)
for a pair (λ1, λ2), the matrix M defined in (35) at the top of next page is full rank and (II)
the unique solution p of the system of equation

p = M−1b(λ1, λ2), (36)

with

b(λ1,λ2)=




{0, 1
λ1
− σ

g11
, γ21

λ1
− σ

g11
, 1

λ1
− σ

g11
, γ22

λ1
− σ

g11
}

{0, 1
λ1
− σ

g12
, γ21

λ12
− σ

f12
, 1

λ1
− σ

g12
, γ22

λ1
− σ

g12
}

{0, 1
λ2
− σ

g21
, γ12

λ2
− σ

g21
, 1

λ2
− σ

g21
, γ11

λ2
− σ

g21
}

{0, 1
λ2
− σ

g22
, γ12

λ2
− σ

g22
, 1

λ2
− σ

g22
, γ11

λ2
− σ

g22
}




belongs to the regions defined by

Rp =




{R(III)
11 , (R(I)

11 |A2), (R(II)
11 |A2), (R(I)

11 |Â2), (R(II)
11 |Â2)}

{R(III)
12 , (R(I)

12 |A2), (R(II)
12 |A2), (R(I)

12 |Â2), (R(II)
12 |Â2)}

{R(III)
21 , (R(I)

21 |A1), (R(II)
21 |A1), (R(I)

21 |Â1), (R(II)
21 |Â1)}

{R(III)
22 , (R(I)

22 |A1), (R(II)
22 |A1), (R(I)

22 |Â1), (R(II)
22 |Â1)}


 (37)

Here, A1 ≡ {(p11, p12)|p11g11 > p12g12} and A2 ≡ {(p21, p22)|p22g22 > p21g21}. The com-
plementary regions are denoted by Â1 and Â2. The notation {.} with several variables sug-
gests that the corresponding element takes one of the values. In addition, the notation (.|.)
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conditions the region whereto the power of user of interest belongs, to an specific order of the
interfering signal. In each row, there is a one-to-one correspondence between the values in
{.} of M , b, and Rp.

Note that (36) provides the intersection of the best responses (32).
Remark 1: The condition that matrix M is full rank implies that the matrix M

cannot be symmetric. Additionally, if rank(M) = rank(M) < 4, where M is the
matrix built by concatenating the two matrices M and b, i.e.

[
M |b]

, the system of
equations MP = b(λ1, λ2) admits infinite solutions. They are Nash equilibria if they
also belong to Rp. No NE exists if rank(M ) 6= rank(M ).

Remark 2: Taking into account the structure of vector b(λ1, λ2), in a given channel
state g =

[
g11 g12 g21 g22

]T
, the solution to system (36) can be expressed as a

function of the pair (λ1, λ2). Let us denote M−1 by A. We rewrite (36) as



p11

p12

p21

p22


 =




A1 | A2

−−− −−−
A3 | A4







b11(
1
λ1

, σ)

b12(
1
λ1

, σ)

b21(
1
λ2

, σ)

b22(
1
λ2

, σ)


 (38)

where Ai, i ∈ {1, 2, 3, 4} are 2 × 2 matrices. It can be verified that all the non-zero
elements of A1 and A4 are positive and all the non-zero elements of A2 and A3 are
negative.

PROPOSITION 1 Any non-zero power allocation of transmitter k at the Nash equilibrium of
Gn

λ is linear in the pair ( 1
λ1

, 1
λ2

). Let us assume that the solution p satisfies condition (II)
of Theorem 2 with Rp ≡ R#

p , being R#
p one of the possible regions defined by Rp. The

corresponding region for vector λ = [λ1, λ2] is referred to as R#
λ = {(λ1, λ2)|λ1 > 0, λ2 >

0,p(λ1, λ2) ∈ R#
p }. Then

p(λ1, λ2) =




α11 −β11

α12 −β12

−β21 α21

−β22 α22




[ 1
λ1
1
λ2

]
−




c11

c12

c21

c22


 σ (39)

for (λ1, λ2) ∈ R#
λ and being αi,j, βij, cij, with i, j ∈ {1, 2} positive and depending on g,γ,

and R#
p .

Let us denote the set of all possible regions Rp defined in (37) by Y . The cardinality
of the set is NY . We index the regions in an arbitrary order with a number between 1
and NY and denote the index by y.

In the rest of this section, in order to simplify the analysis, we concentrate on
a single region Ry

p, y ∈ {1, ...,NY }. The following analysis holds in general for any
arbitrary region. Hereafter, the region index y is considered as a parameter of the
functions whenever a single region is intended, e.g.. Wkh(y, p(λ),λ).

Let us assume that pm ∈ R(I)
kh . The value of the corresponding function in (33) is

Wkh(y,p(λ),λ)=log
gkh

λk(gmg(
αmg

λm
− βmg

λk
−cmgσ)+σ)

−1+
λk

gkh

(gmg(
αmg

λm

−βmg

λk

−cmgσ)+σ))
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where, based on Proposition 1, the value of pm is replaced by αmg

λm
− βmg

λk
− cmgσ. Two

properties of function Wkh(y, p(λ),λ), namely submodularity (decreasing differences)
and convexity, are presented in the following two lemmas. We will elaborated more on
these properties in the next subsection.

LEMMA 1 The continuous and twice differentiable function Wkh(λ) has decreasing differ-
ences property.

LEMMA 2 For a fix λm, the continuous and twice differentiable function Wkh(y, p(λ), λ) is
concave in λk when the pair (λk, λm) satisfies the following condition

{(λk, λm)|λk > 0, λm > 0,p(λk, λm) ≥ 0}. (40)

Note that the condition on the power p(λk, λm) in (40) is implied by physical reasons
and it is not restrictive for our study. In the following section, we consider a global
game per each possible region Rp and we discuss the existence of a Nash equilibrium
in that region.

4.2 Global Game
We consider a network wherein all subcarriers have the same channel state ditribution.
In such a network the global game utility function (24) boils down to

Ck(λ) = NLk(d
n
(λ); λ) + λkP k k = 1, 2 (41)

Let us consider the above problem in a single region Ry
p, y ∈ {1, ...,NY }. In order to

specialize all the functions as the ones of this region we add the variable y as a parameter
to all the functions, e.g. Lk(y, d

n
(λ); λ). From (41) and (29) we have

Ck(y, λ) = N
(
γk1Wk1(y, p(λ),λ) + γk2Wk2(y, p(λ), λ)

)
+ λkP k k = 1, 2 (42)

For further studies, we define the global game per region by Gy
glob ≡ (S,Dy

glob,Uy
glob)

where the cost functions Uy
glob are defined in (42) and the action set is Dy

glob ≡
(
λ|p(λ) ∈

Ry
p, λk ∈ R+, k = 1, 2

)
.

Let us define a relaxed game Gy
relaxed ≡ (S,Dy

relaxed,Uy
glob) obtained by relaxing

the condition of type W(I)
kh ≤ W(II)

kh (or W(I)
kh ≥ W (II)

kh ) and the condition of type
pm1gm1 ≥ pm2gm2 (or pm1gm1 ≤ pm2gm2) from the set Dy

glob. In other words, the action

set is Dy
relaxed ≡

(
λ|pk(λ) ≥ 0, λk ∈ R+, k = 1, 2

)
. In the following, we prove the sub-

modularity of Gy
relaxed. Based on this property the existence of a Nash equilibrium for

Gy
relaxed follows.

THEOREM 3 The two-player global game Gy
relaxed is a submodular game when the strategy

set Dy
relaxed is not empty.

PROPERTY 1 Nash equilibria in
◦
Dy

relaxed, the interior of Dy
relaxed, are all the solutions of the

system
∂Ck(y, λ)

∂λk

= 0, k = 1, 2 (43)

in
◦
Dy

relaxed.
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Table I: (Algorithm I) finding the NEs of the global game for T − PCSI
Initialize E = ∅.
for y ∈ {1, ...,NY }.

Set matrix M for Ry
p.

Initialize Ey = ∅.
if rank(M ) = 4.

compute A = M−1.
compute p(λ1, λ2).

else determine constraints on λ such that Rank(M) = Rank(M).
determine the infinite solutions of Mp = b parametric
in the unknown pkh.

endif.
compute Ck(y, λ), k = 1, 2.
find all the solutions λ of
∂Ck(y,λ)

∂λk
= 0, k = 1, 2

and collect them in the set Ey.
set Ey = Ey

⋂Dy
glob.

for each λ∗ ∈ Ey

check=1
for all λk

for all regions Rz such that Rz
p ∈ Ycond

if Ck(y, λ∗k, λ
∗
m) ≤ Ck(z, λk, λ

∗
m)

check =1.
else

check=0.
endif.

endfor.
endfor.
if check=1
E = E ⋃{(y, λ∗)}

endif.
set E = E ⋃ Ey.
endfor

endfor

Note that system (43) is a system of rational functions in λ, and all its solutions can
be determined as roots of a polynomial in λk or λm.

PROPERTY 2 The Nash equilibria of Gy
relaxed on the boundary satisfying pkh = 0, k, h ∈

{1, 2} are Nash equilibria of Gglob only if they are Nash equilibria in
◦
Dz

relaxed, the action set
interior of the game Gz

relaxed, where the regionRz
p is obtained from the regionRy

p by enforcing
pkh = 0.

Thanks to this property, we do not ignore any NE of the global game if we ignore the
equilibrium at the boundary determined by p̃kh = 0.

PROPERTY 3 Let λ∗ be a NE of Gy
relaxed corresponding to the per subcarrier game equilib-

rium p̃y(λ∗). λ∗ is a NE of Gglob if and only if (1) it belongs to the actions set of the global
game per region, Dy

glob and (2) it satisfies the following inequality

Ck(y, λ∗k, λ
∗
m) ≤ Ck(z, λk, λ

∗
m),∀λk ≥ 0, k, m = 1, 2, k 6= m,Ry

p ∈ Y ,Rz
p ∈ Ycond (44)
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Table II: (Algorithm II) Iterative algorithm for T − CCSI
initilaize (λ1, λ2)

repeate
initilize p = (p11(g11), p12(g12), p

n
21(g21), p

n
22(g22))

repeate
for k = 1 : 2
pk = arg maxEgn

k

∑2
k=1 (rk(g

n,pn)− λkp
n
k(gk))

end
until p converges

update (λ1, λ2) using subgradient method
untill (λ1, λ2) converges.

being Ycond is a subset of Y wherein the per subcarrier game strategy of transmitter m is
identical to the one’s in region Ry

p.

LEMMA 3 If a NE of Gy
glob belongs to a boundary corresponding to a condition of type

W(I)
kh ≤ W (II)

kh (or W(I)
kh ≥ W(II)

kh ) or a condition of type pm1gm1 ≥ pm2gm2 (or pm1gm1 ≤
pm2gm2) it is not a NE of Gglob.

Property III and Theorem 3 yield the following theorem.

THEOREM 4 The NEs of Gglob are all the NEs of Gy
relaxed,∀y ∈ {1, ...,NY } which (1) belong

to
◦
Dy

glob, and (2) satisfy condition (44).

5. Algorithm
The algorithm to determine the NE of the dual game GD consists in determining all
the NEs of the N relaxed games Gy

relaxed defined over the regions Ry
p ∈ Y . Then, among

them, it selects the ones which satisfy all the conditions for being NE of the global game.
Such conditions are expressed in Property I - Property IV. The algorithm is presented
in Table I. Note that the NE obtained with this algorithm are not unique. A selection
criterion has to be enforced to both transmitters in order to guarantee the convergence
of the system toward to an equilibrium. Several criteria can be enforced. As an example
we can propose the selection of the NE which maximizes the sum throughput for non
symmetric systems, i.e. systems with the same channel statistics for both transmitters.

6. Numerical results
We consider a 2-transmitter network in which the transmitters simultaneously commu-
nicate with a single receiver over 10 subcarriers. In the first set of results, the system
parameters are set as follows. The channel gains for the two transmitters are set to
(g11, g12) = (1/3, 2/3); (g21, g22) = (7/8, 1/8) and the corresponding probabilities are
(γ11, γ12) = (0.3, 0.7); (γ21, γ22) = (0.1, 0.9). Note that the gap between the two gain
levels for transmitter 2 is greater than the ones of transmitter 1. Moreover, the values
of γs indicate that for transmitter 2 the occurrence of the higher channel gain is less
probable than the lower. A reversed situation occurs for transmitter 1.

Additionally, we consider two levels of information at the transmitters: (i) T −
CCSI : complete channel side information at both transmitters, (ii) T − PCSI :
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Figure 1: Aggregate throughput vs max-
imum available power at the transmitter,
K = 2, N = 10, g1 = (1/3, 2/3), g2 =
(7/8, 1/8), γ1 = (0.3, 0.7), γ2 = (0.1, 0.9)
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Figure 2: Throughput per transmitter vs
maximum available power at the transmit-
ter, K = 2, N = 10, g1 = (1/3, 2/3), g2 =
(7/8, 1/8), γ1 = (0.3, 0.7), γ2 = (0.1, 0.9)

partial channel side information, i.e. each transmitter know its own channel state and
the statistics of the other’s links.

For T −CCSI, the problem is defined in (5). The power allocation algorithm based
on the dual method introduced in [4] is implemented. The algorithm is detailed in Table
II and assigns an initial value to the powers and the Lagrangian multipliers and iterates
until convergence to a local optimum power allocation of the constrained optimization
(5). Note that this algorithm converges into a local optimum depending on the initial
value. For T − PCSI, the distributed joint rate and power allocation is obtained via
three different algorithms. The first two algorithms are based on heuristic approaches
and the last one is the proposed algorithm in Table I. Note that, unlike Algorithm II,
Algorithm I is not iterative and will immediately provide all the NEs of the global game.

In both heuristic approaches, transmitter k = 1, 2 divides the maximum available
power P k equally among the subcarriers. Let us assume Ps = Pmax/N. In the first
approach, namely EqPow1, with the intention to avoid outage, we set the transmission
rate on channel gkh to Rkh = log(1+ Psgkh

Psgmg+σ
) where gmg = max(gm1, gm2). The value of

the average throughput is ρkh = Rkh. In the second heuristic approach, namely EqPow2,
we accept a certain level of outage. We calculate the two rates Rmg

kh = log(1+ PSgkh

Psgmg+σ2 )

and Rml
kh = log(1+ PSgkh

Psgml+σ2 ) where gml = min(gm1, gm2). We further calculate the average
throughput for both cases, i.e. ρmg

kh = Rmg
kh and ρmg

kh = γmlR
ml
kh , and we determine the

maximum. Finally, we set the rate Rkh to the one corresponding to the maximum
throughput.

Let us compare the performance of the above four algorithms. We adopt the
throughput attained by each algorithm as performance measure and we plot it versus
the maximum available power at the transmitter. The throughput here is in bits/sec.
For the T − CCSI optimization, the throughput is equal to the sum of the maximum
achievable rate over each subcarrier. The maximum available powers at both transmit-
ters are identical, i.e. P 1 = P 2 = Pmax. For the first set of simulations the noise power
is fixed at −5db and Pmax increases linearly from 0.3 W (−5db) to 28 W (15db).

Figure 1 compares the performance of Algorithm I for T −PCSI and Algorithm II
for T − CCSI separately for the two transmitters. Note that the optimization based
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on Algorithm II does not guarantee the global optimum but only a local optimum. For
Algorithm I we adopt the maximum sum throughput as selection criterion of a Nash
equilibrium.

Interestingly, the simulations show that all the NE points obtained through Algo-
rithm I are those wherein only one transmitter emits with the full power and the other
remains off. This kind of result holds also for all the sets of parameters we consider
for simulations. This suggests that Algorithm I can be simplified to finding the NEs
in which only one transmitter emits. The set of the NE and/or retained NE after the
application of a selection criterion includes the cases where transmitter k allocates the
whole power in only one channel state gkh, h = 1, 2 and/or when it divides the power
optimally among the channel gains gk1 and gk2 assuming that there is no interference
from the other transmitter.

By performing Algorithm II, Transmitters of type T−CCSI have increasing through-
put while the power budget increases.

Figure 2 shows the aggregate throughput obtained by the four algorithms. The two
heuristic algorithms have a saturating behavior at very low power levels compared to
the optimization and the game based algorithm. In other words, these algorithms are
not able to exploit the additional available resources. Interestingly, the increase of the
throughput for a NE in T − PCSI, follows closely the increase of the optimal power
allocation in the case of T − CCSI.

7. Conclusion
The joint power and rate allocation in a two-user OFDM system with a large number of
subcarriers and partial channel state information at the transmitters for slow frequency
selective fading channel is studied. A total throughput maximization problem is in-
troduced and it is proved that the dual approach yields optimum resource allocation
asymptotically as N → +∞. Although, the dual problem has linear complexity in the
number of subcarriers, the complexity is still exponential in he number of users. A
suboptimal low complexity approach is introduced in the form of 2-player game. We
defined a two-level game, namely per subcarrier games and global game, whose NEs are
obtained. The performance of such NE points is compared to the performance of the
optimum power allocation for the case of complete channel state information and the
uniform power allocation for the case of partial channel side information. Interestingly,
the simulations show that all the NEs obtained from the game are those wherein only
one transmitter emits with full power and the other remains off. Therefore, finding all
NEs of the game can be reduced to finding all optimal power allocations of one trans-
mitter assuming that there is no interference. We further adopt as selection criteria of
a NE the maximum sum throughput.
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