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Digital content production and distribution has radically changed our business models. An un-
precedented volume of supply is now on offer, whetted by the demand of millions of users from
all over the world. Since users cannot be expected to browse through millions of different items
to find what they might like, filtering has become a popular technique to connect supply and
demand: trusted users are first identified, and their opinions are then used to create recom-
mendations. In this domain, users’ trustworthiness has been measured according to one of the
following two criteria: taste similarity (i.e., “I trust those who agree with me”), or social ties
(i.e., “I trust my friends, and the people that my friends trust”). The former criterion aims at
identifying concordant users, but is subject to abuse by malicious behaviours. The latter aims
at detecting well-intentioned users, but fails to capture the natural subjectivity of tastes. In this
paper, we propose a new definition of trusted recommenders, addressing those users that are both
well-intentioned and concordant. Based on this characterisation, we propose a novel approach to
information filtering that we call dependable filtering. We describe alternative algorithms realising
this approach, and demonstrate, by means of extensive performance evaluation on a variety of
real large-scale datasets, the high degree of both accuracy and robustness they entail.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval—Information Filtering

General Terms: Algorithms, Security, Measurement

Additional Key Words and Phrases: Collaborative filtering, link analysis, profile injection, social
networks, Sybil attack

1. INTRODUCTION

In his bestseller “The Long Tail”, Chris Anderson [2006] emphasizes how digital
distribution has dramatically changed retailers’ business models. Traditional retail-
ers have a limited space they can use to stock items; market forces drive them to
carry only a limited number of items, in particular, those that have the best chance
to sell, thus losing less popular ones. With the advent of the Internet, retailers are
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not bound by the same physical constraints, so that a much wider variety of items
can be offered from the ‘long tail’. As a result, while a traditional bookshop can
hardly be expected to sell more than 100,000 different titles, an online service such
as Amazon.com can offer its costumers millions of different products. The difference
becomes even sharper now that producing the content itself is within easy reach of
almost anybody: consider the difference of choice between traditional broadcast or
cable TV and sites like YouTube.com. However, as Anderson points out, providing
people with a massive choice is detrimental, if that means they have to browse
through thousands, or even millions, of potentially relevant items. Rather, people
must be assisted in finding what they want. Filters can be used to connect supply
and demand, making it easier for users to find the particular content that they
would enjoy.

The most popular technique to realise this connection is collaborative filtering
(CF) [Herlocker et al. 1999]. Most of the work on collaborative filtering has been fo-
cusing on identifying users with similar preferences, and then recommending items
that people with similar tastes have approved. Traditional collaborative filtering
techniques have worked quite well for the mass market and under the assumption
of collaborative behaviours. However, these techniques have been subject to abuse
by malicious behaviours [Lam et al. 2006]: for example, malicious users could copy
honest users’ reviews, to gain high similarity scores with them; they could subse-
quently inject inflated reviews in the system, to trick those users into buying an
item or, vice versa, to disrupt an item’s sales.

We argue that accurate and robust filtering techniques can be devised by exploit-
ing information from a user’s social network. Throughout this paper, we will refer
to this approach as dependable filtering. The core idea is to give higher weight
to recommendations received from trusted users. To be trusted, a user must be
both well intentioned and concordant. Traditional collaborative filtering techniques
focus only on concordance (i.e., the ability to give useful - in a subjective way -
recommendations), without considering the fact that concordant users may indeed
be malicious. Rather than relying on all recommendations from similar (i.e., con-
cordant) users, our approach specifically looks for well-intentioned users (i.e., users
who are willing to provide honest recommendations) among those with whom we
have stronger social relationships. Social ties are a warranty against malicious be-
haviors: if the trust inference algorithm is robust, it would be very costly for an
attacker to build enough friendships with ‘honest’ users to effectively subvert the
system.

The robustness of CF systems has usually been measured with respect to the
proportion of malicious nodes in the network, under the assumptions that attackers
are not able to create unlimited new identities at will, and they are not aware of the
judgements expressed by others [O’Mahony et al. 2002; Burke et al. 2005; Mobasher
et al. 2006; Mobasher et al. 2007]. In our approach, both assumptions are relaxed
instead, and the impact of an attack becomes limited only by the connectivity of
malicious nodes in the social network (i.e., how many honest users they have fooled
into explicitly trusting them as honest).

The remainder of the paper is structured as follows: we begin by analysing the
current state of the art in the area of robust recommender systems (Section 2). We
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continue by presenting in Section 3 the two main concepts underpinning dependable
filtering, that is, intent and concordance. In Section 4 we discuss various alternative
realisations of dependable filtering. Section 5 describes the attacks against which
dependable filtering must defend itself. Section 6 illustrates how experiments have
been unfolded, what datasets have been used (namely, CiteSeer and Last.fm), and
what metrics have been analysed (i.e., accuracy and robustness). In Section 7 we
report on the results of an extensive simulation study, and in Section 8 we con-
clude the paper by summarising its contributions and discussing future directions
of research. Note that a preliminary version of this work introduced the depend-
able filtering philosophy and discussed an initial implementation [Dell’Amico and
Capra 2008]; this paper extends upon that, by discussing (Section 4) and exten-
sively evaluating (Section 7) three further realisations, as well as better positioning
the approach in the literature (Section 2).

2. RELATED WORK

The attack known as “shilling” (or “profile injection”) is a well known attack in
the recommender systems community [Lam and Riedl 2004; Mobasher et al. 2006]:
a group of users, be them humans or agents, enters false opinions in the system, to
push for (or to nuke) an item. The unfolding of such an attack in a collaborative
filtering setting is quite simple yet powerful: malicious users first enter opinions in
the system similar to those of honest users, with the aim to trick the CF system
into considering them good recommenders; they then start to falsely praise a new
item, which the CF system then recommends to the honest users, by way of their
past ‘similar’ opinions.
Profile injection poses a serious threat to both end-users and businesses that rely

on recommender systems. The research community has thus been very active in
trying to devise methods that are resilient against this type of attack. In Section 2.1
we review the state of the art in the area of robust recommender systems; while
quite sophisticated and highly effective in some scenarios, all such approaches make
a common assumption: that is, the number of shills is limited (or, in other words,
it is costly for an attacker to create a very high number of shills).
The research problem we address in this paper covers the case in which such an

assumption no longer holds: in online environments, where new identities can be
created with minimal cost, how can we protect a CF system against attackers who
can create an unlimited number of shills? While this problem has been left largely
unexplored in recommender systems, it has been touched upon in the area of peer-
to-peer (P2P) systems. Section 2.2 draws a comparison between profile injection in
collaborative filtering, and Sybil attacks in P2P networks, and illustrates how such
attacks can be dealt with by means of social networks, and, in particular, web-of-
trust, in such scenario. With the advent of Web 2.0 and its social networking sites,
many recommender systems have been enriched with social networking capabilities
and could thus leverage such techniques to add resilience to Sybil (shilling) attacks;
however, as we review in Section 2.3, none of these solutions has been developed
with robustness in mind. In this paper we aim to fill this gap, by proposing and
evaluating an approach to robust collaborative filtering, which we call dependable
filtering, whose main characteristic is the exploitation of social ties to bound the
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impact of attacks made by a potentially unlimited number of Sybils.

2.1 Profile Injection in Collaborative Filtering

Since shilling attacks were first illustrated [Lam and Riedl 2004], a variety of tech-
niques have been proposed to defend against them. The underpinning idea to most
approaches is that, as malicious profiles are synthetic, one could devise algorithms
that reveal such fake rating patterns, in order to then isolate them.
For example, O’Mahony et al. [2004] propose a neighbourhood filtering mecha-

nism to isolate false profiles from users’ neighbourhoods. Profiles are deemed false
if they exhibit features not commonly present in honest user profiles; however, this
type of protection can be easily defeated by slightly more sophisticated attackers
who know that such countermeasures are in place, and thus adopt less detectable
attack patterns. Zhang et al. [2006] propose another technique based on anomaly
detection, looking at the growth of a user’s profile over a short period of time, to
detect attacks early on and thus limit their impact; however, if malicious users
dilute their strategy over a longer period of time, the attack would pass unnoticed.
Statistical anomaly detection techniques have been widely studied to reveal rating

patterns of shilling attackers. Chirita et al. [2005], for example, propose an effective
detection scheme that requires no knowledge about honest users’ behaviour (i.e.,
zero-knowledge attack). Bhaumik et al. [2006] devise an attack detection scheme
that aims to identify what items may be under attack, based on rating activity
related to the item (rather than by whom). In [Sandvig et al. 2007b; Bhaumik
et al. 2007; Mobasher et al. 2007], algorithms based on a data mining technique
called association rule mining are proposed and demonstrated to be less suscep-
tible to attacks than traditional recommender system techniques (e.g., k-Nearest
Neighbour), while not compromising accuracy. Williams et al. [2007] propose a su-
pervised classification learning technique approach that identifies characteristics of
users’ profiles that malicious users could exploit to engineer the influence of their at-
tack to the collaborative system. Based on these characteristics, a classifier is then
built to distinguish attack profiles from genuine ones. Most of these approaches
assume that the filler items in an attack profile have been chosen at random; how-
ever, if the target item rating distribution is known (an assumption that is anyway
disputable), the filler items could be chosen intelligently, thus seriously magnifying
the impact of the attack [Ray and Mahanti 2008]. A variety of other model-based
techniques (e.g., clustering, feature reduction, etc.) have been designed to deal with
the scaling problem caused by the analysis of very large datasets; a beneficial side
effect of these techniques is that the impact of profile injection attacks is weakened
([Sandvig et al. 2008; Mehta and Hofmann 2008]). Common to all the above ap-
proaches is the assumption that a bounded number of fake profiles is present in the
system at any time; the robustness of all these techniques has thus been measured
in terms of number of attackers in place. Such an assumption is valid if it is costly
for an attacker to create an unlimited number of profiles; for example, this is the
case for systems that allow users to rate items only after purchase [Hurley et al.
2007]. The problem we tackle in this paper is somehow orthogonal: rather than
measuring the strength of an attack while varying the percentage of shills in the
system, we provide robustness even against an unlimited number of fake users.
The above approaches mainly rely on metrics of profile’s similarity to elect neigh-
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bours. Resnick and Sami [2007; 2008] proposed the notion of users’ reputation to
elect neighbours instead. Their algorithm, called ‘influence limiter’, quantifies users’
reputation based on their past rating history, and uses it to limit their influence
in recommendations. At the cost of discarding useful data from genuine raters,
and assuming that the number of injected profiles is below a certain threshold, the
damage done by shills gets limited. Similarly, O’Donovan and Smyth [2006] pro-
posed the notion of neighbour’s trust, computed based on the historical accuracy
of the recommendations given by that neighbour; this definition of trust is thus
heavily based on similarity, but with an added notion of ‘stability’ over time. This
idea was later expanded by Sandvig et al. [2007a], selecting neighbours based on
a more general definition of ‘neighbour utility’, encompassing both the so called
‘trust-based weighting’ (computed as above), and a ‘significance weighting’, com-
puted as size of profile overlap, to prevent neighbours with only a few commonly
rated items from dominating predictions. Although the attack model against which
such techniques have been assessed remains the same (i.e., a bounded number of
fake profiles), improvements in both accuracy and robustness, with respect to tra-
ditional recommender systems, have been reported. When presenting our model
(Section 3), we will return to the notion of trusted neighbours, but our definition of
trust will extend beyond the boundaries of similarity (i.e., the information available
from the user-rating matrix), to include information coming from the users’ social
network too.

2.2 Sybil Attacks in Peer-to-Peer Systems

A peer-to-peer (P2P) system [Schollmeier 2001] is a distributed network architec-
ture whereby participants (also called peers or entities) make a portion of their
resources (such as CPU, disk storage and network bandwidth) available to other
participants, without the need for central coordination. The functioning of a P2P
system often relies on a companion reputation system, whose goal is to provide
incentives for participants to offer, rather than simply consume, resources [Gupta
et al. 2003]. The most common attack to the reputation system of a P2P network
is the well-known ‘Sybil attack’ [Douceur 2002]: a malicious entity creates a large
number of pseudonymous entities (Sybils), and uses them to gain a disproportion-
ately large influence in the network. The cheaper the creation of fake pseudonyms,
the higher the system’s vulnerability.
Sybil attacks have striking similarities to shilling attacks, so one may wonder

how the P2P research community has addressed the problem. Many approaches in
this area rely on the use of social networks, and, in particular, web-of-trust (WoT).
For example, Cheng and Friedman [2005] build a WoT where nodes are entities
and edges represent ‘direct trust’, that is, the outcome of actual interactions. In
order to assess the reputation of a given node in the WoT, trust is propagated
along paths by means of asymmetric flow functions which are shown to be Sybil-
proof. Similarly, Yu et al. [2006] create a WoT whereby edges between nodes
indicate human-established trust relationship; while malicious users can create a
disproportionally large number of Sybils, it is very costly from them to create
trust relationships. The WoT thus exhibits an extremely small “cut” in the graph
between the Sybil nodes and the honest nodes. A technique called SybilGuard
is then proposed that exploits this property to bound the effectiveness of Sybil
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attacks.
Following the popularity of Web 2.0, an increasing number of businesses are

enriching their online recommender systems with social networking functionali-
ties [Golbeck 2008], so one may wonder whether Sybil-proof techniques developed
for P2P systems could be successfully exploited to defend collaborative filtering
too, against a potentially unlimited number of Sybils. We explore this next.

2.3 Social Networks in Collaborative Filtering

Collaborative filtering approaches compute recommendations for a given user by
first identifying those neighbours with a similar profile, then recommending items
from such profiles. Recently, user studies have highlighted how recommendations
received from similar users whom the target user knows are preferred over those
received from anonymous users, despite their high profile similarity [Bonhard and
Sasse 2006]. Social networks have thus been investigated as an alternative to the
computation of taste similarity in cases where homophily (the tendency to associate
with similar others) is high. For example, Golbeck [2005] proposes the use of trust
and social networks in a movie ratings website, and demonstrates that, for users
with opinions that are divergent from the average, the trust-based recommended
ratings are more accurate than those computed with common collaborative filtering
techniques. Similarly, Groh and Ehmig [2007] exploit the manually elicited friends
in a Munich-based social-network to predict users’ tastes (in this case, related to
night clubs), once again demonstrating higher degrees of accuracy than when using
traditional CF approaches. Avesani et al. [2005] present a recommender system for
ski mountaineers, whereby users not only express opinions about items, but also
about how much they trust each other’s opinions; in order to be part of a user’s
neighbourhood, a node in the WoT must be reachable from the target node via a
trust propagation algorithm. Massa and Avesani [2007] compare a variety of global
and local trust metrics against the Epinions.com community, demonstrating how
a local trust metric achieves higher accuracy than a global one in predicting how
much trust users should place in each other. Similarly, Zheng et al. [2007] perform
a study on a dataset from Amazon.com to assess the impact of incorporating social-
network information into CF, with the conclusion that neighbours’ selection based
on social-network information yielded remarkably more accurate results than those
obtained with non-socially-connected neighbours.
All these approaches have been developed with the aim of improving the accuracy

of collaborative filtering. None of them has looked at the problem of robustness; in-
deed, none of the trust propagation schemes they adopt is resilient to Sybil attacks.
Note that avoiding trust propagation and relying solely on the recommendations
coming from the hand-picked trusted recommenders each user elicit is not an op-
tion, as an extremely low number of items would become recommendable, causing
the recommender system to loose its appeal. The stance we take is thus different:
we exploit social networks primarily to gain robustness against Sybil attacks; as
we shall demonstrate during our experimental evaluation (Section 7.1), homophily
is also intrinsically exploited (if present) to boost accuracy, although we rely on
taste similarity as our main means to guarantee accuracy. We note that other re-
searchers have started to look at social networks as a primary means to protect
against attacks: Benevenuto et al. [2008], for example, have used a machine learn-
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ing algorithm to detect video spammers in the YouTube.com website, and found
that the algorithm works best (i.e., it detects spammers with the highest degree
of accuracy) when trained on social network data. In other words, social network
attributes are the best discriminator between legitimate users and spammers (as
opposed to users’ profiles and video attributes).

3. DEPENDABLE FILTERING - PHILOSOPHY

Dependable filtering relies on the identification of trusted recommenders. In the
scope of this work, in order to be trusted, a recommender must be both well-
intentioned and concordant. The three questions we are thus trying to answer
are: (1) how to evaluate intention (Section 3.1); (2) how to evaluate concordance
(Section 3.2); and (3) how to combine this information to find trusted recommenders
(Section 3.3).

3.1 Intent - Trust over Users

We define intent as the willingness of a user to provide honest judgements, differ-
entiating “spammers” from people who are legitimately using the system. In this
paper, we use the general term ‘judgements’ to reflect the fact that our approach
is equally applicable to ‘endorsements’ of products or content, as to ‘negative’ or
purely ‘informative’ statements (e.g., “avoid that restaurant” or “this is relaxing
music”). The well studied case of numeric rating (e.g., “this movie is worth 3 stars
out of 5”) can be seen as a more specific instance of this general framework. Note
that a judgement given with good intent should not necessarily be recommended,
since users may have different tastes and preferences; the next section will illustrate
how to find concordant users among well-intentioned ones, in order to select what
judgements to recommend.
In our approach, a well-intentioned user is one that has a high reputation. We use

the word ‘reputation’ here in its most general sense, that is, ‘the estimation in which
a person or object is held by the community or public’ (source: Oxford Dictionary).
Reputation is built over time: the more cooperative a user has been in the past, the
higher their reputation. Note that high reputation is not developed by intrinsically
honest users only: a selfish individual can be motivated to cooperate by sufficient
incentives. If users benefit enough from being cooperative, reciprocative patterns
emerge, and selfish individuals will maximize their payoff by cooperating [Axelrod
1984; Nowak and Sigmund 1998].
Finding users with high reputation is rather straightforward in centrally-managed

systems: the system acts as a trusted third party, witnessing interactions and
recording outcomes; if Alice (A) wishes to find out the reputation of Bob (B), A
can simply query the system to get the answer she is looking for. Finding nodes
with high reputation in distributed environments is not that trivial: interactions are
not witnessed by trusted third parties, so it is not possible to keep global reputation
records, as malicious users could report false outcomes of their interactions with
other peers, in order to damage their reputation.
How can we find well-intentioned users in this case? Instead of global reputation,

reciprocal trust relationships between nodes are maintained by the nodes themselves
in the form of a web of trust, that is, a directed graph where nodes are users and
an edge from A to B indicates that A trusts B (i.e., A has had direct interactions
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Fig. 1: Transitive trust propagation pattern.

with B in the past and has reported she trusts B). A ‘web of trust’ is thus an
instance of a social network where links represent assessments on the behaviour of
nodes rather than simple acquaintance.
The web of trust can be built both explicitely and implicitely: the former re-

quires users to manualy create their social network, for example, by means of a
functionality similar to the “Add as a friend” one available on sites like MySpace
or FaceBook. The latter builds the user’s social network automatically instead, for
example, by monitoring the user’s email activity, by extracting phone-book con-
tacts, or as described in ReferralWeb [Kautz et al. 1997]. We are not concerned
with the specific technique used to create the web of trust, and both implicit and
explicit techniques are viable, as long as it is costly, for malicious users, to obtain
endorsements from honest ones. For this reason, we do discourage approaches that
automatically create the web of trust purely from users’ similarity: this is because,
as we shall further discuss in the next section, the fact that two users have expressed
the same judgements says nothing about their intent.
A problem arises when A has to judge the intentions of C, with whom she has

never interacted before. In this case, it is sensible to give some trust to nodes that
are recommended by nodes that we trust (and, iteratively, to nodes trusted by these
new nodes as well). In other words, A propagates trust over intent, from A itself to
all nodes reachable from it via a directed path over the web of trust. It does so by
means of the so called transitive trust propagation pattern (Fig. 1). Usually, the
level of trust inferred over a path is lower or equal to the minimum value of trust
over the path; moreover, trust is generally dispersed along longer paths, meaning
that a “friend of a friend” is usually trusted less than a friend, and so on. Although
these properties are recurrent, the details differ between the different instances of
algorithms, as we will more concretely see in Section 4.1.
The principle of trust transitivity has been criticized since the judgement of

who deserves trust is subjective [Langheinrich 2003; Jösang 1996] (i.e., we are not
guaranteed to like all the friends of our friends). However, we argue that, unlike
concordance (discussed in the next section), benevolent intent is a concept where
subjectivity does not apply strongly: if node C has given honest judgements to
node B (i.e., B trusts C), it is likely that C will do the same with node A too
(A will trust C), as reciprocative behaviour creates an incentive for node C to be
consistently well-behaved, thus building a high reputation [Feldman et al. 2004].

3.2 Concordance - Trust Over Judgements

Reasoning about intent intuitively helps building robust filtering techniques; how-
ever, intent alone does not capture the high degree of subjectivity inherent in tastes.
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Fig. 2: Co-citation trust propagation pattern.

In order to build accurate filters, we thus enrich our definition of trusted recom-
menders with concordance. In this work, we define concordant those users who
have expressed the same judgement; since judgments are inherently subjective,
concordance is a subjective matter as well.
A sensible way of evaluating concordance is via the so called co-citation pattern.

A bipartite graph is used to represent a network of judgments: users (e.g., {A,B})
and judgments (e.g., {X,Y }) form two disjoint sets of vertexes; an edge (A,X) is
present if user A expressed the judgment X . If users A and B agree on judgment X
(i.e., there exist edges A → X and B → X), then A may consider B a concordant
user. Using the co-citation pattern (Fig. 2), she may then propagate trust over
concordance on the other judgements that B expressed.
In the previous section, we argued that users’ intent is not sufficient to warrant

trust to their judgements; the same can be said for concordant users. Let us
consider, for instance, a malicious user Mallory, wishing to trick Alice in believing
a dishonest judgement Z stating that “Mallory’s Greasy Restaurant offers very good
food”. In order to do so, Mallory could simply copy Alice’s judgements; using the
co-citation trust propagation pattern, Alice would deem Mallory a very concordant
evaluator, and would consequently believe/trust judgement Z too.
We thus call for the combination of intent and concordance in order to identify

trustworthy recommenders, that is, recommenders who are willing to provide us
with honest judgements and that we are likely to agree with.

3.3 The Combined Approach

As discussed above, using the transitivity trust propagation pattern alone is not
enough, as subjectivity of tastes, which is an intrinsic characteristic of judgments,
is lost. On the other hand, using the co-citation trust propagation pattern alone is
subject to abuse by malicious users.
We propose a novel approach that combines the strengths of the two patterns,

while circumventing their individual weaknesses: we exploit the transitivity trust
propagation pattern on the web of trust to determine well intentioned users, and
the co-citation trust propagation pattern on the network of judgments to evaluate
their concordance. By so doing, we are capable of inferring trust over judgments,
in a way that is both accurate and robust. The underpinning idea is that, in order
to be trusted, a judgment must have been expressed by a user who is both willing
(intent) and able (concordance) to give useful judgments. We call the new approach
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Fig. 3: Combined trust-propagation approach.

dependable filtering. Based on the interpretation of trust propagation over intent
and concordance we gave in the previous two sections, A can infer trust for a
judgment Y expressed by a user D (Fig. 3) if:

(1) there exists a directed path from A to D in the web of trust (e.g., A → B →
C → D);

(2) A and D both expressed at least one common judgment (e.g., X).

This is the first approach we are aware of that aims at increasing the utility of
recommendations, by exploiting information coming from the social network and
from individual’s preferences at the same time. We are aware of only two other
works where the transitivity and co-citation trust propagation patterns have been
used together, but with rather different goals and following a different philosophy:
Guha et al. [2004] propagate trust using either co-citation or transitivity in a social
network where links represent similarity in preferences; Massa and Avesani [2007],
use the transitive trust propagation pattern as an alternative to the co-citation
pattern, in order to bootstrap trust when traditional user similarity cannot be
computed, again because of lack of information. As already discussed in Section 2.3,
these approaches work well in those scenarios where there is a strong correlation
between social ties and individual preferences (homophily). On the contrary, our
approach is best suited in those scenarios where the social network is not just a
surrogate of users’ preferences. As we shall demonstrate in Section 7, when separate
information is available about the web of trust and judgments, an approach that
reasons about intent and concordance at the same time can yield the biggest increase
in the utility of recommendations, even in the absence of malign behavior. Before
moving on to evaluating the approach, we present various algorithms that can be
combined to offer alternative realisations of dependale filtering.

4. DEPENDABLE FILTERING - REALISATIONS

In the previous section, we have introduced dependable filtering from a philosophical
viewpoint, highlighting the advantages of propagating trust over both intent and
concordance, in order to give users trusted judgements. To be of practical use, an
implementation of dependable filtering would need to attribute a numeric value to
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the amount of trust a judgement deserves. This would ultimately allow users to
rank judgements and/or to filter out unreliable ones.
In this section, we first review the literature to discuss algorithms that implement

the two steps of dependable filtering (i.e., transitive trust propagation pattern and
co-citation trust propagation pattern) separately. We then focus on particular com-
binations of these algorithms that realise the whole dependable filtering approach
and that will later be the focus of our evaluation.
In describing the various algorithms, we will refer to the general case of weighted

social networks, with weights expressing the strength of social ties. The user-
judgement edges can be weighted as well, representing the level of confidence of a
user towards a given judgement. The unweighted case is just a specific instance of
the more general one, with all instances of trust relationships and/or judgements
having the same weight.

4.1 How to Evaluate Intent

The first part of our approach requires a navigation of the web of trust, in order
to compute intent values for all users, thus isolating those users that are deemed
malicious. Various algorithms exist to quantify the amount of trust that is prop-
agated transitively on a weighted social network. Properties that are common to
most algorithms include:

—Longer paths disperse trust: if there is a trust path A → . . . → B → C, then the
amount of trust inferred from A to C is not greater than the trust inferred from
A to B.

—Adding paths increases trust: if there are two paths from A to B, then the trust
that A infers for B is at least as high as if only one path was present.

Although intuitively sound, these properties alone are subject to shilling/Sybil
attacks: in scenarios where new virtual identities can be cheaply created, a malicious
node S0 could create an unlimited number of siblings S1, S2, . . ., add a web of strong
(fake) ties between S0 and its Sybil nodes Si to the social network, and exploit this
setup to gain a disproportionately large trust. To defend against this type of attack,
trust propagation algorithms should limit the amount of trust gained by any Sybil
node Si by a function of the trust that S0 has ‘legitimately’ gained.
A popular approach that guarantees the above properties is the simulation of

a random walk on the web of trust, as done by PageRank [Page et al. 1998], the
algorithm used by Google for ranking search results. The algorithm considers a
random walk over the graph of WWW pages and their links, starting from a random
node and stopping with a probability 1 − α at each step. Nodes are then ranked
according to the probability that this random walk stops at them1. Pages that
receive many incoming links, and pages that are being linked by another heavily-
linked page, are then ranked higher. Intuitively speaking, the same approach could
be used to propagate trust over a social network: the higher the number of paths
(equivalent to links) leading to a node (equivalent to a WWW page), the more
reputable the node is assumed to be (the higher it ranks).

1The most common PageRank definition corresponds to the equilibrium distribution of a random
walk, with a 1− α probability of jumping to a random node. The two definitions are equivalent.
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The standard version of PageRank misses on subjectivity, as it ranks pages re-
gardless of the evaluating node. As a consequence, any node in the system would
propagate trust to a node X in the same way. A subjective version of the algorithm
can be obtained by applying two simple changes, as already suggested in [Page et al.
1998]: first, we force the starting point of the random walk to be the evaluating
node itself (thus also avoiding walks that originate at malicious nodes); second,
rather than having the same probability of jumping to another node (as done in
the original version of PageRank), we chose such probability to be proportional to
the weight (i.e., the strength) of the edge itself. A walk starting at A will thus result
in trust propagation from A’s subjective viewpoint only. This modified version of
the original algorithm is sometimes referred to as Personalised PageRank (PPR).

The original version of PageRank is subject to Sybil attacks [Friedman and Cheng
2006]. However, with Personalised PageRank, an attacker S0 can only divert, to-
wards the Sybil region, those paths that pass through S0 itself. If the probability
that a random walk reaches S0 is p, then the cumulative value of all one-step paths
from S0 is αp; for two steps, it is α2p, and so on. Thus, the maximal total rank for
the Sybil region amounts to

∑

∞

i=0 α
ip = p

1−α
. The α parameter thus influences the

resilience to Sybil attacks: the lower the value of α, the better the robustness; if
users are very careful in who they add to their social network, then trust over intent
could be propagated further away (high α). However, if users carelessly add friends
to their social network, then ties become less indicative of actual intent, and lower
values of α (i.e., fewer propagation hops in the social network) should be preferred.
Low values of α also increase subjectivity, as they reward short paths over long
ones, while when α approaches 1 the outcome of the algorithm becomes more and
more similar, regardless of the initiator node. PageRank is proven to have a linear
convergence rate which is at least bigger than 1

α
[Haveliwala and Kamvar 2003]:

this means that lower values of α imply faster convergence. Note, however, that low
values of α may cause honest nodes who are ‘socially far-away’ not to be considered,
thus discarding potentially useful information. This may affect the accuracy of our
algorithm, with respect to traditional collaborative filtering techniques where the
full dataset is considered instead.

A pseudo-code description of Personalised PageRank can be found in Algorithm 1.
The computational complexity of the algorithm is proportional to the number of
edges in the web of trust times the number of iterations needed to make the al-
gorithm converge. Such complexity may hinder its practical applicability to very
large networks (like the linkage structure of the web), as illustrated by means of an-
alytical performance comparison [Haveliwala et al. 2003]. Research has thus been
very active in trying to reduce the computational cost of personalised searches.
Early approaches attempted to scale PPR by limiting personalisation towards a
small set of representative ‘topics’ [Haveliwala 2003], or towards a subset of ‘pop-
ular pages’ [Jeh and Widom 2003]. Later approaches attempted to achieve (near)
full personalisation, although at the price of precision: for example, Fogaras et al.
[2005] use a Monte Carlo randomisation algorithm to approximate results over the
entire web-graph; Gleich and Polito [2006] attempts to reduce the web-graph first
to the small part that indeed has a non-negligible Personalized PageRank score;
Gupta et al. [2008] enforce early termination of the recursive algorithm by guaran-
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Algorithm 1 Personalised PageRank.

Parameters: a social network G = (V,E); an evaluating node A ∈ V ; weights
such that wij is the weight of edge (i, j); a 0 < α < 1 parameter.
Returns: a vector r where ri is the score of node i.
n ⇐ size of V ; r ⇐ 0n; rA ⇐ 1
while algorithm has not converged do
r̂ ⇐ 0n; r̂A ⇐ 1− α
for all i ∈ V do
d ⇐

∑

j∈V wij

if d > 0 then
for all j such that (i, j) ∈ E do
r̂j ⇐ r̂j + α

wijri
d

end for
else
r̂A ⇐ r̂A + αri {If i is a sink we restart from A}

end if
end for
r ⇐ r̂

end while
return r

teeing a top-k answer only (i.e., only the k nodes who can best answer the query
are considered).

In this paper, we have not been concerned with scaling dependable filtering to
very large social networks; investigating the problem of scalability, with potential
exploitation of some the optmisations discussed above is on our agenda (Section 8).
Note, however, that in the domains we target, we expect the WoT to be orders
of magnitude smaller than the linkage structure of the web, thus the problem of
scalability is less pressing.

An alternative way to propagate intent over a web of trust is offered by the
calculation of the maximal flow function [Feldman et al. 2004], from the evaluator
node A to any other node S0. The use of the maximal flow guarantees that the
inferred trust for node S0 does not exceed the weight of any edge in the path from A
to X . Such metric has been shown to be “value-sybilproof” [Cheng and Friedman
2005], that is, it is not possible for a single node Si to obtain a trust value which
is higher than the one that S0 had before initiating the attack. Unfortunately, this
result is relevant only when exactly one source node and one destination node are
considered at any given time. However, in our scenario, the overall trust gained
by the set of Sybil nodes must be limited too, as dependable filtering considers
the judgements of many nodes simultaneously. Figure 4 shows a setup where an
unlimited number of Sybil nodes Si are linked ‘in parallel’ to the originator of the
attack S0: by using maximal flow on this network, each Sybil node would obtain
the same (limited) amount of trust, amounting overall to an unlimited total flow
(i.e., overall trust) for the attacking region.

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · M. Dell’Amico and L. Capra

Fig. 4: “In parallel” Sybil attack to exploit maximal flow computation.

As achieving robustness is the primary goal behind dependable filtering, all the
implementations of this approach that will be evaluated in the next section will use
Personalised PageRank (Algorithm 1) to realise intent propagation.

4.2 How to Evaluate Concordance

The second part of our approach requires the computation of users’ concordance,
based on the information available in the bipartite graph of users and judgements.

Most recommender systems discussed in the literature operate on judgements
that have been expressed as numeric ratings, explicitly assigned by users to items;
in these scenarios, the aim of the recommender system is to predict ratings for yet-
to-be-consumed items, and to recommend those items with the highest predicted
scores. However, there exist many real-life scenarios where numeric ratings are not
available, and users’ preferences over items are implicitly expressed as past inter-
actions with the system (e.g., watching a TV program, buying a book, listening
to a song). These scenarios are extremely abundant, as they do not require the
user to take any explicit feedback action. Recently, scenarios that were originally
asking users to manually enter numeric ratings have switched to non-numeric judge-
ments too: YouTube, for example, observed that their users were only rating videos
that they liked, as shown by the overwhelming majority of 5-star ratings [Rajara-
man 2009], and thus decided to drop the star-rating system in favor of a “like-
dislike” one [Kofman and Rajaraman 2010]. Recommender systems developed for
numeric-rating scenarios cannot be straightforwardly applied in this setting, and
new techniques, known in the literature as log-based [Wang et al. 2006] or implicit-
feedback [Hu et al. 2008], have started to be proposed. In realising dependable
filtering, we align ourselves with this direction of research, thus dropping the as-
sumption of having numeric ratings, and considering algorithms that can compute
recommendations based on non-numeric judgements too.

We will discuss two different families of algorithms that can be used for the pur-
pose of ranking recommendations: ranking methods and similarity-based methods,
each of which is described in more details below.
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4.2.1 Ranking Methods. Ranking algorithms realising the co-citation trust prop-
agation pattern have been widely studied and applied to the problem of ranking
Web pages. One of the most famous algorithms realising this pattern is HITS [Klein-
berg 1999]. HITS conceptually divides pages in two subsets: authorities (i.e., pages
whose content satisfy the query), and hubs (i.e., pages that link to relevant doc-
uments, that is, to authorities). Using an iterative process, HITS traverses the
linkage structure of Web documents, and computes both a hub weight and an au-
thority weight for each visited page at every step, so that:

(1) Forward Step (from hubs to authorities): the weight given to an authority is
proportional to the sum of the weights of those hubs linking to it;

(2) Backward Step (from authorities to hubs): the weight given to a hub is pro-
portional to the sum of the weights of those authorities being linked by it.

The process continues (renormalising scores at every iteration) until it converges,
and the top ranking pages, according to their authority scores, are then returned.
The principle behind HITS is that good hubs link good authorities, and good

authorities are linked by good hubs, in a mutually reinforcing way. The same prin-
ciple holds in our scenario, where we can expect concordant users to give valuable
judgements, and valuable judgements to be given by concordant users. If we map
users to hubs and judgements to authorities, we can run an HITS-like iterative
algorithm to compute concordance scores on users and to rank judgements, which
is our ultimate goal. If weights expressing concordance are present in the network
of judgements, they can be used as a multiplicative factor (i.e., a link with weight
2 acts as two separate links, each with weight 1). However, some adaptations to
HITS are necessary in order to fully realise the dependable filtering approach.
(1) Solving the TKC Problem. It has been demonstrated that the HITS algorithm

suffers from the “Tightly Knit Community” (TKC) syndrome [Lempel and Moran
2001]: if a community of users all gave the same (or very similar) judgements (thus
resulting in a highly connected bipartite graph), the concordance weight of the
community would disproportionately increase, with the judgements they express
being excessively high-ranked, even if they are not authoritative. A set of malicious
users could thus artificially create a TKC in order to artificially boost their ranking.
To solve this problem, the same technique adopted in SALSA [Lempel and Moran
2001] can be exploited: we divide the weight that each hub transfers at each forward
step by its outdegree (the sum of weights on outgoing edges), and we do the same
for authorities and their indegree at each backward step. After a forward step, the
total weight transferred from a single hub to its linked authorities is thus equal to
the weight on that hub; vice versa, after a backward step, the total weight that
is redistributed from a single authority to the set of hubs linking to it equals the
weight gained by the authority. Thus, the sum of weights remains constant at every
step, removing the need for normalization. The result is a PageRank-like random
walk on the bipartite graph of users and judgements. A very desirable side-effect
of this alteration is that users who agree on “niche” judgements are rewarded more
than those expressing only mainstream (redundant) ones: if a user, in her top 10
listenings, has both The Beatles and an unheard-of rock band, it is likely that the
unknown rock band is more indicative of her musical preferences. Moreover, an
attacker would not be rewarded for copying very popular judgements in the hope of
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raising their concordance ranking on many nodes. This is analogous, in principle,
to the TF-IDF approach used in text retrieval, where the significance of a term in a
document is determined by multiplying the number of occurrences in the document
with the inverse of the overall frequency of that term.
(2) Subjectivity of Ranking. HITS-like algorithms provide non-subjective results,

as they are independent of the user A starting the search. To cater for the sub-
jectivity required by our scenario, we initialize the algorithm so that the only hub
(user) with a non-zero weight is the reference node A itself (instead of assigning
an equal weight to any hub in the network). In so doing, the first forward step
of the algorithm only considers the judgements given by the reference node, thus
tailoring the ranking results to his/her tastes. To limit the propagation of trust to
judgements that are too dissimilar from the tastes of A, after each backward step,
the weights associated to each user are multiplied by a parameter β ∈ (0, 1), and
the trust given to A is increased by 1− β. These two changes are similar, in spirit,
to the modifications already suggested for PageRank, where we forced the random
walk to start from the very same node; the β parameter plays the same role that α
plays in PageRank, ensuring the convergence of the algorithm, with lower values of
β implying faster convergence and higher subjectivity. As observed by Huang and
Zeng [2005], this is particularly desirable in datasets which exhibit a high clustering
coefficient in the users/judgements bipartite graph.
It is worthwile to note that the TF-IDF adjustment is actually used in recom-

mender systems and it is known to enhance recommendation quality [Deshpande
and Karypis 2004]; the usage of this method can be motivated with a probabilistic
justification [Wang et al. 2006]. These recommender systems can be seen as close
relatives of our own when trust on concordance is only propagated one step (i.e.,
β → 0).

4.2.2 Similarity-based Methods. An alternative approach to ranking algorithms
is given by similarity-based approaches, that have been widely used in collaborative
filtering (CF) realisations of recommender systems. The underpinning assumption
is that users who have been like-minded in the past will most likely be so in the
future. These techniques thus compute concordance as a similarity score between
each pair of users, based on the items they have co-rated; these scores are then
used to weight recommendations. Many of them require judgements to be in the
form of numeric ratings, such as in the case of Pearson correlation and its variants;
the interested reader may find an extensive analysis and comparison between these
measures in the work of Lathia et al. [2008b]. As a baseline comparison, we will
instead consider cosine similarity, which can be directly applied also to sets of non-
numeric judgements by considering vectors of binary values where each value is
either a zero (not given) or a one (given) for each possible judgement. Despite its
simplicity, the performance results of cosine similarity have been proven consistently
good [Lathia et al. 2008a].
Note that various other techniques exist in the literature that work on the bi-

partite graph of users/judgements, mainly to improve the accuracy of collaborative
filtering when faced with severe sparsity problems. For example, Aggarwal et al.
[1999] define a graph-theoretic approach capable of providing accurate recommenda-
tions in sparse settings, and despite potential misalignments of users’ rating scales,

ACM Journal Name, Vol. V, No. N, Month 20YY.



Dependable Filtering: Philosophy and Realisations · 17

or indeed different tastes (i.e., opposite judgements). Huang et al. [2005] suggest
using link predictions algorithms, adapted from the social network domain to the
bipartite graph of users/items; Huang et al. [2004] exploit spreading activation al-
gorithms, which they extensively evaluate on e-commerce data; Huang et al. [2007]
use a graph partitioning technique which ensures high accuracy in scenarios where
a high clustering coefficient in the user/item bipartite graph exist. To enable the
comparison, in terms of recommendation accuracy, between such techniques and
dependable filtering, we have implemented a “branch and bound” algorithm be-
longing to the spreading activation model family [Huang et al. 2004], and used it
as a benchmark in Section 7.1.

4.3 Dependable Filtering Algorithms

In order to realise the Dependable Filtering philosophy, algorithms for computing
intent and concordance must be combined. As robustness is a primary concern,
we restrict our attention to PPR for computing intent. In computing concordance,
both approaches based on random walks and those based on similarity measures
are worth evaluating, giving rise to the following four combinations:

(1) PPR + RNDWALK;

(2) PPR + Cosine;

(3) PPR + [Cosine + Iter], and

(4) PPR + [Cosine + Iter + γ].

[Full Realisation 1] Dependable Filtering = PPR + RNDWALK. By
combining PPR (trust over intent) and the random walk of the modified HITS
(trust over concordance) we obtain the first full realisation of dependable filtering.
It is worth noting that HITS-like algorithms would already return a ranking of
judgements, but they do so in a way that is susceptible to attacks, as discussed in
Section 3. To add robustness to HITS-like algorithms and thus realise dependable
filtering, we incorporate users’ intent assessment as follows. To begin with, Person-
alised PageRank is run on the social network, thus obtaining a vector with nodes’
reputation, as seen by the reference node A. We then run the subjective HITS-
like algorithm (RNDWALK), so that, at every backward step, trust is redistributed
from judgements to users in a way that is proportional to users’ intent, as measured
by PPR. In other words, reputation becomes a multiplicative factor for backward
trust propagation. As discussed in Section 4.1, a Sybil coalition can obtain only a
limited amount of trust from the social network, so the amount of trust that can be
transferred to malicious nodes is limited too. The resulting pseudocode is shown
in Algorithm 2: the result of running PPR+RNDWALK is a vector t̂ containing
a trust numeric value for each judgement in J , computed considering both the in-
tent and the concordance of the users in U , as seen by the reference node A. The
normalization parameters (

∑

k∈J wuk,
∑

v∈U wvjrv) can be calculated outside the
loops, so the computational cost of the full algorithm is proportional to the number
of edges in the network of judgements times the number of iterations.
Note that RNDWALK can be seen as an instance of Personalized PageRank,

where the weight wij of the edge between users i and j is defined as the product
pij · rj , where pij is the probability that a two-step random walk on the user-
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Algorithm 2 Dependable Filtering: PPR + RNDWALK.

Parameters: a network of judgements G = (V,E), where V is the union of
the set of users U and the set of judgements J ; an evaluating node A ∈ U ;
weights such that wuj is the weight of edge (u, j); an intent ranking vector r
computed using Personalised PageRank over the web of trust, so that ru is the
intent ranking of user u; a 0 < β < 1 parameter.
Returns: a trust vector t̂ such that t̂j is the trust ranking of judgement j.
n ⇐ size of U ;m ⇐ size of J; t ⇐ 0n; tA ⇐ 1
while algorithm has not converged do
{Forward Step: from users to judgements}
t̂ ⇐ 0m

for all (u, j) ∈ E do

t̂j ⇐ t̂j +
wuj

∑

k∈J wuk

tu

end for
{Backward Step: from judgements to users}
t ⇐ 0n; tA ⇐ 1− β
for all (u, j) ∈ E do

tu ⇐ tu + β
wujru

∑

v∈U wvjrv
t̂j

end for
end while
return t̂

judgements network that starts from node i will arrive to node j, and rj is the
intent ranking of node j. In this case, the β parameter plays the role of α, and
the convergence rate for RNDWALK is thus at least 1

β
due to the convergence

properties of PPR mentioned in Section 4.1.

An advantage of performing a random walk to evaluate trust over concordance
is its ability to propagate it: if A has shared judgements with B, and B has shared
further judgements with C, HITS propagates concordance from A to C, so that
C’s judgements are considered when creating recommendations for A (obviously
discounted by the factor β). This becomes particularly important in sparse datasets,
where users share very few judgements. An objection that may be raised though
is that trust over concordance is highly subjective, and thus not transitive (as it
would be for intent instead); however, in situations where lack of data prevents
other techniques from being used, intent propagation appears to be a valuable
bootstrapping technique, as our experimental results will demonstrate.

[Full Realisation 2] Dependable Filtering = PPR + Cosine. By com-
bining PPR (trust over intent) and cosine similarity (trust over concordance) we
obtain a second realisation of dependable filtering. The overall approach would per-
form the following steps: as before, we incorporate users’ intent assessment by first
running Personalised PageRank on the social network, thus obtaining a vector with
nodes’ reputation, as seen by the reference node A. We then compute concordance
between A and any other node X as the cosine similarity on the judgements they
have expressed; the relevance (weight) of a judgement expressed by X would then
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Algorithm 3 Dependable Filtering: PPR + [Cosine + Iter].

Parameters: the set of users U ; the set of judgements J ; an evaluating node A;
an intent ranking vector r computed using Personalised PageRank over the web
of trust, so that ru is the intent ranking of user u; the number n of iterations; a
0 < β < 1 parameter.
Returns: a trust vector t̂ such that t̂[j] is the trust ranking of judgement j.
Create a matrix t such that t[u][j] = 1/k if user u has expressed judgement j,
and 0 otherwise, with k being the number of judgements expressed by u
t̂ ⇐ t[A]
while algorithm has not converged do
{Compute correlations based on similarity and intent}
for all u ∈ U do
C[u] = cos(t̂, t[u]) · ru

end for
{Update the rankings}
for all j ∈ J do
t̂[j] =

∑

u∈U t[u, j] · C[u]
end for
t̂ ⇐ t̂

|t̂|
1

{Normalize}

t̂ ⇐ (1− β) · t+ β · t̂ {Iterate}
end while
return t̂

simply be X ’s intent multiplied by its concordance. To defend against malicious
nodes that, in order to increase their influence on honest nodes, express a dispro-
portionally large number of judgements, the weight associated to a judgement is
divided by the number of judgements a node has expressed.

[Full Realisation 3] Dependable Filtering = PPR + [Cosine + Itera-
tion]. Similarity-based approaches are simpler than ranking algorithms, and have
proved to work well on dense datasets. This may not be a problem when com-
puting recommendations for users with mainstream tastes; however, as the long
tail phenomenon grows, sparsity is likely to characterise most situations, with con-
sequent impact on coverage. In these circumstances, propagation of concordance
is called upon. We thus propose a further realisation of dependable filtering that
iteratively propagates concordance values computed using cosine similarity. More
precisely: the user A starts a trust vector t such that tj is the weight she gave to
the judgement j; using the approach outlined before (realisation 2), we obtain a
new vector t̂ giving new weights to all judgements. We then iterate the algorithm
by updating the values in t, such that the new value of the t vector is equal to
(1 − β) · t + β · t̂. The β parameter plays essentially the same role it played in
the PPR+RNDWALK algorithm, with higher values of β giving more relevance to
concordance propagation. The resulting algorithm can be found in Algorithm 3.

[Full Realisation 4] Dependable Filtering = PPR + [Cosine + Iteration
+ γ]. Various improvements can be made to dependable filtering realisations based
on similarity measures. For example, in the domain of traditional recommender sys-
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Fig. 5: Weighing the correlation. The four plots show weight given to judgements (Y axis) versus
correlation (X axis). Linear weighting is the default, while threshold techniques zero out the
contributions given by users with correlation below a given threshold, which is either statically or
dynamically (kNN, kNR) computed. Our technique enhances the relevance given to highly similar
nodes, modulating this effect with the γ parameter.

tems, k-Nearest Neighbours (kNN) and k-Nearest Recommenders (kNR) algorithms
have been successfully applied. Their goal is to identify the best recommenders in
the set and rely on them only. On sparse datasets, cutting the number of recom-
menders in this way may have detrimental effects on coverage. In order to gain in
accuracy without compromising coverage, we propose the following algorithm tun-
ing: users’ correlation (computed using cosine similarity) is magnified by raising
it to the power of a positive constant γ > 1, in order to mark differences between
good and bad recommenders neatly. In so doing, judgements made by good rec-
ommenders become sensibly higher ranked than others (see Figure 5), although no
judgement made by a non-zero similarity node is ever discarded (as it would happen
for kNN or kNR). This dependable filtering algorithm would thus be the same as
the one shown in Algorithm 3, with the difference that C[u] = cos(t̂, t[u]) · ru now
becomes C[u] =

(

cos
(

t̂, t[u]
))γ

· ru.
In a preliminary version of this paper [Dell’Amico and Capra 2008], some experi-

mental results based on PPR + RNDWALK (full realisation 1) have been presented;
in this paper, we thus focus our attention more on the three new variants.

5. ATTACK MODEL

In order to evaluate our dependable filtering algorithms, we have conducted a vari-
ety of experiments on two very large real datasets. While ideal to measure accuracy,
real datasets are unsuitable to test the robustness of the algorithms while varying
threat intensity. To demonstrate the robustness of dependable filtering, we thus
have to manually inject attacks on top of real datasets, and run experiments under
different configuration settings. In this section, we analyse threat strategies, leaving
their enactment and corresponding experimental validation to Section 7.
In the scenario we are considering, the most plausible goal of an attacker would

be to alter the rating of a certain judgment X . It may do so either to trick a single
user A, or more extensively to deviate the judgments of all users, in favour of (or
against) X . Let us analyse how an attacker could achieve such goal. In the first
case, since the attacker wants to be rated by A as a very concordant user, it could
first copy the judgments that A expressed, and then add a new judgment X . In the
second case, there is no single set of judgments the attacker can copy, as each user
would have expressed different ones. We will thus model this attack by copying the
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judgments of a randomly chosen node and adding the judgment for X ; we will then
measure the ranking of X on a random node in the network. We point out that
there is no obvious way of obtaining a higher attack impact on the whole network: if
the attacker copies popular judgements, it will be deemed similar to many users, but
it will have to compete with many of them for a high ranking; if ‘niche’ judgements
are copied, a higher appeal will be obtained towards a small number of users. Also,
if an attacker copies a set of highly-correlated judgements, then this will result in
high appeal for the users that actually expressed those correlated judgements, but
not much influence on other users of the system.
The attack strategies described above model the behavior of one attacker only.

However, to increase the impact of the attack itself (i.e., to increase the ranking
of judgment X), we must also consider the case of an attacker who has the ability
to create an unlimited number of Sybil identities, all endorsing X . We assume
that each Sybil can create any number of outgoing edges in the web of trust, from
the Sybil node to any other user. They can also create any number of incoming
edges, originating within the Sybil coalition. However, what they cannot do is
create incoming edges from honest nodes at will, since obtaining trust from well-
intentioned peers is costly. It is thus reasonable to expect a low cut between the
“honest” and the “Sybil” region; the links between these two parts of the graph are
called attack edges [Yu et al. 2006]. In our experiments, we will thus create Sybil
regions that are highly interconnected internally; we will then set the amount of
incoming links from honest nodes as a parameter, and analyse the robustness of
dependable filtering algorithms (i.e., how highly ranked can X become) against it.

6. EXPERIMENT SETUP

We have evaluated dependable filtering along two dimensions: accuracy and robust-
ness against Sybil attacks. The results are reported in section 7.1 and 7.2 respec-
tively. Both experiments were conducted using data from two real datasets: the
Citeseer online scientific digital library, and the Last.fm music and social network-
ing website. The key characteristics of these datasets, the simulation parameters
and evaluation metrics are briefly summarised below, before presenting our actual
results.

6.1 The Datasets

Citeseer (http://citeseer.ist.psu.edu/oai.html). An online scientific lit-
erature digital library, containing over 750,000 documents. From this repository,
we have extracted a social network based on the co-authorship relation: if A and B
have co-authored n papers together, then an edge between the two will be added to
the social network, with weight n. The bipartite judgement network is built from
the citations instead: if a paper X cites paper Y , then an (unweighted) edge from
X to Y is added to the judgment network; the rationale is that, by citing Y from
X , the authors have expressed the judgement “Y is relevant with respect to the
topic we discuss in X”. In so doing, a paper can appear in the bipartite judgement
network as both a source node (i.e., paper making a citation) and as a destination
node (paper being cited); in this case, two different nodes will represent the same
paper in the two different roles.
We need an adjustment to make our recommendation algorithms work on this
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dataset: the PPR algorithm computes an intent trust value for authors of papers
from the social network of co-authorships; however, authors do not appear in the
judgement network, as the origin of judgements are papers. We thus need to prop-
agate trust from authors to papers; we do so in the following way: if an author A
has a trust value tA and she has authored n papers, the intent trust value prop-
agated to each paper is tA/n, in order to ensure that very prolific authors do not
have an influx on recommendations which is disproportionate to their trust value.
Furthermore, if a paper has more than one author, its overall trust is the sum of
the intent trust values coming from each of its authors. For example, if Alice has
4 papers in the dataset and her intent trust value tA (computed with PPR on the
co-authorship network) is 0.08, and Bob has an intent trust value tB = 0.15 and 3
papers in the dataset, the intent trust value for a paper co-authored by the two of
them will be tA/4 + tB/3 = 0.07.

To obtain a more manageable subset of the whole network, we isolated a highly-
clustered subset of 10,000 authors2, and took in consideration only the papers that
had them as authors. The result is a set of 182,675 different papers and 447,715
citations; 48,998 papers in the dataset received at least one citation. The average
number of connections per node is 16.75, and the average weight on each edge is
3.87.

Last.fm (http://last.fm/). A “social music” website that creates profiles of
the musical taste of its users, by tracking which songs they listen more often to
in their digital music players. As in other social networking websites, users can
explicitly create an (unweighted) social network by adding other users to their
friend-list. We gathered our social network with a breadth-first crawl of 10,000
users using the Audioscrobbler Web Services (http://www.audioscrobbler.net/
data/webservices/). We then considered the 50 most listened artists of each user,
and ended up with a total of 51,654 different artists. The judgment network was
finally created by linking users to their most listened artists (thus representing the
judgment “user A likes to listen to songs by X”), and by weighting each judgment
edge with the number of times the user listened to songs by that artist. The average
degree of the web of trust is 7.25.

6.2 Metrics

We claim that our dependable filtering algorithms are able to give high quality
recommendations to users, without falling prey to Sybil attacks. To validate this
statement, we have evaluated both accuracy and robustness as detailed below.

6.2.1 Accuracy: Ranking Hidden Judgements. When evaluating Collaborative
Filtering (CF), reference datasets are usually composed of judgments containing a
numeric value, for example, a rating in a zero to five stars scale. CF algorithms
assemble those ratings and try to predict how a user would rate a given object such
as a book or a film. In that case, evaluating accuracy is straightforward: numeric
judgments are removed from the dataset and then the CF algorithm is used to

2We obtained our Web-of-Trust (WoT) subset by starting with a random author, and then simulat-
ing a crawl that iteratively explored the node that had most co-authorships with already-crawled
authors.
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predict the missing ones. The most used measure to assess accuracy is the Mean
Absolute Error (MAE) of the prediction.
In the Last.fm and Citeseer datasets, though, only one kind of judgment can be

present for any given object, be that a paper (e.g., paper X has been referenced,
and thus is deemed relevant) or an artist (e.g., I listen to music of artist X, thus I
like X); in both cases, there is no numeric rating associated to the judgement, and
thus no numeric value to be predicted.
To assess the accuracy of dependable filtering algorithms in giving recommenda-

tions, we performed the following experiment instead on both datasets: we “hid”
one random edge A → X from the judgment network, ran our algorithms on the
modified network, and used their output (i.e., a vector of weights) to rank all
judgments from A’s viewpoint; this is equivalent to producing recommendations,
tailored to A, based on the computed ranking of judgments. Since X is a judg-
ment that A expressed (before we hid it), A obviously approves of it, so a good
recommendation engine should return X at a very high ranking. Thus, the highest
the position of X in the ranked list of judgments, the better the accuracy of the
ranking algorithm. In the Citeseer dataset, the experiment is equivalent to guessing
a missing citation from a paper; in Last.fm, it means finding the missing artist in
the top-50 chart of a user.
For recommender systems based on non-numeric judgements, it is customary

to create a training set and a test set of judgements, and then verify whether,
given a top-k list of recommendations, the items in the test set appear within the
recommendations (see e.g. Deshpande and Karypis [2004] and Huang et al. [2004]).
There is a natural mapping to our metric: for each instance of the evaluation, we
consider a single judgement to be part of the test set, with everything else being
in the training set; we then evaluate the probability that the missing judgement is
within the top k recommendations as k varies.

6.2.2 Robustness: Ranking Malicious Judgements. As discussed in Section 5, we
are interested in evaluating how much an attacker, by creating a very high number
of fake nodes, can raise the ranking of a given judgment X . We have thus designed
our experiments as follows: we create a completely connected Sybil sub-network,
and attach it to the honest part of the web of trust with a parametric number k
of attack edges; each attack edge is given a weight of 1, and the honest node to
which it connects is chosen at random. In the untargeted attack, where the goal
for the attacker is to generically raise the ranking of the malicious judgement on
any node in the network, each Sybils thus copies all judgements given by a random
peer and adds the malicious judgement (giving it the maximal weight between the
copied judgements). In the second case, the targeted attack, where the objective is
specifically to raise the ranking of the malicious judgement for a victim node, the
Sybil nodes always copy the judgements of the victim, instead of choosing peers at
random.
In our experiments, we study how the ranking of the malicious judgement varies

(on a random node in the network in the case of untargeted attacks, and on the
victim in the case of targeted attack), for different values of k.
Note that the strength of an attack on traditional CF techniques has usually been

measured in terms of the proportion of malicious nodes in the network [Mobasher
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et al. 2006]; however, the number of Sybil nodes is not relevant for our dependable
filtering algorithms based on PPR, where the impact of the attacker is limited by
the total ranking of the Sybil region. We thus not focus on the number of Sybils
and instead vary parameter k, which does influence the ranking of the Sybil region
instead.

6.3 Simulation

All results presented in the next section are given after at least 1,000 individual
instances of the experiment for each choice of dataset, algorithm, and set of param-
eters. If not otherwise mentioned, the Sybil region is composed of 100 nodes in the
malicious judgement experiment.
In both cases of hidden and malicious judgements, we are interested in studying

the ranking of those judgements using the various algorithms proposed; we did this
by studying their cumulative distribution function (CDF), that is, the probability
that the hidden/malicious judgement is found at position x or less. In addition to
plotting the CDFs, we summarize the results with table containing the percentiles:
for example, a value of x for the 10th percentile means that 10% of the times the
judgement is ranked at position x or less. An equivalent way to see the plots is as
“hit-rate” (y axis) versus length (x axis) of the recommendation list, as defined by
Deshpande and Karypis [2004].

7. RESULTS

In this section, we present the results obtained while conducting an extensive set
of simulations. First, we report on the accuracy of the various dependable filter-
ing algorithms proposed in the absence of attacks; second, we demonstrate their
resilience in the face of attacks of different magnitude.

7.1 Accuracy

7.1.1 Introducing Dependable Filtering. To evaluate the effectiveness of the de-
pendable filtering concept, we started by comparing its simplest realisation (“Re-
alisation 1 = PPR + Cosine”) with its constituents, that is, transitive trust prop-
agation over the WoT only, and co-citation trust propagation over the judgements
graph only. The former has been implemented simply as PPR on the user network,
with the so computed intent ranking equally divided among all the judgements
that that node expressed (“PPR + 1-step”). The latter has been implemented as
standard cosine similarity (“Cosine”).
To provide a baseline comparison with a known algorithm that explores the

network of judgements, we also implemented a “branch and bound” algorithm based
on spreading activation models [Chen and Ng 1999] on the judgement network3.
This algorithm has been applied to collaborative filtering in order to cope with
sparse datasets (as in our case) and it applies to non-numeric judgements [Huang
et al. 2004]. This algorithm performs a visit on the network of judgements, using a
priority policy which ensures that more “promising” (i.e., better connected to the

3To ensure a preference for shorter paths, the algorithm requires edge weights to be lower than 1.
We accomplish this by renormalizing weights so that the sum of outgoing edges from each “user”
node is 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Dependable Filtering: Philosophy and Realisations · 25

100 101 102 103 104 105

Rank

0.0

0.2

0.4

0.6

0.8

1.0

PPR + Cosine
Cosine
PPR + 1-step
Branch And Bound

100 101 102 103 104 105

Rank

0.0

0.2

0.4

0.6

0.8

1.0
PPR + Cosine
Cosine
PPR + 1-step
Branch And Bound

Algorithm
Percentiles

10 50 90

PPR + Cosine 1 4 –

Cosine 1 15 –

PPR + 1-step 2 35 3,153

Branch And Bound 6 30 2,878

Algorithm
Percentiles

10 50 90

PPR + Cosine 7 206 6,239

Cosine 8 204 7,735

PPR + 1-step 12 344 16,025

Branch And Bound 41 227 9,963

Fig. 6: Hidden judgement ranking: introducing dependable filtering on Citeseer (left) and Last.fm
(right).

origin) nodes are visited first; the recommendation accuracy obtained is known to
be in line with other algorithms based on spreading activation models. Figure 6
illustrates the results obtained.
As shown, on the Citeseer dataset (left), the median (i.e., 50th percentile) rank-

ing for the hidden judgement is as high as 35 for “PPR + 1-step” and 15 using
cosine similarity, while it drops to 4 with the dependable filtering (“PPR + Co-
sine”) approach. Of particular relevance is the observation that, even now that
malicious attacks are not considered, dependable filtering outperforms standard
CF, despite the fact that it throws away (potentially useful) information coming
from (honest) socially far-away nodes. This means that dependable filtering effec-
tively exploits knowledge gathered from the social network to counter-balance this
loss of data, and the gain is higher than the cost for datasets that, like Citeseer,
exhibit an intrinsic “homophily” property: neighbours in the social network are
more likely to share tastes. The simple PPR-based algorithm, ignoring information
about judgements, as expected performes worse. We also notice that neither Co-
sine nor PPR + Cosine are able to give a nonzero ranking for the “most difficult”
15% of judgements, while basic PPR can do this by virtue of the fact that trust
is propagated transitively to all reachable nodes in the web of trust. As we shall
demonstrate later, more advanced realisations of dependable filtering that do prop-
agate trust over concordance will remove this limitation. We also notice that, albeit
providing high coverage (i.e., being able to rank many judgements), the branch and
bound algorithm does not perform well in terms of recommendation quality. Since
recommendations are provided during the process of graph exploration, the first
ones are only based on a very limited amount of information, and this negatively
affects their quality. Our dependable filtering approach instead provides better
recommendations at the expense of a higher computational cost.
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Percentile 5 10 25 50 75 90

Citeseer 1 – 1 1 – 1 1 – 1 4 – 5 35 – 65 –

Last.fm 2 – 4 7 – 11 36 – 61 182 – 305 1,005 – 1,650 6,239 – 15,180

Table I: Minimum and maximum values for hidden judgement ranking with varying α ∈
{0.1, 0.2, . . . , 0.9}. Algorithm: PPR + Cosine.

Percentile 5 10 25 50 75 90

Citeseer 1 – 1 1 – 1 1 – 1 4 – 5 34 – 54 437 – 1,385

Last.fm 2 – 3 7 – 9 35 – 51 190 – 246 1,119 – 1,422 4,828 – 16,166

Table II: Minimum and maximum values for hidden judgement ranking with varying β ∈
{0.1, 0.2, . . . , 0.9}. Algorithm: PPR + [Cosine + Iter].

On the Last.fm dataset (Fig. 6 right), the accuracy of PPR + Cosine is roughly
equivalent to the one of Cosine alone, meaning that the loss of information due to
filtering nodes is counterbalanced by the benign effect of taking into account user
homophily in the social network. Again, recommendations produced by the Branch
And Bound algorithm are not on par with the other algorithms, especially with
respect to the highest-ranked recommendations.
The above experiments have been conducted with α = 0.5 for Citeseer and

α = 0.3 for Last.fm. In order to test the sensitivity of our algorithm to the pa-
rameter, we have performed a number of experiments, with α ∈ {0.1, 0.2, . . . , 0.9};
Table I summarizes the minimum and maximum values for the hidden judgement
ranking when changing α. As shown, accuracy is not significantly impacted by this
parameter; we have thus set α = 0.5 for Citeseer and α = 0.3 for Last.fm in the
reminder of the experiments we report on, as these values provide consistently good
accuracy independently of the choice of other parameters.

7.1.2 Iterative Trust on Concordance. The previous set of experiments shows,
on two very different datasets, that the simplest realisation of dependable filtering,
that is the PPR + Cosine algorithm, is able to perform with an accuracy which is
comparable to, or better than, the cosine-based traditional collaborative filtering
algorithm for the more mainstream/popular judgements. For more “difficult”/niche
ones, however, accuracy can drop due to the fact that not enough information is
available to compute a prediction, since both intent ranking and correlation are
needed in order to trust judgements made by other peers. This can be viewed as
akin to a “low coverage” problem in traditional CF settings. To address the issue
of coverage, we have introduced in Section 4.2 algorithms that iteratively propagate
concordance over the network of judgements. Figure 7 compares the performance
of the simple PPR + Cosine algorithm, with the two iterative realisations of de-
pendable filtering, that is, “PPR + [Cosine + Iter]” and “PPR + RNDWALK”. As
shown, iterative concordance propagation neatly increases the accuracy and cov-
erage of the harder-to-predict judgements (50-100 percentiles) on Citeseer (left).
In Last.fm (right), where coverage was not a problem, introducing iterative trust
propagation does no harm, leading to results that are better than, or comparable
to, traditional collaborative filtering across all scenarios.
Similarly to what we have done with respect to α, we show in Table II the
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Fig. 7: Hidden judgement ranking: iterative trust on concordance in Citeseer (left) and Last.fm
(right).

impact of a varying β ∈ {0.1, 0.2, . . . , 0.9} in our experiments. Once again, the
recommendation quality is not very sensitive to variations in β. We empirically
adopted a value of β = 0.3 for Citeseer and β = 0.05 for Last.fm, values which
provided us good results in term of accuracy.

7.1.3 The γ Parameter. To enhance the significance given to highly correlated
peers, we experimented with various values of γ; results are reported in Figure 8.
As shown, the impact of the parameter varies wildly depending on the dataset at
hand: in Citeseer (left), the median ranking of the hidden judgement drops from 4
to 2 when γ is raised to 10; on Last.fm (right), the effect is instead only marginally
beneficial when γ = 2, and sensibly detrimental when γ = 10. This difference is
related to the intrinsic characteristics of the datasets: a high similarity in citations
between two different research papers is a very strong indicator of similarity in the
topic discussed by the two papers; on the other hand, high similarity in the most-
listened charts appears to be less indicative, and a γ = 10 parameter will rely too
much on users with higher correlation, underestimating information coming from
others.
In Figure 9, we compare our use of the γ parameter against the more widely

known kNN technique [Herlocker et al. 1999], focusing on the Citeseer dataset
where this kind of optimization is actually beneficial. The k parameter involves
a tradeoff between number of ranked judgements (“coverage”) and quality of the
results: when k is low there is a higher recommendation quality but coverage is
smaller, because only the items rated by the nearest k neighbors can be rated;
as k grows, the benefit obtained by the for the “easier” judgements is lost. Our
method, instead, consistently provides better accuracy than kNN for any choice
of parameters, whilst not sacrificing on coverage, as no information needs to be
discarded.
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Fig. 8: Hidden judgement ranking: adding γ in Citeseer (left) and Last.fm (right).
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Fig. 9: Hidden judgement ranking: kNN and Cosine + γ on Citeseer.
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Fig. 10: Malicious judgement ranking: PPR + Cosine + Iter on Citeseer and Last.fm.

7.1.4 Lessons Learned. The experimental assessment of accuracy reported in
this section has highlighted that different realisations of dependable filtering pro-
duce different levels of accuracy that are strongly coupled with the characteristics of
the dataset used. Whilst there is no clear winner between the examined algorithms,
it distinctly emerges that dependable filtering is consistently able to give recommen-
dations with an accuracy which is comparable to, or better than, state-of-the-art
collaborative filtering techniques.
Having demonstrated that accuracy is not hindered by exploiting information

coming from the social network, we now move on to evaluate the added value that
dependable filtering brings in terms of robustness and higher resilience to attacks.

7.2 Robustness

In Figure 10, we show the results for malicious judgement ranking on our two
datasets against the PPR + Cosine + Iter algorithm. The targeted attack is more
successful in the Citeseer case; we attribute this phenomenon to the fact that cita-
tions in a paper are more predictable than the artists a Last.fm user could listen
to and thus a set of ad-hoc judgements is more likely to influence the resulting
recommendations. Besides this one effect, we have found that the results obtained
in terms of robustness are qualitatively equivalent on the various datasets we used.
In the interest of terseness, in the following we will therefore only report results for
the Last.fm dataset.

7.2.1 Attacks on CF Algorithms. As a first experiment, we assessed the impact
of the attack we devised on traditional CF algorithms. As Figure 11 illustrates, the
strength of the attack strictly depends on the number of attackers. In particular, the
untargeted attack (left) becomes strong when the number of Sybils is comparable
with honest users; however, 100 nodes (roughly 1% than the number of honest
users) are enough to always put the malicious judgements at position 1 for targeted
attacks. In scenarios where new fake identities (Sybils) can be cheaply created, CF
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Fig. 11: Malicious judgement ranking: cosine-similarity CF, with non-targeted (left) and targeted
(right) attacks.

approaches thus do not offer sufficient resilience to attacks.

7.2.2 Robustness of Dependable Filtering. Contrary to collaborative filtering,
dependable filtering is largely insensitive to the number of attackers: as Figure 12
illustrates, the ranking of the malicious judgement remains basically unchanged
when the Sybil attackers (n) vary from 100 to 1,000. Rather, the attack strength
should now be measured against the number of honest users tricked by an attacker
into trusting her, which is a much harder task than creating new fake identities.
In the reminder of this section, we thus analyse the susceptibility of the various
protocol variants to attacks where a Sybil region of n = 100 fake nodes has managed
to create k = 100 attack edges towards the honest part of the network.
Figure 13 compares the resilience of the basic “PPR + Cosine” algorithm with its

iterative propagation variants. While iterative propagation was capable of neatly
improving accuracy for niche/difficult judgements, it does so at the expense of
robustness, as there are now higher chances of traversing an attack edge, thus
sinking into the Sybil sub-region. Note however that, while the ranking of the
malicious judgement does increase, the impact of the attack is much smaller than
on CF approaches: only in 10% or less cases the malicious judgement reaches
the first position for targeted nodes (right), while the change of ranking is almost
unperceivable for non-targeted nodes (left).
The addition of γ has the effect of making the recommendations expressed by

highly correlated peers more relevant. Our results, shown in Figure 14, match the
intuition that this alteration has very little effect on the untargeted attack, where
the judgements copied by the attackers are basically chosen at random; the impact
is very strong when the attacker is creating Sybil nodes that match the profile of
the victim instead. We must point out though that this attack, while effective,
does need resources: in this case, we fooled 1% of the honest network in trusting
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Fig. 12: Malicious judgement ranking: PPR + Cosine, with non-targeted (left) and targeted
(right) attack. We vary the number k of attack edges and the number n of malicious attackers.
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Fig. 13: Malicious judgement ranking: iterative trust propagation against non-targeted (left) and
targeted (right) attack.

dishonest nodes just to change the recommendations for a single user!

7.2.3 Lessons Learned. The experimental assessment of robustness reported
above confirms that dependable filtering algorithms do increase resilience against
Sybil/ shilling attacks: in fact, unlike traditional collaborative filtering, dependable
filtering (in all its variants) is almost completely unaffected by the number of fake
nodes in the network, and is still capable of coping well with attacks that require
the attacker the (costly) creation of social ties with honest users.
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Fig. 14: Malicious judgement ranking: the PPR + [Cosine + Iter + γ] algorithm, with various
values of γ (left: non-targeted, right: targeted).

As expected, there exists a trade-off between accuracy and robustness against
this latter type of attacks, so that an understanding of the application domain is
needed to decide what dependable filtering algorithm is most suited.

8. CONCLUSION

With the advent of Web 2.0 and, most notably, its social networking services, infor-
mation about users’ social ties is becoming widely available. Inspired by approaches
that use social networks to defend peer-to-peer systems against Sybil attacks we
propose to use such information, together with similarity of tastes, to provide robust
and yet accurate recommendations.
We have called this approach dependable filtering, and we proposed a variety

of practical realisations. Recommendation quality and attack resistance vary with
the particular algorithms adopted, but various results hold. First, while known
approaches limit the impact of profile injection attacks to a maximum number
of Sybils, we have shown that dependable filtering can provide strong resilience
to Sybil/profile injection attacks, even in cases where the number of fake profiles
grows indefinitely. Second, we have shown that the accuracy of recommendations
produced is at least on par with traditional collaborative filtering algorithms, even
when attacks are not in place. Third, the like-mindedness of users that share social
links (“homophily”) can be exploited to obtain recommendations that in some
cases perform better than traditional algorithms based exclusively on judgement
similarity. A single best protocol variant does not exist among those proposed,
and a tradeoff between accuracy and robustness much be struck, based on the
characteristics of the target scenario.
We highlight three possible areas for future work. First, our datasets only contain

non-numeric judgements; this made it impossible for us to compare recommenda-
tions with a large part of the state of the art in collaborative filtering, and to
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implement and validate dependable filtering algorithms that are inspired by those
systems. By obtaining datasets containing both social networks and numeric judge-
ments, those comparisons become possible.
A second area of further development regards computational complexity of de-

pendable filtering algorithms, in order to make distributed scalable implementations
feasible. The Personalized PageRank is costly to compute, and works that aim to
reduce its cost and approximate results, such as the one mentioned in Section 4.1,
can be considered. These techniques need to be carefully examined in order to
verify whether an attacker could use the approximation of the technique at its own
advantage.
A third research area regards the cold-start problem. Users that do not have

contacts in a particular social network cannot receive recommendations from de-
pendable filtering algorithms; solutions might require the creation of pre-trusted
nodes [Kamvar et al. 2003], or ways of transporting social information between dif-
ferent social networks, as done in the FOAF project [Kruk 2004]. In the case where
social relationships have different semantics in different networks (e.g., one social
network reflects close trust bindings, while another one only represents weak social
connections), links might need to be differentiated depending on their origin.
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