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ABSTRACT

The decentralized minimum mean square error-zero forc-
ing (MMSE-ZF) receiver which can be implemented as a pre-
combining interference canceler followed by coherent combining
lends itself to a particular disjoint adaptation of the interference
canceling filter and the channel. A least mean square (LMS)
based adaptation of this receiver is presented in this paper. The
quadratic cost-function viz. the output variance is quadratic in
coefficients of the interference canceling filter leading to global
convergence. On the other hand, the channel coefficients are sep-
arately optimized based upon the interference canceler. We ex-
plore decision directed strategies to improve the performance of
the overall receiver. It is shown that significant performance gains
can be achieved if decisions are reused in a soft fashion to influ-
ence the adaptation procedure.

1. INTRODUCTION

Linear receivers [1] for DS-CDMA systems seem to offer an
alternative to the RAKE receiver in mobile cellular networks, due
to their affordable complexity compared to other schemes. Among
linear receiver more in the spirit of the RAKE receiver are thede-
centralized minimum output energy (MOE) receiver [2] [3], the
directly estimated MMSE receiver [4], and the projection receiver
[5], where, individualized single-user baseband receivers are ob-
tained for the desired user irrespective of the nature of interfering
users or their origin. No assumption is made about the structure of
the cyclostationary interference except that it is uncorrelated with
the desired user’s signal. These receivers are obtained essentially
from blind criteria exploiting the second order statistics of the re-
ceived signal anda priori information of the desired user’s timing
and spreading sequence. Batch processing complexity is usually
considered prohibitive for most real-time applications.

Of particular interest for stochastic gradient based adaptive im-
plementation are the MOE receiver of [3], where two algorithms
for the adaptation of the receiver coefficients and the channel im-
pulse response are introduced. The drawback of both is the in-
terdependence of the two entities to be adapted, which makes it
difficult to choose adaptation step sizes,�, for the two. Further-
more as pointed out there, the presence of local minima cannota
priori be dismissed. One particular implementation of the MMSE-
ZF receiver [5] which is the pre-combining interference canceler
followed by coherent combining lends itself to a particular disjoint
adaptation of the interference canceling filter and the channel. We
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shall investigate, in this paper, an LMS based adaptation of this re-
ceiver. It is shown that the quadratic cost-function viz. the estima-
tion error (co)-variance at the output of the bank of correlators is
quadratic in coefficients of the interference canceling filter leading
to guaranteedglobal convergence. The channel coefficients, on the
other hand, are separately optimized based upon the knowledge of
the interference canceler, assuming that interference has already
been done away with. We explore the particularly attractive case
of sparse channels and present a decision directed strategy to im-
prove the quality of the IC filter. It is shown that significant per-
formance gains can be achieved if decisions are reused in a soft
fashion to influence the adaptation procedure.

2. MULTIUSER DATA MODEL

Fig. 1 shows the baseband signal model. TheK users are
assumed to transmit linearly modulated signals over a linear mul-
tipath channel with additive white Gaussian noise. It is assumed
that the receiver employsM sensors to receive the mixture of sig-
nals from all users. The receiver front-end is a low-pass filter with
sufficiently large bandwidth. The continuous time signal received
at themth sensor can be written in baseband notation as

y
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whereak(n) are the transmitted symbols from the userk, T is the
common symbol period,gmk (t) is the overall channel impulse re-
sponse (including the spreading sequence, and the transmit and
receive filters) for thekth user’s signal at themth sensor, and
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Figure 1. Signal model in continuous and discrete time.



h
m

k (t), itself the convolution of the chip pulse shape and the actual
channel (assumed to comprise of discrete multipath) representing
the multipath fading environment. This can be expressed as

g
m

k (t) =
P�1X
p=0

ck(p)h
m

k (t� pTc), (2)

whereTc is the chip duration. The symbol and chip periods are
related through the processing gainP : T = PTc. Sampling the
received signalJ times the chip rate, we obtain the wide-sense
stationaryPJ � 1 vector signalym(n) at the symbol rate. It is to
be noted that the oversampling aspect (with respect to the symbol
rate) is inherent to DS-CDMA systems by their very nature, due to
the large (extra) bandwidth and the need to acquire chip-level reso-
lution. This aspect directly translates into space-time diversity and
explains the interference cancelation capability of these systems.

We consider the channel delay spread between thekth user and
all of theM sensors to be of lengthlkTc. Let nk be the chip-
delay index for thekth user:hmk (nkTc) is the first non-zeroJ� 1
chip-rate sample ofhmk (t). Let us denote byNk, the FIR duration
of gmk (t) in symbol periods. It is a function oflk andnk. We
nominate the user1 as the user of interest and assume thatn1 = 0
(synchronization to user1). LetN =

P
K

k=1Nk. The vectorized
oversampled signals atM sensors lead to a discrete-timePMJ�1
vector signal at the symbol rate that can be expressed as
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and the superscriptT denotes Hermitian transpose. For the user
of interest (user 1),g1(i) = (C1(i)
 IMJ)h1, where,h1 is the
l1MJ � 1 propagation channel vector given by
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 denotes the Kronecker product, and the matricesC 1(i) are
shown in fig. 2, where the band consists of the spreading code
(cH0 � � � c

H

P�1)
H shifted successively to the right and down by one

position. For the interfering users, we have a similar setup except
that owing to asynchrony, the band in fig. 2 is shifted downnk

chip periods and is no longer coincident with the top left edge of
the box. We denote byC 1, the concatenation of the code matrices
given above for user 1:C 1 = [CH

1 (0) : : :C
H

1 (N1� 1)]H. Let us
now examine the structure of the inter-symbol interference (ISI)
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Figure 2. The Code MatrixC1.

induced in the model due to the multipath propagation. To this
end, we stackL successivey(n) vectors in a super vector

Y L(n)=TM (GN )AN+K(L�1)(n)+V M(n), (5)

where, TL(GN ) = [TL(G1;N1 ) � � � TL(GK;NK
)]

and TL(x) is a banded block Toeplitz matrix with
L block rows and

�
x 0p�(L�1)

�
as first block row

(p is the number of rows inx), and AN+K(L�1)(n)
is the concatenation of user data vectors ordered as�
A
T

1;N1+L�1(n);A
T

2;N2+L�1(n); : : : ; : : :A
T

K;NK+L�1(n)
�T

.
We refer toTL(Gk;Nk

) as the channel convolution matrix for the
kth user.

Consider the noiseless received signal shown in fig. 3 for user
1. Due to the limited delay spread, the effect of a particular sym-
bol, a1(n � d), propagates to the nextN1 � 1 symbol periods,
rendering the channel a moving average process of orderN 1 � 1.
For the other users, the matricesTL(Gk;Nk

), wherek 6= 1, have
a similar structure and can be viewed as being superimposed over
the channel matrixTL(G1;N1 ) in fig. 3. Same applies for the data
vectorsAk;Nk+L�1(n), 8k 6= 1. The overall effect of the ISI
and the MAI is therefore that of engendering the shaded triangles
in the figure, lying within the region of interest at thenth instant,
which need to be removed fromY N1 .

2.1. Sparseness of the Channel

The propagation channel can be sparse, which corresponds to
a set of delayed echos (paths). In this case it is advantageous to
exploit the non FIR nature of the channel (zero taps). This reduces
the number of parameters to be estimated, equaling only the num-
ber of non-zero taps. If the channel is sparse, we shall consider
that the code matrixC1 includes the pulse shaping filter and is no
longer regularly banded.

3. THE MMSE-ZF/PROJECTION RECEIVER

In the multiuser problem given in (5), there exists a multitude
of possible zero-forcing constraints, ranging from zero MAI only,
or zero ISI only, to zero forcing for both MAI and ISI, which we
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Figure 3. The ISI for desired user.



shall consider here. For the purposeof our problem, let us consider
the ZF or the zero-distortion constraint, which can be written as,

F
H
T (GN ) = e

T

d , (6)

where,eTd = [0 � � � 0j

dz }| {
0 � � � 0 1 0 � � � 0j0 � � � 0], with d the ”equal-

ization” delay for the desired user.
Considering all user symbolsak(n) to be uncorrelated, the

received signal covariance matrix can be written asRY Y =
�
2
aT T

H + �
2
vI, whereT replacesT (GN ) to simplify the no-

tation. The MMSE-ZF receiver is by definition the solution to the
MMSE criterion under the ZF constraint, which can be written as

min
F :FHT =eT

d

F
H
RY Y F = �

2
a + min

F :FHT =eT
d

F
H
RV V F

) min
F :FHT =eT

d

F
H
F (7)

Let us further express the receiver vectorF as

F = T F 1 + T
?
F 2, (8)

where,T ? spans the orthogonal complement ofT and satisfies
PT? = P

?

T , wherePX = X(XH
X)�1

X
H is the projection

operator onto the column space of the matrix X. From the ZF con-
straint,FH

T = e
T

d = F
H

1 T
H
T , and therefore,

F 1 = (T H
T )�1

ed. (9)

Hence,F = T (T H
T )�1

ed + T
?
F 2, whereF 2 is the uncon-

strained part which becomes zero upon solving the minimization
problem in (7). ThusF = T (T H

T )�1
ed, and we can write the

MMSE-ZF criterion as:

min
F :FHT=eT

d

F
H
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2
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d
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T
H
T

��1

ed.
(10)

The ZF solution in the noiseless case gives the distortionless re-
sponse for the desired user’s signal. It was shown in [5], that the
MMSE-ZF receiver could be obtained by doing unbiased MOE on
noiseless (denoised) statistics.

4. CONNECTIONS BETWEEN LINEAR RECEIVERS

We can classify the unbiased linear MOE1 receiver in terms of
the other optimization criteria as indicated in the following propo-
sition. It was shown in [5] that the minimum mean-squared error
(MMSE), and the minimum output energy (MOE) are interchange-
able criteria under the unbiased constraint, and are equivalent to
the maximization of the output SINR.

arg min
F :FH eg1=1

MSEunbiased = arg min
F :FH eg1=1

OE = arg max
F

SINR,
(11)

1a derivative of the minimum variance distortionless response (MVDR)
method, and a particular instance of the linearly constrained minimum-
variance (LCMV) criterion

4.1. Unbiased MOE via the Generalized Sidelobe Canceler

The generalized sidelobe canceler (GSC) [6], is a particular
implementation of the LCMV beamformer. Hence, the unbiased
MOE criterion, which itself is a particular instance of the LCMV
approach can be implemented in the GSC fashion as elucidated in
the following. Let us denote by

T 1=
�
0 C

H

1 0

�

 IMJ , & T 2=

2
4 I 0 0

0 C
?
1 0

0 0 I

3
5
 IMJ ,

(12)

the partial signature of the desired user and its orthogonal comple-
ment employed, respectively, in the upper and lower branches of
the GSC, as shown in fig. 4.C?H

1 is the orthogonal complement
ofC1, the tall code matrix given in section 2 (C?

1 C1 = 0). Then,
C
H

1 Y N1 = T 1Y L and the matrixT 2 acts as a blocking trans-
formation for all components of the signal of interest. Note that
P
T
H

1
+ P

T
H

2
= I, where,PX is the projection operator (projec-

tion on the column space ofX). Then the LCMV problem can be
written as

min
F :FHTH1 =(hH1 h1)

�1hH1

F
H
R
d

Y Y F

= min
F : FHTH1 h1 = 1

FHTH1 h?1 = 0

F
H
R
d

Y Y F , (13)

where,
�
h1 h

?
1

�
is a square non-singular matrix, andhH1 h

?
1 = 0.

Note that in the LCMV problem (GSC formulation) there is a num-
ber of constraints to be satisfied. However, imposing the second
set of constraints, namelyF H

T
H

1 h
?
1 = 0 has no consequence

because the criterion automatically leads to their satisfaction once,
spanfRd

Y Y g \ spanfTH

1 g = spanfTH

1 h1g, i.e., when the in-
tersection of the signal subspace and the subspace spanned by the
columns ofT H

1 is one dimensional.
The matrixT 1 is nothing but a bank of correlators matched to

the l1 delayed multipath components of user1’s code sequence.
Note that the main branch in fig. 4 by itself gives an unbiased re-
sponse for the desired symbol,a1(n� d), and corresponds to the
(normalized) coherent RAKE receiver. For the rest, we have an es-
timation problem, which can be solved in the least squares sense,
for some matrixQ. This interpretation of the GSC corresponds to
the pre-combining (or pathwise) interference (ISI and MAI) can-
celing approach (see [5] and references therein).

The vector of estimation errors is given by

Z(n) = [T 1 �QT 2]Y L(n). (14)

Since the goal is to minimize the estimation error variances, or in
other words, estimate the interference term in the upper branch as
closely as possible fromT 2Y L(n), the interference cancelation
problem settles down to minimization of the trace of the estimation
error covariance matrixRZZ for a matrix filterQ, which results
in

Q =
�
T 1R

d
T
H

2

��
T 2R

d
T
H

2

��1

, (15)

and where,Rd is the noiseless (denoised) data covariance matrix,
RY Y , with the subscript removed for convenience. The output
Z(n) can directly be processed by a multichannel matched filter
to get the symbol estimate,â1(n� d), the data for the user1.

â1(n� d) =
1

egH1 eg1F
H
Y L(n) =

1

egH1 eg1h
H

1 (T 1 �QT 2)Y L(n)
(16)



The covariance matrix of the prediction errors is then given by
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Figure 4. GSC implementation of the MMSE-ZF receiver.
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From the above structure of the interference canceler, we observe
that whenT 1 (Y L � eg1a1(n)) can be perfectly estimated from
T 2Y L, the matrixRZZ is rank-1 in the noiseless case! Using this
fact, the desired user channel can be obtained (up to a scale factor)
as the maximum eigenvector of the matrixRZZ, sinceZ(n) =
(CH

1 C1)
 IMJh1~a1(n�d). It can further be shown easily that
if T 2 = T

?
1 , then

T 1R
�1
Y Y
T
H

1 =
�
T 1T

H

1

�
R
�1
ZZ

�
T 1T

H

1

�
, (18)

where,RZZ is given by (17), andQ, given by (14), is opti-
mized to minimize the estimation error variance.Rd replaces
RY Y in the above developments. From this, we can obtain the
propagation channel estimate for the desired user,ĥ1 as ĥ1 =

Vmaxf
�
T 1T

H

1

��1
RZZ

�
T 1T

H

1

��1
g. The above structure re-

sults in perfect interference cancelation (both ISI and MAI) in the
noiseless case, the evidence of which is the rank-1 estimation er-
ror covariance matrix, and a consequentdistortionless response for
the desired user.

5. ADAPTIVE IMPLEMENTATIONS

The GSC formulation of the MMSE-ZF as given in section 4.1,
converts the constrained optimization problem (unbiasedness con-
straint) into an unconstrained one [6]. [3] proposes to adapt the
MOE problem in a GSC fashion by splitting it into two optimiza-
tion problems, one for the interference canceling filter, and the
other for the channel impulse response,h1. The problem with
such an approach is that the problem becomes that of joint opti-
mization thus rendering it susceptible of falling into local minima.
The alternative formulation is that of aprecombining interference
canceler, as shown in fig. 4. The interference canceler operates
independently of the channel response. The optimization problem
however becomes that of optimizing for a matrix filter,Q. The
entity that needs to be optimized is the trace ofRZZ.

One situation of interest is that of sparse channels whereT 1

contains a small number of non-zero rows, highlighting the fact
that only these directions of the correlator bank carry the signal
plus interference energy. Note thatT 1 no longer contains the code,
but it also contains the contribution of the pulse shaping filter, so
that the vectorh1 is a short vector with the non-zero elements of
the sparsechannel. If the corresponding rows ofQ can be assumed
to operate independently so as to cancel interference in these di-
rections, they can be adapted independently. Let us denote byq

i

andti, theith row of the matrixQ andT 1 respectively, then the
cost function to be optimized becomes

Zi = R
ii

ZZ = (ti � qiT 2)R
d (ti � qiT 2)

H . (19)

where,i 2 f1; : : : ; l1g, andl1 is the number of non-zero taps of
the sparse channel.Zi is quadratic inq

i
, and can be optimized

in the LMS or the NLMS fashion. It can be noticed that while
minimizingZi, its contribution to the trace ofRZZ also gets min-
imized. Same applies for otherq

i
’s. Then, the update equation

will be of the from

q
i
(n+ 1) = q

i
(n)� �qrq�Zi, (20)

where,�q is the step size for the LMS algorithm [7]. The deriva-
tive (the gradient) can be computed as

rq�Zi = �T 2R
d
t
H

i + T 2R
d
q
H

i
, (21)

leading to the recursive update equation

q
i
(n+ 1) = q

i
(n)� �q

h
T 2R

d
q
H

i
(n)� T 2R

d
t
H

i

i
.

(22)

As RZZ is rank-1 in the batch processing mode, the adaptive
search for path coefficientsh1 can then be based upon the max-
imization of the signal variance,�2a(h

H

1 T 1T
H

1 h1)=keg1k at the
output of the maximum ratio combiner, resulting in a recursive
update as

hi(n+ 1) = hi(n) + �h [T 1 �Q(n)T 2]R
d [T 1 �Q(n)T 2]

H .
(23)

In the above adaptive algorithm,Rd is approximated by
Y (n)Y (n)H � b�2vI, whereb�2v accounts for the denoising op-
eration.

5.1. Hard/Soft Decision Directed Mode

The adaptive interference cancelation schemecan be adapted in
a decision directed mode to improve the quality of the filterQ(n).
The presence of the signal term in the output of correlators,T 1,
perturbs the estimation of the IC filters. The hard/soft decision-
directed mechanism works by examining at the scaled soft outputs
â(n � d) of the receiver (see fig 4). If̂a(n � d) � �, then an
update is made by subtracting the contribution of the desired term
asT 1(Y � eg1â(n � d)) from the correlator outputs. Otherwise
no update is made. Several more sophisticated schemes are also
possible. For example the update can always be made while sub-
tracting the soft output rather than the hard decision.

5.2. Delay Tracking

In the above framework,T 1 is assumed to be fixed. How-
ever, the discrete path components of the sparse channel tend to
drift from their nominal positions.T2 is no longer a strict signal
blocker if it is obtained fromT 1 as the orthogonal complement.
P
?

TH
1

qualifies as a blocking transformation. An update of theT 1

can be when oversampling the received signal w.r.t. the chip rate
is employed. Considering an oversampled version of the pulse-
shaping filter,p(t), we can write as

p(k
Tc

J
) � p(

kTc

J
) + � _p(

kTc

J
), (24)

where _p(t) is the first derivative of the pulse shaping filter, and� is
a continuous time delay. Hence the positions inT 1 can be updated
as discrete shifts every time a decision is made based upon the
values ofp(kTc=J) and _p(kTc=J) for a givenk.
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6. NUMERICAL EXAMPLES

We considerK = 5 asynchronous users in the system with a
spreading factor ofP = 16. The propagation channel (excluding
the transmit and receive filters, which is a raised-cosine pulse, and
the effect of which are absorbed in the code convolution matrix
C1) for thekth user is modeled as a sparse channelwithlk discrete
paths spanning a delay spread of8� 21 chip periods for different
k’s. Mild near-far conditions prevail in that the interfering users
are randomly (ranging from8 to 10 dB) stronger than the user of
interest.

In general the normalized LMS (NLMS) results in better con-
vergence due to the gradient noise amplification problem in the
original LMS algorithm [7]. We shall however present the LMS
adapted version in these simulations. Fig. 5 shows the normalized
mean-square error (NMSE)2 of adaptive channel estimation al-
gorithm. We start with random initialization for the channel taps
since the interference canceling filter does not need path ampli-
tudes and phases. Path delays are assumed to be known in these
examples.

In fig. 6, we show the convergence of the LMS adaptive algo-
rithm [7] for the two different step sizes. Convergence is guaran-
teed in all cases due to the quadratic nature of the cost function,
once the step size,� lies in the region of interest.

In fig. 7, we show the performance of the decision-directed al-
gorithm. It is seen that the blind algorithm suffers from a satura-
tion effect due to the presence of the desired signal component in
the estimation of the interference canceling filter, while removing
this over reliable decisions gives significant performance gains.
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Figure 7. Output SINR for blind and decision-directed al-
gorithmsK = 6, P = 16, SNR=25 dB.

7. CONCLUSIONS

The adaptive receiver presented above distinguishes clearly be-
tween two issues, namely channel identification and receiver adap-
tation, i.e., the interference cancelingpart of the receiver operate in
a fashion that it attempts to cancel the interference independently
of the channel parameters apart from the delay. In this respect, it
qualifies as a pre-combining interference canceler. The disjoint-
ness of the two estimation algorithms leads to global convergence
of the two once the system is identifiable in the batch mode. It
was also seen that the decision-directed mode of operation results
in much improved performance over the blind method. It must
however be mentioned that the quality of the blocking transforma-
tion is crucial in all cases. If the desired signal component leaks
through this branch, performance of the algorithm greatly suffers.
Delay tracking is therefore necessary for operation in fading envi-
ronments.

Simulation examples are presented in the case of joint channel
and MOE receiver optimization in [8]. It appears that the choice
of step sizes (there are two) in the joint optimization problem is
a complicated issue. We tried to compare the performance of our
approach with the joint optimization one of [8], however, no defi-
nite range of step sizes could be obtained for convergence for the
latter case.
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