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Abstract—This paper presents a dynamic power management
strategy for the iterative decoding of low-density parity-check
(LDPC) codes. We propose an online algorithm for adjusting the
operation of a power manageable decoder. Decision making is
based upon the monitoring of a convergence metric independent
from the message computation kernel. Furthermore we analyze
the feasibility of a VLSI implementation for such algorithm. Up
to 54% savings in energy were achieved with a relatively low loss
on error-correcting performance.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are among the

best known error-correcting codes because of their capacity-

approaching performance. These codes have been adopted by

various wired and wireless communication standards. This

type of codes can be decoded by an iterative message-passing

algorithm. Iterations are executed until a stopping criterion

is satisfied. In practice the decoder is set to run for a ma-

ximum number of iterations such that a timing deadline is

met for the worst case scenario. It is typical for codewords

to converge well before the maximum number of iterations,

representing a nonuniform workload. When targeting wireless

communications, a battery-powered mobile terminal requires

ultra-low power consumption. In this paper we argue that by

monitoring the dynamics of the decoding process it should

be possible to control a power-manageable decoder such that

energy efficiency is improved.

Previous works on energy efficiency for LDPC decoders

have concentrated on stopping criteria ([2] and the references

therein) in order to detect early an undecodable block and

avoid unnecessary decoder operation. In [3] and [4] the authors

proposed a preprocessing stage that estimates the required

decoding effort and proceed to adjust the system power mode

(voltage and frequency) in order to have a constant decoding-

time.

We propose a dynamic power management policy that

looks for opportunities to slowdown the system in order to

reclaim the slack due to a codeword that converges before

the task deadline. The policy is based upon the monitoring

of a convergence metric, namely the number of satisfied

parity-check constraints at each decoding iteration. The rest

of the paper is organized as follows: Section II summarizes

LDPC codes and their iterative decoding. In Section III

dynamic power management and the proposed control policy

are explained, along with implementation details. Section IV

shows the experimental setup and results for implementation
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Fig. 1. LDPC code graph example

of the proposed policy on a 65nm CMOS process. Section V

concludes the paper.

II. LDPC CODES

LDPC codes are linear block codes defined by a sparse

parity-check matrix HM×N . This matrix defines M parity-

check constraints among N codeword symbols. A codeword

c satisfies the condition:

H · cT = S = 0 , (1)

where S is the syndrome. Furthermore the code can be

represented by a bipartite graph in which rows of H are

mapped to check nodes and columns to variable nodes. The

nonzero elements in H define the connectivity between the

nodes. Figure 1 shows an example code graph representation.

LDPC codes may be decoded by an iterative message-

passing algorithm [1] where check nodes and variable nodes

exchange extrinsic reliability messages associated with each

codeword symbol. The operation of each node is independent

and in general can be executed in parallel with other nodes.

This characteristic enables the use of different scheduling

techniques that impact the convergence speed of the decoding

task. The expression in (1) is evaluated to indicate when con-

vergence has been achieved and is used to stop the decoding

task. Otherwise a maximum number of iterations is completed.

The processing complexity of the decoding task resides in

the operation performed at the check nodes of the code graph,

indeed it is in here where the tradeoff between error-correcting

performance and complexity takes place. Optimal message

computation is performed by the Sum-Product algorithm [5] at

the expense of high complexity. The Min-Sum (MS) algorithm

[6] performs a suboptimal message computation at reduced

complexity. Several correction methods have been proposed

to recover the error-correcting performance loss of the MS

algorithm by downscaling the messages computed using both
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Fig. 2. Example power/slowdown scenario

a normalization (Normalized-MS) and an offset value (Offset-

MS), [6]. In [7] a variant of the MS algorithm with quasi-

optimal error-correcting performance is introduced, the Self-

Corrected MS (SCMS) algorithm. The author defines variable-

to-check node messages as either reliable or unreliable and

proposes to eliminate the unreliable ones after each decoding

iteration.

III. DYNAMIC POWER MANAGEMENT

Dynamic power management (DPM) is a technique used

to achieve energy-efficient operation on an electronic system.

Several techniques exist to achieve this at different levels

(system, gate levels) such as sleep, slowdown modes and clock

gating. To apply DPM usually two premises are considered:

the system experiences a nonuniform workload and it is

possible to certain degree to predict the fluctuations of the

workload.

A typical situation for iterative decoding is that operation is

carried out on a high power mode, dimensioned to handle the

worst case when the maximum number of iterations should

be completed before a timing deadline. Figure 2 shows the

power consumption of the same decoding task carried out at

a high and low power mode. The area of each curve is the

total energy spent. Depending upon the relationship among

the power levels and the slowdown factor energy efficiency

may be improved by reclaiming the slack left when running

at high power.

A. Problem Definition

We consider an LDPC decoder to be a power manageable

CMOS component governed by a power controller. The set

P = {P0, P1, . . . , Pn−1} defines n power modes where, [3]:

Pk = P sw
k + P sc

k + P leak
k

= βCLV 2
k fk + ISCVk + IleakVk (2)

P sw
k is the power due to the switching activity when charg-

ing and discharging the load capacitance CL with switching

factor β. P sc
k is the power due to a short-circuit current

when both NMOS and PMOS sections of the circuit are

switched. P leak
k is the power due to the leakage current Ileak

(subthreshold plus reverse bias junction current), a technology

dependent parameter. Each power mode Pk operates at a

particular voltage level Vk and frequency fk. In the following

we assume that the first state P0 consumes the most power,

subsequent states consume each less power than the previous

one. Given the quadratic relation between power and voltage

and the linear relation between power and frequency, it is

possible to slowdown the system (consequently augmenting

processing time) such that the total energy expenditure is

reduced. This is the principle behind the well-known concept

of dynamic voltage and frequency scaling (DVFS), [8].

Given a workload of I iterations to be executed before a

timing deadline d, we wish to find a subset of power modes

P ′ ⊆ P such that the total energy is minimized. As shown

in [9] we assume the power function of each mode to be

convex, such that it is more energy efficient to slow down a

task execution. If an iteration k is executed in time tk through

a power mode Pk, the problem is stated as finding the optimal

P ′ that minimizes the total energy spent:

minimize
I∑

k

Pktk , Pk ∈ P ′

subject to

I∑

k

tk ≤ d (3)

B. Control Policy

An offline algorithm finds the optimal power mode to satisfy

(3) assuming the total required number of decoding iterations

is known. An online algorithm attempts to find an optimal

power mode based on information available only at runtime.

In order to formulate the online strategy it is necessary to

look into the dynamics of the decoding process. The set M of

parity-check constraints that must be satisfied after a decoding

iteration can be used as a convergence metric in order to

monitor the success or failure of the decoding task.

In [2] the number of satisfied parity-check constraints was

proposed as a decision metric for a stopping criterion of the

iterative decoding. Given the syndrome S = [s1 s2 . . . sM ]T

the number of satisfied constraints at iteration i is:

N i
spc = M −

M∑

m=1

sm (4)

We propose to use the complement of this metric as a

means to predict the decoding effort at runtime after each

decoding iteration. Once the remaining number of iterations is

known a power mode that minimizes energy expenditure and

respects the task deadline may be selected. Taking Nspc as a

convergence metric has the benefit that it is independent from

the decoding algorithm used.

Figure 3 shows the selected convergence metric (total un-

satisfied constraints)

ǫi =
M∑

m=1

sm (5)

per decoding iteration for an instance of an undecodable

and a decodable block. This corresponds to the decoding of

the code of length 1944 and rate 1/2 defined in [10], simulated

through the AWGN channel (Eb/N0 = 1dB) with QPSK

modulation and a maximum of 60 iterations. It is observed

that this metric fluctuates around a mean value for undecodable
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Fig. 3. Convergence metric for a decodable/undecodable block

blocks, but for decodable codewords it fluctuates for a period

of time tc and later enters a convergence mode characterized

by a monotonic decreasing behavior. We refer to the period tc
as a critical period since no decision can be made regarding

the convergence of the code. Based upon this behavior we

propose the online strategy outlined in algorithm 1.

The algorithm essentially starts the system on the highest

power mode since it tries to exit the critical period as fast as

possible. During this period there is uncertainty with respect

to the convergence of the block and indeed the energy cap

Ec represents a stopping criterion. As such, because of this

there could be false alarms, i.e. codewords that would have

been succesfully decoded in the absence of such criterion.

This translates into a loss on error-correction performance.

Convergence is detected when the last q values of the metric

ǫi are strictly decreasing. If the consumed energy is below

the energy cap the convergence metric is used to estimate

the remaining decoding effort. Equation (6) shows a function

based on the w last values of the metric, where prediction

functions of different degrees of complexity may be used. A

linear approximation provides the simplest prediction function.

Figure 4 shows how the two last values of the metric are used

to approximate the convergence region to a line segment.

Given the two latest values of the convergence metric ǫn

and ǫn+1 (at iterations n and n + 1 respectively) the total

estimated decoding iterations Î is given by:

Î = n −
ǫn

ǫn+1 − ǫn

(8)

Overheads associated with the switching between power

modes (e.g. transition times and energy cost) are not explicitly

mentioned in algorithm 1 for simplicity.

The offline algorithm can perform a decoding task with

a minimum energy expenditure by finding the proper power

mode that slows down the system such that the timing con-

1Overheads associated with switching between power modes are not
explicitly noted.

Algorithm 1 Online Power Management

i: current decoding iteration, i ∈ {1, 2, . . . , Imax}
ǫi: total unsatisfied constraints at iteration i
1. Decoding starts, i = 1

Set power mode P0

2. Critical section

for j = 1 to Imax do

if (P0t0i ≥ Ec) then

Halt decoding

else

Check convergence state

if (ǫi < ǫi−1 < . . . < ǫi−q) then

Go to 3.

end if

end if

end for

3. Convergence section

for j = i to Imax do

Estimate required iterations

Î = f(ǫi, ǫi−1, . . . , ǫi−w) (6)

Switch to power mode Pk such that 1

i∑

m=1

tm + (Î − i)tk ≤ d (7)

Syndrome verification

if (S = 0) then

Halt decoding

end if

end for

Î iterationsn

ǫn

n + 1

ǫn+1

M
et

ri
c

ǫ i

Fig. 4. Estimation of decoding effort by linear approximation

straint is satisfied. For each power mode there is a correspond-

ing slowdown factor αk, where for the fastest mode α0 = 1.

The performance of the online algorithm can be evaluated by

the competitive ratio with respect to the cost of the offline

alternative. The notion of cost in this case is taken as the total

consumed energy by each strategy. The upper bound of this

ratio is given by:

c =
P0

Pn−1αn−1

(9)



DVFS
unit

Channel
data

Decoder 
output

manager
Power

decoder

LDPC

halt
flag

Vk fk

Pk

ǫi

Fig. 5. System block diagram

TABLE I
DECODER POWER MODES

Mode Voltage Frequency Power Slowdown
factor

P0 Vmax fmax Pmax 1.0

P1 0.9Vmax 0.66fmax 0.5346Pmax 1.5

P2 0.75Vmax 0.5fmax 0.2812Pmax 2.0

P3 0.68Vmax 0.4fmax 0.1849Pmax 2.5

C. Implementation

The proposed system for dynamic power management is

shown in figure 5. The LDPC decoder receives channel obser-

vations in the form of log-likelihood ratios and outputs hard-

decision bits for the decoded message. The decoder constantly

feeds the convergence metric signal ǫi to a power manager

unit. This unit executes the control policy from algorithm 1

and sets the state for a DVFS unit.

Table I shows the characterization of the power modes

of the target system considered, where Vmax = 1.32V and

fmax = 400MHz. From this specification the power manager

unit can be properly dimensioned. Figure 6 shows the archi-

tecture of the power manager unit. This unit executes three

main tasks duly represented in this figure: convergence and

energy cap detection, estimation of remaining decoding effort

and power mode selection. The processing time per iteration

of each power mode tk is used to calculate the cumulative

decoding time. This value is constantly being added to the

estimated remaining time in order to update the power mode

selection. The estimation of the remaining decoding time is

performed by the linear approximation of the convergence

region according to figure 4. The two latest values of ǫi are

used for this estimation as well as to track the behavior of the

decoding task in order to halt it if necessary. This corresponds

to q = w = 2 in algorithm 1.

We implemented and synthesized a SCMS-based LDPC

decoder for the codes defined in [10] on a CMOS 65nm
technology process. A message quantization of 6-bits was

used. The decoder architecture is shown in figure 7. The

decoder essentially updates posterior messages that are dis-

tributed by an interconnection network (acting as the edges of

the underlying code graph) to a set of processing units. These

units process the messages along with the previous results (ex-

trinsic messages) and write back the newly calculated posterior

messages (again the messages are properly distributed by an

interconnection network).

The processing core consists of 15 units that perform the

SCMS decoding of a row in H in serial fashion as outlined in

[7]. Each unit has an extrinsic messages memory that holds the
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messages obtained after each decoding round per row as well

as the status whether each message was erased or not. Figure

8 shows the architecture of this unit. This unit compares the

sign of an input message (subtraction of extrinsic message

from posterior message) with its previous sign and erases

messages (introduces zeros) according to the SCMS algorithm.

These corrected messages are passed on to a minimum finder

block that outputs the first and second minima and the position

(index) of the first minimum value. The extrinsic message and

its sign, along with the newly calculated posterior message are

written back to the corresponding locations.

There are numerous works on how to implement a DVFS

unit, using different techniques where several tradeoffs take

place: size and power overhead, mode switching speed and
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TABLE II
AREA AND POWER COMPARISON

Component Area [mm2] Power [mW ]

Decoder (No DPM) 0.85 70

Power manager 0.08 5

DVFS unit 0.12 10

conversion efficiency. The work in [11] provides a study on on-

chip regulators for DVFS implementation on a dedicated core.

This and similar work in [12] show sufficiently fast regulators

(voltage transition times on the order of tens of nanoseconds)

for tight applications as LDPC decoding. Based on this we

target an on-chip solution to implement the DVFS unit, shown

in figure 9. A mode selection signal selects the appropriate

setting for a clock divider and a buck converter with hysteretic

control to generate the signals fk and Vk that drive the decoder

unit.

In table II we compare the area and power of the different

units involved in the implementation of the power management

system. These results provide an initial assessment in the

overhead due to the power management strategy.

IV. RESULTS

In order to tune and assess the impact of this power

management technique simulations were performed to observe

the behavior of the metric that drives the decision making of

the proposed policy. Figure 10 shows the average decoding

iterations and average critical iterations from simulations of

the code in [10] with N = 1944 and R = 1/2 over the

AWGN channel, QPSK modulation, and a maximum of 60

iterations. For the decoder described in the previous section

it was estimated from several use cases and their switching

activity that each decoding iteration consumes an average of

80nJ . By observing the average number of critical iterations

an energy cap Ec = 2.96µJ was set to investigate the

impact on error-correction performance. Figure 11 shows the

simulated performance (bit/frame-error rates) using the already

described simulation setup with and without the proposed

dynamic power management policy. For example, at a bit-error

rate of 10−6 there is a performance loss of less than 0.05dB.

In figure 12 we show the average energy savings obtained

by the online algorithm with respect to the absence of a

power management strategy (constant operation at full power).

Three code lenghts N were used along with two coding rates

in order to observe the behavior for several use cases. The

optimal offline algorithm knows in advanced the total required

decoding effort and immediately chooses the minimum power

state that guarantees the execution of the task within the

required deadline. In the other hand the online algorithm starts

with the fastest power mode and tries to switch constantly
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to a lower power mode given the estimation of the decoding

effort carried out with f(ǫi). At a low SNR there are less

opportunities for energy savings (20% with code rate 1/2 and

40% for rate 5/6) because of a higher decoding effort (longer

critical time), but for the high SNR region up to 54% energy

savings were obtained. For comparison purposes the work in

[3] obtained up to 37% in savings while [4] obtained up to

30%.

In figure 13 we show how the online algorithm savings

deviate from the savings obtained by the offline alternative

for the case of coding rate 5/6. This deviation shows how

well the online algorithm can perform, in fact it differs from

the savings obtained by the offline alternative only by 1% as

the SNR increases.

The competitive ratio for this setup is c = 2.17, meaning

that the online algorithm can find a solution with cost (total

energy expenditure) less than c times the cost of the optimal

offline algorithm. Nevertheless from the simulation results it

was observed that the competitive ratio had an upper bound of

c = 0.97, not surprising as competitive analysis often provides

an overly pessimistic bound for the performance of algorithms.
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V. CONCLUSIONS

We have presented a dynamic power management policy

for the iterative decoding of LDPC codes. The policy is

based upon an online algorithm that monitors the decoding

task through a convergence metric. By making a recurrent

estimation on the required decoding effort the policy adjusts

the performance of the system so that it minimizes the energy

consumption and meets the task deadline. The number of

unsatisfied parity-check constraints captures the dynamics of

the decoding task. This metric is used to estimate the decoding

effort and to decide whether halting the task is necessary.

In this way the decoder runs at a high power mode during

a critical time before it enters a convergence state, subse-

quently the policy estimates the remaining decoding effort

and adjusts the power mode such that energy expenditure

is minimized. The online algorithm performed very close to

the offline alternative, differences in energy savings among

both algorithms were up to 18% at low SNR and approached

1% at high SNR. The proposed policy was implemented into

a VLSI system of CMOS 65nm technology, the area and

power overheads were marginal in comparison to the observed

gains in energy efficiency. Energy savings up to 54% were

achieved, an important figure for battery-powered terminals

in a communication system. The error-correcting performance

loss for this policy was lower than 0.05dB at a BER of 10−6.
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