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Abstract— This paper considers the so-called multiple-input-
multiple-output interference channel (MIMO-IC) which has rel-
evance in applications such as multi-cell coordination in cellular
networks as well as spectrum sharing in cognitive radio networks
among others. We consider a beamforming design framework
based on striking a compromise between beamforming gain at
the intended receiver (Egoism) and the mitigation of interference
created towards other receivers (Altruism). Combining egoistic
and altruistic beamforming has been shown previously in several
papers to be instrumental to optimizing the rates in a multiple-
input-single-output interference channel MISO-IC (i.e. where
receivers have no interference canceling capability). Here, by
using the framework of Bayesian games, we shed more light
on these game-theoretic concepts in the more general context
of MIMO channels and more particularly when coordinating
parties only have CSI of channels that they can measure directly.
This allows us to derive distributed beamforming techniques. We
draw parallels with existing work on the MIMO-IC, including
rate-optimizing and interference-alignment precoding techniques,
showing how such techniques may be improved or re-interpreted
through a common prism based on balancing egoistic and altruis-
tic beamforming. Our analysis and simulations currently limited
to single stream transmission per user attest the improvements
over known interference alignment based methods in terms
of sum rate performance in the case of so-called asymmetric
networks.

Index Terms— multi-cell, MIMO, distributed beamforming,
Pareto boundary, game theory, Bayesian equilibrium, interfer-
ence channels, distributed bargaining, egoistic, altruistic, inter-
ference alignment

I. I NTRODUCTION

The mitigation of interference in multi-point to multi-point
radio systems is of utmost importance and has relevance in
several practical contexts. Among the more popular cases, we
may cite the optimization of multi cell MIMO systems with
full frequency reuse and cognitive radio scenarios featuring
two or more service providers sharing an identical spectrum
license on overlapping coverage areas. In all these cases,
the system may be modeled as a network ofNc interfering
radio links where each link consists of a sender trying to
communicate messages to a unique receiver in spite of the
interference arising from or created towards other links.

For system limitation or privacy reasons, when the backhaul
network cannot support a complete sharing of data symbols
across all Txs, the channel remains an interference channel.
Coordination in terms of beamforming is required to be de-
centralized in the sense that global CSIT may not be available
everywhere. In the context of distributed beamforming, game
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theory appears as a sensible approach as a basis for algorithm
design. Recently an interesting game theory framework for
beamforming-based coordination was proposed for the MISO
case by which the transmitters (e.g. the base stations) seek
to strike a compromise between selfishly serving their users
while ignoring the interference effects on the one hand, and
altruistically minimizing the harm they cause to other non-
intended receivers on the other hand. An important result in
this area was the characterization of all so-called Pareto rate
optimal beamforming solutions for the two-cell case in the
form of positive linear combinations of the purely selfish and
purely altruistic beamforming solutions [1]–[3] and [4]–[6] in
the case of partial CSI. Unfortunately, how or whether at all
this analysis can be extended to the context of MIMO interfer-
ence channels (i.e. where receivers have themselves multiple
antennas and interference cancelling capability) remainsan
open question.

In parallel, coordination on the MIMO interference chan-
nel has emerged as a very popular topic in its own right,
with several important non-game related contributions shed-
ding light on rate-scaling optimal precoding strategies based
on so-called interference alignment, subspace optimization,
alternated maximum SINR optimization, [7]–[9] and rate-
maximizing precoding strategies [10], [11], to cite just a few
examples.

Interference alignment based strategies exhibit the designed
feature of rendering interference cancellable (when feasible,
according to the available degrees of freedom) at both the
transmitter and receiver side. Such a behaviour is optimal in
the large SNR region when interference is the key bottleneck.
At finite SNR, various strategies exist which aim at maximiz-
ing a link quality metric individually over each link, while
taking interference into account. This often takes the formof
maximizing the link’s SINR or minimizing minimum-mean-
square-error (MMSE). This approach provides good rates in
symmetric networks where all links are subject to impairments
(noise, average interference) of similar level. In more general
and practical situations however, we argue that a better sum
rate may be obtained from a proper and different weighting
of the egoistic and altruistic objective at each individuallink.
This situation is particularly important when more links are
subject to statistically stronger interference than others, a
case which has so far received little attention and which we
shall refer here as asymmetric networks. For this purpose, we
suggest to re-visit the problem of coordinated beamforming
design by directly building on the game theoretic concept of
egoistic and altruistic game equalibria. Because our focusis
on scenarios where CSI is not fully available, we consider
a class of games suitable to the case of partial information-
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based decision making, called Bayesian games. Note that this
is different from the limited CSI feedback scenario studied
by previous authors [12] who consider channel quantization
requirement as function of SNR. Our approach is two fold, first
derive analytically the game equalibria. Second, exploit the
obtained equilibria solution into heuristic design of a practical
beamforming teachnique. The behaviour of our solution is then
studied both theoretically (large SNR regime) and tested by
simulations.

More specifically in this paper, our contributions are as
follows:

• We define the egoistic and altruistic objective functions
and derive analytically the equilibria of so-called egoistic
and altruistic Bayesian games [13].

• Based on the equilibria, we propose a practical distributed
beamforming scheme which provides a game-theoretic
interpretation of the distributed sum rate maximization
problem the MIMO-IC, such as [11].

• The proposed techniques allows a tradeoff between the
reduced complexity/feedback and the rate maximization
offered by [11].

• We show that our algorithm exhibits the same rate
scaling (when SNR grows) as shown by recent interest-
ing interference alignment based methods [7]–[9] which
operates on the same feedback assumption as the pro-
posed beamforming scheme. At finite SNR, we show
improvements in terms of sum rate, especially in the case
of asymmetric networks where interference-alignment
methods are unable to properly weigh the contributions
on the different interfering links to maximize the sum
rate. This situation is particularly relevant. In practical
contexts where for complexity limitation reasons only
a subset of cells (links) is coordinated across, while
other uncoordinated links contribute to additional unequal
amounts of unstructural interference.

A. Notations

The lower case bold face letter represents a vector whereas
the upper case bold face letter represents a matrix.(.)H

represents the complex conjugate transpose.I is the identity
matrix. V (max)(A) (resp.V (min)(A)) is the eigenvector cor-
responding to the largest (resp. smallest) eigenvalue ofA. EB

is the expectation operator over the statistics of the random
variableB. S \ B define a set of elements inS excluding the
elements inB. Tr(A) denotes the trace of matrixA.

II. BAYESIAN GAMES DEFINITION ON INTERFERENCE

CHANNEL

Let N = {1, . . . , N} be a set containing a finite setNc,
with cardinality Nc ≤ N , of cooperating transmitters (Txs),
also termed as players. From now on, we use players and
Txs interchangably. We call the setNc a coordination cluster
and Txs outside the cluster will contribute to uncontrolled
interference. The provided model has general applicationsin
which the Txs can be base stations in cellular downlink where
typically coordination is restricted to a subset of neighbouring

cell sites while more distant sites cannot be coordinated over
[14] ; nodes in ad-hoc network and cognitive radio.

Each Tx is equipped withNt antennas and the Rx with
Nr antennas. Each Tx communicates with a unique Rx at
a time. Txs are not allowed or able to exchange users’
packet (message) information, giving rise to an interference
channel over which we seek some form of beamforming-based
coordination. The channel from Txi to Rx j Hji ∈ CNr×Nt

is given by:

Hji =
√

αjiH̄ji, i, j = 1, . . . , Nc (1)

Each element in channel matrix̄Hji is an independent
identically distributed complex Gaussian random variablewith
zero mean and unit variance andαji denotes the slow-
varying shadowing and pathloss attenuation.H̄ji is circularly
symmetric complex gaussian and the probability density is

fH̄ji
(H) =

1

πNtNr
exp(−Tr

(

HHH
)

). (2)

A. Limited Channel knowledge

Although there may exist various ranges and definitions
of local CSI, we assume a standard definition of a quasi-
distributed CSI scenario where the devices (Tx and Rx alike)
are able to gain knowledge of those local channel coefficients
directly connected to them, as illustrated in Fig. 1, possibly
complemented with some limited non local information (to be
defined later).

The set of CSI locally available (resp. not available) at Tx
i denoted byBi (resp.B⊥

i ) is denoted by:

Bi = {Hji}j=1,...,Nc
; B

⊥
i = {Hkl}k,l=1...Nc

\ Bi (3)

Similarly, define the set of channels known (resp. un-
known) at Rx i denoted byMi (resp. M

⊥
i ) as: Mi =

{Hij}j=1,...,Nc
; M

⊥
i = {Hkl}k,l=1...Nc

\ Mi. By construc-
tion here, locally available channel knowledge,Bi, is only
known to Tx i but not other Txs. We call this knowledgeBi

the type of player (Tx) i, in the game theoretic terminology
[13].

In the view of Txi, the decision to be made shall be based
on its typeBi and itsbeliefs on other Txs types. Since Txi
does not know other Txs types, we assume that Txi has a
probability density over the possible values of other players
channel knowledgeBj . For simplicity, we assume that these
beliefs are symmetric: the probability density of thegaussian
channels available at Txi regardingBj is the same as the
probability density of Txj overBi. The asymmetric path loss
antennuationsαji are assumed to be long term satistics and
known to the Txs. And we assume that the channel coefficients
in the network are statistically independent from each other.
We define here the joint beliefs (probability density) at Txi:

µi = p(B⊥
i ) = fH̄ji

(H)Nc(Nc−1) = µ. (4)

The Tx indexi is dropped because the beliefs are symmetric
among Txs, given the asymetric path loss coefficientsαji. p(.)
is a probability measure andfH̄ji

(H) is density of a complex
gaussian channel defined in (2). The second equality relies on
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Fig. 1. Limited channel knowledge model: as an illustration, the local CSI
available at TxNc is shown in dashed lines. The local CSI available at Rx 1
is shown in solid lines.

the assumptions that the channel coefficients from any Tx to
any Rx are independent.

Based on itsbelief, Tx i should make a decision, which is to
design the transmit beamforming vector,wi ∈ CNt×1. As in
several important contributions dealing with coordination on
the interference channel [2], [8], [15]–[19], we assume linear
beamforming. We call the transmit beamforming vectorwi an
action of Txi and denote the set of all possible actions byA
at any Tx.

A =
{

w ∈ CNt×1 : |w|2 ≤ 1
}

(5)

The received signal at Rxi is therefore

yi = vH
i Hiiwi +

Nc
∑

j 6=i

vH
i Hijwj + ni (6)

where ni is a gaussian noise with powerσ2
i . Note that the

noise levelsσ2
i depend on the link index which was not

considered in previous work on transmitter coordination. The
Rxs are assumed to employ maximum SINR (Max-SINR)
beamforming throughout the paper so as to also maximize
the link rates [20]. The receive beamformervi is classically
given by:

vi =
CRi

−1Hiiwi

|CRi
−1Hiiwi|

(7)

whereCRi is the covariance matrix of received interference
and noise

CRi =
∑

j 6=i

Hijwjw
H
j HH

ij P + σ2
i I. (8)

P is the transmit power.
Importantly, the noise will in practice capture thermal noise

effects but also any interference originating from the restof
the network, i.e. coming from transmitters located beyond
the coordination cluster. Thus, depending on path loss and
shadowing effects, the{σ2

i } may be quite different from each

N = 7; Nc = 4

Tx 1

Tx 2

Tx 3

Tx 4

Fig. 2. This figure illustrates a system ofN = 7 cells whereNc = 4 form
a coordination cluster. Empty squares represent transmitters whereas filled
squares represent receivers. The noise power (which includes out of cluster
interference) undergone in each cell varies from link to link.

other [21]. Fig. 2 illustrates a system ofN = 7 cells where
Nc = 4 form a coordination cluster. Note that for simplifica-
tion of analysis, we consider the sum of uncoordinated source
of interference and thermal noise to be spatially white.

Receiver feedback v.s. Reciprocal Channel: In the case of
reciprocal channels (TDD), the feedback requirement to obtain
Bi can be replaced by a channel estimation step based on
uplink pilot sequences. Additionally, it will be classically
assumed that the receivers are able to estimate the covariance
matrix of their interference signal, based on, say, transmit pilot
sequences.

We can now define the Bayesian game on interference
channel as a 5-tuple.

Definition 1:

G =< Nc,A, {Bi} , µ, {ui} > . (9)

µ denotes thebeliefs of the players and{ui} denotes the
utility functions of the players, which can be either egoistic
or altruistic.
Specific definitions ofui will be given in the following
sections. The players are assumed to berational as they
maximize their own utility based on theirtypes andbeliefs.

Definition 2: A pure-strategy of playeri, si : Bi → Ai is a
deterministic choice of action given informationBi of player
i.

Definition 3: A strategy profiles∗ = (s∗i , s
∗
−i) achieves the

Bayesian Equilibrium ifs∗i is the best response of playeri

given strategy tuples∗−i for all other players and is character-
ized by

∀i s∗i = arg maxE
B
⊥
i

{

ui(si, s
∗
−i)

}

. (10)
Note that, intuitively, the player’s strategy is optimizedby
averaging over thebeliefs (the distribution of all missing state
information) while in a standard game, such expectation is not
required.
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In the following sections, we derive the equilibria for
egoistic and altruistic bayesian games respectively. These
equilibria constitute extreme strategies which do not perform
optimally in terms of the overall network performance, yet can
be exploited as components of a more general beamforming-
based coordination technique which is then proposed in section
V.

III. B AYESIAN GAMES WITH RECEIVER BEAMFORMER

FEEDBACK

We assume that Tx has the local channel state information
Bi and the added knowledge of receive beamformers through a
feedback channel. Note that in the case of reciprocal channels,
the receive beamformer feedback isnot required.

A. Egoistic Bayesian Game

Definition 4: Denote the set of transmit beamforming vec-
tors of playersj, j 6= i, by w−i. The egoistic utility function
for Tx i is defined as its received SINR

ui(wi,w−i) =
|vH

i Hiiwi|2P
∑Nc

j 6=i |vH
i Hijwj |2P + σ2

i

. (11)

Based on Txi’s belief, Tx i maximizes the utility function in
(11) wherevi is a known quantity.

Lemma5: There exist at least one Nash Equilibrium in the
egoistic Bayesian GameG (9) with utility function defined in
(11).

Proof: Ai is convex, closed and bounded for all players
i and the egoistic utility functionui(wi,w−i) is continuous
in bothwi andw−i. The utility function is convex inwi for
any setw−i. Thus, at least one Bayesian Equilibrium exists
[22], [23].

Theorem6: The best-response strategy of playeri in the
egoistic Bayesian GameG (9) with utility function (11) is to
maximize the utility function based on its belief:

w
Ego
i = arg maxE

B
⊥
i
{ui(wi,w−i)} . (12)

The best-response strategy of playeri is

w
Ego
i = V (max)(Ei) (13)

where Ei denotes theegoistic equilibrium matrix for Tx i,
given by

Ei = HH
ii viv

H
i Hii.

Proof: The knowledge of receive beamformers decorre-
lates the maximization problem which can be written as

w
Ego
i = arg max

|wi|≤1
E

B
⊥
i

{

1
∑Nc

j 6=i |vH
i Hijwj|2P + σ2

i

}

wH
i HH

ii viv
H
i Hiiwi (14)

The egoistic-optimal transmit beamformer is therefore the
dominant eigenvector ofHH

ii viv
H
i Hii.

B. Altruistic Bayesian Game

Definition 7: The utility of the altruistic game is defined
here so as to minimize the sum of interference powers caused
to other receivers.

ui(wi,w−i) = −
∑

j 6=i

|vH
j Hjiwi|2 (15)

Lemma8: There exist at least one Nash Equilibrium in the
altruistic Bayesian GameG (9) with utility function defined
in (15).

Proof: Ai is convex, closed and bounded for all players
i and the altruistic utility functionui(wi,w−i) is continuous
in bothwi andw−i. The utility function is concave inwi for
any setw−i. Thus, at least one Bayesian Equilibrium exists
[22], [23] .

Theorem9: Based on beliefµ, Tx i seeks to maximize the
utility function defined in (15). The best-response strategy is

wAlt
i = V (min)(

∑

j 6=i

Aji) (16)

whereAji denotes thealtruistic equilibrium matrix for Tx i

towards Rx j, defined byAji = HH
jivjv

H
j Hji.

Proof: Recall the utility function to be
−∑

j 6=i |vH
j Hjiwi|2 = −∑

j 6=i w
H
i Ajiwi. Since vj

are known from feedback or estimation in reciprocal
channels, the optimalwi is the least dominant eigenvector of
the matrix

∑

j 6=i Aji.

IV. SUMRATE MAXIMIZATION WITH RECEIVE

BEAMFORMER FEEDBACK

From the results above, it can be seen that balancing
altruism and egoism for playeri can be done by trading-
off between setting the beamformer close to the dominant
eigenvectors of the egoistic equilibriumEi or that of the
negative altruistic equilibrium{−Aji} (j 6= i) matrices in
(16). Interestingly, it can be shown that sum rate maximizing
precoding for the MIMO-IC does exactly that. Thus we hereby
briefly re-visit rate-maximization approaches such as [11]with
this perspective.

Denote the sum rate bȳR =
∑Nc

i=1 Ri where Ri =

log2

(

1 +
|vH

i Hiiwi|
2P

PNc
j 6=i

|vH
i Hijwj |2P+σ2

i

)

.

Lemma10: The transmit beamforming vector which maxi-
mizes the sum ratēR is the dominant eigenvector of a matrix,
which is a linear combination ofEi andAji:



Ei +

Nc
∑

j 6=i

λ
opt
ji Aji



wi = µmaxwi (17)

where

λ
opt
ji = −

|vH
j Hjjwj |2P

∑Nc

k=1 |vH
j Hjkwk|2P + σ2

j

∑Nc

k=1 |vH
i Hikwk|2P + σ2

i
∑Nc

k 6=j |vH
j Hjkwk|2P + σ2

j

(18)
andµmax is defined in the proof.

Proof: see appendix VIII-A.
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Note that the balancing between altruism and egoism in sum
rate maximization is done using the dominant eigenvector
of a simplelinear combination of the altruistic and egoistic
equilibrium matrices. The balancing parameters,{λopt

ji }, can
be shown simply to coincide with the pricing parameters
invoked in the iterative algorithm proposed in [11]. Clearly,
these parameters plays a key role, however their computation is
a function of theglobal channel state information and requires
additional message (price) exchange. Instead, we seek below
a suboptimal egoism-altruism balancing technique which only
requires statistical channel information, while exhibiting the
right performance scaling when SNR grows large.

V. A PRACTICAL DISTRIBUTED BEAMFORMING

ALGORITHM: DBA

We are proposing the following distributed beamforming
algorithm (DBA) where one computes the transmit and receive
beamformers iteratively as:

wi = V max



Ei +

Nc
∑

j 6=i

λjiAji



 (19)

vi =
C−1

Ri Hiiwi

|C−1
Ri Hiiwi|

(20)

where λji shall be made to depend on channel statistics
only. At this stage, it is interesting to compare with previous
schemes based on interference alignment such as the practical
algorithms proposed in [9]. In such schemes, the transmit
beamformerwi is taken independent ofHii. Note that here
however, wi is correlated to the direct channel gainHii

through the Egoistic matrixEi in DBA. The correlation is
useful in terms of sum rate as it allows proper weighting
between the contributions of the egoistic and altruistic matrices
in a link specific manner.

A. The egoism-altruism balancing parameters λji

The egoism-altruism balancing parametersλji are now
found heuristically based on the statistical channel informa-
tion. Recall from (18) that

λ
opt
ji = − Sj

Sj + Ij + σ2
j

Si + Ii + σ2
i

Ij + σ2
j

(21)

whereSj = |vH
j Hjjwj |2P andIj =

∑Nc

k 6=j |vH
j Hjkwk|2P .

Following the principle behind sum rate maximization, we
conjecture that at convergence, residual coordinated interfer-
ence shall be proportionate to the noise and out-of-cluster
interference, i.e.Ij = O(σ2

j ). Note that this should not be
interpreted as an assumption in a proof but rather as a proposed
design guideline. Based on this, we propose the following
characterization:

λ
opt
ji = − Sj

Sj + O(σ2
j )

Si + O(σ2
i )

O(σ2
j )

. (22)

By Jensen’s inequality, a lower bound on the averageλ
opt
ji is

found by:

E
(

λ
opt
ji

)

≥ − 1

1 +
O(σ2

j )

ESj

1 +
O(σ2

i )
ESi

O(σ2

j )

ESi

. (23)

Although ESi is not known explicitly, it is strongly related
to the strength of the direct channelPαii. Let γi = Pαii

σ2

i

. In
order to obtain an exploitable formulation forλji, we replace
ESi by Pαii andO(σ2

i ) by σ2
i , to derive:

λji = − 1

1 + γ−1
j

1 + γ−1
i

σ2

j

Pαii

. (24)

Interestingly, in the special case where direct channels have
the same average strength, we obtain a simple expression

λji = −1 + γ−1
i

1 + γ−1
j

γj . (25)

The above result suggests Txi to behave more altruistically
towards linkj when the SNR of linkj is high or when the SNR
of link i is comparatively lower. This is in accordance with
the intuition behind rate maximization over parallel gaussian
channels.

DBA iterates between optimizing the transmit and receive
beamformers, as summarized in Algorithm 1. Iterating be-
tween transmit and receive beamformers is reminiscent of
recent interference-alignment based methods [8], [9]. However
here, interference alignment isnot a design criterion. In [8],
an improved interference alignment technique based on alter-
nately maximizing the SINR at both transmitter and receiver
sides is proposed. In contrast, here the Max-SINR criterion
is only used at the receiver side. Although the distinction is
unimportant in the large SNR case (see below), it dramatically
changes performance in certain situations at finite SNR (see
Section VI).

Algorithm 1 DBA
1) Initialize beamforming vectorswi, i = 1, . . . , Nc, to be
predefined vectors.

2) For each Rxi, computevi =
C

−1

Ri
Hiiwi

|C−1

Ri
Hiiwi|

whereCRi is
computed withwi in previous step.
3) For each Tx i, compute wi =

V max
(

Ei +
∑Nc

j 6=i λjiAji

)

where λji are computed
from satistical parameters (24).
4) Repeat step 2 and 3 until convergence.

B. Asymtotic Interference Alignment

One important aspect of the algorithm above is whether it
achieves the interference alignment in high SNR regime [8].
The following theorem answers this question positively.

Definition 11: Define the set of beamforming vectors solu-
tions in downlink (respectively uplink) interference alignment
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to be [8]

IADL = {(w1, . . . ,wNc
) :

Nc
∑

k 6=i

Hikwkw
H
k HH

ik is low rank,∀i







(26)

IAUL = {(v1, . . . ,vNc
) :

Nc
∑

k 6=i

HH
kivkv

H
k Hki is low rank,∀i







. (27)

Thus, for all (wi, . . . ,wNc
) ∈ IADL, there exist receive

beamformersvi, i = 1, . . . , Nc such that the following is
satisfied:

vH
i Hijwj = 0 ∀i, j 6= i. (28)

Note that the uplink alignment solutions are defined for a
virtual uplink having the same frequency and only appear here
as a technical concept helping with the proof.

Theorem12: Assume the downlink interference alignment
set is non-empty (interference alignment is feasible). Denote

average SNR of linki by γi = Pαii

σ2

i

. Let λji = − 1+γ
−1

i

1+γ
−1

j

γj ,

then in the large SNR regime,P → ∞ , any transmit
beamforming vector inIADL is a convergence (stable) point
of DBA.

Proof: see Appendix VIII-B.
Note that this does not prove global convergence, but local

convergence, as is the case for other IA or rate maximization
techniques [8], [9], [11]. Another way to characterize local
convergence is as follows: assuming interference alignment
is feasible (IADL is non-empty), the first algorithm in [8]
was shown to converge to transmit beamformers belonging to
IADL and the receivers are based on the minimum eigen-
vector of the dowlink interference covariance matrix, which
tends to be low-rank. However,DBA selects its receive beam-
former from the Max-SINR criterion which, in the large SNR
situation, is also identical to selecting receive beamformers in
the null space of the interference covariance matrix. Therefore
when interference alignment is feasible, the algorithm in [8]
andDBA coincide at large SNR. This aspect is confirmed by
our simulations (see section VI).

VI. SIMULATION RESULTS

In this section, we investigate the sum rate performances
of DBA in comparison with several related methods, namely
the Max-SINR method [8], the alternated-minimization (Alt-
Min) method for interference alignment [9] and the sum rate
optimization method (SR-Max) [11]. The SR-Max method is
by construction optimal but is more complex and requires
extra sharing or feedback of pricing information among the
transmitters. To ensure a fair comparison, all the algorithms
in comparisons are initialized to the same solution and have
the same stopping condition. The algorithms are consideredto
reach convergence if the sum rates achieved between succes-
sive iterations have difference less than 0.001. We performsum
rate comparisons in both symmetric channels and asymmetric
channels where links undergo different levels of out-of-cluster
noise. Define the Signal to Interference ratio of linki to be
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Fig. 3. Sum rate comparison in multi links systems is illustrated with
[Nc, Nt, Nr ] = [3, 2, 2] with increasing SNR.DBA, SR-Max andMax-SINR
achieve very close performance in symmetric networks.

SIRi = αii
PNc

j 6=i
αij

. TheSIR is assumed to be 1 for all links,

unless otherwise stated. Denote the difference in SNR between
two links in asymmetric channels by∆SNR. Note that the
proposed algorithm is not limited to the following settings, but
can be applied to network with arbitrary players and number
of antennas.

A. Symmetric Channels

Fig. 3 illustrates the sum rate comparison ofDBA with Max-
SINR, Alt-Min and SR-Max in a system of 3 links and each
Tx and Rx have 2 antennas. Since interference alignment is
feasible in this case, the sum rate performance ofSR-Max and
Max-SINR increases linearly with SNR.DBA achieves sum
rate performance with the same scaling asMax-SINR andSR-
Max (i.e. multiplexing gain of 3). Therefore these methods
seem to perform similarly in symmetric channels.

B. Asymmetric Channels

In the asymmetric system, some links undergo uneven levels
of noise and uncontrolled interference. Another aspect is that
more links can experience greater path loss or shadowing than
others. Here we consider a few typical scenarios for which
could constitute asymmetric networks. In Fig. 4, there are
3 links in the system in which the noise and unstructural
interference in one of the links are 20dB stronger than the
other two links. This set up captures the scenario that one link
is at the boundary of the coordination cluster and suffer from
strong out-of-cluster noise. The SIR of every link is assumed
to be 10 dB. in this scenario,DBA outperforms interference
alignment based methods because they are unable to properly
weigh the importance of each link in the overall sum rate.
SR-Max is by construction sum rate optimal. However, in
the asymmetric network, we observe by simulation that the
convergence may require more iterations than other algorithms
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Fig. 4. Sum rate performance for asymmetric channel, with one link under
strong noise, is illustrated. The strong noise, from out of cluster interference, is
20dB stronger than other links.DBA outperforms standardIA methods thanks
to a proper balance between egoistic and altruistic beamforming algorithm.

and the increment in sum rate per iteration can be small in
some channel realizations.

In Fig. 5, we compare the sum rate performance in the
same set up as in Fig. 4, except that the SIR’s of the links
are [10, 10, 0.1] respectively. Thus, link 3 not only suffers
from strong out of cluster noise, but also suffers from strong
interference within the cluster. The asymmetry penalizes the
Max-SINR and interference alignment methods because they
are unable to properly weigh the contributions of the weaker
link in the sum rate. TheMax-SINR strategy turns out to
make link 3 very egoistic in this example, while its proper
behavior should be altruistic. In contrast,DBA exploits useful
statistical information, allowing weaker link to allocatetheir
spatial degrees of freedom wisely towards helping stronger
links and vice versa, yielding a better sum rate for the same
feedback budget. The performance is very close toSR-Max,
with less information exchange.

In Fig. 6, there are 3 links cooperating in the system. Each
Tx and Rx has 2 antennas and has 1 stream transmission. The
noise at each Rx is the same. The system is asymmetric in
a sense that the direct channel gainH11 of link 1 is 30dB
weaker than other links in the network. This set up models a
realistic environment where the user suffers strong shadowing.
DBA achieves sum rate closed toSR-Max and much better
than other interference alignment based schemesMax-SINR
andAlt-Min.

VII. CONCLUSION

We model the distributed beamforming optimization prob-
lem on MIMO interference channel using the framework of
Bayesian Games which allow players to have imcomplete
information of the game, in this case the channel state
information. Based on the incentives of the players, we
proposed two games: the Egoistic Bayesian Game (players
selfishly maximize its rate) and the Altruistic Bayesian Game
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Fig. 5. Sum rate performance for asymmetric channel, with one link under
strong interference within the cooperating cluster, is illustrated.
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Fig. 6. Sum rate performance for asymmetric channel is illustrated. The
direct channel gain of link 1 is 30dB weaker than other links.

(players altruisticly minimize interference generated towards
other players). We proved the existence of equilibria of such
games and the best response strategy of players are computed.
Inspired from the equilibria, a beamforming technique based
on balancing the egoistic and the altruistic behavior with the
aim of maximizing the sum rate is proposed. Such beamform-
ing algorithm exhibits the same optimal rate scaling (when
SNR grows) shown by recent iterative interference-alignment
based methods. The proposed beamforming algorithm acheives
close to optimal sum rate maximization method [11] without
additional pricing feedbacks from users and outperform in-
terference alignment based methods in terms of sum rate in
asymmetric networks.
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VIII. A PPENDIX

A. Proof of Lemma 10

Define the largrangian of the sum rate maximization prob-
lem for Tx i to beL(wi, µ) = R̄ − µmax(wH

i wi − 1). The
neccessary condition of largrangian∂

∂wH
i

L(wi, µ) = 0 gives:
∂

∂wH
i

Ri +
∑Nc

j 6=i
∂

∂wH
i

Rj = µmaxwi. With elementary matrix
calculus,

∂

∂wH
i

Ri =
P

∑Nc

k=1 |vH
i Hikwk|2P + σ2

i

Eiwi (29)

∂

∂wH
i

Rj = −
|vH

j Hjjwj |2P
∑Nc

k=1 |vH
j Hjkwk|2P + σ2

j

P
∑Nc

k 6=j |vH
j Hjkwk|2P + σ2

j

Ajwi (30)

whereλ
opt
ji is a function of all channel states information

and beamformer feedback:

λ
opt
ji = −

|vH
j Hjjwj |2P

∑Nc

k=1 |vH
j Hjkwk|2P + σ2

j

∑Nc

k=1 |vH
i Hikwk|2P + σ2

i
∑Nc

k 6=j |vH
j Hjkwk|2P + σ2

j

.

(31)
Thus, the gradient is zero for anywi eigenvector of the matrix
shown on the L.H.S. of (17). Among all stable points, the
global maximum of the cost function is reached by selecting
the dominant eigenvector ofEi +

∑

j 6=i λjiAji .

B. Proof of Theorem 12: convergence points of DBA

To prove that interference alignment forms a convergence
set of DBA, we will prove that if DBA achieves interference
alignment, DBA will not deviate from the solution (stable
point).

Assumed interference alignment is reached and let
(wIA

1 , . . . ,wIA
Nc

) ∈ IADL and (vIA
1 , . . . ,vIA

Nc
) ∈ IAUL.

Let QDL
i =

∑Nc

k 6=i Hikw
IA
k w

IA,H
k HH

ik and QUL
i =

∑Nc

k 6=i H
H
kiv

IA
k v

IA,H
k Hki.

Given receivers(vIA
1 , . . . ,vIA

Nc
), we compute new transport

beamformers. In high SNR regime,λji → −∞ andDBA gives
wi = V min(QUL

i ) (19). By (26),QUL
i is low rank and thus

wi is in the null space ofQUL
i . In direct consequence, the

conditions of interference alignment (28) are satisfied. Thus,
(w1, . . . ,wNc

) ∈ IADL.
Given transmitters(wIA

1 , . . . ,wIA
Nc

), we compute new re-
ceive beamformers. The receive beamformer is defined asvi =

arg max
vH

i Hiiw
IA
i w

IA,H
i HH

iivi

vH
i QDL

i vi
. SinceQDL

i is low rank, the

optimal vi is in the null space ofQDL
i . Hence,vi ∈ IAUL.

Since bothwi and vi stays within IADL and IAUL,
interference alignment is a convergence point ofDBA in high
SNR.
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