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ABSTRACT – This paper introduces hardware and software components for secure auto-
motive on-board networks providing the basis for the protection of external vehicle communi-
cation. It is based on work done within the European research project EVITA (http://evita-
project.org). It provides a framework that covers cross-layer security, targeting platform 
integrity, communication channels, access control and intrusion detection and management. 
We present a modular hardware/software co-design: Hardware security modules (HSM) pro-
vide means to protect the platform integrity, to ensure the integrity and confidentiality of key 
material and to enhance cryptographic operations, thereby protecting critical assets of the 
architecture. In order to provide cost-effective hardware solutions, three different variants of 
HSMs have been specified: The full HSM for protecting external communication interfaces, 
the medium HSM for protecting the on-board communication between electronic control units 
(ECUs), and the light HSM for protecting the on-board communication with sensors and 
actuators. Application specific interfaces are provided by the software framework that inter-
acts with the HSMs. High-level design considerations, such as least privilege design and sepa-
ration principles have been followed throughout the work. We provide an outlook on deploy-
ment scenarios.  

MOTIVATION 

Automotive applications based on vehicle-to-vehicle and vehicle-to-infrastructure (V2X) 
communications have been identified as a means for decreasing the number of fatal traffic 
accidents in the future and for intelligent traffic management. However, malicious attacks on 
embedded IT systems and networks implementing those functionalities and malicious en-
croachments on messages transiting between vehicles and infrastructure, such as sending fake 
messages and spoofing over the wireless network, may have a severe impact. Thus, the on-
board network needs to provide appropriate security measures in order to protect against ma-
licious messages. Sensitive in-vehicle data must be trustable and protected from modification.  

A list of potential attacks and related security requirements (1) served as starting point for 
designing the secure on-board architecture. The attacks have been classified according to their 
risk level in order to choose adequate levels of protection against them. We derived in-car 
security mechanisms out of the security requirements (2). Security functions are partitioned 
between software and hardware with cost and security levels as major criteria. The secure 



storage of secret keys together with secure and trustworthy communication among in-car 
electronic components lays the foundation for sound data exchange between vehicles or infra-
structure services. Therefore, we place the “root of trust” in hardware security modules real-
ized as an on-chip extension to automotive ECUs. This enables the reliable enforcement of 
application-specific security properties such as authenticity, confidentiality, or freshness as 
well as dependable access control. 

The rest of this paper is organised as follows: After giving an overview of related work in the 
field of V2X and on-board communications and summarizing the security requirements from 
(1), we present our security architecture. The paper concludes with a deployment overview 
and a summary and outlook. 

RELATED WORK 

The past decade has seen a tremendous growth in the vehicular communication domain, yet 
no comprehensive security architecture solution has been defined that covers all aspects of 
on-board communication (data protection, secure communication, secure and tamper proof 
execution platform for applications). On the other hand, several projects, namely GST (3), 
C2C-CC (4), IEEE Wave (5) and SeVeCOM (6) have been concerned with inter-vehicular 
communication and have come up with security architectures for protecting vehicle-to-vehicle 
and vehicle-to-infrastructure communications. These proposals essentially aim at communi-
cation-specific security requirements in a host-based security architecture style, as attackers 
are assumed to be within a network where no security perimeter can be defined (ad-hoc com-
munication). 

For instance, (7) presents the C2C communication consortium’s solution integrating previous 
approaches (8)(15)(16)(17) for secure vehicular communications. These proposals consider 
the car mostly as a single entity, communicating with other cars using secure protocols. In 
particular, this architecture relies on a complex security back-end infrastructure (including 
authorities, notably implementing PKIs, e.g., for pseudonym and identity management). This 
is necessary for protecting the identity of a car yet making it possible to manage its identifiers 
when required. However, no specific execution platform requirements are put forward by 
these proposals, except for the need to protect node identifiers: All proposals mention that 
data such as vehicular registration and cryptographic material should be stored in a tamper-
resistant manner. Unfortunately, this requirement is not accompanied by any further analysis 
of the particular threats to data integrity and authentication within the vehicle that might guide 
the design of such storage. The EVITA project fills this gap, by providing an in-vehicle plat-
form with secure storage, a trusted execution environment, among other qualities such as 
cryptographic processors in hardware and a security framework for communication, authenti-
cation and authorization as well as intrusion detection and management in software. 

SECURITY REQUIREMENTS 

At the highest level, the security objectives that are covered are: 

 to prevent unauthorized manipulations of vehicular on-board communication networks, 
 to prevent unauthorized modifications of vehicle applications especially regarding safety 

and m-commerce applications, 
 to protect privacy of vehicle drivers, 
 to protect intellectual property of vehicle manufacturers and suppliers, 
 while maintaining the operational performance of applications and security services. 



The EVITA project has inferred the following set of security requirements and related func-
tional requirements in order to satisfy the stated security objectives (1):  

 Integrity/authenticity of e-safety related data: Actions depending on critical information 
should be decided based on assurances about integrity and authenticity in terms of origin, 
content, and time. Forgery of, tampering with, or replay of such information should at least 
be detectable. 

 Integrity/authenticity of ECU/firmware installation/configuration: Any replacement or 
addition of an ECU and/or its firmware or configuration to the vehicle shall be authentic in 
terms of origin, content, and time. In particular, the upload of new security algorithms, 
security credentials, or authorizations should be protected. 

 Secure execution environment: Compromises to ECUs should not result in system wide 
attacks, primarily with regard to e-safety applications. Successful ECU attacks should have 
limited consequences on separate and/or more trusted zones of the platform. 

 Vehicular access control: Access to vehicular data and functions should be controlled 
(e.g. for diagnosis, resources, etc.) 

 Trusted on-board platform: The integrity and authenticity of operated software shall be 
ensured. An altered platform might be prevented from running in an untrusted configura-
tion (e.g. via comparison with a trusted reference) if so required. 

 Secure in-vehicle data storage: Applications should be able to use functionality in order 
to ensure access control to as well as the integrity, freshness and confidentiality of data 
stored within a vehicle, especially for personal information and security credentials. 

 Confidentiality of certain on-board and external communication: The confidentiality 
of existing software/firmware as well as updates and security credentials shall be ensured. 
Some applications might additionally require that part of the traffic they receive or send 
internally or externally should remain confidential. 

 Privacy: A privacy policy shall be enforceable on personal data stored within a vehicle or 
contained in messages sent from a vehicle to the outside. For example, some applications 
should limit the ability to link sent messages. 

 Interference of security functionality: The operation of security services must not nega-
tively affect the availability of bus systems, CPUs, RAM, or of the radio medium. 

The above stated requirements are constraints that arose from security concerns. How the 
constraints are satisfied is described in the following sections.  

SECURITY ARCHITECTURE 

Partitioning in Hardware and Software 

Partitioning a system in software and hardware means finding an optimum solution for exe-
cuting a set of application functions – including functions related to security – over various 
candidate hardware architectures (11). Those architectures are typically built upon hardware 
nodes such as CPUs, buses, memories, hardware accelerators and sensors/actuators. Criteria 
for selecting an optimal architecture are typically the cost of hardware elements, the power 
consumption, the execution time or throughput of the system, and the ability to change the 
functionality of the system without incurring heavy costs. 

In software/hardware partitioning, a typical methodology relies on the description of appli-
cation functions, of candidate architectures, of the mapping of application functions onto the 
architectures and then the simulation of the mapping. The analysis of simulation traces result-
ing from the simulation generally leads to the selection of the “best” architecture. 



We have used a model that included hardware security functions, software security functions, 
security requirements, attack probabilities and risk as well as preliminary protocol definitions. 
We used software called TTool (12) for this purpose, which allows us to answer questions 
regarding deployment and design decisions and tailor the software and hardware security 
architecture for specific vehicle types and models according to specific security requirements.  

EVITA Hardware Security Modules 

Figure 1 presents the general architecture of an automotive HSM. With the security require-
ments of (1) as basis, in (2) a cost-effective HSM design has been chosen that provides 
enough security and flexibility. In this architecture the HSM resides in the same chip as the 
application CPU core.  

 

Figure 1: General structure of an automotive HSM 

The components of the HSM are divided into mandatory and optional components because, 
depending on the use case, different security requirements have to be fulfilled. The optional 
components are represented in Figure 1 with dashed lines. In order to provide cost-effective 
hardware solutions, we specify three different EVITA HSM variants that meet different secu-
rity needs (2):  

 Full EVITA HSM: This HSM focuses on protecting the in-vehicle domain against secu-
rity vulnerabilities of V2X communications. This requires creating and verifying electronic 
signatures. In order to satisfy the performance requirements, a very efficient asymmetric 
cryptographic engine is needed. The full HSM provides the maximum level of functional-
ity, security, and performance of all the different HSM variants. It further aims to provide a 
security lifetime of at least 20 years, which means ECRYPT II Level 7 “Long-term protec-
tion” (13) and/or NIST 2030+ (14).  

 Medium EVITA HSM: This HSM focuses on securing the on-board communication. 
Except for the asymmetric cryptographic building block and a little less performing CPU 
(e.g. 25 MHz vs. 100 MHz), the medium HSM resembles the full HSM. The medium HSM 
has no asymmetric cryptographic building block in hardware; however, it is able to per-
form some non-time-critical asymmetric cryptographic operations in software, e.g. for the 
establishment of shared secrets. As for efficiency and cost reasons virtually all internal 
communication protection is based on symmetric cryptographic algorithms, leaving out the 
asymmetric crypto engine is reasonable to save costs and hardware size. 

 Light EVITA HSM: This HSM focuses on securing the interaction between secured 
ECUs and sensors and actuators. It is only required to contain a symmetric cryptographic 
engine and the corresponding functionally shortened hardware interface. Hence, the light 
HSM is able to fulfill the strict cost and efficiency requirements (e.g., regarding message 
size, timings, protocol limitations or processor consumption) that are typical for sensors 



and actuators. The necessary shared secrets can be established in different ways, e.g. by 
pre-configuration during manufacturing, by self-initialization (e.g., based on physically un-
clonable functions) or even by running a key establishment protocol in software at the 
attached application processor. 

Table 1 presents the components of the different HSM variants. All technical details such as 
RAM size, clock frequencies etc. are current estimates and subject to change.  

 Full EVITA HSM Medium EVITA HSM Light EVITA HSM 

Internal RAM   
(e.g. 64 kByte) 

  
(e.g. 64 kByte) optional 

Internal NVM  
(Non-volatile memory) 

  
(e.g. 512 kByte) 

  
(e.g. 512 kByte) optional 

Symmetric  
Cryptographic Engine  
(e.g. AES-128 CCM, GCM f/AE) 

   

Asymmetric  
Cryptographic Engine  
(e.g. ECC-256-GF(p) NIST FIPS 
186-2 prime field) 

   

Hash engine  
(e.g. Whirlpool)    

Counters 
  

(e.g. 16 × 64-bit 
monotonic counter) 

  
(e.g. 16 × 64-bit 

monotonic counter) 
optional 

Random Number Generator 
  

(e.g. AES-PRNG 
with TRNG seed) 

  
(e.g. AES-PRNG  
with TRNG seed) 

optional 

Secure CPU  
(e.g. ARM Cortex-M3 32 bit, 50–
250 MHz) 

   

Hardware Interface    

Table 1: Components of different EVITA HSMs (technical details may change) 

Hardware Interface  

The EVITA hardware security module provides an asynchronous (i.e., non-blocking), almost 
completely multi-session-capable (i.e., interruptible), and partly also multi-threading-capable 
hardware interface. It is compliant to the Secure Hardware Extension (SHE) specification pro-
posed by the automotive HIS consortium (10). 

The hardware interface covers the invocation specification of all cryptographic hardware se-
curity blocks, higher-level security functionality (e.g., secure boot, secure time-stamping) and 
all necessary security management functionality (e.g., device administration, key creation, key 
import/export). It furthermore defines all hardware interpreted data structures and direct inter-
dependencies, such as key hierarchies, replay protection counters or basic access logic. 

A distinctive feature of the EVITA hardware interface is the inherent fine-grained application-
specific authorization in contrast to, e.g. general-purpose authorizations for using internal se-
cret(s). Thus the same secret can have different authorizations for different usage purpose (so 
called use-flags). A symmetric key, for instance, can have different authorizations for using 
the key for encryptions, decryption, MAC generations, or MAC verifications. These authori-
zations in turn, can be based either directly on the passwords or indirectly based on the indi-
vidual ECU platform configuration similar to the Trusted Computing (TC) approach (cf. TC 



authenticated boot) or could be even a combination of both (i.e., configuration and password). 
Moreover, each individual use flag can have its individual export constraints. Hence, a cipher 
interface is defined as follows (here simplified):  

EVITA_RETURNCODE cipher_init( 
  in algorithm_identifier,         // reference to hardware cipher algorithm 
  in cipher_mode{encrypt|decrypt}, // indicate use-flag ‘encrypt’ or ‘decrypt’ 
  in operation_mode{CBC|GCM|..},   // indicate cipher mode of operation 
  in padding_scheme{none|bit|..},  // indicate padding scheme (if required) 
  in initialization_vector,        // initialization vector (if required) 
  in key_handle,                   // reference to internal key to be used 
  in key_authorization_size,       // key authorization for requested use-flag 
 out max_chunk_size,               // maximum size of a chunk on process() 
 out session_handle );             // multi-session authentication handle 
 
EVITA_RETURNCODE cipher_process( 
  in session_handle,               // session reference from init() 
  in input_data_size,              // input data to become encrypted or decrypted 
 out output_data );                // output data being encrypted or decrypted 
 
EVITA_RETURNCODE cipher_finish( 
  in session_handle,               // release session handle 
 out final_output );               // last output chunk (e.g., from padding scheme) 
 

The cipher becomes initialized first by defining all relevant operation parameters and provid-
ing (directly or indirectly) the necessary key usage authorization if corresponding authoriza-
tions have been set during the creation of the referred secret key. The initialization then re-
turns all relevant processing parameters (e.g., maximum chunk size) and a session identifier 
for interruption and parallel processing of the corresponding cipher operation(s). After all data 
chunks have been encrypted or decrypted, the cipher session is closed and the session handle 
will be released by invoking the finalization command. 

Security Software  

We employ a flexible and modular security framework that allows distributed deployment (2). 
As use cases may demand a subset of security requirements, a modular architecture has the 
advantage of reusing security components where possible. The security framework offers the 
following functionalities. 

 Access control: Management and enforcement of policies, 
 Authentication services: Depending on requirements,  
 Secure communication: Establishment of authenticated and/or confidential communica-

tion channels, 
 Intrusion detection: Modules provide means to detect and manage intrusions at different 

abstractions levels. 

These modules can be configured in a policy-oriented way. In order to enable a maximum 
level of flexibility and adaptability of the security functionality, all security modules can be 
configured (statically or even dynamically) by accepting and enforcing individual security 
policies such as the following: 

 Authorization policies that specify to which extent a certain entity is allowed to access and 
use a specific resource under a certain condition, e.g. for: 



− file, network and input/output device access, 
− external and internal communications (i.e., filter policies that define, for instance, which 

contents, sources, protocols, or services can be communicated between certain commu-
nication endpoints), 

− usage of connected peripherals 

 Privacy policies that define to which level data and information needs to be hidden against 
third parties or at least need to be anonymized for a certain level of privacy, 

 Authentication policies that define what level of authentication (e.g., password, smartcard) 
is required for corresponding role authorizations, 

 Intrusion detection policies that define certain attack scenarios and attack heuristics, 
 Intrusion response policies that define what kind of countermeasures has to executed 

against a certain kind of detected attack. 

Modules of the software security framework can be deployed to individual ECUs, depending 
on the role, requirements and performance of an ECU. 

DEPLOYMENT 

We outline a deployment of hardware security modules based on an e-safety scenario that is 
part of the use cases defined in (9). The scenario is called “Active Brake” and uses inter-vehi-
cle communication. In Figure 2, the ECUs within the receiving vehicle taking part in commu-
nication for this scenario are shown. Data is analyzed for authenticity and authorization at the 
communication control unit (CCU) and is then distributed to the individual domains and 
ECUs where actions are taken. Authenticity of data (i.e., whether they originate at the CCU) 
is checked at each receiving ECU. For this purpose, these ECUs are equipped with HSMs. 
Depending on the performance and runtime environment of the ECUs, medium or light HSMs 
are used (for the sensors only the light HSM is feasible, due to constraints of the platform). 

 

Figure 2: Deployment example of HSMs 



SUMMARY AND OUTLOOK  

We have designed and specified a modular security hardware and software concept that is 
going to be used for automotive on-board networks and the corresponding electronic control 
units. The different variants of security hardware make a deployment cost-effective. They re-
flect security requirements of different domains and electronic components. 

The EVITA project will define secure protocols between the on-board components. Formal 
methods and simulations will be used to verify the protocols before their implementation and 
integration into automotive operating systems and runtime environments. The HSMs will be 
prototyped using FPGA logic boards and automotive microcontrollers from Infineon. Finally, 
hardware and software will be deployed into a demonstrator vehicle. 
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