
F2010-E-035

SECURE AUTOMOTIVE ON-BOARD ELECTRONICS NETWORK
ARCHITECTURE
1Apvrille, Ludovic, 2El Khayari, Rachid, 2Henniger, Olaf*, 3Roudier, Yves,
3Schweppe, Hendrik, 4Seudié, Hervé, 5Weyl, Benjamin, 6Wolf, Marko

1Telecom ParisTech, France,
2Fraunhofer Institute for Secure Information Technology, Germany,
3EURECOM, France,
4Robert Bosch GmbH, Germany,
5BMW Group Research and Technology, Germany,
6escrypt GmbH, Germany

KEYWORDS – automotive on-board network; security architecture; hardware security
module, embedded systems, vehicle communication systems

ABSTRACT – This paper introduces hardware and software components for secure auto-
motive on-board networks providing the basis for the protection of external vehicle communi-
cation. It is based on work done within the European research project EVITA (http://evita-
project.org). It provides a framework that covers cross-layer security, targeting platform
integrity, communication channels, access control and intrusion detection and management.
We present a modular hardware/software co-design: Hardware security modules (HSM) pro-
vide means to protect the platform integrity, to ensure the integrity and confidentiality of key
material and to enhance cryptographic operations, thereby protecting critical assets of the
architecture. In order to provide cost-effective hardware solutions, three different variants of
HSMs have been specified: The full HSM for protecting external communication interfaces,
the medium HSM for protecting the on-board communication between electronic control units
(ECUs), and the light HSM for protecting the on-board communication with sensors and
actuators. Application specific interfaces are provided by the software framework that inter-
acts with the HSMs. High-level design considerations, such as least privilege design and sepa-
ration principles have been followed throughout the work. We provide an outlook on deploy-
ment scenarios.

MOTIVATION

Automotive applications based on vehicle-to-vehicle and vehicle-to-infrastructure (V2X)
communications have been identified as a means for decreasing the number of fatal traffic
accidents in the future and for intelligent traffic management. However, malicious attacks on
embedded IT systems and networks implementing those functionalities and malicious en-
croachments on messages transiting between vehicles and infrastructure, such as sending fake
messages and spoofing over the wireless network, may have a severe impact. Thus, the on-
board network needs to provide appropriate security measures in order to protect against ma-
licious messages. Sensitive in-vehicle data must be trustable and protected from modification.

A list of potential attacks and related security requirements (1) served as starting point for
designing the secure on-board architecture. The attacks have been classified according to their
risk level in order to choose adequate levels of protection against them. We derived in-car
security mechanisms out of the security requirements (2). Security functions are partitioned
between software and hardware with cost and security levels as major criteria. The secure

storage of secret keys together with secure and trustworthy communication among in-car
electronic components lays the foundation for sound data exchange between vehicles or infra-
structure services. Therefore, we place the “root of trust” in hardware security modules real-
ized as an on-chip extension to automotive ECUs. This enables the reliable enforcement of
application-specific security properties such as authenticity, confidentiality, or freshness as
well as dependable access control.

The rest of this paper is organised as follows: After giving an overview of related work in the
field of V2X and on-board communications and summarizing the security requirements from
(1), we present our security architecture. The paper concludes with a deployment overview
and a summary and outlook.

RELATED WORK

The past decade has seen a tremendous growth in the vehicular communication domain, yet
no comprehensive security architecture solution has been defined that covers all aspects of
on-board communication (data protection, secure communication, secure and tamper proof
execution platform for applications). On the other hand, several projects, namely GST (3),
C2C-CC (4), IEEE Wave (5) and SeVeCOM (6) have been concerned with inter-vehicular
communication and have come up with security architectures for protecting vehicle-to-vehicle
and vehicle-to-infrastructure communications. These proposals essentially aim at communi-
cation-specific security requirements in a host-based security architecture style, as attackers
are assumed to be within a network where no security perimeter can be defined (ad-hoc com-
munication).

For instance, (7) presents the C2C communication consortium’s solution integrating previous
approaches (8)(15)(16)(17) for secure vehicular communications. These proposals consider
the car mostly as a single entity, communicating with other cars using secure protocols. In
particular, this architecture relies on a complex security back-end infrastructure (including
authorities, notably implementing PKIs, e.g., for pseudonym and identity management). This
is necessary for protecting the identity of a car yet making it possible to manage its identifiers
when required. However, no specific execution platform requirements are put forward by
these proposals, except for the need to protect node identifiers: All proposals mention that
data such as vehicular registration and cryptographic material should be stored in a tamper-
resistant manner. Unfortunately, this requirement is not accompanied by any further analysis
of the particular threats to data integrity and authentication within the vehicle that might guide
the design of such storage. The EVITA project fills this gap, by providing an in-vehicle plat-
form with secure storage, a trusted execution environment, among other qualities such as
cryptographic processors in hardware and a security framework for communication, authenti-
cation and authorization as well as intrusion detection and management in software.

SECURITY REQUIREMENTS

At the highest level, the security objectives that are covered are:

 to prevent unauthorized manipulations of vehicular on-board communication networks,
 to prevent unauthorized modifications of vehicle applications especially regarding safety

and m-commerce applications,
 to protect privacy of vehicle drivers,
 to protect intellectual property of vehicle manufacturers and suppliers,
 while maintaining the operational performance of applications and security services.

The EVITA project has inferred the following set of security requirements and related func-
tional requirements in order to satisfy the stated security objectives (1):

 Integrity/authenticity of e-safety related data: Actions depending on critical information
should be decided based on assurances about integrity and authenticity in terms of origin,
content, and time. Forgery of, tampering with, or replay of such information should at least
be detectable.

 Integrity/authenticity of ECU/firmware installation/configuration: Any replacement or
addition of an ECU and/or its firmware or configuration to the vehicle shall be authentic in
terms of origin, content, and time. In particular, the upload of new security algorithms,
security credentials, or authorizations should be protected.

 Secure execution environment: Compromises to ECUs should not result in system wide
attacks, primarily with regard to e-safety applications. Successful ECU attacks should have
limited consequences on separate and/or more trusted zones of the platform.

 Vehicular access control: Access to vehicular data and functions should be controlled
(e.g. for diagnosis, resources, etc.)

 Trusted on-board platform: The integrity and authenticity of operated software shall be
ensured. An altered platform might be prevented from running in an untrusted configura-
tion (e.g. via comparison with a trusted reference) if so required.

 Secure in-vehicle data storage: Applications should be able to use functionality in order
to ensure access control to as well as the integrity, freshness and confidentiality of data
stored within a vehicle, especially for personal information and security credentials.

 Confidentiality of certain on-board and external communication: The confidentiality
of existing software/firmware as well as updates and security credentials shall be ensured.
Some applications might additionally require that part of the traffic they receive or send
internally or externally should remain confidential.

 Privacy: A privacy policy shall be enforceable on personal data stored within a vehicle or
contained in messages sent from a vehicle to the outside. For example, some applications
should limit the ability to link sent messages.

 Interference of security functionality: The operation of security services must not nega-
tively affect the availability of bus systems, CPUs, RAM, or of the radio medium.

The above stated requirements are constraints that arose from security concerns. How the
constraints are satisfied is described in the following sections.

SECURITY ARCHITECTURE

Partitioning in Hardware and Software

Partitioning a system in software and hardware means finding an optimum solution for exe-
cuting a set of application functions – including functions related to security – over various
candidate hardware architectures (11). Those architectures are typically built upon hardware
nodes such as CPUs, buses, memories, hardware accelerators and sensors/actuators. Criteria
for selecting an optimal architecture are typically the cost of hardware elements, the power
consumption, the execution time or throughput of the system, and the ability to change the
functionality of the system without incurring heavy costs.

In software/hardware partitioning, a typical methodology relies on the description of appli-
cation functions, of candidate architectures, of the mapping of application functions onto the
architectures and then the simulation of the mapping. The analysis of simulation traces result-
ing from the simulation generally leads to the selection of the “best” architecture.

We have used a model that included hardware security functions, software security functions,
security requirements, attack probabilities and risk as well as preliminary protocol definitions.
We used software called TTool (12) for this purpose, which allows us to answer questions
regarding deployment and design decisions and tailor the software and hardware security
architecture for specific vehicle types and models according to specific security requirements.

EVITA Hardware Security Modules

Figure 1 presents the general architecture of an automotive HSM. With the security require-
ments of (1) as basis, in (2) a cost-effective HSM design has been chosen that provides
enough security and flexibility. In this architecture the HSM resides in the same chip as the
application CPU core.

Figure 1: General structure of an automotive HSM

The components of the HSM are divided into mandatory and optional components because,
depending on the use case, different security requirements have to be fulfilled. The optional
components are represented in Figure 1 with dashed lines. In order to provide cost-effective
hardware solutions, we specify three different EVITA HSM variants that meet different secu-
rity needs (2):

 Full EVITA HSM: This HSM focuses on protecting the in-vehicle domain against secu-
rity vulnerabilities of V2X communications. This requires creating and verifying electronic
signatures. In order to satisfy the performance requirements, a very efficient asymmetric
cryptographic engine is needed. The full HSM provides the maximum level of functional-
ity, security, and performance of all the different HSM variants. It further aims to provide a
security lifetime of at least 20 years, which means ECRYPT II Level 7 “Long-term protec-
tion” (13) and/or NIST 2030+ (14).

 Medium EVITA HSM: This HSM focuses on securing the on-board communication.
Except for the asymmetric cryptographic building block and a little less performing CPU
(e.g. 25 MHz vs. 100 MHz), the medium HSM resembles the full HSM. The medium HSM
has no asymmetric cryptographic building block in hardware; however, it is able to per-
form some non-time-critical asymmetric cryptographic operations in software, e.g. for the
establishment of shared secrets. As for efficiency and cost reasons virtually all internal
communication protection is based on symmetric cryptographic algorithms, leaving out the
asymmetric crypto engine is reasonable to save costs and hardware size.

 Light EVITA HSM: This HSM focuses on securing the interaction between secured
ECUs and sensors and actuators. It is only required to contain a symmetric cryptographic
engine and the corresponding functionally shortened hardware interface. Hence, the light
HSM is able to fulfill the strict cost and efficiency requirements (e.g., regarding message
size, timings, protocol limitations or processor consumption) that are typical for sensors

and actuators. The necessary shared secrets can be established in different ways, e.g. by
pre-configuration during manufacturing, by self-initialization (e.g., based on physically un-
clonable functions) or even by running a key establishment protocol in software at the
attached application processor.

Table 1 presents the components of the different HSM variants. All technical details such as
RAM size, clock frequencies etc. are current estimates and subject to change.

 Full EVITA HSM Medium EVITA HSM Light EVITA HSM

Internal RAM
(e.g. 64 kByte)

(e.g. 64 kByte) optional

Internal NVM
(Non-volatile memory)

(e.g. 512 kByte)

(e.g. 512 kByte) optional

Symmetric
Cryptographic Engine
(e.g. AES-128 CCM, GCM f/AE)

Asymmetric
Cryptographic Engine
(e.g. ECC-256-GF(p) NIST FIPS
186-2 prime field)

Hash engine
(e.g. Whirlpool)

Counters

(e.g. 16 × 64-bit
monotonic counter)

(e.g. 16 × 64-bit

monotonic counter)
optional

Random Number Generator

(e.g. AES-PRNG
with TRNG seed)

(e.g. AES-PRNG
with TRNG seed)

optional

Secure CPU
(e.g. ARM Cortex-M3 32 bit, 50–
250 MHz)

Hardware Interface

Table 1: Components of different EVITA HSMs (technical details may change)

Hardware Interface

The EVITA hardware security module provides an asynchronous (i.e., non-blocking), almost
completely multi-session-capable (i.e., interruptible), and partly also multi-threading-capable
hardware interface. It is compliant to the Secure Hardware Extension (SHE) specification pro-
posed by the automotive HIS consortium (10).

The hardware interface covers the invocation specification of all cryptographic hardware se-
curity blocks, higher-level security functionality (e.g., secure boot, secure time-stamping) and
all necessary security management functionality (e.g., device administration, key creation, key
import/export). It furthermore defines all hardware interpreted data structures and direct inter-
dependencies, such as key hierarchies, replay protection counters or basic access logic.

A distinctive feature of the EVITA hardware interface is the inherent fine-grained application-
specific authorization in contrast to, e.g. general-purpose authorizations for using internal se-
cret(s). Thus the same secret can have different authorizations for different usage purpose (so
called use-flags). A symmetric key, for instance, can have different authorizations for using
the key for encryptions, decryption, MAC generations, or MAC verifications. These authori-
zations in turn, can be based either directly on the passwords or indirectly based on the indi-
vidual ECU platform configuration similar to the Trusted Computing (TC) approach (cf. TC

authenticated boot) or could be even a combination of both (i.e., configuration and password).
Moreover, each individual use flag can have its individual export constraints. Hence, a cipher
interface is defined as follows (here simplified):

EVITA_RETURNCODE cipher_init(
 in algorithm_identifier, // reference to hardware cipher algorithm
 in cipher_mode{encrypt|decrypt}, // indicate use-flag ‘encrypt’ or ‘decrypt’
 in operation_mode{CBC|GCM|..}, // indicate cipher mode of operation
 in padding_scheme{none|bit|..}, // indicate padding scheme (if required)
 in initialization_vector, // initialization vector (if required)
 in key_handle, // reference to internal key to be used
 in key_authorization_size, // key authorization for requested use-flag
 out max_chunk_size, // maximum size of a chunk on process()
 out session_handle); // multi-session authentication handle

EVITA_RETURNCODE cipher_process(
 in session_handle, // session reference from init()
 in input_data_size, // input data to become encrypted or decrypted
 out output_data); // output data being encrypted or decrypted

EVITA_RETURNCODE cipher_finish(
 in session_handle, // release session handle
 out final_output); // last output chunk (e.g., from padding scheme)

The cipher becomes initialized first by defining all relevant operation parameters and provid-
ing (directly or indirectly) the necessary key usage authorization if corresponding authoriza-
tions have been set during the creation of the referred secret key. The initialization then re-
turns all relevant processing parameters (e.g., maximum chunk size) and a session identifier
for interruption and parallel processing of the corresponding cipher operation(s). After all data
chunks have been encrypted or decrypted, the cipher session is closed and the session handle
will be released by invoking the finalization command.

Security Software

We employ a flexible and modular security framework that allows distributed deployment (2).
As use cases may demand a subset of security requirements, a modular architecture has the
advantage of reusing security components where possible. The security framework offers the
following functionalities.

 Access control: Management and enforcement of policies,
 Authentication services: Depending on requirements,
 Secure communication: Establishment of authenticated and/or confidential communica-

tion channels,
 Intrusion detection: Modules provide means to detect and manage intrusions at different

abstractions levels.

These modules can be configured in a policy-oriented way. In order to enable a maximum
level of flexibility and adaptability of the security functionality, all security modules can be
configured (statically or even dynamically) by accepting and enforcing individual security
policies such as the following:

 Authorization policies that specify to which extent a certain entity is allowed to access and
use a specific resource under a certain condition, e.g. for:

− file, network and input/output device access,
− external and internal communications (i.e., filter policies that define, for instance, which

contents, sources, protocols, or services can be communicated between certain commu-
nication endpoints),

− usage of connected peripherals

 Privacy policies that define to which level data and information needs to be hidden against
third parties or at least need to be anonymized for a certain level of privacy,

 Authentication policies that define what level of authentication (e.g., password, smartcard)
is required for corresponding role authorizations,

 Intrusion detection policies that define certain attack scenarios and attack heuristics,
 Intrusion response policies that define what kind of countermeasures has to executed

against a certain kind of detected attack.

Modules of the software security framework can be deployed to individual ECUs, depending
on the role, requirements and performance of an ECU.

DEPLOYMENT

We outline a deployment of hardware security modules based on an e-safety scenario that is
part of the use cases defined in (9). The scenario is called “Active Brake” and uses inter-vehi-
cle communication. In Figure 2, the ECUs within the receiving vehicle taking part in commu-
nication for this scenario are shown. Data is analyzed for authenticity and authorization at the
communication control unit (CCU) and is then distributed to the individual domains and
ECUs where actions are taken. Authenticity of data (i.e., whether they originate at the CCU)
is checked at each receiving ECU. For this purpose, these ECUs are equipped with HSMs.
Depending on the performance and runtime environment of the ECUs, medium or light HSMs
are used (for the sensors only the light HSM is feasible, due to constraints of the platform).

Figure 2: Deployment example of HSMs

SUMMARY AND OUTLOOK

We have designed and specified a modular security hardware and software concept that is
going to be used for automotive on-board networks and the corresponding electronic control
units. The different variants of security hardware make a deployment cost-effective. They re-
flect security requirements of different domains and electronic components.

The EVITA project will define secure protocols between the on-board components. Formal
methods and simulations will be used to verify the protocols before their implementation and
integration into automotive operating systems and runtime environments. The HSMs will be
prototyped using FPGA logic boards and automotive microcontrollers from Infineon. Finally,
hardware and software will be deployed into a demonstrator vehicle.

ACKNOWLEDGMENTS

This work has been part of the collaborative project “EVITA – E-safety vehicle intrusion
protected applications” (http://evita-project.org), co-funded by the European Commission
under the Seventh Framework Programme. The authors thank the other project participants
from BMW Group Research and Technology, Continental Teves AG & Co. oHG, escrypt
GmbH, EURECOM, the Fraunhofer Institutes for Secure Information Technology and for
Systems and Innovation Research, Fujitsu Services AB, Infineon Technologies AG, Institut
Telecom, Katholieke Universiteit Leuven, MIRA Ltd, Robert Bosch GmbH and Trialog for
the fruitful cooperation.

REFERENCES

(1) A. Ruddle, D. Ward, B. Weyl, S. Idrees, Y. Roudier, M. Friedewald, T. Leimbach,
A. Fuchs, S. Gürgens, O. Henniger, R. Rieke, M. Ritscher, H. Broberg, L. Apvrille,
R. Pacalet, G. Pedroza, “Security requirements for automotive on-board networks based
on dark-side scenarios”, EVITA Deliverable D2.3, 2009.

(2) B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M.S. Idrees, Y. Roudier, H. Schweppe,
H. Platzdasch, R. El Khayari, O. Henniger, D. Scheuermann, A. Fuchs, L. Apvrille,
G. Pedroza, H. Seudié, J. Shokrollahi, A. Keil, “Secure on-board architecture specifica-
tion”, EVITA Deliverable D3.2, 2010.

(3) GST, Global Systems for Telematics, EU FP6 project, http://www.gst-forum.org/
(4) C2C-CC, Car2Car Communication Consortium, http://www.car-to-car.org/
(5) IEEE WAVE, Wireless Access in Vehicular Environments, IEEE standard 1609.2.
(6) SeVeCOM, Secure Vehicle Communication EU FP6 project, http://www.sevecom.org/
(7) M. Gerlach, A. Festag, T. Leinmüller, G. Goldacker and C. Harsch, “Security Architec-

ture for a Vehicular Communication”. In International Workshop on Intelligent Trans-
portation (WIT), 2005.

(8) T. Kosch: Local Danger Warning based on Vehicle Ad-hoc Networks: Prototype and
Simulation. In Proceedings of 1st International Workshop on Intelligent Transportation
(WIT), Hamburg, Germany, March 2004.

(9) E. Kelling, M. Friedewald, T. Leimbach, M. Menzel, P. Saeger, H. Seudié, B. Weyl,
“Specification and evaluation of e-security relevant use cases”, EVITA Deliverable
D2.1, 2009.

(10) R. Escherich, I. Ledendecker, C. Schmal, B. Kuhls, C. Grothe, F. Scharberth: SHE –
Secure Hardware Extension – Functional Specification Version 1.1. Hersteller-Initiative
Software (HIS) AK Security, 2009.

(11) S. Künzli. Efficient Design Space Exploration for Embedded Systems. PhD thesis.
2006.

(12) TTool, the TURTLE Toolkit. http://labsoc.comelec.enst.fr/ttool.html
(13) ECRYPT II: Yearly Report on Algorithms and Keysizes (2008-2009), D.SPA.7 Rev.

1.0, ICT-2007-216676, 07/2009.
(14) NIST: Recommendation for Key Management, Special Publication 800-57 Part 1,

03/2007.
(15) M. Raya, P. Papadimitratos, and J.-P. Hubaux, “Securing vehicular communications,”

IEEE Wireless Communications Magazine, Special Issue on Inter-Vehicular Communi-
cations, October 2006.

(16) M. Raya, D. Jungels, P. Papadimitratos, I. Aad, and J.-P. Hubaux, “Certificate Revoca-
tion in Vehicular Networks,” Laboratory for Computer Communications and Applica-
tions (LCA), EPFL, Tech. Rep. LCAREPORT-2006-006, 2006.

(17) P. Papadimitratos, V. Gligor, and J.-P. Hubaux, “Securing Vehicular Communications –
Assumptions, Requirements, and Principles,” in Proc. 4th Workshop on Embedded
Security in Cars (escar), 2006.

