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Abstract

Autonomic and opportunistic communications require specific routing al-
gorithms, like replication-based algorithms or context-based forwarding. In
addition to confidentiality, privacy is a major concern for protocols which
disseminate the context of their destination. In this paper, we focus on the
confidentiality and privacy issue inherent to context-based protocols, in the
framework of an original epidemic forwarding scheme, which uses context as
a heuristic to limit the replication of messages. We define the achievable
privacy level with respect to the trusted communities assumption, and the
security implications. Indeed, privacy in such an environment raises chal-
lenging problems, which lead us to a solution based on refinements of two
pairing-based encryption, namely searchable encryption and identity-based
encryption. This new solution enables forwarding while preserving user pri-
vacy by allowing secure partial matches in the header and by enforcing pay-
load confidentiality.
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1. Introduction

Context-based forwarding (e.g.[1, 2, 3]) is a new communication paradigm,
where messages are forwarded from source to destinations based on the con-
text (e.g. location, workplace or social information) instead of explicit ad-
dresses. To be more precise, each message is associated with a message
context which corresponds to the profile of its destination, and nodes make
their forwarding decisions by comparing the context of the message with their
own profile and the profile of their neighbors.

The assumption behind context-based forwarding is that the larger the
context shared by two nodes, the higher the chances for these two nodes to
meet one another (e.g. two persons working at the same company are highly
likely to be in transmission range at some point). Thus, routing decisions in
context-based forwarding are guided by the similarity between the contexts
of encountered nodes and the destination’s context.

Context-based forwarding is particularly adapted to challenged heteroge-
neous environments, like opportunistic and autonomic networks [4], where
end-to-end connectivity is not guaranteed. Indeed, in such environments,
classical routing mechanisms may be impractical, hence the transmission of
messages should rely on opportunistic strategies.

Opportunistic networking consists in transmitting the messages over any
communication medium available. Many opportunistic forwarding protocols
are replication based (e.g. [5, 6, 7, 8, 9]). The replication factor depends on
a heuristic which is used by intermediate nodes to decide either to forward
the message or to drop it. Using the context as heuristic is interesting for
controlled epidemic forwarding: a node decides to forward a message only if
the shared context between the message and the node is significant.

However, such a protocol presents major security issues. Firstly, a classi-
cal security requirement is payload confidentiality: the payload should only
be accessible by the legitimate destination and therefore requires end-to-end
encryption. This issue calls for innovative solution in the context of op-
portunistic networks since such network are delay-tolerant and thus do not
support end-to-end key agreement. Moreover, since the destination is defined
implicitly through context information, even the identity of the destination
itself is not necessarily known by the source.

Secondly, user privacy is a crucial issue in such a protocol. The message
context is indeed essentially a subset of the profile of the destination, and
the message is forwarded through various intermediate nodes that may not
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be trusted by the destination or the source. Moreover, trust relationships
are loose in such a heterogeneous environment, therefore nodes want to keep
a tight control over the access by other nodes to their profile due to privacy
reasons. Thus, nodes should be able to correctly make context-based for-
warding decisions on encrypted messages. The encryption mechanism itself
should be public and should not require prior contact with the destination,
while avoiding dictionary attacks. To this end, we propose a new solution
based on refinements of two pairing-based cryptosystems, namely Identity-
Based Encryption [10] and Public Encryption with Keyword Search (PEKS)
[11]. The tailored use of these functions with particular settings enables
intermediate nodes to detect matching attributes without revealing the non-
matching ones, and enforces confidentiality of the payload of the message,
with no online access Trusted Third Party.

Related work in this area is scarce because context-based forwarding is
an emerging concept and existing security solutions do not fit the issues
presented above.

In [12], Lilien et al. present several challenges in privacy and security of
opportunistic networks, and in particular the need for end-to-end confiden-
tiality but they do not propose solution and they do not analyze the issue
of context privacy and in particular the requirement of matching encrypted
context.

In the neighboring area of Delay Tolerant Networks (DTN), the DTNRG
defined a Bundle Security Protocol (BSP [13]) to secure communications in
DTN. BSP includes in particular a confidentiality block that only enables
the encryption of the entire payload at the source and its decryption at the
final destination based on the identifier of the destination. The confidentiality
capabilities offered by BSP do neither enable encryption based on the context
of the destination nor partial matches computations that are required to take
context-based forwarding decisions: those features are therefore not flexible
enough to fit the requirements of context based forwarding.

Finally in [3], Nguyen et al. propose a context based forwarding proto-
col with a security solution based on public hash functions to enable par-
tial matches at intermediate nodes while allegedly protecting privacy of the
destination. Their approach is yet prone to dictionary attacks and does
not achieve the claimed privacy as analyzed in section 3. To the best of
our knowledge, we are thus the first to analyze the problems of privacy in
context-based opportunistic networks and to propose a solution sketch in
[14]. Compared with [14], this article includes several new developments:
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the solution is improved with a new payload encryption mechanism for pay-
load confidentiality, it includes an extended version with multiple TTPs, an
analysis of the issue of revocation and a formal security evaluation.

The main contributions of this paper are as follows:

• We introduce a communication design that combines the concepts of
epidemic and context-based forwarding,

• We study the problem of payload confidentiality and user privacy in
this framework, and define the trusted communities assumption. We
further define the security primitives required to achieve privacy in the
proposed protocol.

• We propose an original design that features complete context-based
and epidemic forwarding with strong confidentiality and privacy en-
forcement. End-to-end confidentiality is provided through an extension
of Identity-based encryption where the identity is replaced by the sum
of the attributes of the destination, and context-based forwarding deci-
sions are taken while preserving user’s privacy through a modification
of a searchable encryption scheme with the help of an offline trusted
third party.

In the next section, we first describe the context-based and epidemic net-
work model and then focus on the security requirements of the introduced
model. Section 3 analyzes a basic approach based on hashes, whereas sec-
tion 4 presents our original scheme based on Identity-Based Encryption and
Public Encryption with Keyword Search. In section 5 we evaluate our solu-
tion both from a security and performance point of view, and we conclude
in section 6.

2. Problem statement

2.1. Context-based and epidemic forwarding

Classical routing mechanisms are not well adapted to opportunistic and
autonomic networks, due to nodes’ high mobility which implies unstable
network topology and the lack of end-to-end connectivity which results in
unpredictable end-to-end delays. In such environments, the transmission of
messages relies on opportunistic strategies like epidemic forwarding. The
main challenge in epidemic forwarding [7] is to find a suitable heuristic in
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order for the nodes to decide either to carry and forward the message or to
drop it and avoid network congestion.

We present an original design of an epidemic forwarding protocol which
heuristic is based on the context (e.g. personal information, residence, work,
hobbies, ...). The assumption behind context-based forwarding is that the
larger the context shared by two nodes, the higher the chances for these two
nodes to meet one another (e.g. two persons working at the same company
are highly likely to be in transmission range at some point). This assump-
tion leads to an interesting context-based heuristic for controlled epidemic
forwarding: the idea is that a node would decide to store and forward a
message only if the shared context between the message and the node is
significant, and to drop it otherwise.

To be more precise, we consider a network composed of a set of n nodes
{Ni}1≤i≤n. The context of a node Ni is defined as a set of attributes
{Ai,j}1≤j≤m, where each attribute Ai,j is a couple attribute name Ej, at-
tribute value Vi,j. The set of attribute names {Ej}1≤j≤m is known by all
nodes. Finally, the profile Prof(i) of node i is the concatenation of all its
attributes: Prof(i) = Ai,1||...||Ai,m. All nodes have the same set of m at-
tributes, but the value of an attribute may vary between nodes.

This model is illustrated by the small network given in figure 1. In this
example there are m = 3 attributes (E1 = Mail,E2 = Workplace and
E3 = Status) and n = 4 nodes (N1,N2,N3 and N4); each node’s profile is an
instantiation of the set of attributes (e.g.
Prof(1) = (Mail, alice@inria.fr)||(Workplace, INRIA)||(Status, student)).

When a node NS (1 ≤ S ≤ n) wants to send a message M to a destination
ND (1 ≤ D ≤ n), NS divides M in header H(M) and payload P(M), M =
H(M)||P(M). The header H(M) holds the profile of ND known by NS:

H(M) = ||j∈LAD,j

where L ⊂ [1,m] is the subset of the indexes of the values of Prof(D)
that NS knows, and ||j∈LAD,j denotes the concatenation of the attributes
with such indexes. When an intermediate node Ni receives the message
M , Ni compares its own profile Prof(i) with the header H(M) to extract
the subset Q ⊂ L of indexes of values that are shared between H(M) and
Prof(i), such that ∀j ∈ Q,AD,j = Ai,j. After this subset extraction, Ni can
estimate its probability of meeting the destination, called matching ratio, as
pi(M) = |Q|/|L|, where |X| denotes the cardinal of a set |X|.
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Mail alice@inria.fr

Workplace INRIA

Status Student

N1

N2

N3

N4

Mail bob@inria.fr

Workplace INRIA

Status Student

Mail charlie@eurecom.fr

Workplace EURECOM

Status Faculty

Mail dan@eurecom.fr

Workplace EURECOM

Status Student

Figure 1: Simple network used as illustration. The network is composed of four nodes, each
one has a profile composed of three attributes represented below the node. We consider
two scenarios in this example: in the scenario (I), N1 sends the message M1 for all the
students, and in the scenario (II) N4 sends the message M2 to N1.

The matching ratio pi(M) is used as a metric and Ni decides either to
drop the message or to carry and forward it depending on pi(M). The choice
of the precise heuristic based on this metric impacts the performance of the
protocol, and in particular on the number of replicas of a message in the
network (which can be further limited through aging mechanisms like Time
To Live) but the heuristic does not impact on the protocol security which is
the focus of this article. The selection of the best heuristic is therefore out of
the scope of this article but, for illustration purposes only, we choose a simple
heuristic which consists for a node Ni in picking a uniformly distributed
random number 0 ≤ ri ≤ 1 and then carrying and forwarding a message
M with probability pi(M) (if ri ≤ pi(M)) and dropping it with probability
1− pi(M) (if ri > pi(M)).

In this protocol, destinations of a message are implicitly defined as being
all nodes which profile corresponds to the header of the message, therefore
a message can have multiple destinations: a node Ni knows that it is a
destination of M if its profile includes all the attributes in the header of
the message resulting in pi(M) = 1 (complete match). In the sequel of the
paper, destination thus refers to one node or to a set of nodes depending
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N1

N2

N3

N4

(Status,Student);
Payload=“Party at 
10pm”

p2(M1)=1

p3(M1)=1

p4(M1)=0

(1)

(2)

M1

N1

N2

N3

N4

(Name,Alice);
(Workplace=INRIA);
(Status=Student);
Payload=“I love you”

p1(M2)=1 p3(M2)=1/3

p2(M2)=2/3

(1)

(2)

M2

(I) (II)

Figure 2: Two communication scenarios. In scenario (I), N1 sends a message M1 to
all students (multiple destination) and in scenario (II) N4 sends a message M2 to N1

(single destination). The nodes in blue are the source of messages, the nodes in green the
destinations, and the node in red intermediate nodes that are not destinations.

on the header. To illustrate this fact let us consider two scenarios in the
example of figure 2.

In the first scenario, we assume that node N1 wants to send a message to
all students to advertise a party in the evening. N1 broadcasts the message
M1 with the payload P(M1) = ”Party tonight at 10pm” and a simple header
composed of only one attribute: H(M1) = (Status, student). The message
is received by N2 which computes p2(M1) = 1; therefore N2 is a destination
of M1. The message is then broadcasted and received by N3 and N4 which
compute their respective matching ratio as p3(M1) = 1 and p4(M1) = 0; thus
N3 is a destination of M1 whereas N4 is not.

As a second scenario, let us consider that N4 wants to send a love dec-
laration to N1. N4 broadcasts the message M2 with payload P(M2) =
”I love you” and a complete header

H(M2) = (Mail, alice@inria.fr)||(Workplace, INRIA)||(Status, student).

The message is received by N2 and N3 which respectively compute the match-
ing ratio p2(M2) = 2/3 and p3(M2) = 1/3. This indicates that neither N2

nor N3 are destinations of M2, but N2 is more likely to carry and forward M2

than N3. Finally when the message reaches N1, N1 computes the matching
ratio as p1(M2) = 1 and concludes that it is a destination of M2 (the unique
destination since the mail address is a unique identifier). In the sequel of
the paper, we use these scenarios to explain the security issues in such a for-
warding protocol and refer to them respectively as scenario (I) and scenario
(II).
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The introduced protocol takes forwarding decisions based on the destina-
tion context, which is potentially sensitive information. This protocol hence
needs to be enhanced with security mechanisms from a confidentiality, pri-
vacy and robustness perspective. To this end, we first define the security
requirements in the next section.

2.2. Security requirements

As for classical communication mechanisms, data confidentiality is one of
the first security requirements that should be taken into account. Indeed,
access to the content of any message should only be authorized to destined
nodes. Data confidentiality is usually ensured by using cryptographic en-
cryption algorithms. However, contrary to many existing solutions based
on symmetric cryptosystems, context-based communication protocols can-
not rely on an end-to-end key management mechanism. Therefore source
nodes should be able to encrypt the content of the message without a priori
sharing any key with the destination node(s). Moreover, since the identity of
destination nodes may be unknown by the source (e.g. in scenario (I)), the
key used for the new encryption mechanism should be based on the set of
attributes included in the context of the message. Only nodes which own the
correct set of attributes should be able to access the content of the message.
There is thus a very strong link between decryption keys and attributes used
to encrypt the message. Only authorized nodes, i.e. those which really own
the corresponding attributes, should receive the required decryption keys;
the decryption keys should therefore also depend on the set of attributes
included in the context of the message.

The encryption mechanism should also be flexible in the sense that a
node should be able to encrypt a message with any set of attributes but
only nodes owning all attributes that were used to encrypt the message
should be able to decrypt this message using the combination of keys cor-
responding to each of the attributes. For example, in scenario (II), the
encryption key should be derived from the three attributes in the header
((Mail, alice@inria.fr),(Workplace, INRIA) and (Status, student)) and only
N1 should have the keys to decrypt the payload, but N4 should not need to
agree on an end-to-end key with N1 beforehand.

Hence, in order to ensure payload confidentiality and only let authorized
nodes access the payload, the two following security primitives have to be
formally defined:
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• ENCRYPT PAYLOAD: used by the source to encrypt the payload of
the message for the destination based on its attributes. This function
should be public and the encryption key should be based on attributes.

• DECRYPT PAYLOAD: used by the destination node to decrypt the
encrypted payload of the message. This function should be private:
since messages are encrypted with respect to attributes, only nodes
who actually have those attributes should receive the decryption keying
material.

Furthermore, as opposed to classical forwarding or routing algorithms,
context-based forwarding algorithms allow nodes to take forwarding decisions
based on the context information instead of a specific address. Since the
context uses information on the user’s characteristics and therefore is very
sensitive, such protocols raise new privacy concerns which conflict with the
communication protocol. Indeed, the context included in the header of the
message should be secret for privacy reasons. Yet, while being kept secret
from any other node, the message still needs to reach the correct destination
nodes. Therefore, forwarding nodes should be able to compare their profile
to the context included in the header of the message without having access
to unshared context information.

Thus, the security requirements differ from those in payload confidential-
ity: while payload confidentiality is an end-to-end service where only nodes
with a complete match (with matching ratio equal to one) can decrypt, the
dedicated encryption function should still enable nodes with partial matches
(with a matching ratio less than one) to discover shared attributes and hence
to correctly forward packets.

Therefore, full destination nodes’ privacy cannot be assured and we de-
fine a weaker model for privacy that we call trusted communities assumption.
Communities are defined on attributes’ basis: all nodes sharing a given at-
tribute Aj form the community of attribute Aj. In the example of figure
1, nodes N1, N2 and N3 form the community of students. In the trusted
communities assumption, nodes which belong to the same community trust
each other and do not harm each other. Hence, revealing to another node
a shared attribute is acceptable from a privacy perspective, but attributes
that do not match should remain secret.

The trusted communities assumption makes it also easier to manage
colluding attackers. For instance, suppose that an encrypted message is
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sent to faculty in INRIA. A node N1 with attributes (Status, Student)||
(workplace, INRIA) may collude with another node N2 with attributes
(Status, Faculty)||(workplace, EURECOM) and obtain the key needed to
decrypt the message. Similarly, they could decrypt messages sent to students
in EURECOM. This attack implies that N1 and N2 merge their decryption
capabilities and are able to impersonate each other. In particular, it means
that N2 now can discover the attribute (workplace, INRIA) in any mes-
sage and harm the INRIA community even though N2 works at EURECOM.
Thus, by colluding with N2, N1 would violate the trusted communities as-
sumption (and similarly for N2). Collusion attack is therefore ruled out by
the trusted communities assumption.

We therefore consider that nodes might adopt a malicious behavior for a
specific message only based on the knowledge they get from the message and
if they discover an attribute that do not match their profile. For instance,
they could decide to drop all messages addressed to a certain profile in a
Denial of Service (DoS) attempt against nodes with the said profile. The
protection of the header is therefore important not only for privacy but also
from a robustness perspective. For example, in scenario (II), node N2 could
decide to drop the message M2 if it discovers that the Mail of the destination
is alice@inria.fr, but N2 correctly executes the protocol if it only discovers
the Workplace and Status attributes which it shares. Attacks which do
not depend on the knowledge gained from a message (e.g. where a node
randomly drops messages) are out of the scope of this paper. Such attacks
are indeed mainly due to selfish nodes, and can be mitigated through soft
security mechanisms like cooperation enforcement schemes ([15, 16, 17]).

Moreover, as for payload confidentiality, encryption of the header cannot
rely on an end-to-end key management mechanism because of the oppor-
tunistic nature of the communication medium. In fact, any node, should be
able to send a secret message to any other node even if it does not share a
single attribute with that one. Therefore, the encryption function should be
public.

To sum up, in order to ensure user’s privacy, context-based forwarding
protocols require the definition of the following two additional security prim-
itives:

• ENCRYPT HEADER: used by the source to encrypt the context infor-
mation. This function should be public and should enable forwarding
nodes to compare their profile with the encrypted context in order to
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correctly forward packets.

• MATCH HEADER: used by any forwarding node to determine whether
the encrypted header includes some shared attributes of its profile. This
function should not however reveal any additional information on non-
matching attributes.

The primitive ENCRYPT HEADER denotes a secure encoding of the
header and is different from traditional encryption schemes, like the payload
encryption for example, in that decryption is not required. However, we use
the term ”encrypt” in both cases for the sake of clarity.

To summarize, a source node NS uses ENCRYPT PAYLOAD and EN-
CRYPT HEADER to encrypt respectively the payload and the header of the
message. Whenever an intermediate node receives an encrypted message, it
first uses MATCH HEADER in order to securely compute the matching ra-
tio. If there is a complete match, i.e. if the matching ratio is one, then this
node is a destination of the message and it performs DECRYPT PAYLOAD
on it. If there is a partial match, i.e. if the matching ratio is less than one
then the node takes a forwarding decision depending on the matching ratio
and the chosen heuristic.

Finally, since there is a strong link between each node’s profile and the
keying material used both for payload confidentiality and user privacy, nodes
should prove that they really own the claimed attributes to at least one
trusted entity and receive the corresponding keying material from this entity.
Therefore, in the sequel of the paper, we assume the existence of a Trusted
Third Party (TTP) which is in charge of verifying that nodes’ profile are
correct and of distributing the related keying materials if so. However, the
correct execution of the forwarding protocol should not rely on the presence
of this TTP: because of the delay-tolerant nature of the network, the TTP
only plays a role on the preliminary distribution and possibly updates of the
keying material and is considered offline during the forwarding of the data.

We now examine a first approach to meet these security requirements.

3. Basic approach based on hash functions

3.1. Solution sketch

The first idea to solve the privacy issue is to use hash functions, as pro-
posed in [3]. A cryptographic hash function hash is an efficient one-way
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function that does not require the use of a secret key and is preimage resis-
tant: given h, it is difficult to find any M such that hash(M) = h.

The idea would be to use a hash function hash to implement the EN-
CRYPT HEADER primitive. To be more precise, a node NS, which wants
to send a message M to ND, would simply hash all the values of the header
H(M), thus obtaining:

H(M) = ||j∈L(Ej, hash(VD,j)).

As a counterpart, an intermediate node Ni would implement MATCH
HEADER as follows:

• Ni would first hash its profile with the same hash function hash,

• Ni then tests whether one of its hashed attributes (Ej, hash(Vi,j)) is
equal to an attribute (Ej, hash(VD,j)) of the received header.

The preimage resistance property of hash implies that the attributes where
the equality holds are shared attributes, and the one where it does not hold
are non-matching attributes.

This idea seems attractive because it requires only a public function,
which is hash. Furthermore, hash functions are widely available, and they
are efficient to compute.

3.2. Dictionary attack

The idea of using hash functions does not meet the security requirements
defined in section 2.2. This solution is prone to dictionary attacks and such
attacks have a strong impact on the privacy of the solution. Indeed, in
context based communications, attributes are not pseudo-random sequences,
they are rather well formated and have a meaning. Therefore, the inter-
mediate node can compute the hash of each word in a dictionary and then
simply look up the values of the message header in the hashed dictionary
to discover the values of all (matching and non-matching) attributes of the
header. Dictionary here means all the possible values for a given attribute.
For example, the attribute Status in network 1 can only take three values in
a university: student or faculty or staff .

Since the hash function is public, dictionary attacks can easily and effi-
ciently be launched by any node. Therefore hash functions, as they are used
here, do not provide confidentiality or privacy.

In order to avoid dictionary attacks, two important properties are re-
quired:
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• MATCH HEADER, the counterpart of ENCRYPT HEADER, should
be private. This property means that a node should only be able to
match the values of attributes in its profile and no other values. This
was already mentioned in section 2.2, but the basic solution does not
verify this property. This property also implies that ENCRYPT HEADER
and MATCH HEADER should be different functions.

• The output of ENCRYPT HEADER should be randomized, which
means that the output of ENCRYPT HEADER should be different
at each execution, even if the input does not change. All nodes need
to be able to compute the function ENCRYPT HEADER on any in-
put in order to be able to send a message to any destination, therefore
ENCRYPT HEADER has to be implemented by a public function as
mentioned in section 2.2. If the output of ENCRYP HEADER is de-
terministic, nodes can launch a dictionary attack on all possible inputs
as explained above, but this attack cannot be launched if the output
of ENCRYPT HEADER is randomized.

We now present our original security design which fulfills these properties.

4. Our proposed solution

4.1. General idea

Our goal is to provide payload confidentiality and user privacy by en-
crypting the payload and parts of the header while allowing the forwarding
of messages. This implies that nodes with shared attributes are able to match
these attributes in the header (partial match) and that only the destination
can decrypt the payload (complete match).

The basic approach based on hash functions described in section 3 em-
phasized the importance of thwarting dictionary attacks by adding some
randomness or salting. Salting was originally proposed in the context of
password protection, to protect weak user passwords from pre-computation
attacks or rainbow tables [18]. Yet, our problem is different because the com-
munication protocol requires public encryption functions that can be used by
any node without the need of a secret, and therefore cannot rely on shared
keys which are required by symmetric techniques (e.g. salting).

Public encryption functions call for asymmetric cryptosystems. However,
the implementation of classical schemes like RSA [19], requires the existence
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of a public key infrastructure in order for a node to prove its identity: a
node would fetch a destination certificate before sending a message. Such
solutions are unfortunately not practical in an opportunistic environment.

Identity-based cryptography is a good candidate for opportunistic en-
vironments since it avoids the use of certificates while being asymmetric.
Therefore, we propose a solution based on refinements of identity-based cryp-
tography to allow any node to compute an encrypted version of the message.

The scheme is characterized by:

1. All nodes have the same set of m attributes, but the value of an at-
tribute may vary between nodes. Nodes also get private keys corre-
sponding to their attributes’ values from an offline Trusted Third Party
(TTP ).

2. User’s Privacy:

(a) Each message contains |L| ≤ m (attribute, value) pairs, where the
values are encrypted with Public key Encryption with Keyword
Search (PEKS) functions.

(b) A node can match its (attribute, value) pairs to that in the mes-
sage header, again using PEKS functions and its private keys.

(c) The forwarding of a message by an intermediate node is proba-
bilistic; it is based on the number of matched attributes.

(d) The main idea to provide the matching capability to intermediate
nodes is to modify the instantiation of PEKS, by introducing an
offline TTP .

3. Payload confidentiality:

(a) The payload of each message is encrypted using ID-based Encryp-
tion (IBE) function.

(b) A node can decrypt the message payload using ID-based Decryp-
tion (IBD) function, only if it matches all (attribute, value) pairs.

(c) The main idea in implementing these end-to-end confidentiality
functions is to use a sum of |L| arguments instead of a single
argument in IBD and IBE.

In the next section, we present an overview of the cryptographical back-
ground and then we focus on the innovative way in which cryptographic
primitives are integrated in our scheme to meet the payload confidentiality
and user privacy requirements.
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4.2. Cryptographical background

4.2.1. Bilinear pairings and general settings

The cryptographic primitives used in this paper both for payload con-
fidentiality and user privacy rely on cryptographic bilinear maps, therefore
we briefly define them in this section. We consider two groups G1 and G2

of same large prime order q. G1 is denoted additively and G2 multiplica-
tively. We denote by P a generator of G1. A cryptographic bilinear map is
a function e : G1 ×G1 → G2 which satisfies the following properties:

• Bilinearity:

∀P1, P2, P3 ∈ G1, e(P1 + P2, P3) = e(P1, P3)e(P2, P3)

and e(P1, P2 + P3) = e(P1, P2)e(P1, P3),

By corollary, bilinearity also implies the following useful property :

∀P1, P2 ∈ G1, k ∈ Z∗q, e(kP1, P2) = e(P1, P2)
k = e(P1, kP2) (1)

• Non-degeneracy: e(P, P ) 6= 1, which means that e(P, P ) is a generator
of G2,

• Computability: There exists an efficient algorithm to compute e(P1, P2)
for all P1, P2 ∈ G1.

The security of cryptosystems based on pairings relies on the hardness of
mainly two well-known problems:

• the Discrete Logarithm Problem which consists for a challenger in com-
puting a given < P, aP > in G1 or in computing r given < g, gr > in
G2,

• the Bilinear Diffie-Hellman Problem which consists for a challenger in
computing e(P, P )abc given < P, aP, bP, cP >.

q,G1, G2, e and P are global parameters of the system and are also used
in the next sections.
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4.2.2. Identity-Based Encryption

ID-based cryptography is a type of asymmetric key cryptography in which
the public key of a node is the node’s identity. ID-based cryptography allows
a node to encrypt and send a message without previously receiving the des-
tination node’s public key. The first practical ID-based encryption scheme
is proposed by Boneh et al. in [10]. In this section we remind the main
components of their scheme in order to use them in the following sections.

Their scheme is based on a bilinear pairing e and therefore the node’s
identity which is used as a public key and as input for e has first to be mapped
in G1. A cryptographic hash function H1 : {0, 1}∗ → G1 allows this mapping.
In addition to all the parameters described in 4.2.1, the cryptosystem requires
the existence of a Trusted Third Party (TTP) to generate nodes’ private keys.
To this extent, TTP first chooses a random number in Z∗q denoted by TTPpriv

which is kept secret, and publishes the public key as TTPpub = TTPpriv · P .
The encryption of a message M with identity ID outputs a ciphertext

M ′ as follows:
M ′ = IBE(H1(ID),M).

IBE is a randomized algorithm and therefore the M ′ changes at each
execution even if the inputs are the same. To decrypt M ′ the destination
needs first to fetch its private key from the TTP. The private key IDpriv

corresponding to ID is indeed TTPpriv ·H1(ID) and can only be computed
by the TTP. The decryption of the ciphertext M ′ is then performed with the
Identity-Based Decryption primitive IBD as follows:

M = IBD(IDpriv,M
′).

In summary, identity-based cryptography allows a node to encrypt a mes-
sage with only the knowledge of the destination’s identity, and enables the
destination to decrypt the messages after retrieving its private key from a
TTP. The encryption mechanism is public and randomized, while the decryp-
tion mechanism is private (it requires the private key of the destination).

Identity based encryption is therefore a good candidate in order to achieve
payload confidentiality in our protocol. However, since a source node may not
know the destination identity in advance, and since the destination is defined
as a set of attributes (in the header of the message), our protocol requires
a new version of identity based encryption that takes a set of attributes
as input. We therefore propose in section 4.3.1 an enhancement of identity-
based encryption in a multiple attribute setting in order to provide encryption
based on the conjunction of attributes instead of a single identity.
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4.2.3. Public Encryption with Keyword Search (PEKS)

Another interesting construction based on bilinear pairings is Public En-
cryption with Keyword Search, introduced by Boneh et al. in [11]. PEKS
allows a node to check whether some keyword exists in some encrypted data
without being able to retrieve any additional information on the data. More-
over, this test can be performed only if the node has has previously received
a trapdoor corresponding to the keyword. Thus, only authorized nodes can
perform the test and they cannot learn any information apart from the oc-
currence or not of the keyword in the encrypted data.

To be more precise, a Public Encryption with Keyword Search scheme is
composed of three primitives:

• PEKS which takes as input the public key of a node A and a keyword
W , and outputs W ′ a searchable encryption of W . PEKS is a public
and randomized function, and it is impossible to guess W given W ′

alone.

• Trapdoor which takes as input the private key of a node A and a
keyword W , and outputs a trapdoor TD for W . The Trapdoor function
is private because it requires the private key of node A, hence it is
computable by node A only.

• Test which takes as input an encrypted keyword W ′ and a trapdoor
TD, and returns true if TD is the trapdoor corresponding to W and
W ′ the encryption of the same W and false otherwise. In any case,
Test does not leak information about the actual value of W .

Figure 3 illustrates PEKS in a classical scenario with three nodes. The
actual constructions of PEKS, Trapdoor and Test are given in B.

While PEKS seems a good candidate for user’s privacy, this scheme can-
not be used as is since, in the current version of PEKS, the sender needs to
retrieve the public key of the destination in order to compute PEKS. Fur-
thermore, Test requires a trapdoor TD that can only be computed by the
destination; the destination should therefore compute the trapdoors for its
profile and send it to all the nodes and this is impractical in a DTN scenario.
We, therefore, propose in section 4.3.2 to modify the instantiation of PEKS
and to add an offline TTP to meet the requirements of header encryption in
our protocol.
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A

C

B

PEKS1=PEKS(Apub,W1)

TD=Trapdoor(Apriv,W2)
Test(PEKS1,TD)=0

PEKS2=PEKS(Apub,W2)

Test(PEKS2,TD)=1(1) (2)

(3)

Figure 3: Functional description of PEKS. B is sending two PEKS values corresponding
to W1 and W2. A gives C the trapdoor corresponding to W2. C can then test the PEKS
values received with the trapdoor and detects that PEKS2 corresponds to the trapdoor
whereas PEKS1 does not.

4.3. Description of the scheme

We now focus on the description of our solution, and more specifically on
the particular use of ID-based encryption and PEKS.

4.3.1. Payload Confidentiality

Payload confidentiality requires an end-to-end encryption mechanism be-
tween source and destination. The destination of a message is defined as a
node whose profile contains all the attributes included in the header of the
message and the encryption key should therefore also be derived from these
attributes. As explained in section 4.2.2, we propose to use identity-based
encryption in an enhanced multiple attribute setting that allows the encryp-
tion and decryption of a message with keys that are defined based on the
conjunction of several attributes instead of a single identity.

The identity-based encryption mechanism ([10]) introduced in section
4.2.2 is based on bilinear pairings, and is therefore homomorphic with respect
to addition. Thus, we propose to implement the payload encryption and de-
cryption primitives as particular instantiations of IBE and IBD where the
encryption and decryption keys become sums of several keys.

The encryption of the payload P(M) of the message M with header
H(M) = ||j∈LAD,j (see section 2.1) is an IBE encryption with the sum of
all attributes of the destination as identity:

P(M ′) = ENCRY PT PAY LOAD(M) = IBE(
∑
j∈L

H1(AD,j),P(M)).

The destination profile includes by definition AD,j for j ∈ L, and therefore
the destination has the corresponding private keys: AprivD,j

. The destination
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can thus decrypt the encrypted payload in message M ′ by using the sum of
these decryption keys in IBD:

DECRY PT PAY LOAD(M ′) = IBD(
∑
j∈L

AprivD,j
,P(M ′)).

The proof of correctness of the scheme is given in appendix A, while its
security is analyzed in section 5.1.

This solution therefore provides end-to-end confidentiality between source
and destination without the need to establish an end-to-end key or a group
key beforehand.

4.3.2. User’s Privacy

As described in section 2.2, while the protection of user’s privacy re-
quires the encryption of the header, intermediate nodes should still be able
to compare their profile to the context of the message in order to correctly
execute the protocol. PEKS enables intermediate nodes to perform searches
on encrypted data without accessing the data. However, as explained in
section 4.2.3, the sender requires the public key of the destination which is
not practical in delay-tolerant networks. Furthermore, intermediate nodes
would require to get the trapdoors from the destination which would defeat
the purpose of protecting the destination’s privacy.

We therefore propose to adapt PEKS functions to the environment de-
fined in 2.1 in a way inspired by identity-based encryption. The latter allevi-
ates the need for the destination’s public key required in classical asymmetric
schemes by replacing the public key of the destination by the public key of a
TTP and the identity of the destination. Similarly, we propose to use PEKS
with the public key of a Trusted Third Party instead of the public key of the
destination. As a consequence, neither the public key of the destination nor
the destination’s identity itself need to be known and privacy is preserved.
An example of this new instantiation of PEKS is sketched in figure 4.

To be more precise, the encryption of the header H(M) = ||j∈LAD,j

consists in computing the PEKS value of each attribute in the header with
the public key of the TTP resulting in the encrypted headerH(M ′) as follows:

H(M ′) = ENCRY PT HEADER(M)

= ||j∈L(Ej, PEKS(TTPpub, AD,j)).

This function is a randomized public function since PEKS internally uses a
random number.
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Name TD1

Workplace TD2

Status TD3

Test=0
Test=1
Test=1

Name=PEKS(TTPub,Alice);
Workplace=PEKS(TTPub,INRIA);
Status=PEKS(TTPub,Student);
Payload=ξ(I love you)

N4N2

TTP

TD1=Trapdoor(TTPpriv,Bob)
TD2=Trapdoor(TTPpriv,INRIA)
TD3=Trapdoor(TTPpriv,Student)

(1)

(2)

(3)
⇒p2(M2)=2/3

Figure 4: Example of user’s privacy mechanism in scenario (II). The TTP gives nodes
(here N2) the trapdoors associated with their profile. The sender N4 computes PEKS
values of the header based on the public key of the TTP . Intermediate nodes like N2 can
then test the encrypted header with the trapdoors they own to compute the matching
ratio p2(M ′2). ξ denotes the PAYLOAD ENCRYPTION primitive.

In order for an intermediate node Ni to compute the matching ratio, Ni

uses the Test function on the attributes of the header. To use this Test
function Ni requires trapdoors corresponding to its profile. These trapdoors
can only be computed by the TTP since they require the private key of
the TTP. Hence, Ni should receive the trapdoors associated with its profile
which are Trapdoor(TTPpriv, Ai,j) for 1 ≤ j ≤ m. Then, Ni implements
MATCH HEADER by extracting PEKS(TTPpub, AD,j) for each j ∈ L from
H(M ′) and computing

Test(PEKS(TTPpub, AD,j), T rapdoor(TTPpriv, Ai,j)),

which outputs:

• true, if VD,j = Vi,j,

• false, if VD,j 6= Vi,j.

Ni is therefore able to compute the matching ratio while the privacy of
the destination is preserved. Indeed, even though the Test function is public,
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it requires the trapdoors as input, and each node only has the trapdoors
corresponding to its own profile and cannot compute other trapdoors, because
the trapdoor function requires the private key TTPpriv of the TTP . Hence,
each node can only match attributes with its own profile as required in section
3.2.

4.3.3. Key Management

In the previous section, we presented security primitives achieving pay-
load confidentiality and user privacy. These primitives require solutions for
key management, and in particular a Trusted Third Party (TTP). However,
because of the delay-tolerant nature of the network, the TTP should only
have the role of distributing keying materials. It is considered as being of-
fline during the execution of the communication protocol. We, therefore,
define a preliminary step in the protocol where nodes can reach the TTP in
order to receive their keying material.

During this setup phase, the TTP first generates public parameters of the
system q,G1, G2, P, e,H1 (see section 4.2). It also chooses a master secret
TTPpriv and the associated public key TTPpub = TTPpriv · P . All nodes
receive the public parameters and TTPpub.

Furthermore each nodeNi securely sends its profile Prof(i) to TTP which
verifies the validity of the said profile (the method of verification is out of the
scope of this paper) and returns the private keys {Aprivi,j

}1≤j≤m associated
with Prof(i). These private keys are required for the payload decryption,
and the corresponding public key are simply {H1(Ai,j)}1≤j≤m.

Ni also requires the trapdoors as inputs for the Test function and there-
fore Ni receives the set of couples {(Ej, T rapdoor(TTPpriv, Ai,j))}1≤j≤m.

When looking at the details of the implementation of Trapdoor (see ap-
pendix B), it appears that

Trapdoor(TTPpriv, Ai,j) = TTPpriv ·H1(Ai,j) = Aprivi,j
.

Hence, the legitimate trapdoors are the same as the legitimate private keys,
which is interesting both from a security and performance point of view.

Each node Ni is required to enter setup phase before being deployed and
being able to communicate with its peers, but this does not imply that nodes
need to synchronize to enter setup phase at the same time. Before joining
the network, node Ni needs to enter setup phase by contacting the TTP
(e.g. through legacy networks like the internet). During this setup phase, Ni
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receives public parameters q,G1,G2,P ,e,H1 and TTPpub and Ni has m secrets
TTPpriv ·H1(Ai,j) for 1 ≤ j ≤ m. Ni can then communicate with all nodes
that already performed the setup phase, and does not need to contact the
TTP anymore.

5. Evaluation

In this section, we evaluate the security and the performance of the
scheme.

5.1. Security

We analyze first the security of the payload confidentiality scheme and
then we focus on user’s privacy.

On the one hand, the solution that ensures payload confidentiality is an
extension of identity-based encryption in a multiple attribute setting.

In the original IBE scheme ([10]), the encryption key of a node with iden-
tity ID isH1(ID) and the associated decryption key is IDpriv = TTPprivH1(ID).
In our proposal we define the encryption key of the concatenation of several
attributes ||j∈LAD,j as the sum of the hashes of each attribute

∑
j∈LH1(AD,j)

and the corresponding decryption key is computed as:∑
j∈L

AprivD,j
=

∑
j∈L

TTPprivH1(AD,j) = TTPpriv

∑
j∈L

H1(AD,j).

In [10], Boneh et al. proved that the basic construction of identity-based
encryption is semantically secure against a chosen plaintext attack (IND-ID-
CPA). The security proof is provided in the random oracle model and uses
the widely accepted assumption that the Bilinear Diffie-Hellman problem is
intractable.

The goal of an attacker Eve NE in our proposal is to find the decryption
key associated with attributes that she does not own. NE might have some
of the required private keys (because NE shares some attributes with the
destination) but not all of them: NE misses at least one of the private keys
required. We can separate the set L of indexes of attributes in the following
partition: the set L1 of indexes of attributes owned by NE and the set L2 of
indexes of attributes that are not shared by the attacker, such that L1∪L2 =
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L, L1 ∩ L2 = � and L2 6= �. The challenge for NE is to determine∑
j∈L

TTPprivH1(AD,j) =
∑
j∈L1

TTPprivH1(AD,j)︸ ︷︷ ︸
known

+
∑
j∈L2

TTPprivH1(AD,j︸ ︷︷ ︸
unknown

).

Thus the challenge for an attacker who knows some of the private keys is
still an instantiation of the identity-based encryption in a multiple attribute
setting but with less attributes. We show that our scheme is secure for any
number of attributes and that an attacker cannot derive the private key of
a message as long as there is at least one attribute whose private key is
unknown to the attacker.

The IBE proof can be extended to the multiple attribute setting for this
purpose and we consider only the set L2 of indexes of decryption keys un-
known to an attacker. The only difference is that the use of the addition
operation implies a risk of collisions and therefore the risk of a possible de-
cryption without the corresponding private keys.

To be more precise, suppose that there exists a set L3 of indexes of at-
tributes known by NE such that∑

j∈L3

H1(AE,j) =
∑
j∈L2

H1(AD,j).

Then a direct consequence is that:∑
j∈L3

TTPprivH1(AE,j) =
∑
j∈L2

TTPprivH1(AD,j),

∑
j∈L3

AprivE,j
=

∑
j∈L2

AprivD,j
.

Therefore if NE manages to find a collision on the public keys with at-
tributes that she owns and whose private keys are known to NE, then NE

can decrypt the message without knowing the private keys AprivD,j
of the

original attributes. We prove that the probability of finding such a collision
is negligible.

The key point here is that the sums are operated on hashes of attributes
and not on attributes themselves, and therefore the attacker has no control
over the points in G1 that he owns. The function H1 is indeed a cryptographic
hash function and in the random oracle model the output of the hash function

23



is considered to be uniformly distributed. If we consider a point P1 ∈ G1

then the probability for any input Ai,j that H1(Ai,j) = P1 is 1/|G1|. And
the same goes for the sum of random values in G1: the probability that∑

j∈L3
H1(AE,j) = P1 is 1/|G1|. This holds true for any point P1 ∈ G1, and

in particular if we consider P1 =
∑

j∈L2
AprivD,j

, this implies that:

P(
∑
j∈L3

H1(AE,j) =
∑
j∈L2

H1(AD,j)) = 1/|G1|.

Such a probability is negligible (it is the same probability as finding an ID′

different from a given ID such that H1(ID
′) = H1(ID)) as it amounts to

the success rate of brute force attack.
Thanks to the use of the hash function H1 collision is thus not an issue

and Boneh’s proof of semantic security of IBE applies in our setting as well.
In particular it means that our proposal is also semantically secure against
a chosen plaintext attack (IND-ID-CPA) and that a node can decrypt an
encrypted message only if it knows all the required private keys and therefore
is the destination. Other nodes cannot deduce any information about the
payload even if some of the attributes are shared with destination nodes.

Finally we point at another interesting property of our scheme which is
a consequence of the privacy preserving mechanism. As opposed to Boneh’s
scheme where the identity of the destination is sent in clear and accessible
by any malicious node, the encryption keys can only be discovered by nodes
which share the corresponding attributes. This property offers an additional
security property as an attacker would first need to find which attributes
were used to encrypt the message before being able to launch an attack as
in the Boneh’s attacker model.

On the other hand, user’s privacy is preserved through a scheme derived
from Public Encryption with Keyword Search. In [11], Boneh et al. proved
that their construction is semantically secure against a chosen keyword at-
tack in the random oracle model, assuming that the Bilinear Diffie-Hellman
problem is hard. This means in particular that it is unfeasible for a node
to discover the content of a keyword unless it knows the corresponding trap-
door. The computation of these trapdoors requires the private key of the
TTP, and therefore only the TTP can compute and distribute them. Since
the TTP provides a node Ni only with the trapdoors corresponding to its
profile, this implies that Ni can only discover if some attributes in his profile
are included in the header by using the Test function: privacy is thus not
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absolute, but this follows the trusted communities assumption described in
section 2.2.

From an operational point of view, ENCRYPT HEADER and ENCRYPT
PAYLOAD use only public functions and public keys that are distributed
during the setup phase to all nodes. Any source node NS can therefore send
messages, even before meeting the destinations during the runtime phase.
These primitives also avoid the dictionary attack, because they make use of
internal randomization: their output is different at each execution, even if
the input do not change. The proposed framework ensures privacy of the
destination and confidentiality of the payload against eavesdroppers but also
curious intermediate nodes, while enabling the computation of the probability
used in forwarding decisions. Finally, the scheme features packets unlinka-
bility and is therefore even resilient against traffic analysis from outsiders.
Indeed, thanks to the randomness in ENCRYPT HEADER and ENCRYPT
PAYLOAD, it is hard to link the headers of packets and therefore it is im-
possible to know if two packets have the same characteristics (in terms of
destination or attributes) or not. Furthermore it is impossible to detect and
analyze a communication flow because the forwarding decisions are taken
probabilistically, therefore the route between a source and destination differs
for consecutive packets.

5.2. Revocation

From a management perspective, the TTP provides all keys during the
setup phase but it does not play any role in the runtime phase. This offline
TTP is therefore compatible with an opportunistic network. Yet, as in many
DTN protocols, key revocation is a difficult problem.

The problem of key revocation is a new problem that arises in the par-
ticular configuration in which we use PEKS but it was not an issue in the
original PEKS scheme of Boneh et al. [11]. In [11], the revocation of the
capability of using the Trapdoor function was directly linked with the re-
vocation of the private key of the destination and was therefore a classical
problem. In our design, the issuer of the trapdoors is the TTP, and the same
trapdoor is given to all nodes with the same profile. Yet profiles are dynamic
and therefore it is important to be able to distribute new trapdoors to nodes
which profile changed. In that case, trapdoors of other nodes (which profile
did not change) should also be updated in order to guarantee a property like
forward secrecy.
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Concerning Identity-Based Encryption, Boneh et al. [10] suggest to solve
the problem of revocation by adding a timestamp to identities. Instead of
using simply the identity ID of a node as public key, one would therefore
use (ID, t) where t is a timestamp. The TTP gives the node with identity
ID the private key corresponding to (ID, t) at time t. The private key is
automatically revocated after a period of time, because the public key that
is used becomes (ID, t+ 1).

In order to come up with a solution to key revocation in the context of
delay tolerant networks, we propose to divide the time in epochs θl, where l is
a positive integer. For each epoch θl, the TTP generates a new private/public
key pair TTP l

priv/TTP
l
pub with TTP l

pub = TTP l
priv · P , and nodes need to

contact the TTP once during each epoch to get their updated keys. The
use of epochs allows for a very loose synchronization between nodes and is
therefore suitable for delay-tolerant networks.

The epoch’s duration is chosen according to the network parameters such
that all nodes can access the TTP once during an epoch. The duration
of an epoch is therefore also considered longer than the time required by
any packet to reach any node in the network. During epoch θl nodes need
to enter setup phase with the TTP once to fetch the secrets corresponding
to TTP l

priv/TTP
l
pub, but they use the secrets of epoch θl−1 to encrypt the

messages because some nodes might not have fetched their secrets of epoch
θl yet. Nodes also need to store the secrets of epoch θl−2: indeed during epoch
θl−1, nodes use the secrets corresponding to θl−2 to encrypt the messages. It is
therefore possible that a message was sent at the end of epoch θl−1 encrypted
with the secrets of θl−2 and is in the network at epoch θl. Since the duration
of an epoch is longer than the time required by any packet to reach any node
in the network, packets encrypted with older secrets than those of θl−2 are
automatically destroyed or dropped.

To summarize, nodes have a very loose synchronization since they only
need to enter setup phase once in each epoch θl. The amount of secrets that
they need to store is three times the amount of secrets required for one epoch;
they indeed need to store the secrets corresponding to:

• θl once they fetch them,

• θl−1 to encrypt the messages such that they can be decrypted by nodes
that have not yet fetched the secrets of θl,

• θl−2 to be able to decrypt the messages sent during epoch θl−1 and that
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have not expired yet.

The use of epochs therefore enables ”delay-tolerant” key revocation over
three epochs, while being compatible with the principles of delay-tolerant
communication.

5.3. Protection against malicious TTP

The TTP plays a crucial role in the proposed framework. The TTP is
indeed the only entity which can compute trapdoors and private keys of nodes
based on the attribute values. The TTP is a trusted entity and therefore is
assumed to behave properly but it is also a single point of failure that has
the capability to decrypt all messages by using its private key TTPpriv.

It is therefore important to distribute the capabilities of the TTP and to
remove the single point of failure. This is a new issue with respect to the
original PEKS architecture. Indeed, while in the original design of Boneh et
al. [11], the destination is computing the trapdoors and therefore there is no
problem of key escrow, in our scheme the TTP is computing all trapdoors
for other nodes. To this extent, we propose to distribute the trust and
the capabilities on several third parties by adding the contribution of each
one as follows. Assume there are w parties denoted by TTPk with 1 ≤
k ≤ w. All these entities use the same global parameters but each one
generates a different private/public key pair denoted TTPk,priv/TTPk,pub with
TTPk,pub = TTPk,privP .

Then, a source node NS encrypts the header H(M) by using the sum of
all the public keys of the TTP s as public key:

H ′(M) = ||j∈L(Ej, PEKS(
w∑

k=1

TTPk,pub, AD,j)).

During setup phase, nodes Ni need to fetch trapdoors
(Ej, T rapdoor(TTPk,priv, Ai,j)) generated by each TTPk. The total trapdoor
associated with each attribute is the sum

∑w
k=1 Trapdoor(TTPk,priv, Ai,j) of

the trapdoors fetched at each TTPk. These trapdoors can then be used as
second input of the Test function to compute the matching ratio. The proof
of consistency of this scheme is based on the bilinearity of the pairings and
is provided in B.

Concerning the security of the scheme, some TTPs might collude to re-
trieve the private key of another TTP. This attack is similar to the collision
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attack described in the multiple attribute setting. Assume that the first w−1
TTPs are malicious and collude and that they want to discover the private
key of the last TTP.

The goal of the colluding TTPs is to choose their public keys such that

w−1∑
k=1

TTPk,pub = TTPw,pub,

which automatically leads to

w−1∑
k=1

TTPk,priv = TTPw,priv.

The problem though is that if the malicious TTPs choose their public key
first, they cannot compute the associated private keys (because of the hard-
ness of the discrete logarithm problem in G1) and then they cannot derive
the private key of the remaining TTP. Furthermore, a malicious TTP can-
not fake a private key and provide nodes with fake trapdoors (by fake trap-
doors we mean trapdoors that do not match their counterpart PEKS with
the corresponding public key). Indeed, each node Ni receiveing a trapdoor
Trapdoor(TTPk,priv, Ai,j) from TTPk directly verifies the validity of this sin-
gle trapdoor by generating a PEKS(TTPk,pub, Ai,j) and verifying that

Test(PEKS(TTPk,pub, Ai,j), T rapdoor(TTPk,priv, Ai,j)) = 1.

Each share of the global trapdoor can thus be verified upon receipt, which
prevents malicious TTP s from producing fake trapdoors. The remaining
option for the malicious TTPs is to find TTPk,priv for 1 ≤ k ≤ w′ such that

w−1∑
k=1

TTPk,privP = TTPw,privP

which can be written as:

(
w−1∑
k=1

TTPk,priv)P = TTPw,pub.

It is clear that solving this equality amounts to being able to compute a
discrete logarithm, while obtaining such a collision at random occurs with
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probability 1/|G1| as explained in the security evaluation of Identity-based
encryption in the multiple attribute setting (section 5.1). Therefore, if up to
w− 1 TTPs are malicious and collude, they cannot create a collision or find
the missing trapdoor of a given keyword, and therefore they cannot discover
the content of encrypted keywords. If all w TTP collude though, it becomes
as if the scheme consists of just one TTP, and the problems explained at the
beginning of this section arise.

The same methodology can be used to solve the problem of distributing
the trust over multiple TTPs for the payload encryption: the sum of the keys
of the various TTPs is used in the encryption and the decryption process.
To be more precise, the encryption of the payload of message M uses the
sum

∑w
k=1 TTPk,pub of the public keys of all TTPs as parameter, and the

decryption at the destination ND of P(M ′) is performed with the sum of
private keys of all TTPs for all attributes:

P(M) = IBD(
∑
j∈L

w∑
k=1

Ak,privD,j
,P(M ′)).

The proof of correctness is based on the bilinearity of the pairing and is very
similar to the one presented in appendix A and is therefore omitted.

As a conclusion, in order to alleviate the trust on a single entity, we pro-
pose to distribute the security capabilities (private key and trapdoor compu-
tation) among several third parties. In this new setting, nodes still use the
functions defined in section 4.3.1 and 4.3.2 but apply the following simple
modification:

• TTPpub =
∑w

k=1 TTPk,pub,

• Aprivi,j
=

∑w
k=1Ak,privi,j

,

• Trapdoor(TTPpriv, Ai,j) =
∑w

k=1 Trapdoor(TTPk,priv, Ai,j).

The difference is simply that nodes need to contact several TTP s to get
their secrets (but then they only need to store the sum of all these secrets so
this does not incur an additional cost in terms of storage) and that no single
TTP can break user’s privacy or confidentiality; only the collusion of all w
TTP s can result in such exposure.
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5.4. Storage and Performance
Concerning storage, as mentioned in section 4.3.3, each node has to store

m secrets in addition to the public parameters. Each of these secrets is in
fact an element of a group of points on an elliptic curve of prime order p.
The level of security in such groups depends on a security parameter called
the MOV degree [21]: by carefully choosing the elliptic curve it is therefore
possible to adjust the trade-off between key size and computation time, while
maintaining a given level of security. In the case of mobile devices, compu-
tation resources are more constrained than storage, therefore it is preferable
to choose a curve with small MOV degree, e.g. two. In such settings it is
sufficient to have p of 512 bits length to have a security equivalent to 1024
bits RSA. The storage overhead of the secrets is therefore 512m bits, which
is linear in the number m of attributes.

During the setup phase, each node needs to fetch its m secrets and the
public parameters, but the key management overhead is small from the per-
spective of the TTP . The TTP needs indeed only to set up the public
parameters and to store them, as well as one key pair (TTPpub/TTPpriv),
but it does not need to store all the attributes values of each node (contrary
to certification authorities e.g.): trapdoors are efficiently generated upon re-
quest. The TTP is therefore lightweight, and the key management overhead
is negligible given that it takes place offline and thus does not compete with
the opportunistic communication.

Furthermore the proposed security solution does not add significant com-
munication overhead: the size of the message header is linear in the number
of attributes that it includes, with or without the security solution, but it
remains small in comparison with the size of the payload. The security solu-
tion only modifies the attribute values through the PEKS function which has
a 1024 bits output, therefore the size of the attribute values increases by a
factor four at most, while the size of the payload is not significantly modified
during the encryption process.

Finally, from a performance point of view, elliptic curve operations used
in all the primitives are of the same order of magnitude as classic asymmetric
cryptography, but they are still more expensive than symmetric encryption.
Indeed, the most costly operation is the pairing computation: one pairing
computation per encryption of payload or header, and one pairing per Test
evaluation or payload decryption. A pairing computation requires around
11 ms on a pentium III 1 GHz according to the benchmarks established by
Lynn based on the PBC library [22]. In comparison, one 1024 bits RSA
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decryption takes around 13 ms. Therefore, this cost is acceptable for small
texts (according to Moore’s law the computation power of mobile devices
should exceed that of a pentium III 1 GHz by the end of 2010), like the
values of attributes but it is prohibitive when it comes to encrypting large
data, like the payload. To circumvent this obstacle, the sender can define
a symmetric data encryption key which can further be encrypted with the
encryption mechanism proposed in section 4.3.1. We did not mention this
option in the description of the scheme for the sake of clarity, but for practical
deployment this option should be implemented.

6. Conclusion

In this paper, we introduced a communication design for opportunistic
networks which combines epidemic and context-based forwarding. We fo-
cused on the analysis of payload confidentiality and user privacy issues in such
a protocol and defined the security primitives required to preserve privacy
within trusted communities. These primitives require the use of carefully
chosen public functions to ensure both privacy and forwarding operations.

Finally, we presented an original solution which is derived from Identity-
Based Encryption and Public Encryption with Keyword Search. The use
of identity-based encryption in a multiple attribute setting enforces end-to-
end payload confidentiality with no end-to-end key management, while the
specific use of PEKS allows intermediate nodes to securely discover partial
matches between their profile and the message context while preserving user
privacy in the trusted communities assumption. The encryption functions
depend on an internal random number, hence the output of the functions
changes at each execution, even if the input is the same which defeats dic-
tionary attack and traffic analysis. The solution relies on an offline TTP.

This scheme suits opportunistic networks well, because it has a low stor-
age and computation overhead and it relies on an offline TTP which is not
required for the correct execution of the protocol during the communication.
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A. Identity-Based Encryption: construction and proofs

In this appendix, we provide some details on the construction of the
basic ID-based encryption scheme by Boneh et al. in [10], and then proof of
correctness of IBE used in the multiple attribute setting.

A.1. Basic construction

We use the same notations as in section 4.2.1, and we therefore sup-
pose that the parameters q,G1,G2,P ,e,H1 as well as TTPpriv and TTPpub =
TTPpriv · P are already defined.

The encryption process of a message M under identity ID denoted by
IBE(H1(ID),M) is a randomized process:

1. choose a random number r ∈ Z∗q (kept secret), and define U = rP ,

2. compute V = H2(e(H1(ID), TTPpub)
r), where H2 is a second crypto-

graphic hash function H2 : G2 → {0, 1}n (n is the bit length of the
messages),

3. output IBE(H1(ID),M) =< U,M ⊕ V > .

For the decryption process, the destination with identity ID needs to re-
trieve its private key IDpriv from the TTP : IDpriv = TTPpriv ·H1(ID). Then
the destination can compute H2(e(IDpriv, U)) which is equal to V thanks to
the bilinearity of the pairing e. Therefore

IBD(IDpriv, < U,M ⊕ V >) = M ⊕ V ⊕H2(e(IDpriv, U)) = M.

A.2. Multiple attribute setting

To guarantee the confidentiality of the payload, we proposed to use IBE in
the multiple attribute setting. The encryption and decryption of the payload
of a destination with attributes H(M) = ||j∈LAD,j are:

• P(M ′) = ENCRY PT PAY LOAD(M) = IBE(
∑

j∈LH1(AD,j),P(M)),

• P(M) = DECRY PT PAY LOAD(M ′) = IBD(
∑

j∈LAprivD,j
,P(M ′)).
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The security of IBE in the multi-user setting is discussed in section 5.
The correctness of the decryption comes from the commutativity and

associativity of the group operation of G1 and the bilinearity of e.
To be more precise, the encryption of the payload of message M is

P(M ′) =< U,P(M)⊕ V >, where:

• U = rP for some random r ∈ Z∗q,

• V = H2(e(
∑

j∈LH1(AD,j), TTPpub)
r).

For the decryption process to be correct, one just need to verify that V
is equal to H2(

∑
j∈LAprivD,j

, U))

H2(e(
∑
j∈L

AprivD,j
, U)) = H2(e(

∑
j∈L

TTPpriv ·H1(AD,j), rP ))

= H2(e(TTPpriv ·
∑
j∈L

H1(AD,j), P )r) (eq. (1) with r)

= H2(e(
∑
j∈L

H1(AD,j), TTPpriv · P )r) (eq. (1) with TTPpriv)

= H2(e(
∑
j∈L

H1(AD,j), TTPpub)
r)

= V.

B. Public Encryption with Keyword Search: construction and proofs

In this appendix, we provide some details on the construction of one of
the Public Encryption with Keyword Search (PEKS) scheme by Boneh et
al. in [11], and then proof of correctness of PEKS used in the multiple TTP
setting.

B.1. Construction based on bilinear pairings

Technically the construction of PEKS has some similarities with IBE, and
we describe the scheme in the scenario of figure 3. In addition to the param-
eters described in 4.2.1, node A chooses a random number in Z∗q denoted by
Apriv which is kept secret, and publishes the public key as Apub = AprivP .

B can construct the PEKS of a keyword W1 with the knowledge of the
public key of A by choosing a random number r ∈ Z∗q and then computing:

PEKS(Apub,W1) = (rP,H3(e(H1(W1), Apub)
r)),
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where H1 : {0, 1}∗ → G1 and H3 : G2 → Z∗q are two cryptographic hash
functions.

A constructs the trapdoor corresponding to keyword W2 by computing

Trapdoor(Apriv,W2) = AprivH1(W2).

Given a Trapdoor(Apriv,W2) and PEKS(Apub,W1) = (U, V ) the Test
function consist in checking whether V and H2(e(Trapdoor(Apriv,W2), U))
are equal or not. If true, it means that W1 = W2, otherwise it means that
W1 6= W2. In both cases, C does not discover the values of W1 or W2.

B.2. Multiple TTP setting

To protect against a malicious TTP , we proposed to use the modified
version of PEKS in a multiple TTP setting. In this case, the encryption of
the header H(M) = ||j∈LAD,j by the source is:

H ′(M) = ||j∈L(Ej, PEKS(
w∑

k=1

TTPk,pub, AD,j))

= ||j∈L(Ej, (rP,H3(e(H1(AD,j),
w∑

k=1

TTPk,pub)
r))),

where r is a random number in Z∗q.
To verify the correctness of this operation we denote the tuples generated

by the PEKS function as:

(rP,H3(e(H1(AD,j),
w∑

k=1

TTPk,pub)
r)) = (UD,j, VD,j).

The Test function consists then in verifying whether VD,j is equal to
H3(e(

∑w
k=1 Trapdoor(TTPk,priv, Ai,j), UD,j)) or not.

We have indeed:

34



VD,j = H3(e(H1(AD,j),
w∑

k=1

TTPk,pub)
r)

= H3(e(H1(AD,j),
w∑

k=1

TTPk,privP )r)

= H3(e(H1(AD,j), r(
w∑

k=1

TTPk,priv)P )) (eq. (1) with r)

= H3(e((
w∑

k=1

TTPk,priv)H1(AD,j), rP )) (eq. (1) with
∑w

k=1 TTPk,priv)

= H3(e(
w∑

k=1

(TTPk,priv)H1(AD,j), UD,j))

= H3(e(
w∑

k=1

Trapdoor(TTPk,priv, AD,j), UD,j))

Therefore, VD,j = H3(e(
∑w

k=1 Trapdoor(TTPk,priv, Ai,j), UD,j)) if Ai,j =
AD,j (or in the improbable case of a collision, see section 5), which proves
that the Test function is compatible with the sum operation, and therefore
the scheme in the multiple TTP setting is consistent.
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