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Abstract—This paper considers downlink multiantenna com-
munication with base stations that perform cooperative precoding
in a distributed fashion. Most previous work in the area has
assumed that transmitters have common knowledge of both
data symbols of all users and full or partial channel state
information (CSI). Herein, we assume that each base station
only has local CSI, either instantaneous or statistical. For the
case of instantaneous CSI, a parametrization of the beamforming
vectors used to achieve the outer boundary of the achievable rate
region is obtained for two multi-antenna transmitters and two
single-antenna receivers. Distributed generalizations of classical
beamforming approaches that satisfy this parametrization are
provided, and it is shown how the distributed precoding design
can be improved using the so-called virtual SINR framework [1]1.
Conceptually analog results for both the parametrization and the
beamforming design are derived in the case of local statistical
CSI. Heuristics on the distributed power allocation are provided
in both cases, and the performance is illustrated numerically.

I. INTRODUCTION

The use of multiple antennas has the potential of greatly
improving the performance of wireless systems. In single-
cell scenarios, many algorithms have been proposed to enable
simultaneous downlink transmission to multiple users [3].
These approaches exploit various amounts of channel state
information (CSI) to improve the performance by optimizing
the signal power and limiting the intra-cell interference. In
multi-cell scenarios, the interference from adjacent cells has a
significant and limiting impact on the performance—especially
for users close to the cell boundary. The problem of handling
inter-cell interference has recently attracted much attention [4].

Ideally, all base stations might share their CSI and data
through backhaul links, which would enable coordinated pre-
coding design that can manage the co-user interference as in
the single-cell scenario. In practice, there are limitations in
terms of delay and capacity on the backhaul and computa-
tional power at the transmitters, which makes it necessary
to investigate schemes that reduce the signaling while still
benefiting from a robust interference control. A practical
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1A similar approach was proposed, though justified differently, in [2] where
the authors define a metric similar to a virtual SINR which they term signal
to generating interference plus noise ratio (SGINR).

iterative message passing procedure was proposed in [5] to
exchange information between neighboring cells. An infor-
mation theoretic approach was taken in [6] to determine the
dependence of multi-cell rates on backhaul capacity.

The multiple-input single-output interference channel
(MISO IC) represents the special case when only CSI is shared
among the transmitters. Although each base station aims at
maximizing the rate achieved by its own user, cooperation
will greatly improve the performance [7]. The achievable rate
region was characterized in [8] and the authors proposed
a game-theoretical precoding design based on full CSI [7].
Precoding strategies that only exploits local CSI but still attains
optimal rate points were proposed in [1], [9] based on a virtual
signal-to-interference-and-noise ratio (SINR) framework.

Herein, we address the different problem of distributed
multi-cell MIMO precoding where the cooperating base sta-
tions share knowledge of the data symbols but have local CSI
only, thus much reducing the feedback load on the uplink and
avoiding cell-to-cell CSI exchange. In this context, previous
work includes [10] where the layered virtual SINR framework
was introduced as a heuristic framework for distributed MIMO
precoding design. In this paper, the novel contributions are:
• We characterize the outer boundary of the achievable rate

region under linear precoding for the multicell MIMO
channel for both instantaneous and statistical CSI.

• We provide theoretical optimality justifications for using
the layered virtual SINR framework of [10] to design the
precoding under local instantaneous CSI knowledge.

• We extend the layered virtual SINR approach to handle
local statistical channel state information for cases when
instantaneous fading information is not available.

Finally, we provide simulation results comparing the layered
virtual SINR framework with generalizations of classical pre-
coding approaches and with beamforming on the MISO IC.

Notation: The orthogonal projection matrix onto the col-
umn space of the matrix X is ΠX = X(XHX)−1XH ; that
onto its complement is Π⊥

X = I−ΠX, where I is the identity
matrix. CN (x̄,Q) is used to denote circularly symmetric
complex Gaussian random vectors, where x̄ is the mean and
Q the covariance matrix. If k ∈ {1, 2}, then k̄ denotes the
value not being k (e.g., k̄ = mod(k, 2) + 1 for k = 1, 2).
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Fig. 1. The basic two-transmitter and two-receiver scenario with Nt = 8.

II. SYSTEM MODEL

The communication scenario herein consists of two trans-
mitters (e.g., base stations in a cellular system) equipped with
Nt ≥ 2 antennas each and two single-antenna receivers (e.g.,
mobile terminals). The transmitters and receivers are denoted
BSj and MSk, respectively, with j, k ∈ {1, 2}. This setup is
illustrated in Fig. 1 for Nt = 8. The results of this paper can
be generalized to K > 2 transmitters and receivers, but we
limit ourselves to K = 2 in order to ease exposition.

Let xj ∈ CNt be the signal transmitted by BSj and let
the corresponding received signal at MSk be denoted yk, for
j, k ∈ {1, 2}. The propagation channel to MSk is assumed to
be narrowband and flat-fading with the system model

yk =
2∑

j=1

hH
jkxj + nk, (1)

where hjk ∈ CN (0,Qjk) is the channel between BSj and
MSk and nk ∈ CN (0, σ2) is the additive noise. Throughout
the paper, each receiver MSk has full local CSI (i.e., perfect
estimates of hjk for j = 1, 2). At the transmit side, we will
distinguish between two different types of local CSI:
• Local Instantaneous CSI: BSj knows the instantaneous

value of hjk, for k = 1, 2, and the noise power σ2.
• Local Statistical CSI: BSj knows the statistics of hjk

(e.g., covariances), for k = 1, 2, and the noise power σ2.
Observe that in both cases, the base stations are only assumed
to have CSI that can be obtained locally (either through feed-
back or reverse-link estimation). Hence, there is no exchange
of CSI between the base stations.

A. Joint Multi-Transmitter Linear Precoding

Let sk ∈ CN (0, 1) denote the data symbol intended for
MSk. Unlike the MISO IC [7], [8], we assume that the data
symbols intended for both receivers are available at both
transmitters. This will enable joint multi-transmitter precoding,
although each transmitter only has local CSI. Proper transmis-
sion synchronization is however required to avoid inter-symbol
interference. Under the assumption of linear precoding at each
transmitter, the signal transmitted by BSj is

xj =
2∑

k=1

√
pjkwjksk, (2)

where the beamformers wjk have unit norms (‖wjk‖ = 1)
and pjk represents the power allocated for transmission to
MSk. The transmitter BSj is subject to an average transmit
power constraint of Pj ; that is, E{‖xj‖2} =

∑2
k=1 pjk ≤ Pj .

When the receivers treat the co-user transmissions as noise,
the instantaneous SINR of MSk is

SINRk =

∣∣ ∑2
j=1

√
pjkhH

jkwjk

∣∣2
∣∣ ∑2

j=1
√

pjk̄hH
jkwjk̄

∣∣2 + σ2
, for k = 1, 2. (3)

Under the given assumptions, the maximal achievable instan-
taneous transmission rate at MSk is Rk = log2(1 + SINRk).

Observe that the main difference between the scenario at
hand and the MISO broadcast channel (BC) is that in the latter
case all transmit antennas are controlled by a central unit with
CSI of all links and a power constraint for all antennas.

B. Spatial Channel Correlation

Next, we characterize the correlation matrices, Qjk, from
a spatial point of view. This will be useful in the precoding
design with statistical CSI. Depending on antenna distance and
amount of scattering, the correlation of channels from transmit
antennas to the receiver will vary; large antenna spacing and
rich scattering correspond to low spatial correlation, and vice
versa. High correlation translates into a large eigenvalue spread
in Qjk, and low correlation to almost identical eigenvalues.
The existence of spatial correlation has been shown experi-
mentally in both outdoor [11] and indoor [12] scenarios.

Similar to [13], we partition the eigenvalue decomposition
Qjk = UjkΛjkUH

jk of the correlation matrix Qjk in a certain
way, based on the size of the different eigenvalues. Assume
that the eigenvalues in the diagonal matrix Λjk are ordered
decreasingly with the corresponding eigenvectors as columns
of the unitary matrix Ujk. Then, we partition Ujk as

Ujk = [U(D)
jk U(0)

jk ], (4)

where U(D)
jk ∈ CNt×Nd spans the subspace associated with

the Nd largest and dominating eigenvalues. The signal and
interference allocated to these eigendirections will clearly in-
fluence the SINR. Hence, data transmission should take place
in U(D)

jk , while interference should be avoided. The remaining
eigenvectors, in U(0)

jk ∈ CNt×Nt−Nd , span a subspace with
an average gain close to zero, and hence the interference is
negligible. The size of the parameter Nd depends strongly on
the amount of spatial correlation, and can be just a fraction of
Nt in an outdoor cellular scenario. In completely uncorrelated
environments, the partitioning can be ignored since Nd = Nt.

III. CHARACTERIZATION OF THE PARETO BOUNDARY

In this section, we analyze the achievable rate region for the
scenario at hand, which will provide a precoding structure that
is used for practical precoding design in Section IV. Since the
receivers are treating co-channel interference as noise (i.e.,
not attempting to decode and subtract the interference), the
achievable rate region will in general be smaller than the
capacity region. This assumption is however important to



achieve a simple receiver structure. In the case of instantaneous
CSI, we define the achievable rate region as

Rinstant =
⋃

wjk,‖wjk‖=1

pjk≥0, Σk pjk≤Pj

(R1, R2), (5)

while in the case of statistical CSI we define the achievable
expected rate region as

Rstatistic =
⋃

wjk,‖wjk‖=1

pjk≥0, Σk pjk≤Pj

(E{R1},E{R2}). (6)

Observe that the regions, R, are independent of the amount
of CSI available at the transmitters; the assumption of local
CSI does however affect which rate tuples within those regions
can be reached in practice by selection of wjk and pjk. The
outer boundary of R is called the Pareto boundary. The rate
tuples on this boundary are Pareto optimal, which means
that the rate achieved by MSk cannot be increased without
decreasing the rate of MSk̄. We have the following definition
(for instantaneous CSI):

Definition 1. Consider all achievable rate tuples (R1, R2). The
Pareto boundary consists of all such tuples for which there is
no other achievable tuple (S1, S2) with S1≥R1 and S2≥R2.

The corresponding definition in the case of statistical CSI
is achieved by replacing all rates by their expectations.

Next, we will parameterize the Pareto boundary by showing
that beamformers, wjk, that can be used to attain the boundary
lie in a certain subspace defined using only local CSI. It will
also be shown under which conditions full transmit power
(
∑

k pjk = Pj) should be used at both base stations. We begin
with the case of instantaneous CSI and then we derive similar
results in spatially correlated systems with statistical CSI.

A. Characterization with Instantaneous CSI

For the MISO IC and BC with instantaneous CSI, it is
known that rate tuples on the Pareto boundary can only be
achieved by beamformers that are linear combinations of MRT
and ZF [8]. In Theorem 1 below, we show a similar result for
the scenario at hand, for which the achievable rate region will
in general be larger (since both base stations know all the data
and can transmit simultaneously to both users).

Theorem 1. Each rate tuple (R1, R2) on the Pareto boundary
can be achieved by beamforming vectors wjk that fulfill

wjk ∈ span
(
hjk, Π⊥

hjk̄
hjk

)
for all j, k. (7)

If hj1
‖hj1‖ 6=

hj2
‖hj2‖ for some j, then BSj needs to use full power

(i.e.,
∑

k pjk = Pj) and (7) becomes a necessary condition on
wjk and wjk̄ to attain rate tuples on the Pareto boundary.

Proof: The proof follows along the same lines as the
proof of Corollary 1 in [8], but requires some additional
considerations for the power allocation and beamforming
design and is omitted due to the space limitation.

What the above theorem implies is that to attain rate
tuples on the Pareto boundary, both base stations are required

to use full transmit power (except in a special case with
zero probability) and use beamforming vectors that are linear
combinations of the following straightforward extensions of
MRT and ZF to (potentially) distributed precoding systems:

Definition 2 (Distributed MRT). w(MRT)
jk = hjk

‖hjk‖ for all j, k.

Definition 3 (Distributed ZF). w(ZF)
jk =

Π⊥
h

jk̄
hjk

‖Π⊥
h

jk̄
hjk‖ for all j, k.

Note that these two approaches can be seen as the extremes
in beamforming design, since they maximize the received sig-
nal power and minimize the co-user interference, respectively.

In terms of Definition 2 and 3, Theorem 1 implies that all
beamforming vectors of importance can be expressed as

wjk = cjkw
(MRT)
jk + djkw

(ZF)
jk , for all j, k (8)

for some complex-valued coefficients cjk, djk (such that
‖wjk‖ = 1). This reduces the complexity of finding good
beamforming vectors considerably (since now the vectors we
are looking for each lie in a two-dimensional subspace),
especially if the number of antennas Nt is large. In the special
case when BSj is not transmitting to MSk (i.e., pjk = 0),
one can show that it is enough to have positive real-valued
coefficients cj̄k, dj̄k, which further decreases the complexity.
This is for example the case for the MISO IC [8].

An important observation for the following sections is that
the two vectors in (8) are defined using only local CSI,
which motivates the distributed precoding design in Section
IV. Apart from selecting beamforming vectors, it is also
necessary to perform optimal power allocation to attain the
Pareto boundary. Some heuristics on how to perform efficient
power allocation using only local CSI are given in Section IV.

B. Characterization with Statistical CSI

Next, we derive a parametrization of the Pareto boundary
similar to that in Theorem 1, but for the case of statistical CSI.
As shown in [14] for the MISO IC, a parametrization can be
found when the correlation matrices are rank deficient. This is
however rarely the case in practice, therefore we concentrate
on spatially correlated channels and use the eigenvector parti-
tioning in (4). By neglecting the statistical power in U(0)

jk , we
achieve the following approximate parametrization.

Theorem 2. For each expected rate tuple (E{R1},E{R2}) on
the Pareto boundary, there is another achievable expected rate
tuple (E{R̃1},E{R̃2}) that fulfills E{R̃k} ≈ E{Rk}, for k =
1, 2, and that can be reached by

wjk ∈ span([U(D)
jk U(D)

jk̄
]) = span([U(D)

jk Π⊥
U

(D)
jk̄

U(D)
jk )]),

(9)
for some power allocation pjk, for all j, k. The equality holds
with probability one (if span(U(D)

jk̄
) = span(Π

U
(D)
jk̄

U(D)
jk )).

If span([U(D)
jk U(D)

jk̄
]) 6= CNt for some j, then BSj can

reach (E{R̃1},E{R̃2}) using full power (i.e.,
∑

k pjk = Pj).

Proof: The theorem is proved in a similar way as Theo-
rem 1, by ignoring the eigenvalues in U(0)

jk for all j, k.



Observe that all approximation operators in Theorem 2 are
due to neglecting power in the eigenspaces U(0)

jk , for all j, k.
If the eigenvalues in these subspaces are identically zero, all
approximation operators can be replaced by equalities.

The similarities between the parametrizations with instan-
taneous and statistical CSI are obvious when (7) and (9)
are compared. The result with statistical CSI is however
weaker, which is natural since each channel vector belongs
(approximately) to a subspace of rank Nd while the channels
with instantaneous CSI are known vectors (i.e., rank one).
The common interpretation is that all interesting beamforming
vectors are linear combinations of eigendirections of the local
statistics that have non-negligible power in the links to either
of the two users. In the special case of Nd = 1, the results of
Theorem 2 are essentially the same as in Theorem 1.

IV. DISTRIBUTED PRECODING DESIGN WITH LOCAL CSI

In this section, we discuss beamforming design and power
allocation based on local CSI. First, we briefly review the
concepts of the layered virtual SINR framework proposed in
[10] for instantaneous CSI. Then, based on the parametriza-
tions of the Pareto boundary in Theorem 1, we justify the
layered virtual SINR approach as a way to determine an
optimized distributed precoding combination of MRT and ZF
that satisfies the parametrization. Finally, we will extend the
method to the case of local statistical CSI using Theorem 2.

From Theorem 1 and 2 we know that both base stations
should use full transmit power Pj (almost surely). A remaining
issue is how to split the power between the two users. To
simplify the notation, we introduce the splitting parameters
0 ≤ αj ≤ 1, for which the power splitting at BSj becomes

pj1 = Pjαj and pj2 = Pj(1− αj). (10)

Observe that α1 = 1, α2 = 0 corresponds to the standard
MISO IC, while α1 = α2 = 0 or = 1 means that only one of
the receivers gets all the attention. Some heuristics on how to
determine good αj will be given in this section.

A. Precoding with Local Instantaneous CSI

The purpose of distributed precoding design is to find
beamforming vectors and power splitting that achieve per-
formance close to the Pareto boundary, but is only based on
local instantaneous CSI. As shown by Theorem 1, the two
extremes in the precoding design with local instantaneous CSI
are distributed MRT and ZF (see Definition 2 and 3), and
these satisfy the requirement of only depending on local CSI.
More formally, Theorem 1 states that rate tuples on the Pareto
boundary can only be achieved by beamforming vectors that
are linear combinations of distributed MRT and ZF. In order
to derive an efficient linear combination we propose to use the
framework of virtual SINR, which has been shown to attain
the Pareto boundary of MISO interference channels [1]. Virtual
SINR maximizing beamformers are obtained (see [10]) as

w(VSINR)
jk = arg max

‖w‖2=1

|hH
jkw|2

σ2

pjk
+ |hH

jk̄
w|2 . (11)

This Rayleigh quotient is solved by straightforward eigenvalue
techniques and the solution is a linear combination of the MRT
and ZF vectors in (8) with real-valued positive coefficients [1].
This means that signals arriving at a given user from different
base stations will do so constructively. Moreover, by its very
definition (cf. (11)), maximizing a virtual SINR effectively
balances between the useful signal power at a target user
and the interference power generated at others; assuming a
judicious assignment of the powers pjk, for j, k ∈ {1, 2}, this
should lead to good performance, under the given local CSI.

Finally, regarding the power splitting between the users,
an intuitive heuristic is to allocate more power to the one
with the stronger instantaneous channel gain [10]. This can be
formalized as

αinstant
j =

‖hj1‖2∑2
k=1 ‖hjk‖2

. (12)

B. Precoding with Local Statistical CSI

As seen by comparing Theorem 1 and 2, the Pareto optimal
precoding design with statistical CSI resembles that of instan-
taneous CSI. Next, we will show the corresponding relation-
ships for the distributed precoding design. In analogy with the
distributed MRT and ZF approaches with instantaneous CSI
in Definition 2 and 3, we propose extensions assuming local
statistical CSI. The straightforward generalization of MRT is to
use the dominating eigenvector of Qjk as beamformer. We will
denote the normalized eigenvector of the largest eigenvalue of
Qjk by u(D)

jk . The generalization of ZF is to maximize the
average received signal power under the condition that the
beamformer lies in the negligible eigen-subspace U(0)

jk̄
of the

co-user. We summarize this as:

Definition 4 (Distributed Generalized MRT). In this approach,
w(G-MRT)

jk = u(D)
jk for all j, k.

Definition 5 (Distributed Generalized ZF). In this approach,
w(G-ZF)

jk = U(0)

jk̄
vjk, where vjk is the normalized dominating

eigenvector of (U(0)

jk̄
)HQjkU

(0)

jk̄
, for all j, k.

As in the case of instantaneous CSI, the virtual SINR
framework can be applied to balance the signal and inter-
ference powers. We propose the following novel extension
where the Rayleigh quotient represents maximization of a
lower bound on the SINR, assuming the channels of both users
are uncorrelated (and using that E{|hH

jkw|2} = wHQjkw):

w(LVSINR)
jk = arg max

‖w‖2=1

wHQjkw
σ2

pjk
+ wHQjk̄w

. (13)

Unlike the instantaneous local CSI case, the resulting beam-
formers cannot be written out as linear combinations of the
generalized MRT and ZF vectors, unless only the most dom-
inant eigenvectors in each correlation matrix are considered.
However, this formulation does result in vectors that satisfy
the condition for (approximative) Pareto optimality specified
in Theorem 2. Note also that unlike the instantaneous CSI case,
we cannot guarantee the coherent arrival of useful signals at
a given user (unless it feeds back a phase correction to its



’main’ base station). On average, an increase in signal power
will however increase the rate (see Corollary 1 below).

Next, we will derive explicit expressions for the expected
rates for a given power allocation and set of beamforming
vectors. These results are important both for computational
reasons and to enable analysis of the impact of the precoding
design on the average performance. Recall from (3) that the
SINR at MSk can be expressed as

SINRk =
|akk|2

|ak̄k|2 + σ2
, (14)

where signal and interference coefficients are distributed as

alk ∈ CN (0,

2∑

j=1

pjlwH
jlQjkwjl) for l = k, k̄. (15)

As a result of the precoding design, the signal and interference
coefficients will in general be correlated with the factor

%k = E{aH
kkak̄k} =

2∑

j=1

√
pjkpjk̄w

H
jkQjkwjk̄. (16)

Intuitively, the expected rate should decrease with %k, since
the probability of realizations with strong signal and weak
interference reduces. The following theorem gives an explicit
expression of the expected rate and its corollary clarify its
dependence on signal coefficients akk and correlation %k.

Theorem 3. Consider the rate R = log2(1 + |a1|2
|a2|2+σ2 ), where

al ∈ CN (0, λl) with λl > 0 for l = 1, 2. The coefficients al

are correlated with % = E{aH
1 a2}. Then, the expected rate is

E{R}=
µ1E1(σ2

µ1
)eσ2/µ1−µ2E1(σ2

µ2
)eσ2/µ2

(µ1 − µ2) log(2)
− E1(σ2

λ2
)eσ2/λ2

log(2)
,

(17)

where µl =
λ1+λ2±

√
(λ1−λ2)2+4|%|2

2 has different signs in front
of the square root for l = 1 and l = 2. The exponential integral
is denoted E1(z) =

∫∞
z

e−u

u du. In the special case of λ1 = λ2

and % = 0, we instead have

E{R}=
1− σ2

λ1
E1(σ2

λ1
)eσ2/λ1

log(2)
. (18)

Proof: Observe that |a1|2+|a2|2 has the same distribution
as |z1|2 + |z2|2, with the whitened variables z1 ∈ CN (0, µ1)
and z2 ∈ CN (0, µ2), and µ1, µ2 being the eigenvalues of the
correlation matrix Q =

[
λ1 %

%∗ λ2

]
. Then, the expected rate is

E{R} = E{log2(|z1|2 + |z2|2 + σ2)} − E{log2(|b|2 + σ2)}
and each term can be calculated using [15, Theorem 2].
Corollary 1. The expected rate in (17) is increasing with
decreasing magnitude |ρ| of the correlation factor. It is also
an increasing function in the signal variance λ1.

Proof: The first part follows since the first term in (17) is
Schur-concave with respect to [µ1 µ2]T and since increasing
|%| will increase the difference between µ1 and µ2. The second
part follows since both µ1 and µ2 increases with λ1.

There are two implications of the corollary. Firstly, each
beamformer wjk can be replaced with wjkeiφjk without
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Fig. 2. Achievable rate regions with different precoding and power allocation
approaches for a random realization with Q11 = Q22 = I, Q12 = Q21 =
0.5I, and 5 dB. The sum rate point and the points achieved by MRT, ZF, and
LVSINR with the proposed heuristic power splitting are given for comparison.

affecting the signal and interference coefficients in (15). Thus,
the phases, φjk, should be used to minimize the correlation in
(16) and thereby improve the performance. Secondly, increas-
ing the average signal power improves performance, even if
the signal and interference powers are clearly correlated.

Finally, we want to derive a heuristic power splitting and we
design it based on generalized ZF to avoid the problem that
an increase in both signal power and correlation factor affects
the performance in opposite ways (see Corollary 1). Since
we cannot guarantee the signals from multiple transmitters to
interact constructively using only statistical CSI, an intuitive
heuristic is to allocate all power to the user that benefits the
most from the increased average gain:

αstatistic
j =

{
1, wH

j1Qj1wj1 > wH
j2Qj2wj2,

0, otherwise,
(19)

with beamformers wjk designed as in Definition 5. With this
power splitting, the transmitters will either serve one user each
or they will concentrate on a single user. The main difference
from the MISO IC in [14] is the distributed selection of which
receiver that should be served by which transmitter.

V. NUMERICAL EXAMPLES

The performance of the proposed precoding and power
splitting schemes are evaluated numerically. For instantaneous
local CSI, we illustrate the performance in an uncorrelated
system with Nt = 3, Q11 = Q22 = I, Q12 = Q21 = βI,
where β is the average cross link power that will be varied.

In Fig. 2, the Pareto boundary of the distributed precoding
scenario is given for a randomly chosen realization with
β = 0.5 and an SNR, Pj/σ2, of 5 dB. As a comparison,
we give the Pareto boundary of the MISO IC [8] and the
outer boundaries of achievable rate regions for the precoding
approaches in Section IV (distributed MRT, distributed ZF, and
layered VSINR). The rate tuples achieved with the heuristic
power splitting in (12) and the sum rate maximizing point are
given as references. For the specific realization there is a clear
performance gain of allowing distributed precoding compared
to forcing each transmitter to only communicate with a single
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Fig. 3. Performance of different precoding designs with instantaneous CSI, as
function of the average cross link power: Q11 =Q22 =I, Q12 =Q21 =βI.

receiver. As expected, MRT is useful when the rate of only one
of the users should be maximized; on the other hand, ZF and
layered VSINR are quite close to the optimal sum rate point.
The heuristic power splitting provides performance close to
the boundary of each achievable rate region.

In Fig. 3, the average sum rate over different realizations
is given with optimal precoding and power allocation, and
for distributed MRT, distributed ZF, and layered VSINR with
heuristic power splitting. The performance is shown for vary-
ing cross link power β and at an SNR of 0 or 10 dB. From
Fig. 3, we observe that MRT works well at low SNR and/or
low cross link power, while ZF is better at high SNR and cross
link power. For the considered scenario, the layered VSINR is
the clearly better choice since it provides better performance
at low SNR and combines the benefits of MRT and ZF at
high SNR. Of course, due to the distributed nature of all
these schemes there is always some loss with respect to the
performance with sum rate maximizing beamformers (except
when the cross-link is very weak and MRT is optimal).

Finally, expected sum rates are shown in Fig. 4 in the case
of local statistical CSI. We consider base stations located in
the opposite corners of a unit square with two uniformly
distributed users within the square. Uniform circular arrays
with Nt = 5 and half a wavelength separation are used.
The channels are spatially correlated with varying angular
spread (as seen from a base station). The power decay is
1/r4, where r is the distance, and the SNR is either 0 or
10 dB (for r = 1). The behavior in Fig. 4 is similar to that
for instantaneous CSI, which means that generalized MRT is
good at low SNR and generalized ZF at high SNR. The layered
VSINR approach provides a clearly better performance at both
SNRs. The overall performance decreases with angular spread
(low angular spread means high correlation). The upper bound
(UB) represents optimal beamforming and power allocation.

VI. CONCLUSION

In this paper, distributed precoding was considered in a
multicell environment where the data is shared among the base
stations, but only local CSI is available. The beamforming
vectors used to attain the outer boundary of the achievable
rate region were characterized to lie in certain subspaces
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Fig. 4. Expected performance with different precoding designs and statistical
CSI, as function of the angular spread. The users are uniformly distributed in
a square with the base stations in opposite corners.

based on generalizations of MRT and ZF, assuming either
instantaneous or statistical CSI. The recently proposed layered
virtual SINR precoding design, and its statistical extension
introduced herein, was shown to belong to these characterized
subspaces and to provide good performance. Finally, heuristics
on the power allocation was given and evaluated numerically.
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