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General DMT optimality of LR-aided linear
MIMO-MAC transceivers with worst-case

complexity at most linear in sum-rate
Petros Elia and Joakim Jaldén

Abstract—In the setting of multiple-access MIMO channels, the
work establishes the DMT optimality of lattice-reduction (LR)-
aided regularized linear decoders. This is achieved irrespective of
the lattice design applied by each user. The decoding algorithms
employ efficient solutions to the Nearby Vector Problem with
Preprocessing in the presence of a regularized non-Euclidean
metric, and in the presence of time-outs.

The decoders’ optimality induces a worst-case computational
complexity that is at most linear in the users’ sum-rate. This
constitutes a substantial improvement over the state of art of
DMT optimal decoding, including ML decoders with complexity
that is exponential in the sum-rate, or lattice decoders based
on solutions to the NP-hard closest vector problem (CVP). The
optimality of the efficient decoders is established for all channel
statistics, for all channel dimensions, for any number of users,
and irrespective of the different rates. The findings directly apply
to different computationally intensive multi-user settings such as
multi-user MIMO, multi-user cooperative communications, and
multi-user MIMO-OFDM.

Index Terms—Multiple-Access Methods, Multi-User Receivers,
Diversity Multiplexing Tradeoff, Lattice Designs, Lattice Reduc-
tion, Linear Receivers, MIMO Communications.

I. MULTIPLE-ACCESS CHANNEL AND LATTICE DESIGNS

A. Introduction

The general MIMO multiple-access linear channel (MIMO-
MAC) model describes different scenarios where independent
users utilize multi-dimensional transmit-receive signals in the
presence of fading and of each other’s interference.

A fundamental performance limit in outage limited com-
munications was presented in [1], for the single-user MIMO
case, in the form of the diversity multiplexing tradeoff (DMT).
This was extended in [2] to the multi-user MIMO-MAC case.
The tradeoff has since been widely adopted as a benchmark
for transceiver design and analysis. The work in [3] proved,
for the single-user case, the existence of DMT optimal lattice-
based encoders and decoders, and the result was extended in
[4] to the multi-user case.

Recent work by the authors in [5] proved, for the single-user
case, the DMT optimality of explicit encoder-decoder struc-
tures that employ computationally efficient lattice reduction
(LR)-aided linear decoders. The extension of this optimality
to the multiple-access case poses challenges relating to the

The research leading to these results has received funding from the Euro-
pean Research Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement no 228044. P. Elia
acknowledges funding by EU:FP7/2007-2013 grant no.216076 (SENDORA).

P. Elia is with the Mobile Communications Department, EURECOM,
Sophia Antipolis, France (email: elia@eurecom.fr) (tel/fax: +33 49300 8132)

J. Jaldén is with the Signal Processing Lab, School of Electrical
Engineering, Royal Institute of Technology, Stockholm, Sweden (email:
Joakim.jalden@ee.kth.se)

variable densities attributed to the code-channel lattices of
different users having different rates. These challenges are
addressed herein and the decoders’ optimality in the MIMO-
MAC case is proven for any optimal or suboptimal lattice
code.

B. System model
We consider a general (real) multiple-access MIMO channel

model [2]
y =

∑k

i=1
Hixi + w (1)

with k independent users and a single receiver, where y, w ∈
Rm, Hi ∈ Rm×ni , and where xi ∈ Rni is the codeword
transmitted by user i. The transmitted codewords xi, for
i = 1, · · · , k, are drawn with uniform probability from
some codebooks Xri ⊂ Rni , the channels Hi are random
with arbitrary distributions and parameterized by ρ which
can be interpreted as the users’ SNR, and w is assumed to
be i.i.d. Gaussian with unit variance. The users operate for
some duration T , at some SNR ρ, and user specific rates1

Ri = 1
T log2 |Xri |, which define the user’s multiplexing gain

ri [1], [2] according to

ri , lim
ρ→∞

Ri(ρ)
log2 ρ

= lim
ρ→∞

1
T

log |Xri(ρ)|
log ρ

. (2)

In this setting x ,[xT
1 xT

2 · · · xT
k ]T ∈ Rn, n =

∑n
i=1 ni, can

be seen to originate from a codebook Xr ,Xr1 ×· · ·×Xrk
⊂

Rn, where r,[r1 r2 · · · rk]T defines the multiplexing gain
vector [2].

The joint ML decoder is known to be DMT optimal for
each user [2], and is given by

x̂ML = arg min
x̂∈Xr

‖y −
∑k

i=1
Hix̂i‖2 . (3)

The diversity gain delivered by the set of designs Xri under
ML decoding is given as a function of r to be (c.f. [1], [2])

dML(r) ,− lim
ρ→∞

log P (x̂ML 6= x)
log ρ

. (4)

Herein, we consider lattice designs given by Xri =
(ρ−

riT

ni Λi) ∩ Ri, for each user i, where Λi ,{Gizi | zi ∈
Zni} ⊂ Rni is a lattice generated by2 Gi ∈ Rni×ni , where zi

is the integer information vector associated to user i, and where
Ri ⊂ Rni is a compact convex shaping region. Specifically
Ri contains 0 in its interior, and is independent of ρ. For each
ri ≥ 0, Xri induces a cardinality |Xri | = ρriT .

1We here assume that one use of (1) corresponds to T uses of some
underlying channel (see [5]).

2The assumption that Gi is square incurs no loss of generality (c.f. [5]).



2

II. DMT OPTIMALITY OF REGULARIZED LATTICE
DECODING IN THE MULTIPLE-ACCESS SETTING

The (general) regularized lattice decoder was in [5] given
for the single user case, and takes in the multiple-access setting
the following form:

x̂L = arg min
x̂∈Λr

‖y −
∑k

i=1
Hix̂i‖2 +

∑k

i=1
‖x̂i‖2T i

(5)

where
Λr , ρ−

r1T
n1 Λ1 × · · · × ρ

− rkT

nk Λk,

and where ‖x̂i‖2T i
, x̂T

i T ix̂i for any3 positive definite T i,
i = 1, . . . , k. Apart from the obvious addition of the regu-
larization terms, we emphasize that (5) differs from (3) also
in that the search is performed over the full lattice, and not
just the codebook. Although suboptimal in general, searching
over the full lattice tends to symmetrize the decoder and will
allow for methods used to reduce the decoder complexity
(this will be further discussed in Section III). Nevertheless
the following result, extending the result in [5], shows that
under the assumption of uniformly distributed xi over Xri ,
(5) defines a DMT optimal decoder for the general multiple-
access setting.

Theorem 1: For any set of lattice designs {Xri =
(ρ−

riT

ni Λi) ∩ Ri}k
i=1 employed by the users, and for any

fading distribution such that dML(r) is continuous at r, the
regularized lattice decoder in (5) is DMT optimal, i.e., gives
optimal diversity

dL(r) ,− lim
ρ→∞

log P (x̂L 6= x)
log ρ

= dML(r). (6)

A. Proof of Theorem 1

The proof extends on the proof for the single-user case in
[5] by considering lattices with variable densities across the
different dimensions associated to each user, and by showing
how in this setting, the regularization factor

∑k
i=1 ‖x̂i‖2T i

guarantees DMT optimality, i.e., guarantees that the DMT-
performance provided by the lattice designs in the presence of
regularized lattice decoding, matches the performance of the
same designs in the presence of ML decoding. Note however
that we make no assumption that the design achieves the
optimal DMT of the underlying channel (see [5]).

Consider the following, guaranteed to exist, spherical region

Bi ,{d ∈ Rni | ‖d‖2 ≤ γi}, (7)

where the radius γi > 0 is chosen to be independent of ρ, and
also chosen to guarantee that d1 + d2 ∈ Ri for any d1, d2 ∈
Bi. For

νr , min
d∈⊗k

i=1(Λri
∩Bi):d 6=0

1
4‖Hd‖2 , (8)

where H ,[H1 H2 · · · Hk], the first task will be to show
that for any r > 0,

lim sup
ρ→∞

log P (νr ≤ 1)
log ρ

≤ −dML(r) . (9)

3T i may be optimized for improved performance.

To see this, assume that x ∈ ⊗k
i=1 Bi and νr ≤ 1, where

the latter implies the existence of d ∈ ⊗k
i=1(Bi∩Λri

), d 6= 0,
such that νr = 1

4‖Hd‖2 ≤ 1 (see (8)). The fact that d, x ∈⊗k
i=1 Bi and d, x ∈ ⊗k

i=1 Λri implies that x̂ = x + d ∈⊗k
i=1(Ri ∩ Λri

), i.e., x̂ ∈ Xr. The ML decoder will choose
x̂ over x with probability P

(
x → x̂|x ∈ ⊗k

i=1 Bi, H
)

=

Q
(

1
2‖Hd‖

)
, where since νr = 1

4‖Hd‖2 ≤ 1, then

P

(
x → x̂|x ∈

k⊗

i=1

Bi,H

)
≥ Q(1) > 0. (10)

Furthermore by applying standard counting techniques it may
be shown that for r > 0, and for x uniformly distributed over⊗k

i=1(Ri ∩ Λri), it holds that

lim
ρ→∞

P

(
x ∈

k⊗

i=1

Bi

)
=

V (
⊗k

i=1 Bi)

V (
⊗k

i=1Ri)
> f (11)

for some f > 0 independent of ρ.
For x̂ML ∈ Xr being the output of the ML decoder, and

given that x is independent of H and thus also independent
of νr, it is the case that

P (x̂ML 6= x) ≥P

(
x̂ML 6= x|x ∈

k⊗

i=1

Bi, νr ≤ 1

)
×

P

(
x ∈

k⊗

i=1

Bi

)
P (νr ≤ 1) . (12)

Equation (10) says that P
(
x̂ML 6= x|x ∈ ⊗k

i=1 Bi, νr ≤ 1
)

.=
ρ0, which combines with (11), (12) to give that

P (νr ≤ 1)
.≤P (x̂ML 6= x)

which proves (9).
As in the case of (8), define

νr+ζ , min
d∈⊗k

i=1(Λri+ζi
∩Bi):d 6=0

1
4‖Hd‖2

where ζ =
[

ζ1 ζ2 · · · ζk

]
, and where ζi, i = 1, · · · , k

and δ are any constants that satisfy

2ζiT

ni
=

2ζjT

nj
> δ > 0 . (13)

At this stage make the assumptions that

νr+ζ ≥ 1 (14)

and that
‖w‖2 ≤ ρδ. (15)

The first task is to show that these two conditions are sufficient
for a correct decision by the regularized lattice decoder in (5),
provided that ρ is sufficiently large.

Towards this end, let c ,maxr∈⊗k
i=1Ri

‖r‖2T , where
T , diag[T 1, · · · ,T k] is block diagonal, and note that c is
independent of the transmitted codeword x and ρ, and that
c < ∞ because the Ri are bounded. This, in conjunction with
the condition in (15), implies that x induces a regularized
metric of

‖y −Hx‖2 + ‖x‖2T = ‖w‖2 + ‖x‖2T ≤ ρδ + c. (16)
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The task will be to compare (16) with the metric for any
x̂ ∈ Λr, x̂ 6= x. Towards this note that the assumption in (14)
implies

1
4‖Hd‖2 ≥ 1 ∀d ∈

k⊗

i=1

(Λri+ζi
∩ Bi) : d 6= 0 , (17)

by the definition in (8). Since Λri
= ρ

ζiT

ni Λri+ζi
, then scaling

(17) by ρ
ζiT

ni results in

1
4‖Hd‖2 ≥ ρ

2ζiT

ni ∀d ∈
k⊗

i=1

(Λri
∩ ρ

ζiT

ni Bi) , d 6= 0. (18)

It is now the case that x ∈ 1
2

⊗k
i=1 ρ

ζiT

ni Bi for all ρ ≥ ρ1,
given some sufficiently large ρ1, because for bounded Ri

then Ri ⊂ 1
2ρ

ζiT

ni Bi, for all i. Note that ρ1 can be chosen
independent of the transmitted x.

First, consider the case where x̂ ∈ 1
2

⊗k
i=1(ρ

ζiT

ni Bi ∩ Λri
)

and note that for any such x̂ 6= x, then d = x − x̂ ∈⊗k
i=1(ρ

ζiT

ni Bi ∩ Λri), and

1
4‖H(x− x̂)‖2 = 1

4‖Hd‖2 ≥ ρ
2ζiT

ni (19)

directly from (18). Combining (13),(14), and (19), gives that
there is some ρ2 ≥ ρ1, independent of x and x̂, for which the
triangle inequality guarantees that

‖y −Hx̂‖2 = ‖H(x− x̂) + w‖2 ≥ ρ
2ζiT

ni

for all ρ ≥ ρ2. Consequently,

‖y −Hx̂‖2 + ‖x̂‖2T ≥ ρ
2ζiT

ni (20)

for any x̂ ∈ Λr where x̂ ∈ 1
2

⊗k
i=1 ρ

ζiT

ni Bi and ρ ≥ ρ2.

Second, consider the case where x̂ /∈ 1
2

⊗k
i=1 ρ

ζiT

ni Bi in

which case (7) states that ‖x̂‖2 ≥ 1
4 (mini{γi})kρ

2ζiT

ni which

in turn implies ‖x̂‖2T ≥ 1
4ρ

2ζiT

ni (mini{γi})kλmin(T ) where
λmin(T ) > 0 denotes the minimum eigenvalue of T . It follows
that

‖y −Hx̂‖2 + ‖x̂‖2T ≥ 1
4
ρ

2ζiT

ni (min
i
{γi})kλmin(T ) (21)

for any x̂ /∈ ⊗k
i=1 ρ

ζiT

ni Bi.
For the transmitted codeword x, (16) implies that

‖y −Hx‖2 + ‖x‖2T ≤ a(ρ), ρδ + c (22)

which is compared to

b(ρ) ,min
(
1, 1

4 (min
i
{γi})kλmin(T )

)
ρ

2ζiT

ni (23)

to show that, given (13), there is some ρ3 ≥ ρ2, again
independent of x and x̂, for which a(ρ) < b(ρ) for all ρ > ρ3.
As a result, for any other x̂ ∈ Λr\{x}, (20) and (21) imply
that

‖y −Hx̂‖2 + ‖x̂‖2T ≥ b(ρ) > a(ρ) (24)

for all ρ ≥ ρ3. It has thus been shown that the transmitted
codeword yields the minimum metric, i.e., that x̂L = x, as
long as ρ ≥ ρ3 and as long as the conditions in (14), (15) are

satisfied. Equivalently for an error to occur when ρ ≥ ρ3 it
must be that νr+ζ < 1 or ‖w‖ > ρδ , and thus

P (x̂L 6= x) ≤ P (νr+ζ < 1) + P
(‖w‖ > ρδ

)
, (25)

for ρ ≥ ρ3. The exponential tail of the Gaussian distribu-
tion guarantees that P

(‖w‖ > ρδ
) .= ρ−∞, and the term

becomes asymptotically irrelevant. As a result, in conjunction
with (9), it is the case that for any ζ > 0 satisfying (13)
then lim supρ→∞

log P(x̂L 6=x)
log ρ ≤ −dML(r + ζ) . Given the

continuity of dML(r) at r, i.e., given that limζ→0 dML(r+ζ) =
dML(r) , as we choose ζi arbitrarily small, it may be concluded
that

lim sup
ρ→∞

log P (x̂L 6= x)
log ρ

≤ −dML(r) , (26)

for any r ≥ 0. The optimality of the ML decoder completes
the proof. ¤

III. COMPUTATIONALLY EFFICIENT DECODING:
C-APPROXIMATE SOLUTIONS TO THE CVP

The decoder in (5) may be rewritten in the form of a closest
vector problem (CVP). To this end, note that by incorporating
the lattice design, the signal model in (1) may be written as

y = HΘGz + w (27)

where Θ is a power normalizing diagonal matrix having the
elements of the ith ni-tuple on the diagonal being equal to
ρ
− riT

ni , where z = [zT
1 · · · zT

k ]T and zi is the original integer
information vector for user i, and where G is the composite
lattice generator matrix corresponding to Λr. Let

y′, QT

[
y
0

]
and

[
H√
T

]
= QR

where Q ∈ R(m+n)×n and R ∈ Rn×n are the factors of
the QR decomposition of the extended channel matrix, i.e., Q
has orthogonal columns and R is upper triangular. It is now
straightforward to show that (5) is equivalent to

ẑL = arg min
ẑ∈Zn

‖y′ −Mẑ‖2 (28)

where M ,RΘG, and where x̂L = ΘGẑL.
Obtaining x̂L in (5), or equivalently ẑL in (28), thus requires

the solution of a CVP in the lattice generated by M . However,
the CVP is unfortunately NP-hard in general [6], even after
preprocessing [7], [8]. Specifically [7] proves that for a large
family of recursive cube search algorithms, such as the
fastest currently known CVP algorithms ( [9], [7]), there exist
lattices that induce decoding complexity that is exponential in
dimension, irrespective of the amount of preprocessing. The
work in [8] extends the result to all algorithms, and shows that
it is not possible to find optimal polynomial time solutions to
the general CVP, (i.e., irrespective of the input lattice), even
in the presence of any form of preprocessing.

In our case this NP-hardness implies that even if LR
preprocessing methods [10] are used when obtaining the
exact solution to (28), it is unlikely that there will be any
general search techniques with a (worst-case) complexity that
grows sub-exponentially in the problem dimension n, unless
the code itself provides a structure that simplifies decoding,
such as for example in the case of orthogonal designs [11].
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However, such constraints would severely limit the available
lattice dimensions and rates. For most high-performance lattice
designs no such efficient solutions to (28), or (5), are known.

A. DMT optimality of C-approximate lattice decoding

The above motivates the study of suboptimal implemen-
tations of the regularized lattice decoder, in the form of
approximate solutions to the induced CVP. Specifically we
are interested in finding a C-approximate solution to (5), i.e.,
in employing a C-approximation algorithm [12], which for a
fixed C > 1 and for arbitrary inputs y ∈ Rm and H ∈ Rm×n,
decides on x̂ ∈ Λr that satisfies

ξ(x̂) ≤ Cξ(x̂L) where ξ(x̂) = ‖y−Hx̂‖2+‖x̂‖2T . (29)

In the above, recall that x̂L is by definition the vector which
provides the minimum metric in (5). The following result
states that any C-approximation algorithm for (5) is sufficient
for DMT optimal decoding.

Theorem 2: For any set of lattice designs {Xri
=

(ρ−
riT

ni Λi) ∩ Ri}k
i=1 employed by the users, and for any

fading distribution such that dML(r) is continuous at r, all C-
approximate implementations of the regularized lattice decoder
are DMT optimal over the MIMO-MAC, provided C is
independent of ρ, i.e.,

dA(r) = dML(r) , (30)

where

dA(r),− lim
ρ→∞

log P (x̂A 6= x)
log ρ

, (31)

for x uniformly distributed over Xr, and where x̂A is any
C-approximate solution to (5).

Proof: The proof follows from the proof of Theorem 1, it
can be found in [5] and is sketched here for completeness. In
particular, for a(ρ), b(ρ) in (22), (23) then (13) implies that
limρ→∞

b(ρ)
a(ρ) = ∞ , and that we can select ρ4 ≥ ρ3 such

that b(ρ) ≥ Ca(ρ) for all ρ ≥ ρ4. As the metric for x is
upper bounded by a(ρ), and the metric of any other vector is
lower bounded by b(ρ), it follows that under the assumptions
of (14),(15), and for ρ ≥ ρ4, then x̂A = x. The remaining
proof is similar to the proof of Theorem 1. ¤

We note that, in many cases, it is more straightforward
to find C-approximate solutions to (28) rather than to (5),
although as shown in [5] any C-approximate solutions to (28)
is also a C-approximate solution to (5). We shall for this
reason focus on (28) in what follows.

B. DMT optimality of LR-aided lattice decoding: employing
solutions for the C-approximate CVP with Preprocessing

The NP-hardness of the CVP motivates the use of C-
approximate rather than exact solutions. As was shown by
Theorem 2, any such solution also provides a DMT optimal
decoder. However, the CVP may not be efficiently approxi-
mated for arbitrary C > 1. For example, it has been shown
in [6] that approximating the CVP to within almost-polynomial

factors in n, is still NP-hard4. Nevertheless, for sufficiently
large values of C, tractable solutions do exist. To this end,
consider the CVP with a reduced lattice basis, i.e.,

ẑ′L = arg min
ẑ′∈Zn

‖y′ −MUẑ′‖2 (32)

where U ∈ Rn×n is a unimodular matrix, i.e., UZn = Zn.
The problem in (32) is clearly equivalent to (28) with ẑL =
Uẑ′L. Minimizing the norm in (32) over arbitrary ẑ′ ∈ Rn,
followed by simple rounding to the nearest integer point leads
to the approximate solition

ẑ′A = d(MU)−1y′c (33)

where d·c denotes per-component rounding to Zn. This ap-
proach was in [15] referred to as the rounding off algo-
rithm, and shown to provide a C1-approximate solution with
C1 , 1 + 2n(9/2)

n
2 , given a reduced basis MU obtained by

the LLL algorithm5 [10]; it is equivalent to the LLL-based
LR-aided linear implementation of the MMSE-GDFE decoder
when T = I [16]–[20]. Similarly, the LLL-based LR-aided
SIC implementation was in [15] referred to as the nearest
plane algorithm, and shown to provide a C2-approximate
solution to the CVP with C2 , 2

n
2 [15]. We note that C1, C2

are independent of ρ, and that Theorem 2 therefore applies. For
completeness, we give the following corollary to Theorem 2.

Corollary 2a: The efficient LLL-based LR-aided linear im-
plementations of the regularized lattice decoders provide DMT
optimal decoding of any set of lattice designs operating in a
multiple-access MIMO setting.
Proof: The corollary follows by the equivalence of the LR-
aided linear decoder and the rounding off algorithm in [15], or
of the LR-aided SIC decoder and the nearest plane algorithm
in [15], in conjunction with Theorem 2. ¤

Interestingly, Corollary 2a applies also to a time-limited
implementation of the Schnorr-Euchner (SE) sphere decoder
[21], [22] operating on (32), provided the sphere decoder tree-
search is allowed to reach the first leaf-node (see [5] for more
details).

C. Decoding complexity

The LR-aided decoders discussed above, first LLL reduce
the lattice basis M , and then provide a C-approximate so-
lution to the CVP according to (33) or by using an SIC
based procedure. The complexity of obtaining an approximate
solution in the reduced basis is only O(n2) [16], [17], [23]
and independent of ρ, while the preprocessing relying on the
LLL reduction is more complex. Thus, the decoder complexity
is dominated by the basis reduction, i.e., finding U .

The work in [24] shows that even though the worst-case
complexity of the LLL algorithm is often cited as polynomial

4We note that C-approximate solutions for arbitrary C > 1 are not
guaranteed even if oracle preprocessing of the lattice basis is allowed.
Specifically [13] (resp. [14]) have shown that the CVP with preprocessing
(CVPP) is NP-hard to approximate to within any factor less than

√
5/3 (resp.√

3), or equivalently that under the assumption that P6= NP there exist lattices
for which the CVP cannot be approximated to within

√
5/3 (resp.

√
3) in

polynomial time, no matter how the lattice is represented.
5Note here that regularization guarantees that M is always full rank,

rendering the LLL algorithm applicable, regardless of the channel realization
and the system dimensionality.
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in the dimension of the lattice, it is in fact infinite if applied
to arbitrary, real valued, M ∈ Rn×n. This implies that the
worst-case complexity of the LLL-based LR-aided decoder is,
strictly speaking, unbounded if applied to arbitrary channels.
However, in order to achieve DMT optimal performance it is
not required to LLL reduce every conceivable channel. Instead
the decoder may be allowed to time-out and declare an error
when the number of floating point operations exceeds a given
threshold, given that the time-out event is not more common,
in asymptotic terms, than the probability of decoding error.

To gain insight into such a time-out mechanism, note that
the number K of LLL cycles required to reduce a given lattice
basis M ∈ Rn×n may be bounded according to [24], [25]

K ≤ n2 logs κ(M) + n (34)

where s = 2/
√

3 and where κ(M) denotes the 2-norm con-
dition number of M . Each iteration requires O(n2) floating
point operations [10], which may be reduced to O(n) if only
an effectively LLL-reduced basis is required [26]. In light of
(34) we may thus limit the application of the LLL algorithm
to bases M with bounded condition number κ(M), or allow
the decoder the option to time out, stop, and declare an error.
Details of the time-out condition can be found in [5].

Employing the above time-out approach, and quantifying
the natural connection between channels that induce error and
channels that induce high-complexity, allows for the following.

Corollary 2b: For a very general class of multiple-access
channels, and for any given number of users, DMT optimal
decoding of any set of lattice designs is feasible at a worst-case
complexity that is at most O(log ρ).
Proof: The proof follows the steps in [5] and is omitted here
due to lack of space.

In the scale of interest, this worst-case complexity can be
seen to be O(n4) and at most linear in the sum-rate of the
users6, and is thus substantially reduced in comparison to the
worst-case complexity of other proven DMT optimal decoders,
which have complexity that is exponential in the sum-rate and
dimensionality, or induce solutions to the NP-hard CVP.

IV. CONCLUSION

The work established the DMT optimality of efficient LLL-
based LR-aided linear (or SIC) implementations of the reg-
ularized lattice decoders, for a very general multiple-access
MIMO setting. In conjunction with DMT optimal MIMO-
MAC lattice-designs [27], the current work establishes that
DMT optimality in the computationally demanding MIMO-
MAC setting can be achieved with computationally efficient
decoders, at a complexity that is at most linear in rate.
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[12] J. Hromkovič, Algorithms for Hard Problems: Introduction to Combi-
natorial Optimization, Randomization, Approximation and Heuristics,
2nd ed. Springer, 2002.

[13] U. Feige and D. Micciancio, “The inapproximability of lattice and
coding problems with preprocessing,” Journal of Computer and System
Sciences, vol. 69, no. 1, pp. 45–67, 2004.

[14] O. Regev, “Improved inapproximability of lattice and coding problems
with preprocessing,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2031–
2037, Sep. 2004.

[15] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point
problem,” Combinatorica, vol. 6, no. 1, pp. 1–13, Mar. 1986.

[16] H. Yao and G. W. Wornell, “Lattice-reduction-aided detectors for MIMO
communication systems,” in Proc. IEEE Global Conf. Communications
(GLOBECOM), Taipei, Taiwan, Nov. 2002.

[17] C. Windpassinger and R. F. H. Fischer, “Low-complexity near-
maximum-likelihood detection and precoding for MIMO systems using
lattice reduction,” in Proc. IEEE Information Theory Worshop (ITW),
Paris, France, Mar. 2003.

[18] A. D. Murugan, H. E. Gamal, M. O. Damen, and G. Caire, “A
unified framework for tree search decoding: rediscovering the sequential
decoder,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 933– 953, Mar.
2006.

[19] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2389–2401, Oct. 2003.

[20] ——, “MMSE-GDFE lattice decoding for underdetermined linear chan-
nels,” in Proc. Conf. on Information Science and Systems, Princeton,
New Jersey, USA, 2004.

[21] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214, Aug.
2002.

[22] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,” Math. Programming,
vol. 66, pp. 181–191, 1994.
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