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On Coding for Block Fading Channels

R. Knopp, P.A. Humblet

Abstract

This work considers the achievable performance for coded systems adapted to a mhiitiglatfadingchannel

model. This is a particularly useful model for analysing mobile—radio systems which employ techniques such as
slow frequency—hoppingnder stringent time—delay or bandwidth constraints for slowly time—varying channels.

In such systems, coded information is transmitted over a small number of fading channels in order to achieve
diversity The separation between the diversity effects of multipath resolution and coding are studied. Bounds
on the achievable performance due to coding are derived using information—theoretic techniques. It is shown
that high diversity can be achieved using relatively simple codes as long as very high spectral—efficiency is not
required. Examples of simple block codes and carefully chosen trellis codes are given which yield, in some cases,

performances approaching the information—theoretic bounds.

Key words: Block—Fading Channels, Diversity, Outage Probability, MDS Codes, Slow Frequency Hop-
ping.



1 Introduction and Paper Outline

Consider the generic transmission scheme with diversity shown in figure 1. Information bits are coded/modulated
into F’ blocks of lengthV symbols (- -), so that codewords have length/’ symbols and are denoted

asc = (CO’O o1 c CON_1 Clo - CF—I,N—I)' The coded symbols are formed by either

a block or convolutional encoder and often passed to an interleaver for practical reasons. The coded
symbols belong an arbitrary symbol set (constellati®ir) the complex plane so that each occupies two

dimensions. Each block is QAM modulated as

N-1
us(t) = Z\/ESCfms(t—nT),f:O,l,---,F—l (1)
n=0

wheres(t) is some unit energy signaling pulse shape, &ni the energy per coded symbol. The key
feature of such a system is that theblocks are transmitted over different time—varying channels, in
order to partially average the performance over the different channel realizations. The complex baseband

received signals before processing are given by
T‘f(t) = Uf(t) * hf(t,T) —I—Zf(t),t €O,NT],f=0,1,---, F—1 (2)

wherex denotes convolutior; (¢, 7) is the channel response at tirhéo an impulse at time on the

fth channel, and () is complex white Gaussian noise with power spectral denéjty

Coding across different channel realizations provides a certain amount diversity, which counters the
effects of multipath fading. In what follows we will assume that thehannel realizations are correlated,
although it may well be the case in some systems that they can be taken to be uncorrelated. In some cases
with reasonable mobile speeds, the channel is virtually time-invariant during the block. We will assume
this to be the case, and adopt the nomenclature of [MS84] who referred to this type of chanblelcis a

interferenceor block fadingchannel.

In GSM [GSM90], which useslow frequency—hoppindglocks modulatg” = 4 (half-rate) orF' = 8
(full-rate) carriers whose spacing is larger than the coherence bandwidth, resulting in virtually uncorre-
lated blocks. The practical advantages of such a system are firstly that reliable coherent communication
is possible since the channel responses do not vary during the transmission of a block. Secondly and
more importantly, the amount of diversity is independent of the rate of channel variation, since it is a

result of exploiting frequency—selectivity. For wireless telephony, this is crucial since the majority of
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calls are made at low speed. Another example is the 1S54 standard[IS592] where coding is performed
acrossi’ = 2 TDMA blocks separated in time so that the blocks start to become less correlated for high
mobile speeds. The underlying system issues which férte be small are usually imposed by either
time—delay or bandwidth constraints, or even both. This model can also represent a multitone system,
where F’ is the number of carrier frequencies. This more general problem is considered by Wesel and

Cioffi [WC95] in the context of digital broadcasting using multitone signals.

Lapidoth [Lap94] considers a similar problem for convolutional codes with finite-depth interleaving
over the Gilbert-Elliot erasure channel, which serves as a first—approximation for a fading channel. He
compares different finite—interleaving strategies for figte binary convolutional codes. The reported
results are applicable to slow frequency—hopped systems such as GSM. The main conclusion of this work
is the that the code and interleaving strategy should be jointly optimized to maximize performance, and
that coding complexity plays a rather unimportant role. Here we will draw similar conclusions regarding
the relationship between the code and the number of blocks. Furthermore, we argue that the size of the
underlying symbol alphabet also plays an important role with respect to the achievable performance.

Furthermore, increasing code complexity is necessary to reduce error probabilities, up to a certain point.

1.1 Paper Outline

In section 2 we examine the achievable performance by determininpgdineise error—probability

(PEP) between two arbitrary coded sequences. This analysis shows that the performance is charac-
terized by two diversity effects which operate independently under certain conditions. The first is due to
the degree of resolvability of different multipath components and depends on the relationship between
the pulse shape and the delay spread of the channel. The second is due to the effect of coding across

different (and hopefully independent) channel realizations.

In section 3 we restrict our attention to the effect of coding by considering a sadisicrete—time single—

path channels, which completely describe a narrowband system without ISI. Because of the separation
effect previously mentioned we lose nothing by considering this simplified scenario. We extend the
results of Ozarovet al [OSSW94] and Kaplan and Shamai [KSS95] who characterized these types of
systems by ainformation outage probabilitgince, for finitef’, a channel capacity does not exist. This

was also terme@®utage Capacitypy Foschini and Gans [FG97]. Specifically we show the relationship

between the information outage probability andfifaene(FER) and bit error rates (BER). An important
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conclusionis that for practical (i.e. small) sighaling alphabets, the attainable diversity order due to coding
(which in Rayleigh fading corresponds to the slope of the information outage probability curve versus
the signal-to—noise ratio (SNR) on a log-log scale) is generally smalleritharhis warrants the use
of larger constellations for achieving high diversity. We find that for practical spectral efficiercles (

bits/dim), a small increase in the size of the constellation can yield significant performance improvement.

Practical block and trellis codes are considered in section 4. We begin by showing that the achievable
diversity for any coding scheme is given by a disguised version @itihgdeton boun{Sin64]. This was

also noted by Wesel and Cioffi [WC95] and stems from the fact that this type of coding can be interpreted
as a non-binary coding problem with block—length constrainefl ®ymbols. The Singleton bound
predicts the same diversity order as the information outage probability analysis. Moreover, it shows that
practical high diversity codes are difficult to construct when high spectral efficiency is required since very
large constellations are required. We give many examples of coding schemes using standard modulation
formats (AM and PSK) and spectral efficiencies in the range .25-1.5 bits/dim which meet the Singleton

bound.

Finally, in section 5 we present computer simulations of some selected codes and show that their FER,
with practical block sizes, is often very close to the information outage probability. This is perhaps
the most important result of this work. The BER indicated by the information outage analysis is less

indicative of practical performance.

2 Pairwise Error-Probability Analysis

Under the block—fading assumption, we assume that the time—variation of the channel is slow (i.e. that
the coherence time is greater than the duration of a block) so that the channel attenuations and phases
can be taken to be constant over blocks. We therefore express the complex baseband channel response

as
L—-1
hy(t) = Z arb(t—dgy), (3)
(=0

whereo s ; andd;; are the complex attenuation and delay offtfigath in thef'" block. These quantities
are assumed to be random from block to block but known without error to the receiver. We consider

a Gaussian fading model in this work so that thg are assumed to be circular symmetric complex
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Gaussian random variables with mearand variancér; — 37]* which are independent gt We assume

further awide—sense stationary uncorrelated scattering (WSSU&)nel model so that
E(os1—70) (op 0 —api)" = of,p07810, (4)

whereg; ¢ is the correlation coefficient between blogkand f’. We have, therefore, that different paths

are uncorrelated but that the strengths for a given path are correlated, in general, from block to block.
Furthermore, we assume that the path strengths are normaliquf:_%ka_l2 = 1, so that the average
attenuation is included in the transmitted signal strength. For convenience, we denote the column vector

T
formed by thel path strengths of thgh block byo ; = (Uﬁo op1 e UM_I) .

The I’ received signals are processed by a maximum-likelihood decoding rule as

F-1 .NT
m = argmin E /
0

m=0,--- 2FNR_1 57

r(t) — ™ (e = NT) # hf(t)‘zdt. (5)

Decoding in this fashion is too complex to be carried out in practice, and it is usually done in two steps,
depending on the relationship between the coherence bandwidth of the channel and the bandwidth of
s(t). In medium-band systems like GSM where the multipath induces intersymbol interference (ISl),

a sub—optimal approach is taken by first equalizing fhehannels with a soft—output algorithm (e.g.
soft—output Viterbi equalization [HH89]). These outputs are then deinterleaved and passed to a Viterbi
decoder to retrieve the information bits. In narrow-band systems such as IS-54, the channel is almost
ISI-free, and either a very simple equalizer or none at all is needed prior to deinterleaving/decoding. In
spread—spectrum systems without ISI, equalization is also not required and some of the multipath can be

exploited with a RAKE receiver prior to decoding [Pro95].

We now perform a standard Gaussian—fading performance analysis for the block—fading channel by de-

termining thepairwise error—probability (PEPpetween arbitrary code sequences. Denoting the code-

words bye = (CO c; - CF—1) , the PEP conditioned on a particular set of channel realizations is
given by
Pr(e® - c(b)‘ {hs()}) = Q [ \/d2(a,b) & (6)
) 2N0 )
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whered?(a, b) is the squared Euclidean distance between the coded signals which in our case is

2

-1 NT|N-1L-1 @ »)
> (a,b) = Z/O Z Z (Cfﬂ? — Cfﬂ?) UfJS(t —nT — de) dt, (7
f=0 n=0 [=0

andQ(z) = ﬁ IZ. e~ /24y, Thisis a guadratic form in the path strengths which after some straight-

forward manipulation can be written as

Eo(a,b) 0 0 0 | -

g9
0 El(a,b) 0 0

2 g1
d*(a,0) = |o}y o} o, 0 0 0 0

OF-1

0 0 0 ZEp_q| )

=o0"Eo, 8)

Whereng”/) ((Z7 b) = (Cgfa) — CEcb))PfJ’l/(Cgfa) — C&b))*, P}Z:?,/) = Ps ((n — n’)T—I— (de — de/)) and

pa(7) = [°2 s(t)s* (L + 7).

Since (8) is a quadratic form of circular symmetric Gaussian random variables, the moment generating

function of the random variable= d*(a, b)5%- is [SBS66, App. B]

exp(szSOE*(E_l — SQETSOKUE)_lﬁ

(s) = det(I — SQETSOKUE) ©
whereK,, is the covariance matrix af.
When the path strengths are zero—mean Rayleigh fadiny(9) simplifies to
FL . dF L—1 .
g U vyl | O s v En 10
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where{);} are thenon—zeraigenvalues of the matrix

YEo(a,b) 01,02E1(a,b) -+ or_10XEF_1(a,b)
K= — 00,120 (a, b) Y= (a,b) oo 0F-1152p-1(a,b) | 1)
00, F-1XZ0(a,b) 01, 1XE1(a,b) EEp-1(a,0) |

anddf] is the number of non—ze®@ (a, b) or equivalently thedamming distancbetweerc(*) andc(®)

with the symbols taken as the sub—veciorandx = diag(a_g, of, 0,07 _).

For the even simpler case where the blocks are uncorrelated (i;e= é; ;) (9) can be written as

dff -1

1
(I)Z(S) = H H 1-— 8772'71((:5/2]\707 (12)

1=0 [=0

wheren; ; is thelth eigenvalue of the non-zero matix; = =, (a, b).

The PEP can be found analytically using the inverse Laplace transform of (9) to average (6). This
amounts to performing a partial fraction expansion of (9) and yields simple closed—form expressions for
the PEP. There are often numerical instabilities in the computation of the partial—fraction coefficients
when there are repeated eigenvalues and another more numerically stable approach is considered in

[BCTV96].

Alternately we may use the Chernov boufidy) < %6_1,2/2 to upper—bound (12) as

1 z
(a) (b) - -2
Pr(c —C ) < 2Ez(e 2)
1 1
- Lo —5) (13)
B
1 [ 4Ny \ %l
- 14
< Q(XQES) ’ 14)
1/d5L

wherey? = (HEO HILZ‘OI 772»7,) . This geometric mean also surfaces in the study of antenna di-
versity systems [SBS66, Chap 10] and coded multitone systems [WC95]. Very similar performance
measures also characterize systems with multiple transgiire antennas, and can be used to design
coding schemes [TSC97a, TSC97b] We can obtain closer approximations by neglecting insignificant

eigenvalues and reducing the power in the exponent of (14).
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There are two limiting cases for the diversity offered by multipath. Either it cannot be resolved at
all (i.e. frequency-flat fading) or when it can be completely resolved by using very wideband signals.
In the special case of narrowband signals without ISI, (i#s; — d; | < T) Py;» = I so that

Ny = d?* (c(“), cgfb)) &1. We see, therefore, that is simply thed/;—root of the product distance measure
described by Divsalar and Simon for trellis—code time—diversity schemes [DS88]. In very wide-band
spread—spectrum systems without ISI (i.e. the bandwidth(©fis much larger than the coherence
bandwidth and the symbol rate), we have tRat;  ~ ;I so thatyy;; = |o[2d? (cgf“), cﬂfj)). The
asymptotic slope of the PEP \&, /N, on a log—log scale is commonly referred to asdhersity order

and we see that it is the product of the code and multipath diversities.

The theoretical performance of a system will fall somewhere between the performance of these two limits
which are straightforward to compute. Due to this separation, the goal of any coding system is therefore

to maximizedy;, since it will affect the performance equally for any channel.

3 Outage Probability Analysis

For simplicity, let us now consider narrow—band signals so that ISI can be neglected. In addition, we
assume the coded symbols belong to a real-valued symbol alpghab® (i.e. each symbol uses 1 sig-
naling dimension) since we wish to express our results on a per dimension basis. Extending this analysis
to complex symbols is straightforward and brings no significant additional insight into the problem. We

may write the continuous—time problem equivalently as

Tik =/ OFCf L+ 25k (15)

where thez; ;, are i.i.d. zero—mean Gaussian random variables with varidip¢e. Under the Rayleigh
fading modely; is an exponentially distributed random variable with unit mean fi,e(u) = e, u >

0). For unit—energy Ricean fading with a specular to diffuse power fatio s has the following density

T (a) = (14 K) exp(—K (14 (14 1/K)a)lo (VaK (1 + K)) 1o

wherely (+) is the zero—order modified Bessel function of the first kind.

We define theV F'—dimensional vectors, ande, representing the received and tratitsea symbols over

the F' blocks, to which refer as fhamefrom this point onward. We take for granted that the transmitter
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and receiver have agreed beforehand to use a codebook dvioglewords so that the information rate
is R = (log, M)/N F bits/dimension. We denote thé-dimensional vector of signal amplitudes &y
and assume that there is no feedback path so that the transmitter agsiod knowledge oix. As a
result, the transmitter an@ceiver agree beforehand on acceptable choiceg fand the input source

density fc and do not modify them during the course of communication.

3.1 Frame Error Rates

We first recall an upper—bound on the ensemble average plibhabcodeword error (i.e. taken over all
possible codes chosen at random) conditioned on the channeAstaie. In our case this corresponds

to theframe error rate (FER)We denote this probability b¥, o —.. From [Gal68] we have that

m < 2_NF(E0(pvf07A:Oé)—pR) )

where

145

Balp. fe A= a) = —pos, [ [ | [+ [ fele) o atle.a)™iae | .

(18)
andp is arbitrary in[0, 1]. By maximizing overp, this can be expressed further as
_ 1 IA < R
Pens|A:a < (19)
2—NFET(R,fC,A:a) Ia > R
where
E.(R, fc,A = a) = max Eo(p, fo,A=a) - pR, (20)
0<p<1
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and, under the assumption that the received signal in each frame is independent of the information trans-

mitted in previous frames,

F-1
1 o]
" NF fz—; /CfESN /_oofRf’Cﬂaf(rf? cslay) - (21)

Ir;10p 0, (xsles ay)

lo
&2 frya, (rrlay)

drgdcy bits/dim.

We note that this is not a conditional mutual information functional and to avoid confusion we have
used a slightly different notation. The conditional average mutual information betReand C is
I(R; C|A) = Eala, which when maximized over the input distribution, is the capacity of an ergodic

fading channel [Eri70].

We may bound the code—ensemble average probability of error as

Pens = EAP5|A:oz < Pout(R7 fC) ‘I’/ Q_NFET(RJC’A:a)dFA(Oé) (22)
where
Pou(R, fc) = Prob(Ia < R). (23)

Unlike the time—invariant channel case, the irreducible term in (22).(R, fc)) is independent ofV

which means that arbitrarily small error probabilities need not be achievable.

To get an idea of the achievable performance we now express the average codeword error probability for

a particular code (i.e. not an ensemble average) as

F. = Pe|IAZR (1 - Pout(R7 fC)) + Pe|IA<RP0ut(R7 fC) (24)

> Pe|IA<RP0ut(R7 fC)

Practically speaking, this lower—bound &h is only meaningful if we consider th&trong converséo

the coding theorem which guarantees tﬁ@ tends to 1 with increasiny for all codes. This result
can be extended to show [Gal68] that it must tend to 1 exponentialy. iin our context, this ensures
thatm ~ 1if N is large so thaP. 2, Pou(R, fc). In the limit of large N, the coding theorem

gives us equality, sinc€. 7, > is bounded by 1.
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The reader may wonder whether why the previous result is meaningful, since the use of the strong
converse says nothing about the error probability of the individual source bits bit #reor rate(BER).

We note, however, that for many practical systemsiitis precisely the FER thatis important. This is true for

the transmission of some forms of digitized speech and in packet data communications. Typically, data
is arranged into frames and then coded for transmission using both error correction and error detection
techniques. At the receiver the frame is decoded and then checked for data integrity using the error
detection scheme. If it is deemed intact, the data is passed on to the next level of the system. On the
other hand, if the data is corrupted then the frame is often discarded or a retransmission is requested.
Provided the number of symbols in the framé K) is large and a sophisticated coding scheme is used,

Poui (R, fc) will be a good indicator of the achievable error rate performance.

3.2 The Weak Converse and Bit—Error Rates

The weak converse (Fano’s inequality) yields a less useful lower bound on the FER since it only shows
thatP, 7, - r is bounded away from zero when in an outage state. Itis, however, more useful for obtaining

a lower—bound to the BER;,. We have [Bla87] that the BER conditioned 61 > R satisfies
H(Byjip>r) 21— — (25)

where?{(-) is the binary entropy functio (z) = —x log,(z) — (1 — z) log, (1 — «). The expressionin

(25) is only valid when the information source has maximum entropy. This yields the lower bound

P, > / "t (1 — I—A) dFA(O()7 (26)

where# ~1(-) is taken to mean the smaller of the two roots of (25). We will see that the FER for many
systems is quite close or even beld,(2), but that the lower bound on the BER is rather optimistic

for practical codes.

3.3 Discussion

In some cases the information outage probability may be zero, or equivalently a non—zero channel ca-
pacity exists. Any channel witlnina 74 > 0 will exhibit this behaviour. It is also possible when

the transmitter haa priori knowledge of the channel state and can adjust either fc accordingly
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[Gol94]. Another somewhat unrealistic case is witén+ oo and thec; ;, are independent of each other
and the channel state [OSSW94][Eri70], where by the law of large nunihers ﬁI(RM; CrrlAy)
bits/dim.

Kaplan and Shamai [KSS95] consider another outage probability based on the instantaneous cutoff rate
in the place of the average mutual information. The behaviour of this measure is similar to (23) except
that the outages are noticeably higher. It has less theoretical justification than (23) since it cannot be
used to obtain a bound on the FER. Traditionally [Mas74],[VitRg]was taken to be the highest rate

at which practical coding schemes can be implemented on ergodic channels. Humblet [Hum85] showed
that on a direct detection optical channel there exist reasonably simple codes whose rates exceed those
predicted byR, with acceptably low error probdlty. In recent years, the invention ¢dirbo codes

[BGT93] provides more evidence th&}, is not a practical limit even on a Gaussian channel. We will

soon see that some practical codes, which are not even as complex as turbo codes, can come very close
to (23) whenF’ is small, which shows that mutual information outage is sometimes more appropriate in
our case as well. The main reason for this is that when the number of blocks (or, more generally, degrees
of freedom of the fading process) is smatl,,; () is quite high and even fairly simple codes have FER

on the order ofP,,(R) when/a > R (i.e. when the system is not operating in an outage situation.)

When this is the case, the average FER is dominated by the outage event.

3.4 AWGN Channels and Finite Symbol Alphabets

We now computé?,.; (i) for different symbol alphabets. Under an average power cons@mt% <
NFE,, itwellknown [Gal68] thatl 5 is maximized whenthe, ; are i.i.d. zero-mean continuous Gaus-

sian random variables, yielding

1 Fo1 1 200+&
a2t ; o, (1 + 2 ) bits/dim (27)

The corresponding information outage probability in this case is easily computed numerically, and a
Chernov upper—bound in terms of Whittaker functions is discussed in [KSS95]. A tight lower—bound is

found using the fact that

108;2(1 +

28 1 ( 28, /No

5 <« = | ___=2&s/fV0
as) = 1+ 2&,a,/No

No In2 ) (af = ao) +logy (1 4 2850, /No) (28)
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which for Ricean fading with specular—to—diffuse power rdtiyields

F—1
Pout(R) 2 Prob [ Y a; < | = Qp (\/QFK, NI 1)#) (29)
f=0

wherey = 2F In 2 (QR — (g + No/2E,) (1 + %) — logy (1 + 2E,a0 /No)) andQr (a, b)
is theMarcum Q-function of ordef’. The bound can be tightened by maximizing (29) with respect to

ayg. For the special case of Rayleigh fadirfg & 0) we have

Pout(R) 2 7 3 (30)

A Gaussian input distribution is useful for assessing the potential performance of large signaling con-
stellations. We show the outage probability for unit—-energy Rayleigh fading atehRifading at a
signal-to—noise ratio (SNR) &%, /Ny =7 dB for F' = 1,2, 4, 8, which are reasonable choices for next
generation mobile systems. The Ricean fading channel has a specular to diffuse Fatie6adB which

was measured for some typical indoor communication channels [Bul87]. The main conclusion to be
drawn from these curves is that we cannot expect to transmit at spectral efficiencies much higher than 1
bit/dim if we require frame error rates on the orderl6f 2, even with as many a8 = 8 independent

blocks and a fairly strong specular signal component. In a recent study,&f@lgCKH97] have ap-

plied these ideas to interference-limited FDM—-TDMA cellular systems and have shown that comparable
spectral efficiencies can be expected under certain assumptions regarding the system architecture (i.e.
power control, frequency/time—hopping, frequency reuse and basestation assignment.) This motivates

our search for practical codes operating in the range .25-1.5 bits/dim in the following sections.

We now examine the effect of using small constellations with equiprobable and independent symbols. In

this caseP,,:(R) can similarly be computed numerically using [Wil96]

-1
1 <1 1
Ia =1 __E E — ——(r - SRR
A= lom S 7] fZOSES/_oomeXp( N Vo‘fs))

log, Z exp (—NLO [(r— ag(s; —s:))* — rz]) dr bits/dim (31)

5;€S

In Figs. 3(a),(b) we show’,,;(R) now as a function of the SNR per information it/ Ny (where

& = RE;) for both small AM constellations and Gaussian signals in unit-mean Rayleigh fading and
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spectral efficiencies of .5 and .75 bits/dim. The most important observation is that for a slight increase
in the constellation size with respect to the minimum needed to achieve the target spectral efficiency,
we approach the performance achievable with a continuous Gaussian input signal. We notice, however,
that the diversity order (i.e. the slope of the error-rate curve) is low when the smallest constellation is
used for transmitting at the target spectral efficiency (i.e. 2-AM for .5 bits/dim and .75 bits/dim). A
slight constellation expansion (usually by a factor 2) can significantly increase the diversity order. In the

following section we examine this observation more closely.

4 Maximum Code Diversity and the Singleton Bound

This section addresses practical block and convolutional codes which attain maximum code diversity
(df) for a given number of uncorrelated blocks and information rate. If we consider, for example, binary
modulation and binary convolutional codes, they need not exhibit maximum (free) Hamming distance,
and, in generaldﬁ < diee. A simple example is the rate 1/2 binary convolutional code with binary
modulation employed in the full-rate GSM standard shown in Fig.4. The output bits are interleaved over
8 blocks transmitted on widely sped carriers. The minimum free Hamming distance péth.(= 7)

(after deinterleaving) is shown along with the blocks over which each bit were tit@dmAs the first

two bits of the error event are in the same blocks as the last two, it is clear that this path a¢hievés

It turns out that this is also the minimum diversity path for this code and, as we shall soon see, that there
is no other code which achieves a larger diversity with binary modulationiard1/2 bits/dim, even

with arbitrarily many states.

The important conclusion to be drawn from this simple example is that traditional codes cannot neces-
sarily be used effectively on non—ergodic fading channels. For the case Mvhernc, however, Caire

et al. have recently shown [CTB97] thaff-the-shelbinary codes can be used with arbitrary signaling
alphabets for achieving high diversity. This stems from the fact that Hamming distance is the dominant
performance indicator, and a coded—modulation approach is not necessarily warranted for these types of
channels. We will see that this is not really the case in the problem at hand, although Hamming distance,

in a non-binary sense, is still the primary performance indicator.
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4.1 Maximum Diversity Bound

In order to determine the minimum pairwigg, it is convenient to group together thésymbols which

are transmitted in the same block, and view them as a super-symba$ 8veFhe codeword is then a
vector of length¥” super-symbols. This is the same view taken by McEliece and Stark in [MS84], except
now thatF" is fixed. Under this interpretation?; is simply the Hamming distance #". This reduces

the analysis to one of non—binary block codes with a fixed block lehgthnd therefore all traditional

bounding techniques apply.

An important first observation is that the highest rate code which achigves F’ hasRk = + log, |S]|
bits/symbol, which was also noted by Leung and Wilson in [LWK93]. This follows directly from the
fact that no two codewords can have identical symbols in the same positifjn-if £, and therefore
the number of codewords cannot excé&fl We can achieve this, for example, using a repetition code
overSY. The question, therefore, is one of determining how close we can gt to I with high—rate
codes and simple constellations. The answer lies in the Singleton bound [Sin64] which is proven in this
context, for the sake of completeness.
Theorem 1 (Singleton Bound)
Any codeC of rate R bits/symbol with\d codewords consisting df blocks of lengthV symbols from
an alphabetS hasd}; satisfying

dﬂgl—l—{F(l—%)J. (32)
Proof: Letk (0 < k < F — 1) denote the integer value satisfyifg|V *~1) < M < |S|V¥, where
M = 2NFE_ Consider any sef;,_; of k£ — 1 coordinates, for instanc®,_; = 0,1,---,%k — 2. Since
M > |S|N(’“—1) there are necessarily at least two codewoxdy, € C such thatx; = y;, Vi € T _4. It

follows thatdf; < F — k + 1 and therefore that
M < SN, (33)

Using the fact thatll; must be an integer yields (32). This bound for binary codes was also given in the

context of convolutional codes with finite interleaving by Wesel and Cioffi [WC95].

The first interesting result of this analysis is that the shape of the constellation is not important with

regard to the code diversity since it is a completely algebraic measure of the performance. The class
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of maximum distance separable cod®DS) therefore plays a large role in this context. There is a
downside, however, which is that the block length of the code is constrained foWkich means
that many existing codes, such as feed-Solomon (RS) codemnnot necessarily be used effectively.
Shortly, however, we give some examples of codes which can be used with practical choicesnibr

guarantee maximum diversity.

Secondly, and more importantly, we see what was remarked earlier in the outage probability analysis
concerning constellation expansion. Take for example transmissioe-at bits/dimension ovef’ = 8

blocks as in full-rate GSM. With binary modulatiofs{ = 2), the maximum pairwise diversity is 5,

which is what is achieved by the coding scheme used in GSM. With quaternary modulation we see that it
can be increased to 7. Examining the slopes of the information outage curves in Fig. 3 we see that both
results agree. On the downside, for high code rate2 pits/dimension) very large symbol alphabets

are required to achieve high asymptotic diversity. For example, With 8 and R = 3 bits/dimension,

a 16-point constellation can only achieve a diversity®f= 3. To achievel¥, = 7 a constellation with

4096 points is needed. Sindg is only an asymptotic indicator, it may be somewhat pessimistic at low

SNR ratios.

4.2 Block Codes

Let us first consider some examples of linear block codes of codeword Iéngiith % information
symbols, so that the rates of the codes iare- % log, |S] bits/dimension. For this case the Singleton

bound assures thadf; < F' — k + 1.

4.2.1 Simple codes

As we already pointed out, the simplest possible coding scheme for achieving divéisitgpetition
coding. The number of codewords/i$ = |S| and the spectral efficiency Isg, |S|/F bits/dim. The
parametery? for these codes is the minimum Euclidean distancé ofThe receiver for this coding

scheme simply performs a maximal ratio combining of theeceived symbols.

There are equally simple codes which outperform repetition codes. An examgle=sfat andR = 1.5
bits/2 dim is the freZs—module generated by the mat(ik, 3) mapped to 8—PSK. The minimugt is
easily shown to be 1.41 and whereas for the trivial repetition gddeould be .59. This is an important

advantage since we gain a power savings greater than 3dB. The calefot for 4-AM atR = .5
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bits/dim, {0202, 2020, 1133, 1331} hasy? = 1.39 whereas the trivial repetition code hgé = .8. For
R = .75andR = 1.0 bits/2 dim the freZs andZs modules generated Ly, 3, 5, 7) yield y* of 1.41
and 1.18 for 8 and 16—PSK respectively. Repetition codes wouldtav&9 and .15. In what follows,

we will use these codes with simple trellis structures to show gbwan be increased.

4.2.2 Multidimensional Constellations

The multidimensional lattice codes considered by Giraud and Belfiore [GB96] and BetialolBVRB96]

are perfectly suited for the block—fading channel, since they consider constellations over a finite and
small number of dimensions. Each dimension has an independent signal attenuation, and therefore in
the context of the block—fading model, this is equivalent to letfinige the number of dimensions with

N = 1. In [GB96] the constructed codes have dimensionality F < 8 andM = 22! points (code-

words) which have diversity’ so that the code rate is 2 bits/dim. In general, when the multidimensional
constellations are projected onto the coordinate axes, they produce non—uniformly spaced AM constel-

lations, with the minimum number of points necessary to satisfy the Singleton boundfjvithF".

The parameteg? for these constellations is small because of the fact dhat 1, as is the case for
the simple codes mentioned previously. In order to achieve higher coding gain but keep dikersity
therefore, it may be worthwhile to perform a coset decomposition (basgd)asf the constellations to

be used in conjunction with trellis codes. We have not attempted this.

4.2.3 Other MDS Codes

We now consider MDS code families for systems having: 4, 6, 8. They are formed by either short-

ening or lengthening RS codes. Shortening RS codes by removing information symbols results in a code
with the samet?; as the base code. Similarly, it is shown in [Wol69] that up to 2 information symbols
can be added to an RS code without changifjgFor the casé” = 6 we also consider a particular less
complex extended Hamming code which is also MDS. The combination of the constraints imposed by
the structure of the codes and the number of blocks in the system does not assure minimal complexity,
nor the flexibility of choosing arbitrary symbol alphabets. Another negative aspect is that the purely

algebraic structure of the codes pays no attention to the other less critical performance ingicator,

Example A: I =4
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Consider a family of codes with rafeé = £ /4 bits/dimension for use with binary modulation. Assuming
we form symbols over GF(4) by forming pairs of bits from the same block, we start wit{8tle— 1)
RS code over GF(4) witll; = 5 — k and lengthen it tg4, k). The resulting parity check matrix for this

code family is

These codes achieve maximum diversity fgil bits/dimension with binary modulation. Clearly, we
could also use the same code with a quaternary symbol alphabet to aBhievig’2 bits/dimension and

keep the same diversity. Here we see the first example of the effect of constellation expansion; if we take
k = 2 and binary modulation we have = .5 bits/dimension and}; = 3. With &£ = 1 and quaternary

modulation the information rate is stifl bits/dimension budj; = 4.
ExampleB: F =6

We now examine another family of codes with binary modulation Bné % /6 bits/dimension for the
case wher’ = 6. Consider thg7, & + 1) family of RS codes over GF(8), havin§; = 7 — k. The

parity check matrix for a shortened code fanfily k) is given by

1 « a? a®
a? a?)2 ... ()P
D @)
1 047_k (047_k)2 (ak)5

This shortened family achieves maximum diversity for binary modulationfardk /6 bits/dimension.
We can also use this family with 8-ary modulation to yiétdd= k/2 bits/dimension and the same

diversity level.

It is interesting to point out that although the codes are optimal in an MDS (maximum diversity) sense,

there may be other less complex codes which are also MDS. For example, the (6,3) extended Hamming
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code over GF(4) with generator matrix

1001 1 1
G=|(0101 a o], (36)

001 1 a2 «

is also MDS withd{; = 4 for & = 3. It is much less complex than the (6,3) shortened RS code outlined

above (64 codewords instead of 512). Moreover, it can be used with a quaternary signal set.
ExampleC: F =8

As a final example we consider the case of a code family Witk % /8 bits/dimension wheii’ = 8 and
N = 3. Similarly to whenl” = 4, we look at thg7, k£ — 1) family of Reed—Solomon codes over GF(8),

havingd}; = 9 — k. The parity check matrix for the lengthened code fanilyk) is given by

1 1 « o? o
0 1 042 042 2 . 042 6

T R @
0 1 047_k (047_k)2 (ak)6

This family achieves maximum diversity for binary modulation d&he- % /8 bits/dimension. As before,
we can also use this family with 8—ary modulation yiéld= 3% /8 bits/dimension and the same diversity

level.

4.3 Trellis Codes

In the GSM system today, as previously mentioned, rate 1/2 binary convolutional codes are used. This
is mainly due to the computational simplicity of implementing the Viterbi algorithm with soft decisions.
The Singleton bound is also applicable to arbitrary trellis codes, since they can always be interpreted as
very long block codes. In fact, in systems like GSM the convolutional codes are used in a block fashion
by appending trailing zeros to the information sequence, and a one-shot decoding of the entire block is

performed.

We will consider two approaches for designing trellis codes for these types of channels. We first give

three examples of simple 4—dimensional trellis codes based on AM and PSK constellatibns far
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This is the approach taken by Divsalar and Simon in [DS88] who considered TCM scherpedéatly
interleavedfading channels. It relies on using partitioning rules appliedtalimensional Cartesian
products of\/—PSK constellations. The rules are chosen such each set has a specified amount of diversity
and maximum product distance. Each set corresponds to the parallel transitions in the trellis, and by
properly choosing the trellis structure, the diversity of the code can be made equal to the minimum
Hamming distance of the sets. Wei considers similar codedfeDPSK systems [Wei93]. In both

cases the diversity order of the codes is quite srsall) considering the perfect interleaving assumption.

A similar approach for multiple-antenna systems aregpace-time codestroduced by Taroklet al.

[TSC97a, TSCO7h].

None of these codes are automatically applicable in our case since we no longer have a system with
perfect interleaving. As previously mentioned, Leung and Wilson [LWK93] designed simple 1.5 bit/2
dimensions 8—PSK trellis codes for systems with= 2 blocks. For illustration purposes, we will do

similarly for .5,.75 bit/dim forF' = 4 blocks in section 4.3.1.

The second approach considered in section 4.3.2 is to search for linear MDS convolutional codes which
maximizey?. Malkameki and Leib [ML97] recently considered conventional raté” binary convo-
lutional codes interleaved acrogsblocks. Here we present the results of code searches for binary
convolutional codes applied to BPSK/QPSK and 4-AM/16—QAM modulation with an appropriate map-
ping from the output bits to modulation symbols. Similar coding schemes for channels with correlated
fading were described by Wesel and Cioffi [WC95]. We also consider convolutional codes ofar

8—PSK and 8—AM modulation which achieve maximum diversity. Coded modulation schemes for the

AWGN channel using ring convolutional codes were introduced by Mastsalyin [MM89].

4.3.1 4—dimensional Trellis Codes for’ = 4

We now illustrate several codes fér = 4, having spectral efficiencies of .5,.75 and 1.0 bit/dim, which

are based on the simple block codes described previously. From the Singleton bound we require constel-
lations of size 4, 8 and 16 respectively in order to attain diversity 4. We consider the two and four state
trellis diagrams and the constellations shown in 5. Each transition has an assigned set of 4—dimensional
outputs,S;, whose cardinalities depend on the desired spectral efficiency. The branch outputs are chosen

such that

1. The sub-codes comprising the state outputs when leaving and entering each state has diversity 4
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2. The parallel transitions have as largg’aas possible.

These heuristic guidelines do not guarantee an optimal code, but assure maximum diversity and a large

X2

4—-AM and QPSK codes (.5 bits/ (2) dim)

For codes with .5 bit/dim, the number of input bits per 4-dimensional output is 2 so that there are
4 branches leaving and entering each state. We assume parall@idrenwith two 4—dimensional
symbols on each. Examining first the case of a 4-AM constellation. We choose the 4 Sgts-as
{0202, 2020}, S; = {1133,3311}, S, = {3113,1331}, S5 = {0220, 2002}. With this assignment, the

x? for the parallel transitions is maximum (3.2) under the constraint of satisfying the first design rule
above. For the two—state code, the ovetdlis 2.77, whereas the 4—state code achigves 3.20. With

QPSK the 2-state code achiewes= 4.00 which is maximum for any code with parallel transitions.
8—AM and 8—PSK codes (.75 bits/ (2) dim)

Now consider the casB = .75 bits/dim with 8—AM and 8—-PSK modulation. We now have 3 bits per
4—dimensional output so that there are 8 branches leaving each state. For 8—AM we choose the 4 sets

which obey the guidelines above

So = {0246, 6024, 1602, 2460}
Si = {7531, 1753, 3175, 5317}
S, = {0426, 6024, 1062, 2640}

S; = {7351, 1573,3715,5137}.

With two states, the code hag = .9867 and with four states? = 1.28. With 8—PSK, we choose
the sets as the free submodulgs= (25 + ¢)(1,3,5,7),: = 0,1, = 0,1,2,3andS; = S;—2 +
(0,2,6,0),7 = 2,3. Recall that this code was mentioned previously, and is optimal with respgét to
With two states, the minimum? = 2.00 is achieved by the parallel transitions so that there is no need

to consider the 4-state code.

16—PSK codes (1 bit/2 dim)
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Finally, we consider a 16—PSK code based on the simple block code mentioned eafiet fbbit/2dim

with S; = (2j+14)(1,3,5,7),:= 0,1, =0,1,--- ,7andS; = S;—2+ (0,4, 12,0). Again for a 2—state

code we achieve the minimug? = 1.41 with the parallel transitions.

These techniques could be used to design codeB for4 and higher spectral efficiencies. It becomes

a problem of finding MDS block codes with largé which can beset partitionedand assigned to the
transitions in the trellis. These block codes quickly become very large, and as a result, the decoding
complexity increases quickly. For example, a 2—state codd’fer 8 and 1 bit/dim would require

branches with 128 parallel transitions.

4.3.2 Convolutional Codes

Binary Convolutional Codes with BPSK/QPSK and 4-AM/16—-QAM

Sinced}; is a purely algebraic measure of the performance we have performed a code search for rate
1/4,1/2 and 3/4 binary convolutional codes that are MDSHoe 2, 4, 8. The results are summarized

in Tables 1-8, and the MDS codes are highlighted in bold type. In addition, the codes listed maximize
x%. The rate 1/4 and 1/2 codes are conventional feedforward convolutional codes with generators listed
in octal notation following [LC83]. The rate 3/4 codes are systematic codes with feedback shown in
figure 7. We have chosen the recursive form because of the reduced size of the search space. The
generators are listed in hexadecimal form represerting, /; s, k; 2, h; 1), where the leftmost bit is the

most significant bit.

We have used &ray mappindor adjacent bits out of the encoder for both the 4AM/16QAM and QPSK
codes. This is shown in figure 6 and greatly simplifies the code search (which is already more computa-
tionally intensive than for computing,..). If we write the modulation symbols as € {00, 01, 10, 11}

and denote the Euclidean distance between symbal$(as s;) then under the Gray mapping shown

in the figure we have with QPSHK?(s;, s;) = d?(00, s; & s;) and with 4—AM/16—-QAMd?(s;, s;) >

d?(00, s; & s;). For 4—~AM/16QAM we guarantee that thé between any two paths in the trellis is at

least as large as thg between the all-zero path and their component-wise difference modulo 2.

As a general rule, we need very few states to yield a maximum diversity code;azah be made sub-
stantially larger than those of the codes we constructed using the multidimensional approach in Section

4.3.1. We have also found that a candidate code must often be scanned to a great depth in order to find
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the minimum diversity path.

As a first example, consider the casddf .5 bits/dim with /7 = 8. We can achieve maximum diversity

with an eight—state code, and moreover, it turns out that it does not exhibit maximum free Hamming
distance ... = 5, not 6). It is the only such code, so that it is a perfect example of the danger of using
selection rules appropriate only for ergodic channels. It is interesting to note that the GSM standard
uses a 16-state maximum free Hamming distance code, which offers a slightlyjarien its 8—state
counterpart. The 16—state code listed in the table has a slightly lafgéran the GSM code, but we

have found that the performance improvement is negligible. For the cdse-of, maximum diversity

can be obtained with a 4—state code, whereas in the GSM standard a 64—state code is used.

There are other important issues requiring the use of more complex codes. For instance, the 16-state
code used in full-rate GSM achieves maximum diversity with= 2,4, 6 and 8, whereas the 8—state

code achieves maximum diversity only with= 2, 4, 8. This is important since in a frequency—hopping
system, the number of hopping frequencies is left up to the operator. Although we have not considered
this issue, it would be interesting to determunm@versallygood codes which achieve acceptable perfor-
mance for many different values éf. The more important reason for increasing complexity, as we will

see in section 5, is that larger values\dfcan yield significant coding gain in the FER performance.
Convolutional Codes overZg for 8—PSK and 8—AM

For 8—ary modulation we have considered convolutional codes over thEgisigown in figure 8. These

linear codes were introduced by Massyal in [MM89] and are naturally suited for phase modulated
signals since the codewords form a multiplicative group in the signal space yielding a geometrically—
uniform code [For91][BGMM93]. Moreover, it was found that they perform at least as well as any
M-PSK code designed by set partitioning and are fairly easily made rotationally invariant. These codes
have some peculiar algebraic properties due to presence of zero—divisors when using rings which are
important to rule out catastrophic behaviour. We note that there are other configurations for achieving

the same number of states but we have found that they yield less powerful codes in our case.

With the mapping shown in figure 6 for 8—AM we do not have geometric—uniformity but still assure, as
was the case with 4AM/16QAM with binary codes and a Gray mappingdttat, s;) > d(0, s; + s;)
where addition is now modulo 8. Again we need only consetah path with respect to the all-zero

path to determine the minimur? for any code. This would not be the case for a code over a finite field.
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5 Performance Comparison of Various Codes

In order to assess the performance of some of the codes reported in this work, we resort to computer
simulations of a subset of codes. We have found that a union—bound approach for assessing the perfor-
mance analytically yields quite unfruitful results for trellis codes. This was also remarked by Leung and
Wilson[LWK93] and Malkanaki and Leib[ML97]. The main reason is that as we progress through the
trellis the contributions of the long paths cannot be discarded since their diversity order is limied to

For codes with a high diversity order, all paths have roughly parallel PEPs vs. SNR curves and therefore
contribute to the total error probability. The number of paths to be considered in the union bound is very

large and the bound is quite loose (depending on the point where we stop including paths.)

In our simulations shown in figures 9—16 we assumed a block length of 100 uncoded bits and a single—
path Rayleigh fading channel with an independent realization in each block and soft—decision decoding
with perfect channel state information. As a general rule, we find that with practical codes, we can often
achieve FER close or, in a few cases, lower than (), when the diversity order is low (e.¢. = 2, 4).

This is the case since, for low diversity codés,(R) is quite high and even fairly simple codes operate

on the order of or less thai, .. () whenly > R, so that their performance is dominated by the outage
event. Furthermore, for finitd', the FER is only approximately lower bounded By, (), so that it is
possible for some codes to have an FER below this indicator. The FER is, of course, highly dependent
on NNV, and for larger values a¥ than were investigated here, we would expect to require more complex

codes in order to approadh,,.(R).

The binary convolutional code chosen for half-rate GSM=£ 4, R = .5 bit/dim, 64 states) does not
maximize? but its FER and BER performance is very close to the code shown in figures 15,16. Both
fall within .25 dB of F,,(.5) with binary modulation so that the use of more than 64 states would be
unnecessary. This assesment would be more difficult to make based oty @m with an erasure
model), since even a 4-state code is MDS. For the full-rate dase 8, R = .5 bit/dim, 16 states)

we have not included the simulation for neither the code chosen in the GSM standard nor the one which
maximizesy?. Again both have virtually identical BER and FER. They offer around 1dB gain in FER
over the 8-state code shown in figures 15,16 and only a fraction of a dB in BER. Both these simulation

results can be found in [KH97]. The code fbr= 8 with 64 states falls within .5dB af,,(.5).

Some of the RS-based codes mentioned in (4.2) were simulated and have BER comparable with the

simple convolutional codes although these results are not shown here. The performance enhancement
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due to constellation expansion can be very significant, most notably for the examples at .75 bit/dim and
1.5 bit/2 dim. Note that we have not considered rate 3/8 codes for quaternary alphabets which would
achieve diversity 3 fof’ = 4 andR =.75 bit/(2) dim. These would require rather inconvenient encoder

structures, but would provide gains in between the binary and octal examples shown here.

We also remark that increased complexity has a much more significant effect on the FER than on the
BER, especially for low diversity codes. We also notice the peculiar result that simple codes can have
lower BER than more complex codes, whehis the selection criterion (e.g. figure 16,= 2), even if

their FER is significantly higher. In addition, the strict lower bound on the BER in (26) gives much less

indication of practical performance than daés.(R) for the FER.

6 Conclusion

This work considered coding for block—fading channels with small number of blocks. This channel
model has significant practical importance for block—oriented communications where the fading pro-
cess is characterized by a small number of degrees of freedom during the decoding interval. The slow
frequency—hopping scheme used in the current GSM mobile radio system is a prime example. It is rea-
sonable to assume that next generation wireless systems will also use similar, and perhaps more complex

techniques.

We described the separation between the diversity effects due to multipath resolvability and coding. We
then turned our attention to the attainable diversity due to coding. We showed that there is a upper—
limit to the diversity which depends on the number of blocks, the code rate and the size of the signaling
constellation. This was shown in two ways; the first was based on the computation of the information
outage probability for various constellations. We then showed that the maximum diversity for a code
of a given rate is given by the Singleton bound, so that appropriately chosen MDS codes play a very
important role for these types of channels. Both methods indicate that diversity is limited and that it can
be increased by constellation expansion. A rather unfortunate result is that for high spectral—efficiency

systems, in order to achieve a high asymptotic diversity order, very large constellations are required.

We gave examples of block and trellis codes, with more of an emphasis on the latter, which achieve
maximum diversity. An important result is that maximum diversity can be achieved with rather simple
codes and that, in terms of BER performance, increased complexity does not always yield significant

gains. This is not true, however, for the FER performance, which is often important in both speech and
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data applications. We showed that the information outage probability is a good indicator for practical
FER values, when the diversity order is rather leg8]. This result should also apply to cellular systems
where coding is used to combat intercell interference [PC95][CKH97] as well as coded multitone systems

[WC95].
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=4 =28
States df} x2;, 9gen. 3 iu. gen.
4 4 980 5577 6 727 53,77
8 4 12.90 64,64,54,74 7 7.81 44,64,54,34
16 4 1489 52,62,66,76 7 12.29 46,26,64,76
32 4 17.71 71,55,75,57

Table 1 Rate 1/4 convolutional codes for binary modulation (.25 bit/dim)

F=2 =4 =38
States df; X2, gen. diy X2, gen. & X2, gen.
4 2 980 57 3 635 57 4 566 57
8 2 12.00 64,54 3 10.08 44,54 5 400 44,64
16 2 1265 62,72 3 1321 62,46 5 528 62,72
32 2 16.00 71,73 3 1454 7557 5 10.56 51,65
64 2 17.89 704,564 3 17.93 724564 5 18.47 414,354

Table 2 Rate 1/2 binary convolutional codes for binary modulation (.5 bit/dim)

F=4 F=238

States df; x2;, gen. d¥ A, gen.
4 4 258 57,37 6 202 5,737
8 4 376 44,64,54,34 7 1.76 44,64,54,34
16 4 463 72,76,44,54 7 255 64,56,50,66
32 4 571 61,75,53,57 7 3.63 41,75,45,33
64 4 6.60 624,634,564,564 7 5.00 644,370,424,354

Table 3 Rate 1/4 binary convolutional codes for 4-AM (.5 bit/dim)

F=4 F=238

States df} x2;, 9gen. 3 iu. gen.

4 2 566 9AF 3 400 9AF

8 2 11.31 9,A3,F 3 8.00 F9AF

16 2 13.85 F9,6,5A 3 12.00 F9,C6,F

32 2 16.00 9,A,3,9,5,F

Table 4 Rate 3/4 bits/dim convolutional codes for binary modulation (.75 bit/dim)

F=2 =4 =38
States dj x3,;, 9gen. diy X2, gen. X2, gen.
4 2 4.00 5,7 3 3.17 5,7 3 3.17 5,7
8 2 6.00 64,54 3 400 2054 4 283 64,54
16 2 632 62,66 3 504 6254 5 264 26,74
32 2 800 31,57 3 6.60 51,17 5 348 25,73
64 2 980 664474 3 8.00 664,774 5 4.34 604,564

Table 5 Rate 1/2 binary convolutional codes for QPSK (1 bit/2 dim)
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F=4
States df;, xZ;, gen.
4 3 254 5577
8 4 1.61 44,64,50,74
16 4 2.08 52,56,66,76
32 4 254 51,55,66,76

Table 6 Rate 1/4 binary convolutional codes for 16-QAM (1 bit/2 dim)

F=4 =38
States djf; x2;, gen. d¥ XA, gen.
4 2 282 9A7 3 40 9,A7
8 2 400 8571 3 80 F.8,9
16 2 6.00 9F3,6,5 3 120 F9,C6,7

32 2 778 9A3957

Table 7 Rate 3/4 binary convolutional codes for QPSK (1.5 bit/2 dim)

F=2 =4
States df; x2;, gen. df XA, gen.
4 2 200 1032 2 200 10,12
8 2 282 13,34 3 218 11,16

16 - - - 3 233 210,354
32 2 342 112230 3 2.88 112,250
64 2 510 113361 3 456 116,311

Table 8 Rate 1/2 convolutional codes oy for 8-PSK (1.5 bit/2 dim)
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