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On Coding for Block Fading Channels

R. Knopp, P.A. Humblet

Abstract

This work considers the achievable performance for coded systems adapted to a multipathblock–fadingchannel

model. This is a particularly useful model for analysing mobile–radio systems which employ techniques such as

slow frequency–hoppingunder stringent time–delay or bandwidth constraints for slowly time–varying channels.

In such systems, coded information is transmitted over a small number of fading channels in order to achieve

diversity. The separation between the diversity effects of multipath resolution and coding are studied. Bounds

on the achievable performance due to coding are derived using information–theoretic techniques. It is shown

that high diversity can be achieved using relatively simple codes as long as very high spectral–efficiency is not

required. Examples of simple block codes and carefully chosen trellis codes are given which yield, in some cases,

performances approaching the information–theoretic bounds.

Key words: Block–Fading Channels, Diversity, Outage Probability, MDS Codes, Slow Frequency Hop-

ping.



1 Introduction and Paper Outline

Consider the generic transmission scheme with diversity shown in figure 1. Information bits are coded/modulated

into F blocks of lengthN symbols (� � � ), so that codewords have lengthNF symbols and are denoted

asc =

�
c0;0 c0;1 � � � c0;N�1 c1;0 � � � cF�1;N�1

�
. The coded symbols are formed by either

a block or convolutional encoder and often passed to an interleaver for practical reasons. The coded

symbols belong an arbitrary symbol set (constellation)S in the complex plane so that each occupies two

dimensions. Each block is QAM modulated as

uf (t) =
N�1X
n=0

p
Escf;ns(t� nT ); f = 0; 1; � � � ; F � 1 (1)

wheres(t) is some unit energy signaling pulse shape, andEs is the energy per coded symbol. The key

feature of such a system is that theF blocks are transmitted over different time–varying channels, in

order to partially average the performance over the different channel realizations. The complex baseband

received signals before processing are given by

rf(t) = uf (t) � hf (t; �) + zf (t); t 2 [0; NT ] ; f = 0; 1; � � � ; F � 1 (2)

where� denotes convolution,hf (t; �) is the channel response at timet to an impulse at time� on the

f th channel, andz(t) is complex white Gaussian noise with power spectral densityN0.

Coding across different channel realizations provides a certain amount diversity, which counters the

effects of multipath fading. In what follows we will assume that theF channel realizations are correlated,

although it may well be the case in some systems that they can be taken to be uncorrelated. In some cases

with reasonable mobile speeds, the channel is virtually time-invariant during the block. We will assume

this to be the case, and adopt the nomenclature of [MS84] who referred to this type of channel as ablock

interferenceor block fadingchannel.

In GSM [GSM90], which usesslow frequency–hopping, blocks modulateF = 4 (half–rate) orF = 8

(full–rate) carriers whose spacing is larger than the coherence bandwidth, resulting in virtually uncorre-

lated blocks. The practical advantages of such a system are firstly that reliable coherent communication

is possible since the channel responses do not vary during the transmission of a block. Secondly and

more importantly, the amount of diversity is independent of the rate of channel variation, since it is a

result of exploiting frequency–selectivity. For wireless telephony, this is crucial since the majority of
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calls are made at low speed. Another example is the IS54 standard[IS592] where coding is performed

acrossF = 2 TDMA blocks separated in time so that the blocks start to become less correlated for high

mobile speeds. The underlying system issues which forceF to be small are usually imposed by either

time–delay or bandwidth constraints, or even both. This model can also represent a multitone system,

whereF is the number of carrier frequencies. This more general problem is considered by Wesel and

Cioffi [WC95] in the context of digital broadcasting using multitone signals.

Lapidoth [Lap94] considers a similar problem for convolutional codes with finite-depth interleaving

over the Gilbert-Elliot erasure channel, which serves as a first–approximation for a fading channel. He

compares different finite–interleaving strategies for rate1=n binary convolutional codes. The reported

results are applicable to slow frequency–hopped systems such as GSM. The main conclusion of this work

is the that the code and interleaving strategy should be jointly optimized to maximize performance, and

that coding complexity plays a rather unimportant role. Here we will draw similar conclusions regarding

the relationship between the code and the number of blocks. Furthermore, we argue that the size of the

underlying symbol alphabet also plays an important role with respect to the achievable performance.

Furthermore, increasing code complexity is necessary to reduce error probabilities, up to a certain point.

1.1 Paper Outline

In section 2 we examine the achievable performance by determining thepairwise error–probability

(PEP) between two arbitrary coded sequences. This analysis shows that the performance is charac-

terized by two diversity effects which operate independently under certain conditions. The first is due to

the degree of resolvability of different multipath components and depends on the relationship between

the pulse shape and the delay spread of the channel. The second is due to the effect of coding across

different (and hopefully independent) channel realizations.

In section 3 we restrict our attention to the effect of coding by considering a set ofF discrete–time single–

path channels, which completely describe a narrowband system without ISI. Because of the separation

effect previously mentioned we lose nothing by considering this simplified scenario. We extend the

results of Ozarowet al [OSSW94] and Kaplan and Shamai [KSS95] who characterized these types of

systems by aninformation outage probabilitysince, for finiteF , a channel capacity does not exist. This

was also termedOutage Capacityby Foschini and Gans [FG97]. Specifically we show the relationship

between the information outage probability and theframe(FER) and bit error rates (BER). An important
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conclusion is that for practical (i.e. small) signaling alphabets, the attainable diversity order due to coding

(which in Rayleigh fading corresponds to the slope of the information outage probability curve versus

the signal–to–noise ratio (SNR) on a log-log scale) is generally smaller thanF . This warrants the use

of larger constellations for achieving high diversity. We find that for practical spectral efficiencies (<1.5

bits/dim), a small increase in the size of the constellation can yield significant performance improvement.

Practical block and trellis codes are considered in section 4. We begin by showing that the achievable

diversity for any coding scheme is given by a disguised version of theSingleton bound[Sin64]. This was

also noted by Wesel and Cioffi [WC95] and stems from the fact that this type of coding can be interpreted

as a non–binary coding problem with block–length constrained toF symbols. The Singleton bound

predicts the same diversity order as the information outage probability analysis. Moreover, it shows that

practical high diversity codes are difficult to construct when high spectral efficiency is required since very

large constellations are required. We give many examples of coding schemes using standard modulation

formats (AM and PSK) and spectral efficiencies in the range .25–1.5 bits/dim which meet the Singleton

bound.

Finally, in section 5 we present computer simulations of some selected codes and show that their FER,

with practical block sizes, is often very close to the information outage probability. This is perhaps

the most important result of this work. The BER indicated by the information outage analysis is less

indicative of practical performance.

2 Pairwise Error-Probability Analysis

Under the block–fading assumption, we assume that the time–variation of the channel is slow (i.e. that

the coherence time is greater than the duration of a block) so that the channel attenuations and phases

can be taken to be constant over blocks. We therefore express the complex baseband channel response

as

hf (t) =
L�1X
l=0

�f;l�(t� df;l); (3)

where�f;l anddf;l are the complex attenuation and delay of thelth path in thef th block. These quantities

are assumed to be random from block to block but known without error to the receiver. We consider

a Gaussian fading model in this work so that the�f;l are assumed to be circular symmetric complex
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Gaussian random variables with mean�l and variancej�l � �lj2 which are independent off . We assume

further awide–sense stationary uncorrelated scattering (WSSUS)channel model so that

E (�f;l � �f;l)
�
�f 0;l0 � �f 0;l0

��
= %f;f 0�

2
l �l;l0 ; (4)

where%f;f 0 is the correlation coefficient between blocksf andf 0. We have, therefore, that different paths

are uncorrelated but that the strengths for a given path are correlated, in general, from block to block.

Furthermore, we assume that the path strengths are normalized as
PL�1

l=0 �2l = 1, so that the average

attenuation is included in the transmitted signal strength. For convenience, we denote the column vector

formed by theL path strengths of thef th block by�f =

�
�f;0 �f;1 � � � �f;L�1

�T

.

TheF received signals are processed by a maximum–likelihood decoding rule as

m̂ = argmin
m=0;��� ;2FNR�1

F�1X
f=0

Z NT

0

���rf(t)� u
(m)
f (t�NT ) � hf (t)

���2 dt: (5)

Decoding in this fashion is too complex to be carried out in practice, and it is usually done in two steps,

depending on the relationship between the coherence bandwidth of the channel and the bandwidth of

s(t). In medium-band systems like GSM where the multipath induces intersymbol interference (ISI),

a sub–optimal approach is taken by first equalizing theF channels with a soft–output algorithm (e.g.

soft–output Viterbi equalization [HH89]). These outputs are then deinterleaved and passed to a Viterbi

decoder to retrieve the information bits. In narrow-band systems such as IS-54, the channel is almost

ISI–free, and either a very simple equalizer or none at all is needed prior to deinterleaving/decoding. In

spread–spectrum systems without ISI, equalization is also not required and some of the multipath can be

exploited with a RAKE receiver prior to decoding [Pro95].

We now perform a standard Gaussian–fading performance analysis for the block–fading channel by de-

termining thepairwise error–probability (PEP)between arbitrary code sequences. Denoting the code-

words byc =

�
c0 c1 � � � cF�1

�
, the PEP conditioned on a particular set of channel realizations is

given by

Pr
�
c(a) ! c(b)

��� fhf(t)g� = Q

 r
d2(a; b)

Es
2N0

!
; (6)
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whered2(a; b) is the squared Euclidean distance between the coded signals which in our case is

d2(a; b) =
F�1X
f=0

Z NT

0

�����
N�1X
n=0

L�1X
l=0

�
c
(a)
f;n � c

(b)
f;n

�
�f;ls(t � nT � df;l)

�����
2

dt; (7)

andQ(x) = 1p
2�

R x
�1 e�u2=2du. This is a quadratic form in the path strengths which after some straight-

forward manipulation can be written as

d2(a; b) =

�
�
�
0 �

�
1 � � � �

�
F�1

�

2
666666666664

�0(a; b) 0 0 � � � 0

0 �1(a; b) 0 � � � 0

0 0
. .. 0 0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

0 � � � 0 0 �F�1

3
777777777775

2
66666664

�0

�1

� � �
�F�1

3
77777775

= �
���; (8)

where�(ll0)
f (a; b) = (c

(a)
f � c(b)f )Pf;l;l0(c

(a)
f � c(b)f )�, P (n;n0)

f;l;l0 = �s
�
(n� n0)T + (df;l � df;l0)

�
and

�s(�) =
R1
�1 s(t)s�(t+ �)dt.

Since (8) is a quadratic form of circular symmetric Gaussian random variables, the moment generating

function of the random variablez = d2(a; b) Es
2N0

is [SBS66, App. B]

�z(s) =
exp(s Es

2N0
�
�(��1 � s Es

2N0
K��)

�1
�

det(I� s Es
2N0
K��)

(9)

whereK� is the covariance matrix of�.

When the path strengths are zero–mean (i.e.Rayleigh fading) (9) simplifies to

�z(s) =
FLY
i=0

1

det(I� s Es
2N0
K��)

=

dF
H
L�1Y
i=0

1

1� s�iEs=2N0
; (10)
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wheref�ig are thenon–zeroeigenvalues of the matrix

K�� =

2
66666664

��0(a; b) %1;0��1(a; b) � � � %F�1;0��F�1(a; b)

%0;1��0(a; b) ��1(a; b) � � � %F�1;1��F�1(a; b)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

%0;F�1��0(a; b) %1;F�1��1(a; b) � � � ��F�1(a; b)

3
77777775
; (11)

anddFH is the number of non–zero�f (a; b) or equivalently theHamming distancebetweenc(a) andc(b)

with the symbols taken as the sub–vectorscf and� = diag(�20; �
2
1; � � � ; �2L�1).

For the even simpler case where the blocks are uncorrelated (i.e.%f;f 0 = �f;f 0) (9) can be written as

�z(s) =

dF
HY

i=0

L�1Y
l=0

1

1� s�i;lEs=2N0
; (12)

where�i;l is thelth eigenvalue of the non–zero matrix�i = ��i(a; b).

The PEP can be found analytically using the inverse Laplace transform of (9) to average (6). This

amounts to performing a partial fraction expansion of (9) and yields simple closed–form expressions for

the PEP. There are often numerical instabilities in the computation of the partial–fraction coefficients

when there are repeated eigenvalues and another more numerically stable approach is considered in

[BCTV96].

Alternately we may use the Chernov bound,Q(x) � 1
2e

�x2=2 to upper–bound (12) as

Pr
�
c(a) ! c(b)

�
� 1

2
Ez

�
e�

z
2

�
=

1

2
�z

�
�1

2

�
(13)

<
1

2

�
4N0

�2Es

�dF
H
L

; (14)

where�2 =
�QdF

H

i=0

QL�1
l=0 �i;l

�1=dF
H
L

. This geometric mean also surfaces in the study of antenna di-

versity systems [SBS66, Chap 10] and coded multitone systems [WC95]. Very similar performance

measures also characterize systems with multiple transmit/receive antennas, and can be used to design

coding schemes [TSC97a, TSC97b] We can obtain closer approximations by neglecting insignificant

eigenvalues and reducing the power in the exponent of (14).
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There are two limiting cases for the diversity offered by multipath. Either it cannot be resolved at

all (i.e. frequency-flat fading) or when it can be completely resolved by using very wideband signals.

In the special case of narrowband signals without ISI, (i.e.jdf;l � df;l0 j � T ) Pf;l;l0 � I so that

�f;l = d2
�
c
(a)
f ; c

(b)
f

�
�l. We see, therefore, that�2 is simply thedFH–root of the product distance measure

described by Divsalar and Simon for trellis–code time–diversity schemes [DS88]. In very wide-band

spread–spectrum systems without ISI (i.e. the bandwidth ofs(t) is much larger than the coherence

bandwidth and the symbol rate), we have thatPf;l;l0 � �ll0I so that�f;l = j�f;lj2d2
�
c
(a)
f ; c

(b)
f

�
. The

asymptotic slope of the PEP vs.Es=N0 on a log–log scale is commonly referred to as thediversity order,

and we see that it is the product of the code and multipath diversities.

The theoretical performance of a system will fall somewhere between the performance of these two limits

which are straightforward to compute. Due to this separation, the goal of any coding system is therefore

to maximizedFH, since it will affect the performance equally for any channel.

3 Outage Probability Analysis

For simplicity, let us now consider narrow–band signals so that ISI can be neglected. In addition, we

assume the coded symbols belong to a real–valued symbol alphabetS � R (i.e. each symbol uses 1 sig-

naling dimension) since we wish to express our results on a per dimension basis. Extending this analysis

to complex symbols is straightforward and brings no significant additional insight into the problem. We

may write the continuous–time problem equivalently as

rf;k =
p
�f cf;k + zf;k (15)

where thezf;k are i.i.d. zero–mean Gaussian random variables with varianceN0=2. Under the Rayleigh

fading model,�f is an exponentially distributed random variable with unit mean (i.e.f�f (u) = e�u ; u �
0). For unit–energy Ricean fading with a specular to diffuse power ratioK, �f has the following density

fRice�f
(a) = (1 +K) exp(�K(1 + (1 + 1=K)a))I0

�p
aK(1 +K)

�
(16)

whereI0(�) is the zero–order modified Bessel function of the first kind.

We define theNF–dimensional vectors,r andc, representing the received and transmitted symbols over

theF blocks, to which refer as aframefrom this point onward. We take for granted that the transmitter
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and receiver have agreed beforehand to use a codebook havingM codewords so that the information rate

isR = (log2M)=NF bits/dimension. We denote theF–dimensional vector of signal amplitudes by�,

and assume that there is no feedback path so that the transmitter has noa priori knowledge of�. As a

result, the transmitter and receiver agree beforehand on acceptable choices forR and the input source

densityfC and do not modify them during the course of communication.

3.1 Frame Error Rates

We first recall an upper–bound on the ensemble average probability of codeword error (i.e. taken over all

possible codes chosen at random) conditioned on the channel stateA = �. In our case this corresponds

to theframe error rate (FER). We denote this probability byPensjA=�. From [Gal68] we have that

PensjA=� � 2�NF (E0(�;fC;A=�)��R) (17)

where

E0(�; fC;A = �) = � 1

NF
log2

Z
� � �
Z

r

0
@Z � � �

Z
c

fC(c)fRjC;A(rjc; �)
1

1+�dc

1
A

1+�

dr;

(18)

and� is arbitrary in[0; 1]. By maximizing over�, this can be expressed further as

PensjA=� �

8>><
>>:
1 IA < R

2�NFEr(R;fC;A=�) IA � R

(19)

where

Er(R; fC;A = �) = max
0���1

E0(�; fC;A = �)� �R; (20)
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and, under the assumption that the received signal in each frame is independent of the information trans-

mitted in previous frames,

IA =
1

NF

F�1X
f=1

Z
cf2SN

Z 1

�1
fRf ;Cf j�f (rf ; cf j�f) � (21)

log2
fRf jCf ;�f (rf jcf ; �f)

fRf jAf
(rf j�f) drfdcf bits=dim:

We note that this is not a conditional mutual information functional and to avoid confusion we have

used a slightly different notation. The conditional average mutual information betweenR andC is

I(R;CjA) = EAIA, which when maximized over the input distribution, is the capacity of an ergodic

fading channel [Eri70].

We may bound the code–ensemble average probability of error as

Pens = EAPejA=� � Pout(R; fC) +

Z
�:IA�R

2�NFEr(R;fC;A=�)dFA(�) (22)

where

Pout(R; fC) = Prob(IA < R): (23)

Unlike the time–invariant channel case, the irreducible term in (22) (Pout(R; fC)) is independent ofN

which means that arbitrarily small error probabilities need not be achievable.

To get an idea of the achievable performance we now express the average codeword error probability for

a particular code (i.e. not an ensemble average) as

Pe = PejIA�R (1� Pout(R; fC)) + PejIA<RPout(R; fC) (24)

� PejIA<RPout(R; fC)

Practically speaking, this lower–bound onPe is only meaningful if we consider thestrong converseto

the coding theorem which guarantees thatPejIA�R tends to 1 with increasingN for all codes. This result

can be extended to show [Gal68] that it must tend to 1 exponentially inN . In our context, this ensures

thatPejIA�R � 1 if N is large so thatPe ' Pout(R; fC). In the limit of largeN , the coding theorem

gives us equality, sincePejIA�R is bounded by 1.
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The reader may wonder whether why the previous result is meaningful, since the use of the strong

converse says nothing about the error probability of the individual source bits or thebit error rate(BER).

We note, however, that for many practical systems it is precisely the FER that is important. This is true for

the transmission of some forms of digitized speech and in packet data communications. Typically, data

is arranged into frames and then coded for transmission using both error correction and error detection

techniques. At the receiver the frame is decoded and then checked for data integrity using the error

detection scheme. If it is deemed intact, the data is passed on to the next level of the system. On the

other hand, if the data is corrupted then the frame is often discarded or a retransmission is requested.

Provided the number of symbols in the frame (NF ) is large and a sophisticated coding scheme is used,

Pout(R; fC) will be a good indicator of the achievable error rate performance.

3.2 The Weak Converse and Bit–Error Rates

The weak converse (Fano’s inequality) yields a less useful lower bound on the FER since it only shows

thatPejIA>R is bounded away from zero when in an outage state. It is, however, more useful for obtaining

a lower–bound to the BER,Pb. We have [Bla87] that the BER conditioned onIH > R satisfies

H(PbjIA>R) � 1� IA
R

(25)

whereH(�) is the binary entropy functionH(x) = �x log2(x)� (1� x) log2(1� x). The expression in

(25) is only valid when the information source has maximum entropy. This yields the lower bound

Pb �
Z
�:IA�R

H�1
�
1� IA

R

�
dFA(�); (26)

whereH�1(�) is taken to mean the smaller of the two roots of (25). We will see that the FER for many

systems is quite close or even belowPout(R), but that the lower bound on the BER is rather optimistic

for practical codes.

3.3 Discussion

In some cases the information outage probability may be zero, or equivalently a non–zero channel ca-

pacity exists. Any channel withminA IA > 0 will exhibit this behaviour. It is also possible when

the transmitter hasa priori knowledge of the channel state and can adjust eitherR or fC accordingly
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[Gol94]. Another somewhat unrealistic case is whenF ! 1 and thecf;k are independent of each other

and the channel state [OSSW94][Eri70], where by the law of large numbersIA ! 1
N I(Rf;k;Cf;kjAf)

bits/dim.

Kaplan and Shamai [KSS95] consider another outage probability based on the instantaneous cutoff rate

in the place of the average mutual information. The behaviour of this measure is similar to (23) except

that the outages are noticeably higher. It has less theoretical justification than (23) since it cannot be

used to obtain a bound on the FER. Traditionally [Mas74],[Vit79]R0 was taken to be the highest rate

at which practical coding schemes can be implemented on ergodic channels. Humblet [Hum85] showed

that on a direct detection optical channel there exist reasonably simple codes whose rates exceed those

predicted byR0 with acceptably low error probability. In recent years, the invention ofturbo codes

[BGT93] provides more evidence thatR0 is not a practical limit even on a Gaussian channel. We will

soon see that some practical codes, which are not even as complex as turbo codes, can come very close

to (23) whenF is small, which shows that mutual information outage is sometimes more appropriate in

our case as well. The main reason for this is that when the number of blocks (or, more generally, degrees

of freedom of the fading process) is small,Pout(R) is quite high and even fairly simple codes have FER

on the order ofPout(R) whenIA > R (i.e. when the system is not operating in an outage situation.)

When this is the case, the average FER is dominated by the outage event.

3.4 AWGN Channels and Finite Symbol Alphabets

We now computePout(R) for different symbol alphabets. Under an average power constraint
P

n;f c
2
n;f <

NFEs, it well known [Gal68] thatIA is maximized when thecn;f are i.i.d. zero–mean continuous Gaus-

sian random variables, yielding

IA =
1

F

F�1X
f=0

1

2
log2

�
1 +

2�fEs
N0

�
bits=dim (27)

The corresponding information outage probability in this case is easily computed numerically, and a

Chernov upper–bound in terms of Whittaker functions is discussed in [KSS95]. A tight lower–bound is

found using the fact that

log2(1 +
2Es
N0

�f) � 1

ln 2

�
2Es=N0

1 + 2Es�o=N0

�
(�f � �o) + log2 (1 + 2Es�o=N0) (28)
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which for Ricean fading with specular–to–diffuse power ratioK yields

Pout(R) � Prob

0
@F�1X

f=0

�i < �

1
A = QF

�p
2FK;

p
(2(K + 1)�

�
(29)

where� = 2F ln 2
�
2R� (�0 +N0=2Es)

�
1 + 2Es�0=N0

(1+2Es�0=N0) ln2

�
� log2(1 + 2Es�0=N0)

�
andQF (a; b)

is theMarcum Q–function of orderF . The bound can be tightened by maximizing (29) with respect to

�0. For the special case of Rayleigh fading (K = 0) we have

Pout(R) � e��
F�1X
f=0

1

f !
�k : (30)

A Gaussian input distribution is useful for assessing the potential performance of large signaling con-

stellations. We show the outage probability for unit–energy Rayleigh fading and Ricean fading at a

signal–to–noise ratio (SNR) ofEs=N0 =7 dB forF = 1; 2; 4; 8, which are reasonable choices for next

generation mobile systems. The Ricean fading channel has a specular to diffuse ratio ofK =6 dB which

was measured for some typical indoor communication channels [Bul87]. The main conclusion to be

drawn from these curves is that we cannot expect to transmit at spectral efficiencies much higher than 1

bit/dim if we require frame error rates on the order of10�2, even with as many asF = 8 independent

blocks and a fairly strong specular signal component. In a recent study, Caireet al [CKH97] have ap-

plied these ideas to interference–limited FDM–TDMA cellular systems and have shown that comparable

spectral efficiencies can be expected under certain assumptions regarding the system architecture (i.e.

power control, frequency/time–hopping, frequency reuse and basestation assignment.) This motivates

our search for practical codes operating in the range .25-1.5 bits/dim in the following sections.

We now examine the effect of using small constellations with equiprobable and independent symbols. In

this casePout(R) can similarly be computed numerically using [Wil96]

IA = log2 jSj �
1

F jSj
F�1X
f=0

X
si2S

Z 1

�1

1p
�N0

exp

�
� 1

N0
(r� p�fsi)2

�
�

log2
X
sj2S

exp

�
� 1

N0

�
(r� p�f (sj � si))

2 � r2
��

dr bits=dim (31)

In Figs. 3(a),(b) we showPout(R) now as a function of the SNR per information bitEb=N0 (where

Eb = REs) for both small AM constellations and Gaussian signals in unit–mean Rayleigh fading and
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spectral efficiencies of .5 and .75 bits/dim. The most important observation is that for a slight increase

in the constellation size with respect to the minimum needed to achieve the target spectral efficiency,

we approach the performance achievable with a continuous Gaussian input signal. We notice, however,

that the diversity order (i.e. the slope of the error–rate curve) is low when the smallest constellation is

used for transmitting at the target spectral efficiency (i.e. 2-AM for .5 bits/dim and .75 bits/dim). A

slight constellation expansion (usually by a factor 2) can significantly increase the diversity order. In the

following section we examine this observation more closely.

4 Maximum Code Diversity and the Singleton Bound

This section addresses practical block and convolutional codes which attain maximum code diversity

(dFH) for a given number of uncorrelated blocks and information rate. If we consider, for example, binary

modulation and binary convolutional codes, they need not exhibit maximum (free) Hamming distance,

and, in general,dFH � dfree. A simple example is the rate 1/2 binary convolutional code with binary

modulation employed in the full–rate GSM standard shown in Fig.4. The output bits are interleaved over

8 blocks transmitted on widely spaced carriers. The minimum free Hamming distance path (dfree = 7)

(after deinterleaving) is shown along with the blocks over which each bit were transmitted. As the first

two bits of the error event are in the same blocks as the last two, it is clear that this path achievesd8H = 5.

It turns out that this is also the minimum diversity path for this code and, as we shall soon see, that there

is no other code which achieves a larger diversity with binary modulation andR = 1=2 bits/dim, even

with arbitrarily many states.

The important conclusion to be drawn from this simple example is that traditional codes cannot neces-

sarily be used effectively on non–ergodic fading channels. For the case whenF ! 1, however, Caire

et al. have recently shown [CTB97] thatoff-the-shelfbinary codes can be used with arbitrary signaling

alphabets for achieving high diversity. This stems from the fact that Hamming distance is the dominant

performance indicator, and a coded–modulation approach is not necessarily warranted for these types of

channels. We will see that this is not really the case in the problem at hand, although Hamming distance,

in a non–binary sense, is still the primary performance indicator.
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4.1 Maximum Diversity Bound

In order to determine the minimum pairwisedFH, it is convenient to group together theN symbols which

are transmitted in the same block, and view them as a super-symbol overSN . The codeword is then a

vector of lengthF super-symbols. This is the same view taken by McEliece and Stark in [MS84], except

now thatF is fixed. Under this interpretation,dFH is simply the Hamming distance inSN . This reduces

the analysis to one of non–binary block codes with a fixed block lengthF , and therefore all traditional

bounding techniques apply.

An important first observation is that the highest rate code which achievesdFH = F hasR = 1
F log2 jSj

bits/symbol, which was also noted by Leung and Wilson in [LWK93]. This follows directly from the

fact that no two codewords can have identical symbols in the same position ifdFH = F , and therefore

the number of codewords cannot exceedjSj. We can achieve this, for example, using a repetition code

overSN . The question, therefore, is one of determining how close we can get todFH = F with high–rate

codes and simple constellations. The answer lies in the Singleton bound [Sin64] which is proven in this

context, for the sake of completeness.

Theorem 1 (Singleton Bound)

Any codeC of rateR bits/symbol withM codewords consisting ofF blocks of lengthN symbols from

an alphabetS hasdFH satisfying

dFH � 1 +

�
F

�
1� R

log2 jSj
��

: (32)

Proof: Let k (0 < k � F � 1) denote the integer value satisfyingjSjN(k�1) < M � jSjNk, where

M = 2NFR. Consider any setIk�1 of k � 1 coordinates, for instanceIk�1 = 0; 1; � � � ; k � 2. Since

M > jSjN(k�1) there are necessarily at least two codewords,x;y 2 C such thatxi = yi; 8i 2 Ik�1. It

follows thatdFH � F � k + 1 and therefore that

M � jSjN(F�dF
H
+1): (33)

Using the fact thatdFH must be an integer yields (32). This bound for binary codes was also given in the

context of convolutional codes with finite interleaving by Wesel and Cioffi [WC95].

The first interesting result of this analysis is that the shape of the constellation is not important with

regard to the code diversity since it is a completely algebraic measure of the performance. The class
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of maximum distance separable codes(MDS) therefore plays a large role in this context. There is a

downside, however, which is that the block length of the code is constrained to beF which means

that many existing codes, such as theReed-Solomon (RS) codescannot necessarily be used effectively.

Shortly, however, we give some examples of codes which can be used with practical choices forF and

guarantee maximum diversity.

Secondly, and more importantly, we see what was remarked earlier in the outage probability analysis

concerning constellation expansion. Take for example transmission atR = :5 bits/dimensionoverF = 8

blocks as in full–rate GSM. With binary modulation (jSj = 2), the maximum pairwise diversity is 5,

which is what is achieved by the coding scheme used in GSM. With quaternary modulation we see that it

can be increased to 7. Examining the slopes of the information outage curves in Fig. 3 we see that both

results agree. On the downside, for high code rates (> 2 bits/dimension) very large symbol alphabets

are required to achieve high asymptotic diversity. For example, withF = 8 andR = 3 bits/dimension,

a 16-point constellation can only achieve a diversity ofd8H = 3. To achieved8H = 7 a constellation with

4096 points is needed. SincedFH is only an asymptotic indicator, it may be somewhat pessimistic at low

SNR ratios.

4.2 Block Codes

Let us first consider some examples of linear block codes of codeword lengthF with k information

symbols, so that the rates of the codes areR = k
F log2 jSj bits/dimension. For this case the Singleton

bound assures thatdFH � F � k + 1.

4.2.1 Simple codes

As we already pointed out, the simplest possible coding scheme for achieving diversityF is repetition

coding. The number of codewords isM = jSj and the spectral efficiency islog2 jSj=F bits/dim. The

parameter�2 for these codes is the minimum Euclidean distance ofS. The receiver for this coding

scheme simply performs a maximal ratio combining of theF received symbols.

There are equally simple codes which outperform repetition codes. An example forF = 2 andR = 1:5

bits/2 dim is the freeZ8–module generated by the matrix(1; 3) mapped to 8–PSK. The minimum�2 is

easily shown to be 1.41 and whereas for the trivial repetition code�2 would be .59. This is an important

advantage since we gain a power savings greater than 3dB. The code forF = 4 for 4–AM atR = :5
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bits/dim,f0202; 2020; 1133; 1331g has�2 = 1:39 whereas the trivial repetition code has�2 = :8. For

R = :75 andR = 1:0 bits/2 dim the freeZ8 andZ16 modules generated by(1; 3; 5; 7) yield �2 of 1.41

and 1.18 for 8 and 16–PSK respectively. Repetition codes would have�2=.59 and .15. In what follows,

we will use these codes with simple trellis structures to show how�2 can be increased.

4.2.2 Multidimensional Constellations

The multidimensional lattice codes considered by Giraud and Belfiore [GB96] and Boutroset al. [BVRB96]

are perfectly suited for the block–fading channel, since they consider constellations over a finite and

small number of dimensions. Each dimension has an independent signal attenuation, and therefore in

the context of the block–fading model, this is equivalent to lettingF be the number of dimensions with

N = 1. In [GB96] the constructed codes have dimensionality2 � F � 8 andM = 22F points (code-

words) which have diversityF so that the code rate is 2 bits/dim. In general, when the multidimensional

constellations are projected onto the coordinate axes, they produce non–uniformly spaced AM constel-

lations, with the minimum number of points necessary to satisfy the Singleton bound withdFH = F .

The parameter�2 for these constellations is small because of the fact thatN = 1, as is the case for

the simple codes mentioned previously. In order to achieve higher coding gain but keep diversityF ,

therefore, it may be worthwhile to perform a coset decomposition (based on�2) of the constellations to

be used in conjunction with trellis codes. We have not attempted this.

4.2.3 Other MDS Codes

We now consider MDS code families for systems havingF = 4; 6; 8. They are formed by either short-

ening or lengthening RS codes. Shortening RS codes by removing information symbols results in a code

with the samedFH as the base code. Similarly, it is shown in [Wol69] that up to 2 information symbols

can be added to an RS code without changingdFH. For the caseF = 6 we also consider a particular less

complex extended Hamming code which is also MDS. The combination of the constraints imposed by

the structure of the codes and the number of blocks in the system does not assure minimal complexity,

nor the flexibility of choosing arbitrary symbol alphabets. Another negative aspect is that the purely

algebraic structure of the codes pays no attention to the other less critical performance indicator,�2.

Example A : F = 4
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Consider a family of codes with rateR = k=4 bits/dimension for use with binary modulation. Assuming

we form symbols over GF(4) by forming pairs of bits from the same block, we start with the(3; k� 1)

RS code over GF(4) withd4H = 5� k and lengthen it to(4; k). The resulting parity check matrix for this

code family is

H =

0
BBBBBBB@

1 1 � �2

0 1 �2 (�2)2

...
...

...
...

0 1 �3�k (�3�k)2

1
CCCCCCCA
: (34)

These codes achieve maximum diversity fork=4 bits/dimension with binary modulation. Clearly, we

could also use the same code with a quaternary symbol alphabet to achieveR = k=2 bits/dimension and

keep the same diversity. Here we see the first example of the effect of constellation expansion; if we take

k = 2 and binary modulation we haveR = :5 bits/dimension andd4H = 3. With k = 1 and quaternary

modulation the information rate is still:5 bits/dimension butd4H = 4.

Example B :F = 6

We now examine another family of codes with binary modulation andR = k=6 bits/dimension for the

case whenF = 6. Consider the(7; k + 1) family of RS codes over GF(8), havingd6H = 7 � k. The

parity check matrix for a shortened code family(6; k) is given by

H =

0
BBBBBBB@

1 � �2 � � � �5

1 �2 (�2)2 � � � (�2)5

...
...

...
...

...

1 �7�k (�7�k)2 � � � (�k)5

1
CCCCCCCA
: (35)

This shortened family achieves maximum diversity for binary modulation andR = k=6 bits/dimension.

We can also use this family with 8-ary modulation to yieldR = k=2 bits/dimension and the same

diversity level.

It is interesting to point out that although the codes are optimal in an MDS (maximum diversity) sense,

there may be other less complex codes which are also MDS. For example, the (6,3) extended Hamming
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code over GF(4) with generator matrix

G =

0
BBBB@
1 0 0 1 1 1

0 1 0 1 � �2

0 0 1 1 �2 �

1
CCCCA ; (36)

is also MDS withd6H = 4 for k = 3. It is much less complex than the (6,3) shortened RS code outlined

above (64 codewords instead of 512). Moreover, it can be used with a quaternary signal set.

Example C : F = 8

As a final example we consider the case of a code family withR = k=8 bits/dimension whenF = 8 and

N = 3. Similarly to whenF = 4, we look at the(7; k� 1) family of Reed–Solomon codes over GF(8),

havingd8H = 9� k. The parity check matrix for the lengthened code family(8; k) is given by

H =

0
BBBBBBB@

1 1 � �2 � � � �6

0 1 �2 (�2)2 � � � (�2)6

...
...

...
...

...
...

0 1 �7�k (�7�k)2 � � � (�k)6

1
CCCCCCCA
: (37)

This family achieves maximum diversity for binary modulation andR = k=8 bits/dimension. As before,

we can also use this family with 8–ary modulation yieldR = 3k=8 bits/dimension and the same diversity

level.

4.3 Trellis Codes

In the GSM system today, as previously mentioned, rate 1/2 binary convolutional codes are used. This

is mainly due to the computational simplicity of implementing the Viterbi algorithm with soft decisions.

The Singleton bound is also applicable to arbitrary trellis codes, since they can always be interpreted as

very long block codes. In fact, in systems like GSM the convolutional codes are used in a block fashion

by appending trailing zeros to the information sequence, and a one–shot decoding of the entire block is

performed.

We will consider two approaches for designing trellis codes for these types of channels. We first give

three examples of simple 4–dimensional trellis codes based on AM and PSK constellations forF = 4.
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This is the approach taken by Divsalar and Simon in [DS88] who considered TCM schemes forperfectly

interleavedfading channels. It relies on using partitioning rules applied toF–dimensional Cartesian

products ofM–PSK constellations. The rules are chosen such each set has a specified amount of diversity

and maximum product distance. Each set corresponds to the parallel transitions in the trellis, and by

properly choosing the trellis structure, the diversity of the code can be made equal to the minimum

Hamming distance of the sets. Wei considers similar codes forM–DPSK systems [Wei93]. In both

cases the diversity order of the codes is quite small (� 4) considering the perfect interleaving assumption.

A similar approach for multiple-antenna systems are thespace-time codesintroduced by Tarokhet al.

[TSC97a, TSC97b].

None of these codes are automatically applicable in our case since we no longer have a system with

perfect interleaving. As previously mentioned, Leung and Wilson [LWK93] designed simple 1.5 bit/2

dimensions 8–PSK trellis codes for systems withF = 2 blocks. For illustration purposes, we will do

similarly for .5,.75 bit/dim forF = 4 blocks in section 4.3.1.

The second approach considered in section 4.3.2 is to search for linear MDS convolutional codes which

maximize�2. Malkamäki and Leib [ML97] recently considered conventional rate1=F binary convo-

lutional codes interleaved acrossF blocks. Here we present the results of code searches for binary

convolutional codes applied to BPSK/QPSK and 4–AM/16–QAM modulation with an appropriate map-

ping from the output bits to modulation symbols. Similar coding schemes for channels with correlated

fading were described by Wesel and Cioffi [WC95]. We also consider convolutional codes overZ8 for

8–PSK and 8–AM modulation which achieve maximum diversity. Coded modulation schemes for the

AWGN channel using ring convolutional codes were introduced by Masseyet al. in [MM89].

4.3.1 4–dimensional Trellis Codes forF = 4

We now illustrate several codes forF = 4, having spectral efficiencies of .5,.75 and 1.0 bit/dim, which

are based on the simple block codes described previously. From the Singleton bound we require constel-

lations of size 4, 8 and 16 respectively in order to attain diversity 4. We consider the two and four state

trellis diagrams and the constellations shown in 5. Each transition has an assigned set of 4–dimensional

outputs,Si, whose cardinalities depend on the desired spectral efficiency. The branch outputs are chosen

such that

1. The sub-codes comprising the state outputs when leaving and entering each state has diversity 4
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2. The parallel transitions have as large a�2 as possible.

These heuristic guidelines do not guarantee an optimal code, but assure maximum diversity and a large

�2.

4–AM and QPSK codes (.5 bits/ (2) dim)

For codes with .5 bit/dim, the number of input bits per 4-dimensional output is 2 so that there are

4 branches leaving and entering each state. We assume parallel transitions with two 4–dimensional

symbols on each. Examining first the case of a 4–AM constellation. We choose the 4 sets asS0 =

f0202; 2020g;S1 = f1133; 3311g;S2 = f3113; 1331g;S3 = f0220; 2002g. With this assignment, the

�2 for the parallel transitions is maximum (3.2) under the constraint of satisfying the first design rule

above. For the two–state code, the overall�2 is 2.77, whereas the 4–state code achieves�2 = 3:20. With

QPSK the 2–state code achieves�2 = 4:00 which is maximum for any code with parallel transitions.

8–AM and 8–PSK codes (.75 bits/ (2) dim)

Now consider the caseR = :75 bits/dim with 8–AM and 8–PSK modulation. We now have 3 bits per

4–dimensional output so that there are 8 branches leaving each state. For 8–AM we choose the 4 sets

which obey the guidelines above

S0 = f0246; 6024; 4602; 2460g

S1 = f7531; 1753; 3175; 5317g

S2 = f0426; 6024; 4062; 2640g

S3 = f7351; 1573; 3715; 5137g:

With two states, the code has�2 = :9867 and with four states�2 = 1:28. With 8–PSK, we choose

the sets as the free submodulesSi = (2j + i)(1; 3; 5; 7); i = 0; 1; j = 0; 1; 2; 3 andSi = Si�2 +
(0; 2; 6; 0); i = 2; 3. Recall that this code was mentioned previously, and is optimal with respect to�2.

With two states, the minimum�2 = 2:00 is achieved by the parallel transitions so that there is no need

to consider the 4-state code.

16–PSK codes (1 bit/2 dim)

1997/12/23 22



Finally, we consider a 16–PSK code based on the simple block code mentioned earlier forR = 1 bit/2dim

with Si = (2j+ i)(1; 3; 5; 7); i= 0; 1; j = 0; 1; � � � ; 7 andSi = Si�2+(0; 4; 12; 0). Again for a 2–state

code we achieve the minimum�2 = 1:41 with the parallel transitions.

These techniques could be used to design codes forF > 4 and higher spectral efficiencies. It becomes

a problem of finding MDS block codes with large�2 which can beset partitionedand assigned to the

transitions in the trellis. These block codes quickly become very large, and as a result, the decoding

complexity increases quickly. For example, a 2–state code forF = 8 and 1 bit/dim would require

branches with 128 parallel transitions.

4.3.2 Convolutional Codes

Binary Convolutional Codes with BPSK/QPSK and 4–AM/16–QAM

SincedFH is a purely algebraic measure of the performance we have performed a code search for rate

1/4,1/2 and 3/4 binary convolutional codes that are MDS forF = 2; 4; 8. The results are summarized

in Tables 1–8, and the MDS codes are highlighted in bold type. In addition, the codes listed maximize

�2. The rate 1/4 and 1/2 codes are conventional feedforward convolutional codes with generators listed

in octal notation following [LC83]. The rate 3/4 codes are systematic codes with feedback shown in

figure 7. We have chosen the recursive form because of the reduced size of the search space. The

generators are listed in hexadecimal form representing(hi;4; hi;3; hi;2; hi;1), where the leftmost bit is the

most significant bit.

We have used aGray mappingfor adjacent bits out of the encoder for both the 4AM/16QAM and QPSK

codes. This is shown in figure 6 and greatly simplifies the code search (which is already more computa-

tionally intensive than for computingdfree). If we write the modulation symbols assi 2 f00; 01; 10; 11g
and denote the Euclidean distance between symbols asd2(si; sj) then under the Gray mapping shown

in the figure we have with QPSKd2(si; sj) = d2(00; si � sj) and with 4–AM/16–QAMd2(si; sj) �
d2(00; si � sj). For 4–AM/16QAM we guarantee that the�2 between any two paths in the trellis is at

least as large as the�2 between the all–zero path and their component-wise difference modulo 2.

As a general rule, we need very few states to yield a maximum diversity code, and�2 can be made sub-

stantially larger than those of the codes we constructed using the multidimensional approach in Section

4.3.1. We have also found that a candidate code must often be scanned to a great depth in order to find
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the minimum diversity path.

As a first example, consider the case ofR = :5 bits/dim withF = 8. We can achieve maximum diversity

with an eight–state code, and moreover, it turns out that it does not exhibit maximum free Hamming

distance (dfree = 5, not 6). It is the only such code, so that it is a perfect example of the danger of using

selection rules appropriate only for ergodic channels. It is interesting to note that the GSM standard

uses a 16–state maximum free Hamming distance code, which offers a slightly larger�2 than its 8–state

counterpart. The 16–state code listed in the table has a slightly larger�2 than the GSM code, but we

have found that the performance improvement is negligible. For the case ofF = 4, maximum diversity

can be obtained with a 4–state code, whereas in the GSM standard a 64–state code is used.

There are other important issues requiring the use of more complex codes. For instance, the 16-state

code used in full–rate GSM achieves maximum diversity withF = 2; 4; 6 and 8, whereas the 8–state

code achieves maximum diversity only withF = 2; 4; 8. This is important since in a frequency–hopping

system, the number of hopping frequencies is left up to the operator. Although we have not considered

this issue, it would be interesting to determineuniversallygood codes which achieve acceptable perfor-

mance for many different values ofF . The more important reason for increasing complexity, as we will

see in section 5, is that larger values of�2 can yield significant coding gain in the FER performance.

Convolutional Codes overZ8 for 8–PSK and 8–AM

For 8–ary modulation we have considered convolutional codes over the ringZ8 shown in figure 8. These

linear codes were introduced by Masseyet al in [MM89] and are naturally suited for phase modulated

signals since the codewords form a multiplicative group in the signal space yielding a geometrically–

uniform code [For91][BGMM93]. Moreover, it was found that they perform at least as well as any

M–PSK code designed by set partitioning and are fairly easily made rotationally invariant. These codes

have some peculiar algebraic properties due to presence of zero–divisors when using rings which are

important to rule out catastrophic behaviour. We note that there are other configurations for achieving

the same number of states but we have found that they yield less powerful codes in our case.

With the mapping shown in figure 6 for 8–AM we do not have geometric–uniformity but still assure, as

was the case with 4AM/16QAM with binary codes and a Gray mapping, thatd2(si; sj) � d2(0; si+ sj)

where addition is now modulo 8. Again we need only considereach path with respect to the all–zero

path to determine the minimum�2 for any code. This would not be the case for a code over a finite field.
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5 Performance Comparison of Various Codes

In order to assess the performance of some of the codes reported in this work, we resort to computer

simulations of a subset of codes. We have found that a union–bound approach for assessing the perfor-

mance analytically yields quite unfruitful results for trellis codes. This was also remarked by Leung and

Wilson[LWK93] and Malkamäki and Leib[ML97]. The main reason is that as we progress through the

trellis the contributions of the long paths cannot be discarded since their diversity order is limited toF .

For codes with a high diversity order, all paths have roughly parallel PEPs vs. SNR curves and therefore

contribute to the total error probability. The number of paths to be considered in the union bound is very

large and the bound is quite loose (depending on the point where we stop including paths.)

In our simulations shown in figures 9–16 we assumed a block length of 100 uncoded bits and a single–

path Rayleigh fading channel with an independent realization in each block and soft–decision decoding

with perfect channel state information. As a general rule, we find that with practical codes, we can often

achieve FER close or, in a few cases, lower thanPout(R), when the diversity order is low (e.g.F = 2; 4).

This is the case since, for low diversity codes,Pout(R) is quite high and even fairly simple codes operate

on the order of or less thanPout(R) whenIA > R, so that their performance is dominated by the outage

event. Furthermore, for finiteN , the FER is only approximately lower bounded byPout(R), so that it is

possible for some codes to have an FER below this indicator. The FER is, of course, highly dependent

onN , and for larger values ofN than were investigated here, we would expect to require more complex

codes in order to approachPout(R).

The binary convolutional code chosen for half-rate GSM (F = 4; R = :5 bit/dim, 64 states) does not

maximize�2 but its FER and BER performance is very close to the code shown in figures 15,16. Both

fall within .25 dB ofPout(:5) with binary modulation so that the use of more than 64 states would be

unnecessary. This assesment would be more difficult to make based only ondFH (or with an erasure

model), since even a 4–state code is MDS. For the full-rate case (F = 8, R = :5 bit/dim, 16 states)

we have not included the simulation for neither the code chosen in the GSM standard nor the one which

maximizes�2. Again both have virtually identical BER and FER. They offer around 1dB gain in FER

over the 8-state code shown in figures 15,16 and only a fraction of a dB in BER. Both these simulation

results can be found in [KH97]. The code forF = 8 with 64 states falls within .5dB ofPout(:5).

Some of the RS-based codes mentioned in (4.2) were simulated and have BER comparable with the

simple convolutional codes although these results are not shown here. The performance enhancement
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due to constellation expansion can be very significant, most notably for the examples at .75 bit/dim and

1.5 bit/2 dim. Note that we have not considered rate 3/8 codes for quaternary alphabets which would

achieve diversity 3 forF = 4 andR =.75 bit/(2) dim. These would require rather inconvenient encoder

structures, but would provide gains in between the binary and octal examples shown here.

We also remark that increased complexity has a much more significant effect on the FER than on the

BER, especially for low diversity codes. We also notice the peculiar result that simple codes can have

lower BER than more complex codes, when�2 is the selection criterion (e.g. figure 16,F = 2), even if

their FER is significantly higher. In addition, the strict lower bound on the BER in (26) gives much less

indication of practical performance than doesPout(R) for the FER.

6 Conclusion

This work considered coding for block–fading channels with small number of blocks. This channel

model has significant practical importance for block–oriented communications where the fading pro-

cess is characterized by a small number of degrees of freedom during the decoding interval. The slow

frequency–hopping scheme used in the current GSM mobile radio system is a prime example. It is rea-

sonable to assume that next generation wireless systems will also use similar, and perhaps more complex

techniques.

We described the separation between the diversity effects due to multipath resolvability and coding. We

then turned our attention to the attainable diversity due to coding. We showed that there is a upper–

limit to the diversity which depends on the number of blocks, the code rate and the size of the signaling

constellation. This was shown in two ways; the first was based on the computation of the information

outage probability for various constellations. We then showed that the maximum diversity for a code

of a given rate is given by the Singleton bound, so that appropriately chosen MDS codes play a very

important role for these types of channels. Both methods indicate that diversity is limited and that it can

be increased by constellation expansion. A rather unfortunate result is that for high spectral–efficiency

systems, in order to achieve a high asymptotic diversity order, very large constellations are required.

We gave examples of block and trellis codes, with more of an emphasis on the latter, which achieve

maximum diversity. An important result is that maximum diversity can be achieved with rather simple

codes and that, in terms of BER performance, increased complexity does not always yield significant

gains. This is not true, however, for the FER performance, which is often important in both speech and
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data applications. We showed that the information outage probability is a good indicator for practical

FER values, when the diversity order is rather low (<8). This result should also apply to cellular systems

where coding is used to combat intercell interference [PC95][CKH97] as well as coded multitone systems

[WC95].
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F = 4 F = 8
States d4H �2min gen. d8H �2min gen.
4 4 9.80 5,5,7,7 6 7.27 5,3,7,7
8 4 12.90 64,64,54,74 7 7.81 44,64,54,34
16 4 14.89 52,62,66,76 7 12.29 46,26,64,76
32 4 17.71 71,55,75,57

Table 1 Rate 1/4 convolutional codes for binary modulation (.25 bit/dim)

F = 2 F = 4 F = 8
States d2H �2min gen. d4H �2min gen. d8H �2min gen.
4 2 9.80 5,7 3 6.35 5,7 4 5.66 5,7
8 2 12.00 64,54 3 10.08 44,54 5 4.00 44,64
16 2 12.65 62,72 3 13.21 62,46 5 5.28 62,72
32 2 16.00 71,73 3 14.54 75,57 5 10.56 51,65
64 2 17.89 704,564 3 17.93 724,564 5 18.47 414,354

Table 2 Rate 1/2 binary convolutional codes for binary modulation (.5 bit/dim)

F = 4 F = 8
States d4H �2min gen. d8H �2min gen.
4 4 2.58 5,7,3,7 6 2.02 5,7,3,7
8 4 3.76 44,64,54,34 7 1.76 44,64,54,34
16 4 4.63 72,76,44,54 7 2.55 64,56,50,66
32 4 5.71 61,75,53,57 7 3.63 41,75,45,33
64 4 6.60 624,634,564,564 7 5.00 644,370,424,354

Table 3 Rate 1/4 binary convolutional codes for 4-AM (.5 bit/dim)

F = 4 F = 8
States d4H �2min gen. d8H �2min gen.
4 2 5.66 9,A,F 3 4.00 9,A,F
8 2 11.31 9,A,3,F 3 8.00 F,9,A,F
16 2 13.85 F,9,6,5,A 3 12.00 F,9,C,6,F
32 2 16.00 9,A,3,9,5,F

Table 4 Rate 3/4 bits/dim convolutional codes for binary modulation (.75 bit/dim)

F = 2 F = 4 F = 8
States d2H �2min gen. d4H �2min gen. d8H �2min gen.
4 2 4.00 5,7 3 3.17 5,7 3 3.17 5,7
8 2 6.00 64,54 3 4.00 20,54 4 2.83 64,54
16 2 6.32 62,66 3 5.04 62,54 5 2.64 26,74
32 2 8.00 31,57 3 6.60 51,17 5 3.48 25,73
64 2 9.80 664,474 3 8.00 664,774 5 4.34 604,564

Table 5 Rate 1/2 binary convolutional codes for QPSK (1 bit/2 dim)
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F = 4
States d4H �2min gen.
4 3 2.54 5,5,7,7
8 4 1.61 44,64,50,74
16 4 2.08 52,56,66,76
32 4 2.54 51,55,66,76

Table 6 Rate 1/4 binary convolutional codes for 16-QAM (1 bit/2 dim)

F = 4 F = 8
States d4H �2min gen. d8H �2min gen.
4 2 2.82 9,A,7 3 4.0 9,A,7
8 2 4.00 8,5,7,1 3 8.0 F,8,9
16 2 6.00 9,F,3,6,5 3 12.0 F,9,C,6,7
32 2 7.78 9,A,3,9,5,7

Table 7 Rate 3/4 binary convolutional codes for QPSK (1.5 bit/2 dim)

F = 2 F = 4
States d2H �2min gen. d4H �2min gen.
4 2 2.00 10,32 2 2.00 10,12
8 2 2.82 13,34 3 2.18 11,16
16 - - - 3 2.33 210,354
32 2 3.42 112,230 3 2.88 112,250
64 2 5.10 113,361 3 4.56 116,311

Table 8 Rate 1/2 convolutional codes overZ8 for 8-PSK (1.5 bit/2 dim)
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