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Rate-of-decay of probability of isolation in dense
sensor networks with bounding constraints

Arun Singh, Petros Elia and Dirk Slock

Abstract—The work establishes the asymptotic rate of de-
cay for the probability of node isolation in bounded wireless
sensor networks, in the high density regime. In this regime,
the exposition reveals the role of the most isolated neighbor-
hoods of the bounding region in exponentially increasing the
average probability of isolation. The problem is treated for a
large family of random spatial distributions of nodes, random
shapes of node coverage areas, and random topography of the
network’s bounding region. Different examples are presented to
insightfully describe the detrimental effect of boundedness in
network isolation. Finally we address different aspects relating
to extremely isolating bounding regions, and densities that vary
exponentially in time.

Index Terms—Wireless sensor network, node isolation, topog-
raphy, network connectivity, boundary effects, large deviations.

I. INTRODUCTION

We consider the setting of wireless multi-hop networks,
where sets of randomly placed nodes cross-communicate in a
decentralized manner. In this setting, node isolation describes
the event where a node finds it self to be out of the range
of communication of all other nodes. This event relates to
unfortunate realizations of the nodes’ random placement and
random channels, and is generally seen as undesirable as it
reduces the overall information that the network can commu-
nicate. Isolation also generally relates to the event of network
disconnectedness where there exist pairs of nodes that cannot
communicate, even in the presence of multi-hopping. The
extend of isolation generally depends on the spatial distribution
of nodes, their transmission range, and the topography of the
bounding region, i.e., the region that defines the boundaries
within which nodes may be placed.

In addition to the classical sensor network application (c.f.
[1]), the setting relates to the general settings of information
diffusion and epidemic networks (c.f. [2], [3]), where the
network’s propagation characteristics are a function of the
isolation/connectivity properties, as well as a function of the
bounding region representing natural or constructed alterations
of the network topology.
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A. Prior Work

The early work of Cheng and Robertazzi [4] investigated
the percolation depth in a network of nodes that are randomly
distributed, according to a homogeneous Poisson point pro-
cess, over an infinitely large area. Isolation and connectivity
were also studied by Piret in [5], who focused on networks of
nodes which are randomly distributed according to a uniform
probability distribution, along a one-dimensional line segment.
The work of Gupta and Kumar [1] then proceeded to provide
a solution to the range assignment problem for RF wireless
multi-hop dense networks with uniformly distributed nodes.
Specifically, under the assumption of a circular node coverage
area, and given a set of n nodes randomly deployed in a geo-
graphical region of fixed area, all having the same transmission
range r, the work in [1] identified, in the regime of infinite
n, the minimum value of r that almost-surely allows for
network connectivity. Related work by Penrose [6] studied the
k-connectivity of geometric random graph networks, deployed
inside d-dimensional cubes, for d ≥ 2. The work established
that, in the same asymptotic setting of n→∞, the minimal r
for which the graph is almost surely k-connected, is equal to
the minimum r that almost-surely allows that each node has
at least k neighbors. The work by Bettstetter and Zangl [7]
calculates a lower bound on the probability that there exist no
isolated nodes in a network, in the regime of n >> 1, under
the assumption of a circular bounding region of radius R, of
identical circular node coverage regions of radius r << R, and
for nodes randomly distributed according to a homogeneous
Poisson point process. The work also presents pairs of (r, n)
that almost surely allow for a fully connected network. Similar
work in [8] focuses on rectangular/square bounding regions
and randomly shaped coverage areas.

B. Results

The current work introduces simple and insightful expres-
sions on the probability of node isolation in bounded networks.
Specifically the current work studies the asymptotic rate of
decay of the probability of node isolation in statistically
homogeneous networks of nodes. This is done in the setting
of asymptotically high n, or equivalently, of asymptotically
high node density, and is achieved for a large family of node-
distribution statistics, random shapes of node coverage areas,
and random topography of the network’s bounding region. A
defining novelty is the emphasis given in establishing the rate
with which isolation appears, rather than establishing if non-
isolation is achieved with probability 1. The approach allows
for insight on how increasing resources such as node density
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as well as volume and shape of the nodes’ covering region,
affect the node-isolation performance of the network. It also
allows for meaningful interpretations of the detrimental role
that the bounding region has in increasing the probability of
isolation.

C. Notation

We use R to denote the real numbers, Rd to denote the d-
dimensional Euclidean space, and V (C) to denote the volume
of a set C ⊂ Rd. We use .= to denote exponential equality,
where

f
.= e−ρB ⇐⇒ − lim

ρ→∞

log f
ρ

= B, (1)

with
.
≤,

.
≥ being similarly defined. For a given event E , we

use 1I(E) as an indicator function defined as

1I(E) =
{

1 if E occurs
0 else. (2)

II. SYSTEM MODEL

We proceed to describe the network’s spatial node distribu-
tion, bounding region, and node coverage area. Let h denote
a random realization of node placement, where h is drawn
from a statistical distribution ph. Define a randomly generated
subset of points

X
′
(h) ⊂ Rd,

parameterized by real parameters t ≥ 0 and ρ ≥ 0. The
random distribution ph generating X ′

(h) is an arbitrary ho-
mogeneous random point process, also parameterized1 by t, ρ,
guaranteeing that the expected number of points of X ′

(h)
inside any area A ⊂ Rd, (Eh[|{X ′

(h)∩A}|]), is a function of
V (A) and not of the shape or position of A. The parameter
t will be interpreted as the time, and the parameter ρ as the
density of X ′

(h), defined as

ρ,
Eh{|A ∩ X

′
(h)|}

V (A)
, (3)

which holds for any A ⊂ Rd.
We now consider a possibly irregular region S ⊂ Rd, of

finite volume that is independent of ρ, and which is assigned
the role of the bounding region, in that it defines the set of
nodes

X (h),X
′
(h) ∩ S, (4)

that can be regarded as the set of active points inside a specific
bounding region of interest (S). We note the subsequent use
of the term node to specifically refer to elements of X (h), and
the use of the term point to refer to non-node elements of Rd.

For any s ∈ Rd, we further define the coverage region

Bs ⊂ Rd,

to be an arbitrary open set, and we ask that s ∈ Bs and
V (Bs) <∞.

When s ∈ X (h), the intersection Bs ∩ S is regarded as
the effective coverage region of the node s. We note that the

1For notational simplicity, this parameterization is not denoted.

Fig. 1. Network of nodes, bounded by bounding region S. Different nodes are
randomly placed at variably isolated neighborhoods of the bounding region,
accepting variable degrees of isolation, due to variable intersections between
their covering region and the bounding area.

fact that Bs is an open set ensures that 0 < V (Bs ∩ S) <
∞. Furthermore V (Bs ∩ S) is independent of ρ. We refrain
from placing other conditions on Bs, keeping in line with
the substantial variability of different deterministic or random
channel models, the variability of different node capabilities,
as well as the variability of bounding regions.

A. Large Deviation Principle

For any s ∈ S, we define the point degree

ks, |{Bs ∩ X (h)} \ s| (5)

to describe the number of active nodes in the coverage region
of s. In the high-density limit of ρ→∞, which we henceforth
adopt, the random sequence

ys,ρ,
ks − Eh[ks]

ρ
, (6)

tends towards zero, in the sense that

P (|ys,ρ| < ε)→ 1, ε > 0,

and the probability P (ks = 0) that a point s ∈ S is isolated,
vanishes with increasing ρ. Note that the above probability
is with respect h, i.e., with respect to the randomness in
node placing. Henceforth all probabilities, unless explicitly
stated otherwise, will be considered to be with respect to the
randomness in node placing.

The aim of this work is to establish the rate of decay of
such probabilities for increasing ρ. With this in mind, we
ask that the random variable ys,ρ accept the large deviation
principle (c.f. [9]), such that

− lim
ρ→∞

logP (|ys,ρ| > ε)
ρ

= I0(εs), (7)

where I0(εs) > 0, ∀ εs > 0. We note that I0 is a function
of ph, whereas εs is a function of ε and Bs. As a result for
any point s ∈ S, there exists a rate function I such that

− lim
ρ→∞

logP (ks = 0)
ρ

= I(fs(Bs ∩ S)), (8)

for some function fs : B 7→ R, for any B ⊂ S. In accordance
with standard properties of rate functions, we ask that I be
non-decreasing, and that

fs(B) > 0, I(fs(B)) > 0



3

for all B ⊂ S such that V (B) > 0. Finally we ask that
Bs, fs, I jointly satisfy the basic continuity property

lim
s1→s2

I(fs1(Bs1)) = I(fs2(Bs2)). (9)

III. ASYMPTOTIC RATE OF DECAY OF PROBABILITY OF
NODE ISOLATION IN BOUNDED NETWORKS

In the regime of asymptotically increasing density, and
under the assumption that ys,ρ accepts the large deviation
principle, we proceed to establish the probability of node
isolation in the presence boundedness. The proofs follow
afterward.

Lemma 1: For 2 ≤ K <∞ and for any fixed ε > 0, there
exists an I

′
> 0 such that

P (|X (h)| ≥ ερK) ≤̇ e−ρI
′

. (10)

Theorem 1: Let

Pi,Eh{Es∈X (h)1I(ks = 0)},

define the average probability of node isolation. Then the
asymptotic rate of decay of Pi is given by

− lim
ρ→∞

logPi
ρ

= min
s∈S

I(fs(Bs ∩ S)). (11)

Theorem 1 reveals that in the high-density regime, the rate
of decay of the probability of node isolation, averaged over the
nodes, is dominated by the event of node isolation for a single
node, where furthermore, that specific node must be assumed
to occupy the most isolated neighborhood of the bounding
region.

The following further reveals, in the asymptotic setting of
interest, the role of boundedness in increasing the probability
of node isolation in the network. We first define, for any s ∈ S,

k
′

s, |Bs ∩ X ′(h) \ s|, (12)

to be the number of elements in X ′(h) that are inside the
coverage region of s. Note that k

′

s does not consider S.
Corollary 1a: Let the boundedness exponent be defined as

CS ,
Es∈X (h)[ lim

ρ→∞
1
ρ logP (ks = 0)]

Es∈X (h)[ lim
ρ→∞

1
ρ logP (k′

s = 0)]
.

Then
CS =

mins∈S I(fs(Bs ∩ S))
mins∈S I(fs(Bs))

. (13)

The corollary concisely indicates that in the setting of inter-
est, the network’s isolation performance is entirely governed
by the most isolated regions of the shaping region S. As
expected, the unbounded case gives CS = 1.

We proceed with the proofs of the presented results.
Proof of Lemma 1: For any 2 ≤ K <∞, (7) gives that

− lim
ρ→∞

logP (|X (h)| ≥ ερK)
ρ

= − lim
ρ→∞

logP (ks1 ≥ ερK)
ρ

for any s1 ∈ S and Bs1 = S. From (6) we have that

ys1,ρ,
ks1 − ρV (S)

ρ
, (14)

which implies that

− lim
ρ→∞

logP (|X (h)| ≥ ερK)
ρ

= − lim
ρ→∞

logP (ys1,ρ ≥ ερK−1 − V (s))
ρ

≥ − lim
ρ→∞

logP (ys1,ρ = ε)
ρ

> 0. � (15)

Proof of Theorem 1: We seek to establish that

− lim
ρ→∞

log Eh{
∑
s∈X (h) P (s)1I(ks = 0)}

ρ
= min

s∈S
I(fs(Bs∩S)).

We note that

Pi = Eh{
∑

s∈X (h)

P (s)1I(ks = 0)}

= Eh{
∫
s∈S

P (s)1I(ks = 0)ds}

=
∫
s∈S

Eh{P (s)1I(ks = 0)}ds

≤
∫
s∈S

Eh{1I(ks = 0)}ds =
∫
s∈S

P (ks = 0)ds

.= e−ρI(fs′ (Bs′∩S)) (16)

where
s′ := arg min

s∈S
fs(Bs ∩ S) ∈ S, (17)

and where P (s) denotes the probability that, given a specific
realization h, a certain node s is chosen among the nodes in
X (h). Note that P (s) = 0 for any s /∈ X (h). In the above
we also note that the last asymptotic equality comes from
Varadhan’s lemma [10] and (8), and that s′ is independent of
h.

Towards meeting the above bound, let

s0(h) := arg min
s∈X (h)

fs(Bs ∩ S), (18)

denote the most isolated node in X (h), and let s′ ∈ S denote
the sphere of radius δ centered at s′, where δ is an arbitrary
fixed number independent of ρ. Then homogeneity gives

P (s0(h) ∈ s′) ≥ V (s′)
V (S)

.= eρ0
.= 1, (19)

and the following holds

Pi = Eh{
∑

s∈X (h)

P (s)1I(ks = 0)}

≥ Eh{P (s0(h))1I(ks0(h) = 0)}
≥ P (|X (h)| ≤ ρK)

Eh{P (s0(h))1I(ks0(h) = 0, |X (h)| ≤ ρK)}
for some finite K, (2 < K <∞)

= (1− e−ρI
′

)Eh{
1

|X (h)|
1I(ks0(h) = 0, |X (h)| ≤ ρK)}

.= Eh{1I(ks0(h) = 0, |X (h)| ≤ ρK)}
≥ P (s0(h) ∈ s′)

Eh{1I(ks0(h) = 0, s0(h) ∈ s′, |X (h)| ≤ ρK)}
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.= Eh{1I(ks0(h) = 0, s0(h) ∈ s′, |X (h)| ≤ ρK)}

.= e−ρI(fs′ (Bs′∩S)). (20)

In the above, the fourth equality comes from Lemma 1 and
the last equality is because, V (s′) > 0 can be made arbitrarily
small by sufficiently reducing δ, independently of ρ, which in
turn gives that

I(fs(Bs ∩ S)) = I(fs′(Bs′ ∩ S)), s ∈ s′, (21)

directly from the continuity properties in (9).
As a result

Pi ≥̇ P (ks′ = 0) .= e−ρI(fs′ (Bs′∩S))

and, in conjunction with (16) the result is established. �

Proof of Corollary 1a: The proof of the Corollary is direct
from Lemma 1 and Theorem 1. �

A. Example cases

In the following we will seek to address specific clarifying
example cases.

a) Example case 1 - Uniformly covered network and
Poisson point process: We consider the uniformly covered
network case where all nodes have identically shaped coverage
areas, i.e.,

Bs = A+ s, s ∈ Rd, (22)

for some arbitrary shaped open set A, centered at the origin
of Rd. We then have the following.

Corollary 1b: For a uniformly covered network with aver-
age density ρ, and for ph being a homogeneous Poisson point
process, then

− lim
ρ→∞

logPi
ρ

= min
s∈S

V ((A+ s) ∩ S). (23)

Proof of Corollary 1b: We recall the well known fact
(c.f. [11]) that given a Poisson point process, the number of
nodes within any finite subarea Bs, is given by

P (|X (h) ∩Bs| = n) =
(ρV (Bs))n

n!
e−ρV (Bs). (24)

In the uniformly covered setting of interest where Bs = A+s,
this implies that the probability of isolation for some s ∈ S,
takes the form

P (ks = 0) = (ρV (s+A))e−ρV ((A+s)∩S) (25)
= (ρV (A))e−ρV ((A+s)∩S) (26)

which gives

− lim
ρ→∞

logP (ks = 0)
ρ

= V ((A+ s) ∩ S). (27)

As a result

I(fs(Bs ∩ S)) = V ((A+ s) ∩ S),

and

− lim
ρ→∞

logPi
ρ

= min
s∈S

I(fs(Bs ∩ S)) = min
s∈S

V ((A+ s) ∩ S).

(28)
�

b) Example case 2: - Uniform circular coverage, rect-
angular bounding region, and Poisson point process: The
following illustrative example is specific to the setting of the
uniformly covered network, the Poisson point process, and
specific to the case where, as illustrated in Figure 2, each
covering region A + s is a circle of radius r (c.f. [1]), and
finally where the bounding region S is a rectangle of length
bigger than r. In this setting we can see that

s′, arg min
s
I(fs(Bs ∩ S))

corresponds to the corner points of S, which allow for

V (Bs′ ∩ S) =
1
4
V (A)

which in turn shows that the rate of decay of the probability
of node isolation, averaged over all the nodes, is given by

− lim
ρ→∞

1
ρ

logPi =
1
4
πr2. (29)

In the same example, the effect of boundedness is easily
seen from (13) to be

CS =
mins∈S I(fs(Bs ∩ S))

mins∈S I(fs(Bs))

=
mins∈S V ((A+ s) ∩ S)

V (A)

=
(π/22π )πr2

πr2
=
π/2
2π

=
1
4

showing how the probability of isolation is exponentially
increased due to the presence of S.

c) Example case 3 - Polygon shaped S: Furthermore,
it is easy to see that in the same uniformly covered network
setting with Poisson point process, circular A, and a polygon
S, then

CS =
φmin

2π
,

where φmin ∈ (0, π) is the minimum angle, formed by the
vertices of S. Here φmin is seen to entirely define the effect
of boundedness.

Fig. 2. Randomly distributed nodes, rectangular S and circular s + A.
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B. Extreme topologies

Focusing on the uniformly covered setting, we here proceed
to consider the case where certain neighborhoods of S exhibit
extreme variability in shape, in the sense that there exist s ∈ S,
such that

V ((s+A) ∩ S) = ρ−αV (A). (30)

The following result sheds some light on the asymptotic rate of
decay of the probability of isolation in such a setting, averaged
over all nodes.

Theorem 2: In a uniformly covered network, under the
shaping assumption of (30), the probability of isolation scales
with ρ1−αmax (rather than scaling with ρ), in that

− lim
ρ→∞

logPi
ρ1−αmax

= K,

for some constant K, where

αmax, arg max
α≥0
{− lim
ρ→∞

1
ρ

logP (s:
V (s+A ∩ S)

V (A)
.=ρ−α)= 0}.

Proof of Theorem 2: Let

− lim
ρ→∞

1
ρ

logP (s :
V ((s+A) ∩ S)

V (A)
.= ρ−α) = γ(α),

then γ(α) = 0 for some α ≥ 0 since∫ ∞
0

P (s :
V ((s+A) ∩ S)

V (A)
.= ρ−α)dα = 1.

The above considers the fact that for α > 0 then ρ−α can be
made arbitrarily small, whereas V (S) is fixed and finite. Note
that the above probability is taken over the different parts of
a specific region S, and is not a function of h. Let

A,{α ≥ 0 : γ(α) = 0}

define the typical set of degrees of isolation among the
elements of S.

It is then the case that Varadhan’s lemma [10] gives

Eh
{∫ ∞

0

P (s :
V ((s+A) ∩ S)

V (A)
.= ρ−α)1I(ks = 0, α)dα

}
.= Eh

{∫
α∈A

P (s :
V ((s+A) ∩ S)

V (A)
.= ρ−α)1I(ks = 0, α)dα

}
.= Eh

{
P (s :

V ((s+A) ∩ S)
V (A)

.= ρ−αmax)1I(ks = 0, αmax)
}

which concludes the proof. �

C. Time Variations

We here note that the model allows for partial exposition
of the case where the average density conditions in the
network, vary with time. In practice this variability can relate
to environmental changes or node aging. The following gives
some insight on the effect of time varying node density on
the probability of node isolation. For ease of exposition,
we again focus on the uniformly covered setting, symmetric
Bs = s + A, and polygon S, a volume-related rate function,
and for illustrative purposes we focus on the case where the
density decays exponentially with time.

Proposition 1: Let

I(fs(Γ)) = V (Γ), ∀Γ ∈ Rd,∀s ∈ S,

let Bs = A+ s, let A be symmetrically shaped, let S be any
irregular polygon with smallest angle φmin and smallest side
bigger than the span of A, and let the average density ρ(t) of
the uniformly covered network be such that

lim
ρ→∞

ρ(t)
ρ1−tβ = D(t) <∞,

for some β > 0. Then

− lim
ρ→∞

1
ρ1−tβ logPi =

φmin

2π
D(t)V (A). (31)

The proof follows easily from Theorem 1.

IV. CONCLUSIONS

The work introduced simple characterizations of the prob-
ability of node isolation in bounded dense networks. The
exposition holds for a general setting of node-distribution
statistics, and for general shapes of coverage and bounding re-
gions. Emphasis was given in establishing the rate with which
isolation appears, rather than establishing if non-isolation is
achieved with probability 1.

In addition to the classical sensor network application,
the exposition relates to the general settings of information
diffusion or epidemic networks, where the network’s propaga-
tion characteristics are a function of the isolation/connectivity
properties of the network, and of the bounding region which
represents natural or constructed alterations of the network
topology.
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