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Abstract

In this thesis we study the subject of resource allocation for uplink communication systems.
When users have target rate constraints and interference cancelation isused at the base

station we provide the optimal decoding order and power allocation in order tominimize
the power consumption. In addition conditions are derived under which theallocation can
be done in a distributed way, with only some knowledge of the statistics of the system.

We then proceed to consider multiple-input multiple-output (MIMO) systems, and ob-
tain the optimal precoding matrices such that each user maximizes its own ergodictrans-
mission rate from the sole knowledge of the overall channel statistics. The benefits of using
a coordination signal and successive decoding are analyzed.

Next, a scenario in which mobile terminals can be simultaneously connected to several
base stations, using non-overlapping frequency bands is investigated.The optimal power
allocation in terms of sum rate is derived for different receiver types and an iterative algo-
rithm proposed to achieve the optimal allocation.

Finally, we consider decentralized medium-access control in which many pairwise in-
teractions, where users compete for a medium access opportunity, occurbetween randomly
selected users that belong to a large population. The choice of power level is done by each
user, and both team and noncooperative scenarios are analyzed.





Résumé

Dans cette thèse nous étudierons l’allocation de puissance optimale pour dessystèmes de
communication multi utilisateur en lien ascendant.

L’ordre de décodage et l’allocation de puissance optimaux pour minimiser la consom-
mation totale de puissance sont déterminés lorsque les utilisateurs ont des contraintes de
débit et que la suppression d’interférence est utilisée dans la station de base. De plus, nous
chercherons à déterminer dans quelles conditions il est possible de faireune allocation
distribuée en ne se basant que sur les connaissances statistiques du système.

Par la suite nous considérerons les systèmes a entrées multiples sorties multiples, afin
d’obtenir les matrices de précodage optimales pour que chaque utilisateur maximise son
taux de transmission ergodique avec la seule connaissance des statistiquesdes canaux.
Les bénéfices de l’utilisation d’un signal de coordination et de décodages successifs sont
analysés.

Ensuite, nous étudierons un scénario dans lequel les terminaux mobiles ont lapossibil-
ité de se connecter simultanément à plusieurs stations de base en utilisant des bandes de
fréquence non superposées. L’allocation de puissance optimale est dérivée pour différents
types de récepteurs et un algorithme itératif est proposé pour obtenir l’allocation optimale.

Finalement, nous considérerons les contrôles d’accès au canal décentralisé entre utilisa-
teurs choisis aléatoirement parmi une population nombreuse, avec de nombreuses interac-
tions entre paires d’utilisateurs où les utilisateurs sont en concurrence pour une opportunité
d’accès.

Le choix du niveau de puissance est fait par chaque utilisateur, et nous analyserons à la
fois les scénarios d’équipe et non coopératifs.
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CHAPTER 1

Introduction

During the last years, the appearance of new wireless services such as streaming and real
time multimedia applications, video calls, Internet browsing or file transfer has led to an
increasing demand of higher data rates, while at the same time requiring different quality
of service constraints depending on the particular application.

These increased rates pose an important challenge, since the higher required spectral
efficiency calls for more aggressive frequency reuse schemes, resulting in turn in a higher
level of interference affecting all the communication links. One way to address this chal-
lenge is through proper allocation of the wireless resources. In particular, power allocation
has been used in both the uplink and downlink of different communication systems to
tackle interference management. This is specially important for the uplink due tothe lim-
ited battery budget available at the mobile stations, making energy conservation important
for its lifetime, and power control helps minimize the total energy requirements.

Early power control research, intended for voice-centric wireless networks, focused
either on balancing the signal to interference ratios (SIR) , where the objective is maximiz-
ing the minimum SIR level, or achieving a target SIR enabling a successful communication
from the point of view of outage probability. A similar approach is adopted here in chapter
2, although in our case the target signal to interference plus noise ratio (SINR) are de-
termined by the varying data rates or quality of service (Qos) constraints required for the
different applications, in contrast to the constant SINR required in a voice network.

The remainder of this work, i.e. the contributions shown in chapters 3,4 and 5, concen-
trates however on power allocation in the context of data wireless networks, where in gen-
eral throughput optimization becomes a more relevant figure of merit, due to the possibility
of varying transmit rates, adapting them to the channel state conditions by using adaptive
modulation and coding schemes. The advent of services requiring best effort traffic, gives
an additional degree of flexibility when compared with traditional voice communications,
allowing the allocation of more resources to users with better channel conditions in order to
benefit from the so-called multiuser diversity and increase the total capacity of the system.

The focus of this dissertation is on resource allocation for uplink systems. In particular,
an emphasis is given to the possibility of determining this allocation in a distributed way,
obtaining conditions under which this is possible, or at least with a reduced amount of
channel state information at the transmitter in order to reduce the feedback costs associated
with it.

A common set of assumptions will be considered throughout most of the thesis, except
where otherwise stated:

• We will consider mainly a cellular 4G system, although some of the results can also
be applied in the adhoc network context.
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• We will consider physical layer resource allocation, mainly power allocation(or pre-
coding matrices when multiantenna transmitters are considered), but scheduling and
other upper layer resource allocation issues will not be dealt with here.

• A single cell system is considered, so only intracell interference is present (intercell
interference is implicitly taken into account into the noise). Only in chapter4 a
system with several base stations will be analyzed, but no intercell interference will
be present either, as the different base stations are assumed to communicate over non
overlapping frequency bands.

• The main figure of merit used will be the capacity or sum rate in its information theo-
retic sense. As a result, no assumptions are made regarding the particular modulation
scheme. In addition, this means assuming ideal link adaptation, for which adaptive
modulation and coding schemes must be used. This is a reasonable assumptionsince
practical coding schemes performing close to Shannon limits exist.

• Multiple antennas or receive dimensions are assumed at the base station in order to
deal with the multiuser interference.

Another common thread in the thesis is the use of two set of tools, Random Matrix
Theory and Game Theory, which have created a great deal of interestin the last few years
regarding their application to the wireless communications field.

Random Matrix Theory allows to exploit the averaging properties of large systems (in
the number of users, receive dimensions) and thus characterize the performance of a system
in the asymptotic regime as a function of a few key parameters.

Game Theory is a convenient tool for the analysis of systems in which usershave to
make strategic choices independently (in our case selecting the transmission power level),
and their success will depend also on other users’ choices. Two different scenarios will be
considered:

• The team problem, in which all users share the common objective of maximizing a
global criterion.

• The non cooperative game, in which each user maximizes its own performance mea-
sure and where the solution concept is the Nash equilibrium. We will study both
pure strategies, which determine the player’s choice for any situation he could face,
and mixed strategies, composed of a collection of pure strategies, each chosen with
a given probability.

An outline and the contributions of each chapter are given below:
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(a) Chapter2: MAC channel with single an-
tenna MS.

(b) Chapter3: MIMO - MAC channel (mul-
tiple antenna MS).

(c) Chapter4: Single antenna users communicating simultaneously to several BS.

Figure 1.1:Scenarios considered in the different chapters
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Chapter 2 - Optimal decoding order and power allocation under target rate con-
straints

In this chapter, we consider the scenario illustrated in figure1.1(a): several single-
antenna users, with target rate constraints, are communicating with a common base station
equipped with multiple receive dimensions (either multiple antennas or chips in the case
of a code division multiple access (CDMA) system) and a multiuser receiver (matched
filter successive interference cancellation (MF-SIC) and minimum mean square error SIC
(MMSE-SIC) are considered) to deal with the interuser interference. Using results from
Random Matrix Theory, the optimal decoding order at the base station and power allocation
across users are obtained to minimize the total power consumption while satisfying the
users’ rate constraints. In addition, conditions under which the power allocation can be
carried in a distributed way are discussed. The work in this chapter has been published in:

• A. Suárez, R. de Lacerda Neto, M. Debbah, and N. Linh-Trung “Power allocation
under quality of service constraints for uplink multi-user MIMO systems” REV’06,
IEEE 10th Biennial Vietnam Conference on Radio and Electronics, November 6-7,
2006, Hanoi, Vietnam

• A. Suarez, M. Debbah, L. Cottatellucci and E.Altman “Optimal decoding order un-
der target rate constraints”8th IEEE Workshop on Signal Processing Advances for
Wireless Communications (SPAWC), June 17-20, 2007, Helsinki, Finland

Chapter 3 - MIMO multiple access channels: Distributed power allocationIn this
chapter, we consider multiuser MIMO multiple access channels (MAC) , in which mobile
stations (MS) are also equipped with multiple antennas, as illustrated in figure1.1(b). The
problem is analyzed under a game theoretic perspective, deriving the optimal precoding
matrices when users maximize their own ergodic rate under statistical channelstate in-
formation (CSI) . Two scenarios are considered, in the first no coordination is available
and thus single user decoding is performed at the base station (BS) , whereas in the second,
there exists a random coordination signal which can be heard by all the MSs and the BS and
is used to determine the decoding order of the different users when usingan interference
cancellation receiver. The work in this chapter has been published in part in:

• S, Lasaulce, A. Suárez, M. Debbah, and L. Cottatellucci, “Power allocation game
for fading MIMO multiple access”, in theACM Proceedings of the International
Conference on Game Theory in Communications Networks (GAMECOMM), Octo-
ber 23-25, 2007, Nantes, France

Chapter 4 - Throughput Optimization in Heterogeneous Networks: Cross-System
Diversity

In this chapter we introduce and study the problem where several userscan be con-
nected simultaneously to a set of BS (each of them using non overlapping frequency
bands), as depicted in figure1.1(c). The optimal power allocation is obtained, maximizing
the ergodic sum-rate. Three different type of receivers are considered: optimum receiver,
matched filter and MMSE. For the first, exact expressions are derived,whereas for the last
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two a concave approximation is analyzed and conditions for its validity studied.This work
has been published in:

• S, Lasaulce, A. Suárez, R. de Lacerda Neto and M. Debbah, “Cross-system resources
allocation based on random matrix theory”Valuetools 2007, 2nd International Con-
ference on Performance Evaluation Methodologies and Tools, October 23-25, 2007,
Nantes, France,

• S, Lasaulce, A. Suárez, R. de Lacerda Neto and M. Debbah, “Using cross-system
diversity in heterogeneous networks : throughput optimization”,Performance Eval-
uation, Elsevier, Vol.65, N◦11-12, November 2008 , pp 907-921

Chapter 5 - Team and Noncooperative Solutions to Access Control
In this chapter we consider a decentralized medium access control problem under both

team and noncooperative game perspectives. It is shown that optimal pure policies do
not exist in the team framework, but both an optimal solution as well as equilibria exist
within the class of mixed policies. We establish structural properties as well asexplicit
characterization of these: We show that the optimal policy requires only three priority
levels, whereas the noncooperative game possesses a unique symmetric equilibrium point
that uses at most two priority levels. This work has been published in:

• E. Altman, I. Menache, A. Suarez “Team and noncooperative solutionsto access
control with priorities”Infocom 2009, 28th IEEE Conference on Computer Commu-
nications, April 19-25, 2009, Rio de Janeiro, Brazil

and submitted for publication in:

• A. Suarez, E. Altman, I. Menache “Team and noncooperative solutionsto access
control with priorities”submitted to IEEE Transactions on Networking





CHAPTER 2

Optimal decoding order and power
allocation under target rate

constraints

In this chapter we consider an uplink scenario in which each user has a target rate constraint
that must be satisfied and the objective is to minimize the total power consumption. The BS
is equipped with an interference cancellation receiver in order to deal withthe multiuser
interference. Successive interference cancellation is a simple scheme, which successively
subtracts the decoded signal from the composite received signal, resulting in reduced inter-
ference for subsequent users. Here we will assume no decoding errors are made, and thus
interference form previously decoded users is fully removed.

In its full generality, the target rate problem can be tackled through proper power
allocation (when the rate regions are achievable) [Boche 2004, Jorswieck 2004b,
Jorswieck 2003]. However, the power allocation scheme depends on the channel real-
izations of all users, the requested rates and the type of receiver structure [Müller 2000,
Caire 2004, Meshkati 2005a]. In addition, when interference cancellation receivers are
considered, it is also influenced by the decoding order used at the receiver. In fact, in order
to meet the rate constraints, it is immediate to see that a given decoding order uniquely
determines the associated power allocation. Thus, an added problem is the complexity in-
crease of the power allocation algorithm with the number of users, since in general all the
possible decoding orders have to be considered, making it a NP-hard problem.

In this chapter, we derive the optimal (which minimizes the total power) decoding order
for MMSE-SIC and matched filter receivers for a given set of requested rates, considering
rather general channel signatures. Similar work had been done previously in [Li 2004], but
only for the MMSE-SIC receivers and the particular case of i.i.d. signatures.

Interestingly, it is also shown that the power allocation (in the case of independent and
identically distributed (i.i.d) signatures) can be determined in a decentralized manner (each
user can determine his decoding order and power allocation based only onthe knowledge
of the discrete set of possible rates, whereas in general, the base stationcomputes the
algorithm and allocates the powers) for a high number of users in the network. This result
can be applied to reduce the downlink signaling of multi-user systems.

2.1 System model

A system composed of a base station, withN dimensions andK users, is considered. We
are interested in the uplink scenario. Each userk is supposed to send a signal at a requested
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rateRk. The input output relationship of the system is then given by:

y = HP
1
2 s+ n, (2.1)

wherey, s, n, H andP
1

2 are respectively the received signal, transmitted signal, additive
white Gaussian noise (AWGN) of varianceσ2, the mixing matrix, and diagonal matrix of
transmitted powers. In the following, these terms are written out as:y = [y1, y2, . . . , yN ]

T ,
s = [s1, s2, . . . , sK ]T , n = [n1, n2, . . . , nN ]

T ,

H =




h11 h12 . . . h1K
h21 h22 . . . h2K

...
...

. ..
...

hN1 . . . . . . hNK


 ,

and

P
1
2 =




p
1
2
1 0 0 . . . 0

0 p
1
2
2 0 . . . 0

...
...

...
. . . 0

0 0 0 · · · p
1
2
K



.

Thehik are independent zero mean gaussian variables with variances|gik|2. In particular,
the mixing matrix can be written as

H = G⊙W

whereW andG are respectively anN x K i.i.d. zero mean Gaussian matrix and the
pattern mask specific to a given technologyG = [gik]i=1...N,k=1...K . ⊙ is the Hadamard
product, defined as(A⊙B)ij = AijBij .

The model is broad enough to incorporate several technologies: for instance, MIMO
and flat fading CDMA systems.

In the following, columnhk corresponding to userk will be called a signature irrespec-
tive of the technology.

2.2 MMSE-SIC receiver

The MMSE receiver has several attributes that make it appealing for use. It is known to
generate a soft decision output that maximizes the output SINR [Madhow 1994].

As far as the MMSE SINR is concerned and considering Eq.(2.1), the output of the
MMSE detector, denoted bŷs = [ŝ1, . . . , ŝK ]

T , is given by

ŝ = P
1

2HH
(
HPHH + σ2IN

)−1
y

= P
1
2HHA−1y,

with A = HPHH + σ2IN . Each component̂sk of ŝ is corrupted by the effect of both
thermal noise and “multi-user interference” due to the contributions of the other symbols
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{sl}l 6=k. Let us now derive the expression of the SINR at one of theK outputs of the
MMSE detector. Lethk be the column ofH associated to elementsk, andU theN ×
(K − 1) matrix that remains after extractinghk from H. The component̂sk after MMSE
equalization has the following form:

ŝk = ηhk
sk + τk,

where

ηhk
= p

1
2
k h

H
k A

−1p
1
2
k hk, (2.2)

τk = p
1
2
k h

H
k A

−1HP
1
2 [s1, . . . , sk−1, 0, sk+1, . . . , sK ]

T (2.3)

+ p
1
2
k h

H
k A

−1n. (2.4)

The SINRk at the outputk of the MMSE detector can be shown to be expressed as (see
e.g. [Tse 1999]):

SINRk = pkh
H
k

(
UPkU

H + σ2IN
)−1

hk,

wherePk is the power matrix, from which the k-th column and row have been removed.
The MMSE receiver has the advantage of a very low complexity implementation.This

feature (due in part to its linearity) has triggered the search for other MMSE based receivers
such as the MMSE Successive Interference Cancellation (MMSE-SIC)[Cioffi 1995b,
Cioffi 1995a], which is at the heart of very famous schemes such as BLAST [Golden 1999].

The algorithm relies on a sequential detection of the received block [Wolniansky 1998].
At the first step of the method, an MMSE equalization of matrixTN,K = H is performed
by a multiplication ofy by matrix

F1 = P
1
2TH

N,K(TN,KPTH
N,K + σ2I)−1.

Suppose that the algorithm starts by decoding symbolsK . The estimated symbol goes
through a turbo-decoder chain in order to improve the reliability of the detection process.
Assuming a perfect decision (this is possible if the informationsK has been encoded at a
rate oflog2(1+SINRK)), the resulting estimated symbolŝK is subtracted from the vector
of received samples in the following manner:

r2 = r1 − p
1
2
K ŝKtK ,

whereti represents theith column ofTN,K and vectorr1 = y. This introduces one degree
of freedom for the next cancelling vector choice which enables to reduce the noise plus
interference influence and yields an increase in the decision process reliability.

The second step can be virtually represented by a completely new system ofK − 1

symbols(s1, . . . , sK−1) transmitted with powers(p1, . . . , pK−1) by anN×(K−1) matrix
TN,K−1 on the same flat frequency fading channel. Equalizing with matrix

F2 = P
1
2
K−1T

H
N,K−1(TN,K−1PK−1T

H
N,K−1 + σ2IN )

−1,



10
Chapter 2. Optimal decoding order and power allocation under target rate

constraints

one can retrieve symbolsK−1 which has been encoded at a rate oflog2(1 + SINRK−1).
The same process described at the beginning can be re-iterated. The advantage of such a
scheme is that

SINR
SIC

(K−1) ≥ SINR
MMSE

(K−1),

which means that one is able to convey more information on the second symbol (since the
SINR increases) than with MMSE equalization.

This analysis can be extended to iterationi obtaining the corresponding SINR as

SINRi = γi = pih
H
i

(
K∑

l=i+1

plhlh
H
l + σ2I

)−1

hi,

and the power

pi =
γ

hHi

(∑K
l=i+1 plhlh

H
l + σ2I

)−1
hi

.

2.2.1 Asymptotic SINR

The output SINR depends in an intricated manner on the different signature realizations.
Interestingly, when the dimensions of the system increase at the same rate (i.eN,K → ∞,
K
N = α), it can be shown [Girko 2001] and [Tulino 2005a] that the SINR,γk, at the output
of the MMSE-SIC receiver is given by:

γk =
pk
N

N∑

i=1

| gik |2

σ2 + 1
N

∑K
l=k+1

pl|gil|2
1+γl

.

Hence, the SINR does not depend on the channel realization.

2.2.2 Decoding order analysis

In this part, a flat fading scenario is considered, i.e.gik = gk, where the SINR can be
rewritten as

γk = pk
| gk |2

σ2 + 1
N

∑K
l=k+1

pl|gl|2
1+γl

. (2.5)

Result: For the case of flat fading channels, the optimal decoding ordering depends on
the user requested SINR, weighted by the individual path losses, and follows the ordering
1+γ1
|g1|2 < 1+γ2

|g2|2 < · · · < 1+γK
|gK |2 . Moreover, the power allocated to each user has an explicit

form given by:

pk =
γk
|gk|2

σ2
K∏

i=k+1

[1 +
1

N

γi
1 + γi

].
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Proof:
Defineβk =

pk|gk|2
γk

. Thus

βk−1 = βk +
1
N
pk|gk|2
1+γk

= βk
(
1 + 1

N γk1 + γk
)

So it can be easily seen that the exchange of the decoding order of 2 users would not
affect the remaining ones. Let us now consider two possible orderings[γk−1, γk] (userk−1

is here decoded before userk) and[γk, γk−1] with respective power allocations[pk−1, pk]

and[p∗k, p
∗
k−1]. Then:

pk =
βkγk
|gk|2

pk−1 =
βkγk−1

|gk−1|2
(
1 +

1

N

γk
1 + γk

)

p∗k−1 =
βkγk−1

|gk−1|2

p∗k =
βkγk
|gk|2

(
1 +

1

N

γk−1

1 + γk−1

)

(pk + pk−1)− (p∗k + p∗k−1) =
βk
N
γkγk−1

(
1

|gk−1|2(1 + γk)
− 1

|gk|2(1 + γk−1)

)

Then in order to minimize the total power consumption with the ordering[γk, γk−1] we
must have

|gk|2(1 + γk−1) < |gk−1|2(1 + γk)

1 + γk−1

|gk−1|2
<

1 + γk
|gk|2

2.3 Matched filter SIC receiver

The matched filter for userk is given byuHk = hHk = (gk ⊙ wk)
H . The signal at the

output of the matched filter is given by

uHk y = p
1

2

k |gk ⊙wk|2sk +
∑

i6=k

uHp
1

2

i (gi ⊙wi)si + uHn

and the SINR can be expressed as

γk =
pk(
∑N

i=1 |wik|2g2ik)2

σ2(
∑N

i=1 |wik|2g2ik) +
∑K

l=k+1 pl|
∑N

i=1w
∗
ikwilgikgil|2

.
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2.3.1 Asymptotic SINR

In the case of a large number of users and dimensions increasing at the same rate (i.e
N,K → ∞ but the ratioKN = α, also known as the load of the system), and tak-
ing into account that thewij are independent andE{|wij |2} = 1/N andE{|wij |4} =
1
Nα with α > 1, the SINRγk can be shown to be equal to

γk =
pk(
∑N

i=1 g
2
ik)

2

Nσ2
∑N

i=1 g
2
ik +

∑K
l=k+1 (pl

∑N
i=1 g

2
ikg

2
il)

(2.6)

2.3.2 Decoding order analysis

In this section a separable model will be considered for the channel energy profiles, i.e.
gik = aibk, which encompasses MIMO and frequency selective CDMA systems, among
others. Hence equation (2.6) can be rewritten as

γk =
pkb

2
k(
∑N

i=1 a
2
i )

2

Nσ2
∑N

i=1 a
2
i +

∑K
l=k+1 (plb

2
l

∑N
i=1 a

4
i )

In the following, defineEk = 1
N

∑N
i=1 |gik|2 as the average energy of userk, then the

following result holds:
Result: For the matched filter SIC receiver, the optimal decoding order is given in

order of decreasing channel energies, i.e.E1 > E2 > · · · > EK (where the index denotes
the decoding order of the user), and the power allocation to satisfy the requested rates is
given by

pk =
γk
Ek

K∏

l=k+1

(1 + γl

∑N
i=1 |gil|4
E2
l

) (2.7)

Proof: The proof follows the same steps as the one in2.2.
LetA2 =

1
N

∑N
i=1 a

2
i , andA4 =

1
N

∑N
i=1 a

4
i . Then the SINR is given by:

γk =
pkb

2
kA

2
2

σ2A2 +
1
NA4

∑K
l=k+1 plb

2
l

Defineβk =
pkb

2
k
A2

2
γk

. Hence

βk = σ2A2 +
1

N
A4

K∑

l=k+1

plb
2
l

βk−1 = βk(1 +
1

N
γk
A4

A2
2

)

So it can be easily seen that the exchange of the decoding order of 2 users would not
affect the remaining ones. Let us now consider two possible orderings[γk−1, γk] (userk−1

is here decoded before userk) and[γk, γk−1] with respective power allocations[pk−1, pk]

and[p∗k, p
∗
k−1]. Then:
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pk =
βkγk
b2kA

2
2

pk−1 =
βkγk−1

b2k−1A
2
2

(1 +
1

N
γk
A4

A2
2

)

p∗k−1 =
βkγk−1

b2k−1A
2
2

p∗k =
βkγk
b2kA

2
2

(1 +
1

N
γk−1

A4

A2
2

)

So that

pk + pk−1 − (p∗k + p∗k−1) =
C

b2k−1

− C

b2k
with C =

1

N

γkγk−1A4

A4
2

and the ordering to minimize the requested power depends only on the channel energies
(since for userk, the energy is given byEk = b2k

∑N
i=1 a

2
i ) and therefore the decoding

order should be done in terms of decreasing energies (b2k−1 > b2k). The result follows
therefore directly.

2.4 Distributed allocation

In many cases, the central entity can not feedback to the users the different powers in order
to satisfy the requested rates. Moreover, the downlink overhead signaling may dramati-
cally impact the useful rate as the number of users in the system increases.In these cases,
a decentralized approach may be used where each user determines solelyhis power. Pre-
vious attempts for the analysis of decentralized schemes rely mainly on game theoretic
approaches. In this section, we will show how asymptotic analysis can be used in this
setting.

We consider a system in which users have a discrete set of M different available rates
to choose fromR1, ..., RM , as is the case in universal mobile telecommunication system
(UMTS) or other wireless local area network standards. The number ofusers in each class
rate is denoted byK1, ...,KM . The users are supposed to know the average fraction of
users with a certain rate i.eK∗

i = pr(R = Ri)K as well as the total number of usersK
in the system. The valuespr(R = Ri) are usually provided by previous measurements on
the user’s system behavior. In the case of a high number of users,

Ki ≈ K∗
i = pr(R = Ri)K

.
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2.4.1 Groupwise detection

In the case of i.i.d signatures, a user in rate classKm can estimate his SINR and his decod-
ing order since in this case, equation (2.5) boils down to:

γk ≈ pk
1

σ2 + 1
N

∑M
l=mK

∗
m

pl
1+γl

(2.8)

The receiver in this case needs to implement a Groupwise SIC. Indeed, it isnot possible
for the user to determine precisely in which order he will be decoded among all the users
with the same rate requirements, since this decision can be taken arbitrarily by the base
station. Users in the same class can be decoded either in an MMSE filter or MMSE SIC
fashion. In the latter case, users will have a better SINR then the targeted one which
will reduce the probability of error. Moreover, as previously, the power allocation has an
explicit form which depends only on the probabilities of the users to be in a certain class:

pk = γkσ
2 +

1

N

M∑

l=m

K∗
m

pl
1 + γl

. (2.9)

For the MMSE-SIC, the groups of users should be decoded in order ofincreasing requested
rates, by a derivation following the lines of the one in section2.3.2.

Note that the same does not hold for the matched filter as the decoding order depends
on the channel strength (which is the same in the i.i.d case) and not the target SINR’s.

2.5 Simulations

In this section, some numerical results are presented to illustrate the theoretical claims. All
simulation have been performed for an SNR (SNR= 1

σ2 ) of 10dB.

Figure2.1 presents the requested and achieved rates for the SIC matched filter with
optimal power allocation and decoding order. The users share a common power profile
along the different dimensions and are supposed to be affected by random path losses. As
one can see, the asymptotic results match for a reasonable system withN = 256 receive
dimensions andK = 100 users.

In figure2.2, the required power for a set of requested rates is plotted for the MMSE
and matched filter SIC for different loads:α = 0.2 andα = 0.6. An important gain is
achieved with the MMSE-SIC filter, especially as the load increases.

In figures2.3 and2.4, the achieved rates for the distributed power allocation scheme
with a MMSE-SIC receiver are shown forN = 64 andK = 30 as well asN = 256

andK = 100. In the system, four available rates are considered (which are randomly
requested by the users with equal probability). For each user, the requested and obtained
rates for a certain channel realization are plotted. It can be seen that theresults obtained
are quite good already for a system withN = 64 andK = 30 when the users know only
the probabilities of the requested rates.
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Figure 2.1:Matched filter withN = 256 receive dimensions andK = 100 users at 10dB.
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Figure 2.3:Distributed power allocation for MMSE-SIC withN = 64 receive dimensions andK = 30

users at 10dB.
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2.6 Conclusions

In this chapter, the optimal decoding order and power allocation has been derived for SIC
receivers, both MMSE and matched filter, considering different, realisticchannel models.
Remarkably, for the former, the optimal detection order depends on the requested SINR,
eventually weighted, while in the latter, only on the channel energies. We have shown that
the use of asymptotic tools from random matrix theory provide a neat framework for the
analysis of SIC systems. It has also been shown that, under certain conditions, the power
allocation can be determined in a decentralized manner (by each user individually) when
considering a high number of users in the network.





CHAPTER 3

MIMO multiple access channels:
Distributed power allocation

In this chapter we consider distributed power allocation algorithms for the MIMO multiple
access channel. The main difference with respect to the previous one, isthe presence
of multiple antennas also on the MS, and thus the multiple receive dimensions at theBS
will also be multiple antennas. In this context we want to investigate the optimum power
allocation at the mobile stations when the signaling protocol overhead is absent or very
reduced.

From an information theoretic point of view, the optimal centralized power andrate
policies for the fast fading single input single output (SISO) MAC have been determined by
[Gallager 1994][Shamai 1997] when channel state information at the receiver is assumed
(CSIR) and by [Tse 1998] when CSI is assumed at the receiver and transmitters (CSIR
and CSIT) , which leads to the MAC ergodic capacity region. Recently, the authors of
[Soysal 2007][Soysal 2009] addressed the fast fading MIMO MAC with transmit antenna
correlation and covariance feedback at the transmitters and determined theoptimum power
allocation policy in terms of ergodic sum capacity. We consider the same framework as the
latter, fast fading MIMO MAC with CSIR and CDIT (channel distribution information at
the transmitters) , but we also assume correlation at the receiver and much more importantly
we do not assume the power allocation policies to be centralized. In our context each user
wants to selfishly maximize its own utility instead of a global utility function such as the
sum-capacity.

A convenient tool to address decentralized problems turns out to be game theory (see
e.g. [Fudenberg 1991][Altman 2006a])). The authors of [Lai 2008] used a game theoretic
approach to characterize the ergodic information rates of fast fading SISO and single input
multiple output (SIMO) multiple access channels when perfect CSIR is assumed and each
user knows his channel and those of the other users. Although reference [Lai 2008] is prob-
ably the closest work to ours we also note that other authors have workedon multiple access
or interference channels from a game theoretic perspective. For example, in [Arslan 2007]
the authors have chosen the individual mutual information as a utility function and assumed
CSIR and CSIT for studying static MIMO interference channels. In [Scutari 2008] the au-
thors have also considered the individual mutual information for studying static frequency-
selective interference channels. Some authors have used different utility functions, such as
those maximizing energy-efficiency (see e.g. [Meshkati 2005b][Meshkati 2006])), in order
to study the existence and uniqueness of a Nash equilibrium (NE) in MACs.

Our work can be considered as a partial extension of [Lai 2008] in the sense that we
address MIMO channels instead of SISO and SIMO channels but it differs from it at least
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in four important points. First, each user is only informed with the statistics of thedifferent
channels and not with their instantaneous knowledge. The CDIT assumptionis generally
considered to be more realistic in fast fading environments and in the particular case of de-
centralized systems it involves much less feedback signals from the base station, compared
to the CSIT assumption. Second, the transmit and receive antennas can becorrelated (this
feature cannot be considered when assuming perfect CSI since eachtransmitter exploits
the realization of the channel itself). Third, we exploit the theory of random matrices.
Considering (moderately) large systems in terms of numbers of antennas hasat least two
advantages: the underlying averaging effect makes predictable certainquantities of inter-
est, which allows each player to partially/totally predict the strategy of others,and more
importantly it simplifies the derivation of distributed power allocation algorithms andthe
analysis of their properties. Concerning this point, random matrix theory willbe used with
the same approach as the authors of [Tulino 2005b], who studied the impact of antenna
correlation on fading MIMO single-user channels. As a fourth point, we focus more on the
sum-rate as a system performance criterion and present coordination schemes (there exists
a random coordination signal which can be heard by all the MSs and the BSand is used to
determine the decoding order of the different users when using an interference cancellation
receiver), complementary to (and sometimes simpler to implement than) those developed
in the Stackelberg formulation of [Lai 2008].

3.1 System model

We consider the uplink of a single cell withK active users. Each mobile station is equipped
with nt antennas whereas the base station hasnr antennas (thus we assume the same num-
ber of transmitting antennas for all the users). In our analysis the flat fading channel ma-
trices of the different links vary from symbol vector (or space-time codeword) to symbol
vector. We assume that the receiver knows all the channel matrices whereas each trans-
mitter has only access to the statistics of the different channels. The equivalent baseband
signal received by the base station can be written as

y =
K∑

k=1

Hkxk + n (3.1)

wherexk is thent-dimensional column vector of symbols transmitted by userk , Hk ∈
C
nr×nt is the channel matrix (stationary and ergodic process) of userk andn is a nr-

dimensional complex white Gaussian noise distributed asN(0, σ2Ir). Each channel input
is subject to a power constraintTr

[
E(xkx

H
k )
]
, Tr(Qk) ≤ ntP k. In order to take into

account the antenna correlation effects at the transmitters and receiverwe will assume the
different channel matrices to be structured according to the Kroneckerpropagation model
[Shiu 2000]:

∀k ∈ {1, ...,K}, Hk = R
1
2ΘkT

1
2
k (3.2)

whereR is the receive antenna correlation matrix,Tk is the transmit antenna correlation
matrix for userk andΘk is annr × nt matrix whose entries are zero-mean independent
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and identically distributed complex Gaussian random variables with variance1
nt

. At last,
note that for simplicity we will always assumeK = 2 but all the results presented extend
toK−user MACs,K ≥ 3. In this respect, in some placesK will be used instead ofK = 2

and some numerical results will be provided for arbitraryK.

3.2 Scenarios considered

3.2.1 No coordination, single user decoding

We assume that the BS uses single user decoding (e.g. because the BS is neutral in the game
or for limiting the receiver complexity). Each user treats the signal of the others as additive
(colored) noise and wants to selfishly maximize its own transmission rate. The information
rate achieved by userk equals the mutual information betweenxk andy conditioned on
the overall channel matrixH = [H1H2...HK ]. As conditioning the mutual information by
a random variable involves taking expectation over this random variable wehave:

I(xk;y|H) = E

[
log2

∣∣∣∣∣

K∑

ℓ=1

HℓQℓH
H
ℓ + σ2I

∣∣∣∣∣

]
− E


log2

∣∣∣∣∣∣

∑

ℓ6=k
HℓQℓH

H
ℓ + σ2I

∣∣∣∣∣∣




(3.3)
We see that the second term of the mutual information does not depend onQk and we

can therefore omit it for the individual utility function of userk ∈ {1, ...,K}, which is
chosen to be

u
(SU)
k (Qk,Q−k) = E

[
log2

∣∣∣∣∣I+ ρ

K∑

ℓ=1

HℓQℓH
H
ℓ

∣∣∣∣∣

]
, (3.4)

whereQ−k = (Q1, ...,Qk−1,Qk+1, ...,QK) andρ = 1
σ2 . Clearly, the users have the same

utility function but each user has to maximize it with respect to hisowntransmit covariance
matrix. We see that, with the proposed choice of utility functions in the scenario where no
coordination is possible and single-user decoding is assumed at the BS, thethree concepts
of the non-cooperative game, team problem and global optimization problemcoincide. We
effectively want to optimize the ergodic sum-rate of the MIMO MAC:

Csum = max
Q1,...,QK

E


log2

∣∣∣
∑K

ℓ=1HℓQℓH
H
ℓ + σ2I

∣∣∣
|σ2I|


 (3.5)

under the classical trace constraints. What characterizes our problemis that we only want
to optimize the sum-rate overQk instead of(Q1, ...,QK). In the particular scenario un-
der consideration the concavity of the ergodic sum-rate w.r.t.(Q1, ...,QK) is well known.
We further note that the subset of non-negative Hermitian matrices verifying the trace con-
straints is convex. Therefore there exists a global maximum for the sum-rate. Now, since
the players maximize the same function, we can draw the two following conclusions: (a)
the global optimum is clearly a NE. This establishes the existence of a NE; (b) the strict con-
cavity of the maximum sum-rate is equivalent to the diagonally strict concavity condition
of [Rosen 1965], which implies that the NE is unique (see Theorem 2 of [Rosen 1965]).
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The main technical issue is to determine the user strategies at the equilibrium point i.e.
(Q∗

1, ...,Q
∗
K), which is done in Sec.3.3.

3.2.2 Coordination, successive interference cancellation decoding

For the scenario considered now we assume the existence of a coordination signal denoted
by S (see [Altman 2006b] where the authors apply a related idea for ALOHA protocol-
based MACs to obtain a correlated equilibrium [Aumann 1974]). It could be obtained
in practice, for example, by sampling a broadcast signal (e.g. an FM signal). The real-
izations of this signal, which are assumed to be equiprobable, are in the finite alphabet
S = {1, ...,K!}. For the caseK = 2 it is therefore simply binaryS ∈ {1, 2}. This signal
is known both by the BS and the MSs. Here we assume that the decoding order does not
depend on the realizations ofH, which are known to the BS but not to the MSs. Thus the
coordination signal sent to the users does not provide them with any additional information
on the channel conditions. For this reason we call this scheme “open loop coordination”. In
this framework, we allow the users to apply two different strategies:Q

(1)
1 ,Q

(2)
1 for user 1

andQ(1)
2 ,Q

(2)
2 for user 2 where the notations(.)(1) and(.)(2) correspond to the realizations

of the coordination signal. WhenS = 1, user 1 is privileged since it is decoded after user
2, and conversely forS = 2. Thus the achieved transmission rates are given by





R
(1)
1 (Q

(1)
1 ,Q

(1)
2 ) = 1

2E

[
log2

∣∣∣I+ ρH1Q
(1)
1 HH

1

∣∣∣
]

R
(1)
2 (Q

(1)
2 ,Q

(1)
1 ) = 1

2E

[
log2

∣∣∣I+ ρH1Q
(1)
1 HH

1 + ρH2Q
(1)
2 HH

2

∣∣∣
]

− 1
2E

[
log2

∣∣∣I+ ρH1Q
(1)
1 HH

1

∣∣∣
] (3.6)

whenS = 1 and by


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log2
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− 1
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log2
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2 HH
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∣∣∣
]
,

(3.7)

whenS = 2. Therefore, whenS = 1, user 1 sees a single-user MIMO system. The
optimum input covariance matrix is obtained by choosing the eigenvectors ofQ

(1)
1 to be the

eigenvectors ofT1 and water-filling over its eigenvalues [Jafar 2004][Jorswieck 2004a].
User 1 has no interest in deviating from this strategy. User 2 knows it and itsbest strategy
is to maximize the sum-rate w.r.t.Q2 given thatQ1 = Q

(1)
1 . For this purpose he will

choose its eigenvectors to be equal to those ofT2 and water-fill over its eigenvalues. The
same reasoning applies to the caseS = 2. Thus, this clearly establishes the existence of
a unique equilibrium. The users are thus following the coordination signal to adapt their
strategies and have no interest in ignoring it. The described strategies canbe checked to
maximize the following utility functions:

{
v
(OL)
1 (Q

(1)
1 ,Q

(2)
1 ,Q

(1)
2 ,Q

(2)
2 ) = 1

2R
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1 (Q
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2 ) + 1

2R
(2)
1 (Q

(2)
1 ,Q

(2)
2 )

v
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2 (Q

(1)
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1 ,Q
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2 ,Q

(2)
2 ) = 1

2R
(1)
2 (Q

(1)
2 ,Q

(1)
1 ) + 1

2R
(2)
2 (Q

(2)
2 ,Q

(2)
1 ).

(3.8)
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Here we casted the considered scenario into an open loop coordination-based equilibrium,
but the game can also be seen as a hierarchical decision making problem. The present
problem is a hierarchical decision making problem since, for a given realization ofS, the
last decoded user can be seen as a leader and the other as a follower. In our case however,
the leader does not care about the follower since the actions of the follower have no im-
pact on the leader. We note that the concept of the leader and followers are also present
in the Stackelberg formulation. Indeed, by introducing a utility function for theBS, the
Stackelberg formulation of [Lai 2008] could be applied here but in this case the BS should
be involved and send a certain amount of control signal, which is not always negligible,
especially whenK increases. If the BS can use the information on the channels in order
to choose the decoding order, then the signalS sent to the MSs provides them with some
information on the channel conditions. This allows the users to have some information on
the channel conditions and therefore we can refer to this scheme as closed-loop coordina-
tion. We can then replaceHk by Hs

k which has the interpretation of the channel condition
of userk given that it receives the signals. If the decision on the decoding order is such
that the statistical assumptions onHs

k are those we had onHk (for example eq. (3.1) still
holds with a possible dependence of the parameters withs) then we can still use eq. (3.6)
and (3.7) for the utilities except thatH will now also depend on the coordination signal.
The equilibrium policies thus derived in the open loop case extend easily to theclosed-loop
situation.

3.3 Optimal precoding matrix

As in [Jafar 2004][Jorswieck 2004a][Soysal 2009] we distinguish two steps in the determi-
nation of the optimum covariance matrices: the optimum eigenvectors are determined in
Sec. 3.3.1by exploiting [Soysal 2009][Jorswieck 2004a] while the optimum eigenvalues
are determined in Sec.3.3.2by approximating the utility functions under the large system
assumption.

3.3.1 Optimal eigenvectors

In [Soysal 2009] the authors have determined the optimum structure for the transmit co-
variances matrices that maximizes the channel sum-rate. The proof of [Soysal 2009] can
be reused and extended to the case whereR is arbitrary in order to assert that there is no
loss of optimality foru(SU)

k andv(OL)k by restricting the search for the optimum covariance
matrix by imposing the structureQk = UkPkU

H
k whereTk = UkDkU

H
k is the spectral

decomposition of the transmit correlation matrix defined in (3.2) and the diagonal matrix
Pk = Diag(Pk(1), ..., Pk(nt)) represents the powers of userk allocated to the different
eigenvectors. This is what states the following theorem, which is proved in AppendixA.1.

Theorem 3.3.1 (Optimum eigenvectors)For all k ∈ {1, 2}, let Qk be the set
of nt × nt Hermitian matrices such thatTr(Qk) ≤ ntP k i.e. Qk ={
Qk ∈ C

nt×nt : Qk = QH
k ,Tr(Qk) ≤ ntP k

}
. Additionally, let Sk be the subset ofQk
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such thatQk = UkP kU
H
k whereUk represents the eigenvectors ofTk. Then, for any

Q−k ∈ Q−k:
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

max
Qk∈Qk

u
(SU)
k (Qk,Q−k) = max

Qk∈Sk
u
(SU)
k (Qk,Q−k)

max
(Q

(1)
k
,Q

(2)
k

)∈Q2
k

v
(OL)
k (Q

(1)
k ,Q

(2)
k ,Q

(1)
−k,Q

(2)
−k) = max

(Q
(1)
k
,Q

(2)
k

)∈S2
k

v
(OL)
k (Q

(1)
k ,Q

(2)
k ,Q

(1)
−k,Q

(2)
−k).

(3.9)

The best strategy for each user is always to choose an eigenvector basis which matches
his own transmit correlation matrix and therefore does not depend on the channels of the
other users. This reduces the power allocation game to the choice of the transmit powers
only.

3.3.2 Optimal eigenvalues

We have shown that for the two decoding schemes considered and for each user, there
is no loss of optimality by choosing the eigenvectors ofQk to be equal to those
of Tk = UkDkU

H
k . As a consequence, one can exploit the asymptotic results of

[Tulino 2004][Tulino 2005b] derived for fading MIMO single-user channels with transmit
and receive antenna correlation. This will lead us to simple approximations ofthe utility
functions, which will make easier the optimization of the eigenvalues of the usertransmit
covariance matrices.

From now on, we assume the asymptotic regime in terms of the number of antennas,

which is defined by: (a)nt → ∞; (b) nr → ∞; (c) lim
nt→∞,nr→∞

nt
nr

= c where0 < c <

∞. For each userk ∈ {1, ...,K}, we also suppose thatdk(1), ..., dk(nt), which are the
elements of the diagonal matrixDk defined in Sec.3.3.1, have an empirical distribution

that converges to a p.d.f.fk(t) i.e.
1

nt

nt∑

i=1

δ(t− dk(i)) → fk(t).

3.3.2.1 No coordination, single user decoding

Under the assumptions made above, the capacity per receive antennaCsum

nr
can be shown

to converge almost surely towards a limit, which can be obtained by applying Theorem 3.7
of [Tulino 2004]. It can be verified that:

Csum
nr

→ 1

nr

K∑

ℓ=1

nt∑

i=1

log2 [1 +KρPℓ(i)dℓ(i)α]

+
1

nr

nr∑

j=1

log2

[
1 +Kρd(R)(j)β

]
− ntK

2

nr
ραβ log2 e (3.10)

where the coefficientsd(R)(j) correspond to the spectral decomposition of the receive cor-
relation matrixR = URDRU

H
R with DR = Diag(d(R)(1), ..., d(R)(nr)) and the pair

(α, β) is the unique solution [Silverstein 1995b][Girko 2001] of the following system of
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equations: 



α =
1

Knt

nr∑

j=1

d(R)(j)

1 +Kρd(R)(j)β

β =
1

Knt

K∑

ℓ=1

nt∑

i=1

Pℓ(i)dℓ(i)

1 +KρPℓ(i)dℓ(i)α
.

(3.11)

In practice, for finitent, nr the utility functionu(SU)
k is therefore approximated bỹuk

defined as̃uk = nr × lim
nt→∞,nr→∞

Csum
nr

. This defines anapproximategame. For each

userk, we want to determine the optimal way, in the sense of his approximated utility
function ũk, to share its available power between the transmit antennas. To solve this
constrained optimization problem we introduce the Lagrange multiplierλk and define the
function

Lλk(Pk(i)) , ũk − λk ×




nt∑

j=1

Pk(j)− ntP k


 (3.12)

and search for the solution(s)P ∗
k (i) such that

∂Lλk

∂Pk(i)
= 0. The solution of the corresponding

optimization problem is stated through the following theorem.

Theorem 3.3.2 (Optimum eigenvalues for single-user decoding)Assume that the pair
(α, β) is the solution of the system of equations (3.11). Then the spatial power allocation
maximizing the constrained approximated utility function (3.12) is given by the following
water-filling solution:

P ∗
k (i) =

[
1

nr ln 2λk
− 1

Kρdk(i)α

]+
(3.13)

where we used the notation[x]+ = max(x, 0).

The proof of this theorem is provided in AppendixA.2.
In the water-filling procedure the Lagrangian multiplierλk, for userk, is calculated in

order to meet the power constraint
nt∑

i=1

P ∗
k (i) = ntP k. Note that the power allocation for

a given userk is based on the knowledge of the statistics of his channel but also others
throughβ. We are now in position to describe the proposed iterative power allocation
algorithm:

1. Initializeα with a value in the interval[αmin, αmax] with

αmin =
1

Knt

nr∑

j=1

d(R)(j)

1 +Kρd(R)(j)

αmax =
1

Knt

nr∑

j=1

d(R)(j)

.
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2. Apply water-filling over thedk(i) by using equation (3.13) in order to findPk(i) for
all i ∈ {1, ..., nt} andk ∈ {1, ...,K}.

3. By using the powers obtained at the previous step, update the value ofα by searching
for the solution of the system of equations (3.11).

4. If α has not converged (fix an arbitrary accuracy level onα) go to step 1. Otherwise,
apply for the last time step 2 and stop the iterative procedure.

A similar algorithm has been used by [Dumont 2006] in order to derive the capacity of
single-user Rician MIMO channels with antenna correlation. Based on theirresults one
is ensured that the approximated utility functionũk is a strictly concave function of the
transmit power vectors{P1, ...,PK}, with ∀k ∈ {1, ...,K}, Pk = (Pk(1), ..., Pk(nt)),
and if the iterative power allocation algorithm converges, it converges towards the global
maximum (this result was only guaranteed in theexactgame described in Sec.3.3.1.

Now we provide a modified version of the iterative power allocation algorithm de-
scribed above. In this modified version we exploit the idea of asymptotic water-filling,
originally introduced by [Chuah 2002]. The asymptotic water-filling used in this version
allows us to restrict the knowledge of the transmitters to the p.d.f.fk(t), k ∈ {1, ...,K} in-
stead of the knowledge of the values ofdk(1), ..., dk(nt). The drawback is that in order for
the empirical distribution of the eigenvaluesdk(1), ..., dk(nt) to be well approximated by
the p.d.f.fk(t), nt andnr need to be relatively high. Indeed, the first version of the power
allocation algorithm only relies on the approximation of the mutual information, which is
accurate for small values ofnt, nr as it will be seen in the simulations.

For the sake of clarity we assume here thatR = I. By assuming a known lawfk for
the diagonal termsdk(i), so that

1

nt

nt∑

i=1

1

dk(i)
→
∫
fk(t)

t
, (3.14)

we can see that the water levelµk = nr ln 2λk can be expressed analytically and only
depends on the distribution ofdk(i) according to the following relation, which is obtained
from (3.13) and the power constraints:

P k =

∫ +∞

0

[
1

µk
− 1

Kρtα

]+
fk(t)dt =

∫ +∞

µk
Kρα

(
1

µk
− 1

Kρtα

)
fk(t)dt. (3.15)

Thereforeµk can be obtained through the following fixed-point equation:

µk =

∫ +∞

µk
Kρα

fk(t)dt

P k +
1

Kρα

∫ +∞

µk
Kρα

fk(t)

t
dt

. (3.16)

In addition, a transmit correlation profile has to be chosen and derive the corresponding
probability density function (pdf) .fk(t). For instance the authors of [Skupch 2005] have
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calculated it for an exponential correlation profile:∀(i, j) ∈ {1, ..., nt}2, Tk(i, j) = r
|i−j|
k

whererk is the correlation coefficient characterizing the correlation matrixTk (this model

is assumed in the simulations in Sec.3.4). It was shown thatfk(t) =
1

πt
√
−t2 + 2akt− 1

if
1− rk
1 + rk

< t <
1 + rk
1− rk

and 0 otherwise, withak ,
1+r2

k

1−r2
k

.

3.3.2.2 Coordination, successive interference cancellation decoding

In the case where the BS applies successive decoding in the order indicated by the co-
ordination signal the equilibrium and the iterative algorithm analyses can be conducted
by using the same reasoning as used previously. In this section we will only provide the
expressions of the optimum transmit powers. Assume thatS = 1. Then the achievable
transmission rates for the two users are:
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(3.17)

By exploiting the results of Sec.3.3.1, Theorem 3.7 of [Tulino 2004] and choosing in
this theoremK to be equal to the number of terms of the typeHkQkH

H
k present in the

argument of the operatorE[log |.|] to be approximated, it can be checked that

τ1
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nr
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ρα1β1 log2 e

(3.18)
where


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(3.19)

The proof of Theorem3.3.2can be re-used here. Then, optimizing the approximated rate

τ̃1 = nr × lim
nt→∞,nr→∞

τ1
nr

w.r.t. P (1)
1 (i) leads to the following water-filling equation

P
(1),∗
1 (i) =

[
1

nr ln 2λ1
− 1

ρd1(i)α

]+
. (3.20)
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We also know that user 2 will maximize the term̃τs = nr × lim
nt→∞,nr→∞

τs
nr

by choosing

his input covariance matrix to be structured asQ2 = U2P2U
H
2 with
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where 

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(3.22)

Eventually the powers for user 2 can be determined by

P
(1),∗
2 (i) =

[
1

nr ln 2λ2
− 1

2ρd2(i)α2

]+
. (3.23)

3.4 Numerical results

First we show that in order to make the large system approximation accurate the numbers of
antennas do not need to be very high. This is especially true when the metric of interest is
the ergodic mutual information since one benefits from a double averaging effect, one from
the randomness of the matrices into play and the other one from the expectationoperator.
Fig. 3.1shows that the relative error is less than4 % even for a2× 2 MIMO system.

Fig. 3.2 compares the simplest decentralized power allocation scheme, which is the
uniform scheme, with the optimized power allocation scheme when no coordination and
single-user decoding are assumed. Since single-user decoding is usedat the BS, the system
performance is inteference-limited, which clearly appears in the high SNR regime. We
note a significant performance gap between the uniform and optimized schemes, which
remarkably increases at high SNR.

Figs. 3.3 and 3.4 represent the sum-rate versusK for different power allocation
schemes. Here we assumedP 1 = ... = PK . We see that coordinating the system with an
equiprobable random signal allows us to be quite close to the (centralized) MIMO MAC
sum-capacity, which shows the interest in the proposed scheme in typical simulation sce-
narios.

3.5 Conclusions

Our goal was to design power allocation algorithms in fast fading MIMO channels with
correlation while minimizing the amount of control signal from the BS. To this endwe
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Figure 3.1:Relative error [%] on the mutual information as a function of SNR for different sizes of MIMO
systems:2× 2, 4× 4, 8× 8 with K = 1, r1 = 0.5, R = I.
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decoding–.
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Figure 3.3:Sum-rate as a function of the number or users for different power allocation schemes: 1. Team
game + SIC + optimal power allocation (sum-capacity); 2. Open loop coordination + SIC + optimal power
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only assumed CSIR and CDIT. A game theoretic setting was used to analyze both sce-
narios, determining the existence of equilibria, which effectively allows the mobiles to
choose their power allocation policies in order to selfishly optimize their ergodictrans-
mission rates. In addition, an iterative algorithm has been proposed to this end which is
guaranteed to converge to the optimum if it does converge (extensive simulations indicate
its convergence).





CHAPTER 4

Throughput Optimization in
Heterogeneous Networks:

Cross-System Diversity

The scenario considered in this chapter can be seen as an extension of that of chapter2
where now the terminals have several BS to which they can communicate simultaneously,
on non-overlapping frequency bands. In addition the objective function considered now is
the maximization of the total network throughput.

As the number of wireless systems has increased over the last two decades, the idea
of system convergence has been introduced (see e.g. [Molony 1998, Vrdoljak 2000]), in
order to enable mobile terminals to operate with different standards. This convergence idea
was one of the driving forces behind the design of reconfigurable terminals, also known as
software defined radio, flexible radio [Mitola 1999] or cognitive radio [Fette 2006]. Mobile
phones currently available on the market are usually multi-mode, which means that they
can work with different standards. In addition, there are many situations where a terminal
can have access to several signals in non-overlapping frequency bands: a Global System
for Mobile communications (GSM) mobile station is able to listen to several GSM base
stations; an UMTS MS can listen to Wideband Code Division Multiple Access (WCDMA)
base stations, but also possibly time division CDMA (TD-CDMA) base stations. In all
these examples, the terminal operates with only one standard at a time, depending on the
user location and/or the type of service requested by the user.

Our contribution presented in this chapter is based on an information-theoretic ap-
proach, but it still provides elements to understand the aforementioned situations, and
give some ideas of what could be done to optimize the overall uplink network through-
put, by using all the systems simultaneously [Lee 1999], instead of sequentially (hard han-
dover or best base station selection) as it is the case in existing systems or contributions
[Feng 2007, Wang 1999]. This will provide an additional form of diversity at the terminals,
which could be named cross-system diversity.

More specifically, we consider several mobile users and base stations, each of the latter
using a different frequency band. We assume that the base stations areconnected through
perfect communication links. For instance, in UMTS networks, base stationsare connected
through a radio network controller and very reliable wired connection (e.g. optic fiber),
which is not far from a perfect communication link. Users have wireless links towards the
different base stations, and we want to derive the optimal power and rateallocations, given
a fixed power constraint for each user. The uplink power allocation scheme is optimized
in order to maximize the sum-rate (over the users and systems) of the overall network.
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There exist many works on how to optimally allocate the transmit power to the different
sub-channels. To our knowledge, [Kim 2005] is the closest work to the one presented here.
The authors address the problem of jointly allocating power and subcarriers in the context
of orthogonal frequency division multiple access (OFDMA) systems. Ourwork differs
from theirs on several points: we consider a more general channel model (fading channels
instead of Gaussian channels), a very different context (heterogeneous networks), all the
sub-channels are (possibly) used whereas in [Kim 2005] , only a subset of them is used by
each transmitter and also the optimization problem of [Kim 2005] is not convex, in contrast
with the power allocation problem for the optimum receiver investigated in this chapter.
In addition, our main goal is to optimize a global performance criterion under local power
constraints. Finally, our information theoretic approach exploits asymptotic random matrix
theory [Girko 2001, Silverstein 1995b], in order to provide tractable expressions for the op-
timization problems under investigation. Hence, we will assume the dimensions of the sys-
tems as well as the number of users large enough, in order to benefit fromthe self-averaging
properties of the matrices under consideration. In particular, an interesting feature of these
self-averaging properties shows that only the parameters of interest to the problem (sys-
tem load, signal to noise ratio, ...) are kept, whereas all irrelevant parameters disappear
[Hachem, Moustakas 2003, Tulino 2004, Tulino 2005b]. This provides a neat analysis
framework for multi-dimensional problems. Moreover, although the results are proved in
the asymptotic regime, it turns out (due to fast convergence properties) that they are accu-
rate even for rather small systems (see e.g. [Biglieri 2002, Dumont 2005, Dumont 2006]
or results from previous chapters)).

We solve the optimal power allocation problem for three kinds of receivers: the opti-
mum receiver, minimum mean square error and matched filters. Simulations validate our
approach and illustrate the performance gain obtained by using several technologies simul-
taneously instead of one at a time.

4.1 System model

Figure 4.1:Cross-System scenario
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The global system under investigation is represented in Fig.4.1. It consists ofK mo-
bile terminals andS base stations using non-overlapping frequency bands (in Fig.4.1,
S = 6). Each mobile terminal has one single antenna, while the base station can possi-
bly have multiple antennas depending on the radio technology. The number ofdimensions
associated with base stations ∈ {1, ..., S} is denoted byNs. For example, if a CDMA
system is used,Ns represents the spreading factor; on the other hand, if the base station is
equipped with multiple antennas,Ns represents the number of receive antennas. Assum-
ing time selective but frequency non-selective channels, the equivalent baseband signals
received by the base stations can be written as





y1 =
√
ρ1

K∑

ℓ=1

hℓ,1xℓ,1 + n1

y2 =
√
ρ2

K∑

ℓ=1

hℓ,2xℓ,2 + n2

...

yS =
√
ρS

K∑

ℓ=1

hℓ,Sxℓ,S + nS

, (4.1)

where∀k ∈ {1, ...,K}, ∀s ∈ {1, ..., S}, xk,s is the signal transmitted by userk to base

stations, satisfying
S∑

s=1

E|xk,s|2 ≤ 1, hk,s is theNs−dimensional stationary and zero-

mean ergodic complex Gaussian channel vector associated with userk for the systems,
ns is anNs-dimensional complex white Gaussian noise distributed asN(0, n0BsI), where
n0 is the receive noise power spectral density,Bs the bandwidth of systems, ρs is the
signal-to-noise ratio (SNR) in systems, defined asρs = P

n0Bs
, andP is the transmit power

available at a given terminal. For simplicity and clarity, we henceforth implicitly assume
that the mobile terminals have the same transmit power, which is a reasonable assumption
(seee.g. [UMTS-World-Association] for more information). Otherwise, the case with
distinct transmit powers could be easily taken into account. In our analysis the flat fading
channel vectors of the different links can possibly vary from symbol vector (or space-time
codeword) to symbol vector (or space-time codeword). We assume that the receivers (base
stations) know their channel matrices (coherent communication assumption) and send the
channel distribution information (CDI) through reliable links to a central controller. Know-
ing the channels of all users, the central controller implements the algorithm and indicates
to each user how he has to share his transmit power between the differentlinks. The trans-
mitters therefore do not need any knowledge on the channels (neither channel state nor
distribution information).

As we will consider the overall system sum-rate as the performance criterion, and as-
sume a large system in terms of both the number of users and dimensions at the base
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stations (N1, ..., NS), it is convenient to rewrite the received signal in matrix form:





y1 =
√
ρ1H1x1 + n1

y2 =
√
ρ2H2x2 + n2

...
yS =

√
ρSHSxS + nS

, (4.2)

where∀s ∈ {1, ..., S}, Hs = [h1,s . . .hK,s] andxs = (x1,s, . . . , xK,s)
T . We assume

that the channel matrix of a given system can be factorized, in the sense of the Hadamard
product, as a product of two matrices

Hs = Gs ⊙Ws, (4.3)

whereWs is the matrix of the instantaneous channel gains which are assumed to be i.i.d
zero-mean and unit variance, andGs is the pattern mask specific to a given technology,
containing the arbitrary variances of the elements ofHs. This model is broad enough to
incorporate several radio access technologies. Here are three typical examples:

• MIMO systems:Ns represents the number of antennas at the base stations andK
the number of users (each equipped with a single antenna). The matricesWs and
Gs are respectively an i.i.d. zero mean Gaussian matrix and aNt × K correlation
matrix.

• Flat fading CDMA systems:Ns represents the spreading factor andK the number
of users. For a block fading channel,Ws andGs are respectively the code matrix,
where each column represents the code of a given user, and the channel gains matrix,
where the columns are identical (due to the fact that we consider flat fading models);

• Orthogonal Frequency Division Multiplexing (OFDM) systems:Ns represents the
number of sub-carriers andK the number of users. Assuming for simplicity an
OFDMA system where each user uses one subcarrier,Ws andGs are respectively
an i.i.d. zero mean Gaussian matrix and the truncated identity matrix (as the channel
matrices are not necessarily square). Note that ifK < Ns, some sub-carriers are not
used.

4.2 Large Systems Scenario Analysis

In this section, we consider a much more realistic scenario for wireless communications.
The different links between transmitters and receivers are now block fading and the num-
bers of users, systems and base station dimensions can be arbitrarily selected. Additionally,
the base stations can have different bandwidthsB1, ..., BS . The numbers of users and di-
mensions have to be large enough in order to make our asymptotic analysis sufficiently
accurate. More precisely, we consider a scenario whereK → +∞, ∀s ∈ {1, ..., S},

Ns → +∞ with lim
K→∞,Ns→∞

K

Ns
= cs and0 < cs < +∞. However, it is now well-known
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that many asymptotic results from random matrix theory under the large systemassumption
apply for relatively small systems [Biglieri 2002, Dumont 2005, Dumont 2006].

Under these assumptions our main objective is to derive the best power allocation
scheme in the sense of the sum-rate of the global system for different types of receivers.
One can notice that the selected performance criterion is global whereas the power con-
straints are local, which is a key difference with the conventional power sharing problem
between different subchannels.

4.2.1 Optimum Receiver

When the optimum receiver is assumed at the base stations, maximizing the sum-rate leads
to the Shannon sum-capacity of the global system. Considering the sum-rate point of the
system, instead of an arbitrary operating point of the capacity region, hasthe advantage
of simplifying the technical problem. In particular, considering the sum-rate as the perfor-
mance criterion allows us to exploit some results obtained for single-user fading MIMO
(e.g. [Tulino 2005b]). Note that the considered system consists of several MACs with
multi-dimensional receivers and single-dimensional transmitters, under the assumption that
CSIR but no CDIT is available. The sum-rate of each MAC is simply a special case of the
general case analyzed by [Soysal 2007, Soysal 2009] for Rayleigh MIMO multiple access
channels with input correlation with CSIR and CDIT. In our case where thedimension of
the signal transmitted by a terminal is one, the CDIT assumption amounts for a user to
knowing its transmit power. By considering the system of (orthogonal) equations (4.2) the
network ergodic sum-capacity per user can be expressed as:

C = max
Q1,...,QS

E

[
1

K

(
S∑

s=1

Bs log2
∣∣I+ ρsHsQsH

H
s

∣∣
)]

(4.4)

where∀s ∈ {1, ..., S}, Qs = E(xsx
H
s ). As long as the signals transmitted by the different

users are independent, the matricesQs are diagonal:Qs = Diag (α1,s, . . . , αK,s), where
αk,s denotes the fraction of its power userk employs in systems. As the mobile terminals
have identical transmit power, we have∀k ∈ {1, ...,K},

∑S
s=1 αk,s = 1.

So far, we have not assumed anything about the numbers of users and base station di-
mensions. From now on, in order to simplify the optimization problem associated with
equation (4.4) we will assume the asymptotic regime, as defined in the beginning of this
section. Interestingly, in that case, an explicit equivalent for the network sum-rate can be
obtained (from [Girko 2001]), whatever the pattern maskGs, as long as its continuous
power profile, defined for(τ, τ ′) ∈ [0, 1]2 aspNs(τ, τ

′) = gs(i, j) with i−1
Ns

≤ τ ≤ i
Ns

and j−1
NsK

≤ τ ′ ≤ j
NsK

, converges uniformly to a bounded and piecewise continuous func-
tion asNs → ∞ [Girko 2001], [Girko 1990, corollary 10.1.2]. However, if the pattern
mask is not structured at all, the expression of the large system equivalent can be quite
complicated and not always easy to exploit, whereas it is simpler for the classof separable
channels (e.g. CDMA and MIMO channels). This is why we will mainly focus on this
class of channels while having in mind that the proposed framework can be extended to
other technologies. Note that the OFDM case needs a separate treatment since the power
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profile pNs does not converge uniformly. However, it is not difficult to see that onecan
obtain the same capacity expression as in the separable case [Hachem, Moustakas 2003,
Tulino 2003, Tulino 2004, Tulino 2005b] with classical techniques. Therefore, for at least
the three aforementioned types of technologies the constrained optimization under consid-
eration can be simplified by finding a certain approximationC̃ of C, which can be obtained
by exploiting the original results of [Girko 2001, Silverstein 1995a] which have been ap-
plied by [Hachem, Moustakas 2003, Tulino 2003, Tulino 2004, Tulino 2005b] to fading
single-user vector channels. This is stated through the following proposition.

Proposition 4.2.1 (Equivalent of the network sum-rate)An equivalent of (4.4) in the
asymptotic regime, i.e. whenK → +∞, ∀s ∈ {1, ..., S}, Ns → +∞ with

lim
K→∞,Ns→∞

K

Ns
= cs and0 < cs < +∞, is:

C̃ = max
α1,...,αK

1

K

[
S∑

s=1

K∑

ℓ=1

Bs log2 (1 + γℓ,sαℓ,srs) +
1

K

S∑

s=1

Ns∑

j=1

Bs log2(1 + βj,sqs)

−
S∑

s=1

Bsvsqsrs log2 e −
K∑

ℓ=1

λℓ

(
S∑

s=1

αℓ,s − 1

)]
(4.5)

where∀ℓ ∈ {1, ...,K}, λℓ is the Lagrange multiplier associated with the power constraint
of userℓ, guaranteeing that the sum of power fractions over the different systemsequals
one. The expression ofvs depends on the technology used by systems: vs = Kρs if s
denotes the index of a MIMO system;vs =

K
Ns
ρs if s denotes the index of a CDMA system.

In both cases the parameters{(qs, rs)}s∈{1,...,S} are determined as the unique solution of
the following system of equations:





rs =
1

Kvs

Ns∑

j=1

βj,s
1 + βj,sqs

qs =
1

Kvs

K∑

ℓ=1

γℓ,sαℓ,s
1 + γℓ,sαℓ,srs

, (4.6)

Hs = R
1
2
sΘsT

1
2
s , Θs is a matrix with i.i.d entries with unit-variance,γℓ,s = vsd

(T )
ℓ,s , d(T )ℓ,s

is theℓth eigenvalue ofTs, βj,s = vsd
(R)
j,s , d(R)

j,s is thejth eigenvalue ofRs. For the OFDM
case, equation (4.5) holds withrs = ρs, qs = 0 andγℓ,s = g2s(ℓ, ℓ).

The proof directly follows from [Tulino 2004, Tulino 2005b] since in our case the chan-
nels are also separable. In order to better understand and interpret theprovided result and
make this chapter self contained, we provide a special case drawn from [Tulino 2003]: a
single MIMO system with SNRρ, K inputs,N outputs and neither transmit nor receive
correlation. The approximate capacity per receive antenna can be writtenin this case:
C̃ = 1

N

∑K
i=1 log2 [1 + ρα(i)r] + log2

(
N
K r
)
− N

K

(
N
K − r

)
log2 e wherer is determined

through the following fixed point equation
{
r = N

K
1

1+ρq

q = 1
K

∑K
i=1

α(i)
1+ρα(i)r .

(4.7)
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Therefore we see that the large system approximation roughly allows to transform the exact
capacity expression of the fast fading MIMO system into a sum of individual capacities
similarly to a parallel set of Gaussian sub-channels. Now let us go back to the general case.
In order to find the optimum power allocation scheme we need to derivate the argument
of the maximum in equation (4.5), which we refer to as̃R(α1, ..., αK). Obviously for all
s ∈ {1, ..., S}, rs andqs are functions of the parameters to be optimizedi.e. α1,s, ..., αK,s.
It turns out that the partial derivative with respect toαk,s is the same as it would be ifrs and
qs were assumed to be independent of this parameter, which is the purpose ofthe following
lemma.

Lemma 4.2.2 (Property of the equivalent of the network sum-rate)
For all (k, s) ∈ {1, ...,K} × {1, ..., S}, the derivative of the sum-rate approximation
R̃(α1, ..., αK) with respect toαk,s is the same as that obtained when assumingrs and
qs to be independent ofαk,s.

This key property is proved in AppendixB.1. This property of the large dimension equiv-
alent of the sum-rate is instrumental in the determination of the optimum power allocation
policy because it considerably simplifies the optimization procedure and allowsus to cope
with the convergence issue ofrs andqs towards strict constants as the numbers of users and
dimensions grow. Based on this argument, the fact that(α1, ..., αK) 7→ R̃(α1, ..., αK) is a
strictly concave function (its Hessian is strictly positive) and using the notationBs = bs×B
(whereB = B1+ ...+BS) in order to use dimensionless quantities, one can show that the
optimum power fractions are given by the following proposition.

Proposition 4.2.3 (Power allocation for the optimum receiver)In the
asymptotic regime, the optimum power fraction of userk in systems is:

α∗
k,s =




bs∑
t∈S+

k
bt


1 +

∑

t∈S+
k

1

γk,trt


− 1

γk,srs




+

, (4.8)

where for each userk the setS+k represents the systems/sub-channels which receive a non-
zero power;|S+k | ≤ S by definition. Userk will allocate power to systems if and only if
the quantity bs

λk ln 2 − 1
γk,srs

is strictly positive.

We have a water-filling equation for the optimum power allocation scheme, whichis
due to the averaging effect induced by the large system assumption. Let us give one special
case of equation (4.8): the case where the base stations have the same bandwidth (e.g.
UMTS-FDD + UMTS-TDD base stations):

α∗
k,s =




1

|S+k |
+

1

|S+k |
∑

t∈S+
k

1

γk,trt
− 1

γk,srs




+

. (4.9)

Here the optimum power fraction comprises a term corresponding to the uniform power
allocation (i.e. the term 1

|S+
k
| ) plus a term that characterizes the difference of qual-
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ity between the system under consideration (1γk,srs
) and the average of all the systems

( 1
|S+

k
|
∑

t∈S+
k

1
γk,trt

).

The capacity of the system under consideration is achieved if and only if allthe water-
filling equations (eq.4.8) are verified simultaneously. This is obviously the case by con-
struction of the derivation of the water-filling equations and the convexity ofthe optimiza-
tion region. The main issue to be mentioned now is the way of implementing the proposed
power allocation scheme. We propose an iterative algorithm to implement the optimal
power allocation policy:

1. Initialization: assume a uniform power allocation schemei.e. ∀(k, s) ∈ {1, ...,K}×
{1, ..., S}, αk,s = 1

S .

2. Compute the corresponding value forrs by using the fixed-point method: the first
equation of system (4.6) can be written in the form:rs = fs(rs).

3. Iterate the procedure while the desired accuracy on the power fractions is not
reached.

• For usersk ∈ {1, ...,K}:

– Update the power fractions by using the water-filling equation (4.8).

– Update the value ofrs.

A similar algorithm has been recently used by [Dumont 2006, Dumont 2007] in order to
derive the capacity of single-user Rician MIMO channels with antenna correlation. Based
on the results of [Dumont 2006, Dumont 2007] one is ensured that the approximated er-
godic mutual information is a strictly concave function of the transmit power fractions
{α1, ..., αK} and if the iterative power allocation algorithm converges, then it converges
towards the global maximum. At each step of the iterative procedure, the totalsum-
rate of the system is therefore increasing and generally (all the simulations performed in
[Dumont 2006, Dumont 2007] and here confirmed this point) converges to a limit. At the
limit, all power fractions will verify the water-filling equations. As already mentioned,
the system sum-capacity would be achieved by using a maximum likelihood receiver at all
the base stations. More pragmatically we now turn our attention to sub-optimum receiver
structures, which can be implemented more easily in real systems. One of the questions we
want to answer is whether the optimal power allocation, in terms of the network sum-rate,
for other types of receivers can also be expressed through a simple water-filling equation.

4.2.2 MMSE Receiver

The MMSE receiver is known to be the best linear multi-user receiver in terms of SINR. In
our context, the MMSE receiver at base stations ∈ {1, ..., S} for userk ∈ {1, ...,K} can
be written as:

wH
k,s = hHk,s

(
K∑

ℓ=1

αℓ,shℓh
H
ℓ + σ2I

)−1

, (4.10)
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and the SINR is given by:

η
(mmse)
k,s = αk,sh

H
k,s




K∑

ℓ=1,ℓ6=k
αℓ,shℓh

H
ℓ + σ2I




−1

hk,s. (4.11)

In order to express the sum-rate achieved by the overall system when theMMSE re-
ceiver is used at the base stations, one just needs to determine the SINR atthe input of each
MMSE receiver. It turns out that each of these SINRs converges to alimit and is especially
easy to express in the large dimensions regime (seee.g. [Debbah 2002] or Chapter2). Let
η̃
(mmse)
ℓ,s be the asymptotic SINR for userℓ in the output of the MMSE receiver at base

stations. The achievable approximate ergodic sum-rate is then given by:

R̃(mmse)
sum = E

[ S∑

s=1

K∑

ℓ=1

log2

(
1 + η̃

(mmse)
ℓ,s

)

︸ ︷︷ ︸
R̃

(mmse)
k,s

]
. (4.12)

The asymptotic SINR expression in the MMSE output can be shown to be (seee.g.Chapter
2):

∀ℓ ∈ {1, ...,K}, η̃(mmse)ℓ,s =
αℓ,s
Ns

Ns∑

i=1

g2s(i, ℓ)

σ2 + 1
Ns

∑K
j 6=ℓ

αj,sg2s(i,j)

1+η̃
(mmse)
j,s

. (4.13)

To find the amount of power userk has to allocate to systems one needs to derivate the
sum-rate (eq. (4.12)) w.r.t. αk,s. Unlike the asymptotic sum-rate achieved by the optimum
receiver, the asymptotic sum-rate achieved by using the MMSE receiver isnot always a
concave function of(α1, ..., αK). In order to obtain an analytical solution (otherwise an
exhaustive numerical optimization of the sum-rate can always be performed)and avoid us-
ing possibly computationally demanding numerical optimization techniques, we propose
to approximate the asymptotic sum-rate by a concave function by introducing thetwo ap-
proximations (given below). This leads to the following proposition.

Proposition 4.2.4 (Optimum power allocation for the MMSE receiver) Assume that

1. η̃(mmse)k,s = a
(mmse)
k,s × αk,s with

∂ak,s
∂αk,s

= 0;

2.

∣∣∣∣∣∣
∂R̃

(mmse)
k,s

∂αk,s

∣∣∣∣∣∣
>>

∣∣∣∣∣∣

∑

ℓ6=k

∂R̃
(mmse)
ℓ,s

∂αk,s

∣∣∣∣∣∣
.

In the asymptotic regime, the optimum power fraction of userk in systems is:

α
(mmse)
k,s =


ωk −

1

a
(mmse)
k,s



+

(4.14)

whereωk ,
1

λk ln 2 is the water-level for userk and

a
(mmse)
k,s ,

1

Ns

Ns∑

i=1

g2s(i, k)

σ2 + 1
Ns

∑K
j 6=k

αj,sg2s(i,j)

1+η̃
(mmse)
j,s

. (4.15)
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Proof By setting the derivative of the constrained asymptotic sum-rate to zero, onedirectly
obtains that:

∂

∂αk,s

[
R̃(mmse)
sum −

K∑

ℓ=1

λℓ

(
S∑

s=1

αℓ,s − P

)]
= 0

⇔ 1

ln 2

∂η̃
(mmse)
k,s

∂αk,s

1 + η̃
(mmse)
k,s

− λk = 0.

(4.16)

The validity of assumptions (1) and (2) is discussed below and will also be commented
in the simulation part. The first assumption is actually exactly verified in the finite case and
we would also like its large system equivalent to have this property. The second assumption
is motivated by the fact that in a many user network the behavior of a single user should
have almost no impact on the SINR of another user of this network. Mathematically, as
the proof above shows, the motivations for assuming (1) and (2) is that theoptimization
problem becomes very similar to the one investigated for the optimum receiver.Therefore,
like the optimum receiver, theapproximateoptimum power allocation policy is given by a
simple water-filling equation.

4.2.2.1 Approximating the asymptotic system sum-rate by a concavefunction

For the user of interest (i.e. userk):

∂η̃
(mmse)
k,s

∂αk,s
=

1

Ns

Ns∑

i=1





g2s(i, k)

σ2 + 1
Ns

∑K
j 6=k

αj,sg2s(i,j)

1+η̃
(mmse)
j,s

× (4.17)


σ2 + 1

Ns

K∑

j 6=k

αj,sg
2
s(i, j)

1 + η̃
(mmse)
j,s

(
1 + αk,s

∂η̃
(mmse)
j,s

∂αk,s

1

1 + η̃
(mmse)
j,s

)





For all ℓ 6= k,

∂η̃
(mmse)
ℓ,s

∂αk,s
= −αℓ,s

Ns

Ns∑

i=1

{
g2s(i, ℓ)× (4.18)

1
Ns

g2s(i,k)

1+η̃
(mmse)
k,s

+ 1
Ns

∑
j 6=ℓ αj,sg

2
s(i, j)

(
−∂η̃(mmse)

j,s

∂αk,s

)
1

(1+η̃
(mmse)
j,s )2

(
σ2 + 1

Ns

∑
j 6=ℓ

αj,sg2s(i,j)

1+η̃
(mmse)
j,s

)2

}

Let |η̃′M | andgM be the maxima of

∣∣∣∣
∂η̃

(mmse)
ℓ,s

∂αk,s

∣∣∣∣ andgs(i, ℓ) over all the triplets(i, ℓ, s). By

definition

∣∣∣∣
∂η̃

(mmse)
ℓ,s

∂αk,s

∣∣∣∣ ≤ |η̃′M |. In fact, under reasonable assumptions, one can tighten this

bound, this is the purpose of what follows. The main point is to assume that theentries
gs(i, j) take finite values and do not vanish. Note that for MIMO systems the entries of the
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mask matrixgs(i, j) are effectively bounded and they do not scale withNs. However, for
CDMA and OFDM systems this is not true since for both case they representthe realiza-
tions of the channel impulse. As a Rayleigh distribution is assumed for the channel gains,
they are not bounded mathematically. However, many works applying random matrix the-
ory (seee.g. [Debbah 2003]) assume that the channel has a compact support. In practice,
for physical reasons, the channel gains do not strictly vanish and stayeffectively in a finite
interval and therefore the proposed assumption makes sense.

For all (k, s) in {1, ...,K} × {1, ..., S} one can easily check that
∣∣∣∣∣∣
∂η̃

(mmse)
ℓ,s

∂αk,s
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j,s
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≤ 1
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∂η̃

(mmse)
j,s

∂αk,s

∣∣∣∣∣ (4.20)

≤
(gM
σ

)4 K
N

|η̃′M |. (4.21)

Therefore we see that a sufficient condition for the MMSE output SINR of userℓ to be
considered as independent of the power allocation of userk 6= ℓ is that the ratioKN has to
be small. Under this sufficient but not necessary condition the approximateSINR η̃k,s can
be considered to be proportional toαk,s (Assumption (1)). For the second assumption to

hold a sufficient but stronger condition is that the quantityK2

N is small. We therefore see
that the validity of the proposed assumptions depends on the scenario under consideration.

4.2.3 Matched Filter

Now we go a step further in decreasing the receiver complexity. We assumea matched filter
at all the base stations. The MF for userk at base stations simply consists in multiplying
the received signalys by hHk,s. The signal at the MF output is expressed as

hHk,sys = ||hk,s||2xk,s +
∑

ℓ6=k
hHk,shℓ,sxℓ,s + hHk,szk,s, (4.22)

and the corresponding SINR follows:

η
(mf)
k,s =

||hk,s||4αk,s
σ2||hk,s||2 +

∑
ℓ6=k αℓ,s|hHk,shℓ,s|2

. (4.23)

In the asymptotic regime the SINR becomes (see sec.2.3.1)
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)2
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2
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2
s(i, ℓ)

. (4.24)

The asymptotic system sum-rate achieved by using the MF at the reception is:

R̃(mf)
sum = E

[
S∑

s=1

K∑

ℓ=1

log2

(
1 + η̃

(mf)
ℓ,s

)]
. (4.25)
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The optimum power allocation for the marched filter is then given by the followingpropo-
sition.

Proposition 4.2.5 (Optimum power allocation for the MF) Assume that∣∣∣∣∣∣
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. In the asymptotic regime, the optimum power

fraction of userk in systems is:
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where
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andωk ,
1

λk ln 2 is the water-level for userk.

Proof A quick look at the sum-rate expression shows that the situation is similar to that
encountered with the MMSE receiver. The only difference is that one does not need to
introduce assumption (1) since the SINRη(mf)k,s is always proportional toαk,s, whatever
the dimensions of the system. The stated result follows.

4.2.3.1 Approximating the asymptotic system sum-rate by a concavefunction

First, note that Assumption (1) is exactly verified both in the finite and large dimensions
settings. So, here we focus on the validity of Assumption (2). In a given systems, we have
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(4.29)

Defineg2M = max
(ℓ,s,i)

g2s(i, ℓ) andg2m = min
(ℓ,s,i)

g2s(i, ℓ) and upper bound the quantity of

interest that is
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At this point we have to distinguish between MIMO systems on the one hand andCDMA
and OFDM systems on the other hand. For MIMO systems we know that

∑Ns

i=1 g
2
s(i, ℓ) ≥

Nsg
2
m wheregm is finite and different from zero. For CDMA and OFDM systems, as the

channel realizations are into play, we exploit the central limit theorem, which allows us to

write
∑Ns

i=1 g
2
s(i, ℓ) = Ns

(
µ+ o

(
1√
Ns

))
whereµ is the average energy of the channel

gain (assumed to be normalized to one). In any case, the sum of interest can be bounded
by const.× K

Ns
, which gives us a sufficient condition in order for Assumption 2 to hold for

the matched filter.

4.3 Numerical results

In all the simulations the following channel model will be assumed. The entries of Ws

will be chosen to be i.i.d. with zero-mean and variance1. For the CDMA case, the entries
of G will be generated according to a Rayleigh distribution with variance1, with inde-
pendent columns and all the elements in each of them equal, corresponding toflat fading,
and for MIMO a matrix of ones (no correlation). First we assume the optimum receiver
at the base stations. We want to evaluate the performance gain brought byexploiting the
available cross-system diversity, in comparison with the standard power allocation scheme
(hard handover). For this, let us assume the following typical simulation setup in a cellular
system: 50 active users (K = 50) and 4 CDMA base stations (S = 4) with different spread-
ing factors ((N1, N2, N3, N4) = (4, 8, 16, 32)). Fig. 4.2 shows that for medium and high
SNRs the performance loss induced by using only one technology at a time can be very sig-
nificant, greater than4 dB typically, which means that the mobile transmit power could be
divided by a factor greater than 2 w.r.t. to the conventional strategy. On theother hand, for
low SNRs, the hard handover solution performs better than the uniform power allocation,
which shows the potential interest in implementing the optimum power allocation, which
provides the best performance whatever the SNR. Also, in contrast to single-user MIMO
systems, it can be seen that the gap in performance between uniform and optimum power
allocation schemes does not shrink as the SNR increases. This observation has also been
made in other simulation scenarios. Figure4.3shows a scenario with the same parameters
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as the one just analyzed but now both CDMA and MIMO systems are considered, obtain-
ing relatively similar results. In all the tested scenarios the convergence ofthe proposed
iterative power allocation algorithm was obtained after at most 10 iterations; note that the
algorithm is said to have converged if the optimum power fractions are determined with an
accuracy of10−4.

Now we assume the simplest receiver at the base stations, namely the matched filter.
There are two base stations and two users. The BS are equipped with multiple antennas:
N1 = 2, N2 = 4. Fig. 4.4 shows the network sum-rate achieved by using the MF for
four different power allocation schemes: the optimum power allocation obtained by an
exhaustive numerical search, the approximate power allocation obtained by assuming the
two hypotheses stated in Sec.4.2.2and4.2.3, the uniform power allocation scheme and
the hard handover. First, the figure shows that the corresponding approximation of the
sum-rate is not very good but it still provides a performance gain over theother power
allocation schemes. Second, this simulation confirms that the uniform power allocation
becomes more and more suboptimal w.r.t. to the exact optimum power allocation as the
SNR increases. Third, we clearly see that handover based power allocation suffers from a
significant performance loss for medium and high SNRs. To sum up, we can say that, as
a rule of thumb, the uniform power allocation can always be used and will provide signifi-
cant gains with the advantage of being very simple to implement (no feedback mechanism
required in particular).

The last figure,i.e. Fig. 4.5sums up the network performance for the three receivers in-
vestigated in this chapter in the typical scenarioK = 20,S = 3, (N1, N2, N3) = (4, 8, 32).
It allows one to better evaluate the benefits from using the optimum receiver over the
MMSE receiver and MF. A typical information that can be drawn from this figure is as
follows: by simply using a MMSE receiver with uniform power allocation instead of the
MF with hard handover (as used in current networks) a huge performance gain could be ob-
tained by exploiting the available cross-system diversity. Of course, this comment holds for
medium and high SNRs. If the network is also likely to operate in the low SNR regime, the
optimum power allocation should be used or a SNR-based switching mechanismbetween
the hard handover and uniform power allocation could be introduced.

4.4 Conclusion

In this chapter, a cross-system power allocation algorithm has been provided in the context
of MIMO, CDMA and OFDM technologies in order to exploit the available cross-system
diversity. Interestingly, in the asymptotic regime, a radio access technologycan be char-
acterized, from the information-theoretic point of view, by only a few parameters. Indeed,
the solution for all the receivers turns out to be dependent only on a limited number of
parameters: the dimensions of the system, number of users, channel gains, path loss, noise
variance and correlation at the transmitter and the receiver.

As a consequence, for the optimum receiver a simple cross-layer algorithm, analogous
to the water-filling algorithm, can be implemented at the central controller to schedule the
powers of all the users in order to maximize the network capacity, and this canbe done in
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Figure 4.2:Optimal receiver. Performance gains brought by cross-system diversity (4 CDMA systems with
Ns = [32, 16, 8, 4] receive dimensions andK = 50 users).

−10 −5 0 5 10 15 20
0

1

2

3

4

5

6

7

8

Per user SNR

P
er

 u
se

r 
ra

te

Optimal PA	
Uniform PA
Hard Handover

Figure 4.3:Optimal receiver. Performance gains brought by cross-system diversity (2 CDMA systems with
Ns = [32, 16] receive dimensions and 2 MIMO systems withNs = [8, 4] receive antennas.K = 50 users ).
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Figure 4.4:Matched filter performance for the optimum (calculated exhaustively), approximate optimum,
uniform and hard handover power allocations. (2 CDMA systems withNs = [2, 4] receive dimensions and
K = 2 users )
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a simple, iterative way, which generally converges to the optimum.
For the MF and MMSE receivers a water-filling solution can still be obtained by in-

troducing two additional assumptions, which simplify the optimization problem but at the
price of a performance loss that has to be evaluated in the situations of interest. For the typ-
ical scenarios considered in this chapter, we saw that they were reasonable. The potential
performance gain of cross-system diversity was shown to be important inseveral typical
simulation setups. For instance, by simply using MMSE receivers at the basestations and
uniform power allocation over the different systems, the mobile transmit power could be
divided by a factor greater than 10 with respect to a standard network using the MF and
hard handover power allocation scheme.

The proposed work could be extended by considering the outage probability in order to
further analyze the benefits of cross-system diversity, which will allow one to complete our
comparisons between the hard handover, uniform and optimum power allocation schemes.
It would also be interesting to study a more heterogeneous network, for instance by intro-
ducing CDMA base stations with multiple antennas and exploiting the results derived by
[Hanly 2001]. As mentioned here, more technologies can be considered since the condi-
tion on the patter mask matricesGs are mild and the strong results of [Girko 2001] can be
directly applied in the proposed framework.

To conclude this chapter, it should be mentioned the fact that our approach is informa-
tion theoretical, and obviously, many issues would need to be addressed to implement the
proposed power allocation schemes. The way of coordinating base stations using different
technologies is just one example of this kind of issues.





CHAPTER 5

Team and Noncooperative Solutions
to Access Control

In this chapter we consider decentralized medium-access control in which many pairwise
interactions, where users compete for a medium access oportunity, occurbetween ran-
domly selected users that belong to a large population. A given user has a fixed number
of access attempts and a fixed budget for buying different power levels(in a more general
setting, they could be considered priority levels, with only some minor differences that
will be pointed out). We consider situations in which the choice of power levelis done by
each user, without knowing in advance the choices of other users. In each time-slot, the
access is attributed to the user with the largest power level. The performance criterion is
the expected number of successful access attempts that a user may obtain within a given
budget.

We consider both the team framework, in which all users share the common objective
of maximizing the above criterion averaged over the whole population, as wellas the non-
cooperative framework, in which each user maximizes its own performance measure and
where the solution concept is the Nash equilibrium. We restrict to a regime of weak inter-
actions in which upon an access attempt, a user is either faced with no other simultaneous
attempt or might face a single opponent that attempts to access the network at the same
time. This framework is similar to the pairwise interaction paradigm in evolutionary game
theory (see, e.g., [7]), and may correspond, for example, to sparse network topologies (such
as ad-hoc networks). Due to the impliocit symmetry assumption on the channels made by
the model, both multiple acces and interference channels can be considered.

Our analysis reveals that unlike many standard team problems, optimal pure policies
do not exist in the team framework, but both an optimal solution, as well as equilibria exist
within the class of mixed policies. Focusing on symmetric working points, we fully char-
acterize both the team solution and the equilibrium point, which turn out to be unique. We
show that the optimal policy requires only three priority (or power) levels, where the Nash
equilibrium uses only two priority levels. This result is significant from an engineering
perspective, as network architectures usually limit the number of power levels or priority
classes out of practical concerns.
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5.1 System model

5.1.1 General setting

We consider a large population of mobiles. Each has a battery withK energy units. Time
is discrete. At each time unit a mobile has a transmission opportunity. If it hask ≤ K

energy units left then it can transmit with anyintegerenergy level1 ≤ l ≤ k. If k = 0

then it cannot transmit. EveryN time units the battery is replaced with a new one with
energy levelK. Assume that there are pairwise interactions: when a mobile attempts
transmission, the receiver is with probability(1 − δ) in the range of yet another mobile
which is randomly selected from the whole population. At each transmission opportunity
the interaction occurs with another randomly selected mobile. The time slots are common
to all mobiles but when a mobile is at theith stage in his battery lifetime, it interacts with
a mobile that is at a random stagej, uniformly distributed1 between 1 andN .

User Policy. Due to the above assumptions, a general transmission policyu may be
characterized by the number of times each power level is used, since the specific times in
which each level is applied are insignificant. Hence, a (pure) policyu will be described
by aK + 1 vectoru = (n0, n1, . . . , nK), whereni represents the number of slots during
the lifetime of the battery in which a power ofai is used for transmission (n0 stands for
the number of slots in which there is no transmission). The following constraintsmust
obviously be met for every feasible user policy:

K∑

i=0

ni = N (5.1)

K∑

i=1

aini ≤ K. (5.2)

Let xi ≡ xi(N) := ni/N denote the fraction of time that power levelai is employed
for a given policyu. Throughout the chapter, we shall alternatively use the vectorx =

(x0, x1, . . . , nK) to represent a policy.
Our model may allow for mixed policies as well. A mixed policyσ is a a randomized

choice among a collection of pure policies(u(1), . . . , u(m)), where policyu(i) is chosen
with probability qi andqi >= 0,

∑
qi = 1. If policy u(i) is selected then it is used

throughout the battery life.
Reception Rule. At any given time, a transmission attempt with power leveli > 0 is

successful, if and only if (i) there is no simultaneous transmission, or (ii) the interfering
transmission uses a power levelj such thatij ≥ β, whereβ is a positive SIR threshold
strictly greater than 1. In this case if a power leveli1 is used, and assuming symmetric
policies, power levelsi1 + 1, ..., βi1 − 1 offer no advantage with respect to it in terms of
interference avoidance, whereas requiring extra power. As a resultit is immediate than an
optimal policy will only use powers0 andβk, k ∈ N, thus returning to a problem where

1More generally, we may consider any distribution for the random stage ofthe opponent. In that case, the
results in this chapter will remain the same, if we plausibly assume that userschoose the number of times that
each power level will be used, and then uniformly randomize over the possible permutation for a given choice.
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whenever different power levels are used the higher one succeeds with probability one. If
we redefineni, i > 0 as the number of times power levelβi−1 andn0 the number of times
the user is idle, the constraints5.1and5.2become

K∑

i=0

ni = N (5.3)

K∑

i=1

βi−1ni ≤ K. (5.4)

5.1.1.1 Team problem

We denote bygN,K(σ) the expected number of successful transmissions per battery life-
time of a mobile when all mobiles use the same mixed policyσ for given parametersN
andK. Accordingly,gN,K(σ) would be regarded as the utility of the mobile. The objective
in the team problem is to set a unified policy which maximizes the utilitygN,K(σ) overσ.
The chosenσ can be regarded as a fixed access protocol that all mobiles must obey.

In order to be able to compare strategies for different parametersN,K we introduce the
Throughput Per Slot (TPS) criterion which divides the former criterion by number of slots
N , i.e.,TPS(σ) = gN,K(σ)

N . Obviously, maximizingTPS(σ) is an equivalent problem to
maximizinggN,K(σ).

When restricting ourselves to pure policiesu, the team-objective becomes to maximize
gN,K(u) overu, where

gN,K(u) = δ(N − n0) + (1− δ)
1

N

K∑

i=1

i−1∑

j=0

ninj . (5.5)

Indeed, when there is no interference, all non-zero power levels leadto a successful trans-
mission, whereas in the presence of interference, the probability that a transmission with
power leveli is successful is given by

∑i−1
j=0 nj/N .

5.1.1.2 Noncooperative Game

In a noncooperative framework, users are self-optimizing and are free to determine their
own policy in order to maximize their expected number of successful transmissions (or
alternatively their expected TPS). A Nash equilibrium point is a collection of user strategies
for which no user can obtain a higher number of expected successful transmissions by
unilaterally modifying its transmission strategy. In the current work, we shallfocus on
symmetricNash equilibria. A symmetric Nash equilibrium is a working point where all
mobiles use the same strategyσ, and furthermore, for all other strategiesσ̃,

gN,K(σ) ≥ gN,K(σ̃, σ), (5.6)

wheregN,K(σ̃, σ) is the utility of a user who deviates to the policyσ̃, while the rest of the
population usesσ.
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For simplicity, we shall restrict our attention in the bulk of this work to the case where
N = K. A feasible policy under this setting is to use a power level of one at all time slots.
Obviously, such policy would result in zero TPS whenδ = 0, hence it is not an optimum
nor an equilibrium for this value ofδ. However, for the other extreme ofδ = 1, the same
policy becomes an optimal solution as well as an equilibrium point.

5.1.2 Numeric Examples

We provide below some numeric examples and derive some interesting properties. For
simplicity, we consider cases whereN = K andδ = 0, which corresponds to the case
where a user interacts with probability one with another user in each of its stages. In
addition, we focus below on pure strategies. We use the format(n0, n1, . . . ) to describe a
policy.

The case ofN = 3 The feasible policies that use all energy are(0, 3, 0, 0), (1, 1, 1, 0),
(2, 0, 0, 1). The expected number of packets transmitted successfully in a cycle of duration
3, if all use the same policy isg3,3(0, 3, 0, 0) = 0, g3,3(1, 1, 1, 0) = 1, g3,3(2, 0, 0, 1) =

2/3. The policy(1, 1, 1, 0) is seen to be the best pure strategy2. It is an equilibrium (in
pure strategies) as well; a deviation to(0, 3, 0, 0) or to (2, 0, 0, 1) decreases the utility
from 1 to 1/3. (0, 3, 0, 0) is not an equilibrium as a deviation of a player to(1, 1, 1, 0) or
to (2, 0, 0, 1) increases its utility to 1/3.(2, 0, 0, 1) is not an equilibrium since a player
deviating to(0, 3, 0, 0) increases its utility from 2/3 to 2.

The case ofN = 4 The feasible policies that use all energy are(0, 4, 0, 0, 0),
(1, 2, 1, 0, 0), (2, 0, 2, 0, 0), (2, 1, 0, 1, 0), (3, 0, 0, 0, 1). The policies (1, 2, 1, 0, 0)

and (2, 1, 0, 1, 0) are both optimal pure policies for the team problem, and obtain
g4,4(1, 2, 1, 0, 0) = g4,4(2, 0, 2, 0, 0) = 5/4. None of the above policies is an equilibrium:
any deviation from(0, 4, 0, 0, 0) strictly increases the utility of the deviator. By deviating
from (1, 2, 1, 0, 0) to (2, 0, 2, 0, 0) the utility of the deviator increases to 6/4. A deviation
from (2, 0, 2, 0, 0) or from (2, 1, 0, 1, 0) to (0, 4, 0, 0, 0) increases the utility to 2. Finally,
deviating from(3, 0, 0, 0, 1) to (0, 4, 0, 0, 0) increases the utility to 3.

In the list below we provide the optimal pure policies for the team problem and the
associated TPS up toN = 10.

• N = 2: TPS = 0.25

• N = 3: TPS = 0.333

• N = 4: TPS = 0.313

• N = 5: (2, 1, 2, 0, 0, 0), (2, 2, 0, 1, 0, 0), TPS = 0.32

• N = 6: (2, 2, 2, 0, .., 0), (3, 1, 1, 1, 0, .., 0), TPS = 0.333

2It can be easily shown that there always exists an optimal policy that usesall the available energy. Indeed,
given a policy that does not use all energy, we may always constructa policy that does use all energy and
obtains the same TPS (by assigning the access energy to the highest usedpower level).
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• N = 7: (3, 2, 1, 1, 0, .., 0), TPS = 0.347

• N = 8: (3, 3, 1, 1, 0, .., 0), TPS = 0.344

• N = 9: (3, 3, 3, 0, .., 0), (4, 2, 2, 1, 0, .., 0), TPS = 0.346

• N = 10: (4, 3, 2, 1, 0, ..0), TPS = 0.35

We observe the following properties from our numerical study.

1. There need not be a (symmetric) equilibrium point in pure strategies.

2. A power greater than three is not used for the team problem.

3. The optimal TPS under pure strategies is not monotone inN .

The potential of using mixed policies is highlighted in the next example. LetN = 5,
and consider the mixed policy of using with probability of1/2 each of the two policies
(2, 1, 2, 0, 0, 0), (2, 2, 0, 1, 0, 0). Note that the TPS in this case is equivalent to the one
obtained forN = 10 and(4, 3, 2, 1, 0, .., 0), which is also the optimal (pure) policy for
N = 10. The latter policy thus obtainsTPS = 0.35, which is a strictly higher value than
the one obtained while restricting the mobiles to pure strategies.

In the next section we show that a TPS of0.35 is a tight upper bound onany policy
(pure or mixed). We further show that it can be obtained for anyN = K by the use of
mixed policies. The in-existence of an equilibrium in pure policies motivates the study of
mixed policies for the noncooperative framework as well, which is coveredin Section5.3.

5.2 The team problem

In this section we consider the team problem, in which a central authority assigns a unified
policy to all users, who must obey it. The policy can be thus be viewed as aprotocol.
The natural objective is to find a protocol that maximizes the average numberof successful
transmissions (or the TPS) across users. In Section5.2.1we consider this optimization
problem under pure policies, and obtain some structural properties of thebest policy. In
Section5.2.2we derive an upper bound on the TPS for anyN . In Section5.2.3we show
that the upper bound is always achievable when mixed policies are allowed.Implications
of these results are discussed in Section5.2.4.

5.2.1 Pure Strategies

In this subsection we restrict attention to the set of pure policies, and analyze the optimal
policy among this set. From a practical-engineering viewpoint, the underlyingcomplexity
in implementing pure strategies can be lower compared to mixed policies, which require
randomization between several pure policies.

We start our analysis with a lemma that provides an alternative expression for gN,K ,
which will be central in our subsequent analysis of the problem.
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Lemma 5.2.1 Letu = (n0, n1, . . . , nK) be a unified transmission policy. Then

gN,K(u) = δ(N − n0) + (1− δ)
1

2N

(
N2 −

K∑

i=0

n2i

)
. (5.7)

Proof Note first that

N2 = (n0 + n1 + . . . nK)
2 = 2

K∑

i=1

i−1∑

j=0

ninj +
K∑

i=0

n2i

. Hence,
K∑

i=1

i−1∑

j=0

ninj =
N2 −∑K

i=0 n
2
i

2
. (5.8)

Substituting (5.8) into (5.5) gives (5.7). �

The following result is a direct consequence of Lemma5.2.1.

Proposition 5.2.2 There always exists an optimal unified policy which satisfies the follow-
ing relation

nK ≤ nK−1 ≤ ... ≤ n1. (5.9)

Proof Let u = (n0, . . . , nK) be an optimal unified policy. Assume thatni > nj for some
indexesi andj such thati > j. Consider now the modified policỹu = (n0, . . . , ñN ),
whereñk = nk, for everyk 6= i, j, ñi = nj , ñj = ni. Then ũ obviously obeys the
constraints (5.1)–(5.2). Moreover, noting (5.7), ũ achieves the same throughput asu, hence
it is an optimal policy as well. �

The above monotonicity result suggests that there is no benefit in using higher power
levels more frequently than lower power levels are used. Note that for the case ofδ = 0

it can be further shown thatnK ≤ nK−1 ≤ ... ≤ n1 ≤ n0, i.e., the number of no-
transmissions is higher than the number of transmission at any power level. However, this
inequality need not hold for generalδ.

In the remaining of this subsection, we consider the case ofN ≥ K, which may be
relevant, for example, in ad-hoc or sensor wireless networks, in which energy is relatively
limited. Our main result for that case suggests that a power level greater than 3 would not
be used inanyoptimal unified policy (regardless of how largeN andK are). Formally,

Theorem 5.2.3 Assume thatN ≥ K. Letu be an optimal unified policy. Thenni = 0 for
i > 3.

For the proof of the theorem we require four lemmas.

Lemma 5.2.4 For everypolicyu

n0 ≥ n2 + 2n3 + 3n4. (5.10)
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Proof Combining (5.1) and (5.4) and recalling thatN ≥ K we get that

n0 + n1 + · · ·+ nK ≥ n1 + βn2 + β2n3 + · · · ≥ n1 + 2n2 + 3n3 + . . .

.
Thus

n0 ≥ n2 + 2n3 + 3n4 + · · ·+ (k − 1)nk + . . .

≥ n2 + 2n3 + 3n4.

�

Lemma 5.2.5 Assume thatN ≥ K. Further assume thatu is an optimal unified policy
with n4 > 0 thenn1 > 0.

Proof Note first thatn4 > 0 implies thatn0 ≥ 3 by (5.10). Assume by contradiction
thatn1 = 0 and consider the modified policỹn4 = n4 − 1, ñ1 = 2, ñ0 = n0 − 1, and
ñk = nk for k 6= 1, 2, 4. Note that this policy obeys the constraints (5.1)–(5.2). We next
show that2 (gN,K(ũ)− gN,K(u)) > 0 which contradicts the optimality ofu. Using (5.7),
2 (gN,K(ũ)− gN,K(u)) =

2δ + (1− δ)(n24 + n21 + n20 − (n4 − 1)2 − (n1 + 2)2 − (n0 − 1)2) =

= 2δ + (1− δ)(2n4 + 2n0 − 6),
which is obviously strictly positive sincen4 ≥ 1 andn0 ≥ 3. �

Lemma 5.2.6 Assume thatN ≥ K. Letu be an optimal unified policy withn4 > 0 then

n0 − n1 ≤ n3 − n4 + 2, (5.11)

n1 − n2 ≤ n3 − n4 + 2. (5.12)

Proof To prove (5.11), consider the modified policỹu with ñ4 = n4 − 1, ñ3 = n3 + 1,
ñ1 = n1 + 1, ñ0 = n0 − 1 (note thatn0 > 0 from (5.10) and the lemma’s conditions,
henceñ0 ≥ 0), andñk = nk for k 6= 4, 3, 1, 0. Note thatũ is a valid policy, since it obeys
(5.1) and (5.2) becauseu does (the energy investment of both policies is equal). Sinceu is
an optimal policy we must have2 (gN,K(ũ)− gN,K(u)) ≤ 0. Using (5.7) this means that

2δ + (1− δ)
[
n24 + n23 + n21 + n20 − (n4 − 1)2

−(n3 + 1)2 − (n1 + 1)2 − (n0 − 1)2
]
≤ 0.

Noting that2δ is non-negative and rearranging terms in the inequality above, this inequality
holds if

2n4 − 2n3 − 2n1 + 2n0 − 4 ≤ 0

which is easily seen to be equivalent to (5.11). The inequality (5.12) is proven similarly,
yet instead of shifting an energy unit fromn0 to n1, we shift an energy unit fromn1 to n2
(note that such shift is possible by Lemma5.2.5). �
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Lemma 5.2.7 Letu be an optimal unified policy for someN andK so thatN ≥ K. Then
n4 = 0

Proof Assume by contradiction thatn4 > 0. Then

3n4 + 2n3 + n2 − n1 ≤ n0 − n1 ≤ n3 − n4 + 2, (5.13)

where the first inequality follows from (5.10) and the second one from (5.11). Hence,
4n4 + n3 − 2 ≤ n1 − n2 ≤ n3 − n4 + 2, where the first inequality follows from (5.13)
and the second one from (5.12). The last set of inequalities suggests that5n4 ≤ 4 which
contradicts the assumption thatn4 > 0. �

We are now ready to prove the theorem. Note first thatn4 = 0 for every optimal unified
policy by Lemma5.2.7. Assume by contradiction that there exists an optimal policy with
ni > 0 for somei > 4. Then as in the proof of Proposition5.2.2, the policy ũ, with
ñk = nk, k 6= i, 4, ñ4 = ni > 0, ñi = n4 = 0 is optimal as well. But this contradicts
Lemma5.2.7. �

5.2.2 Asymptotic Analysis

We henceforth restrict attention to the caseK = N . In the remaining of this section, we
use the vectorx = (x0, x1, . . . , xN ) for representing a policy, wherexi ≡ ni/N . With this
representation, (5.7) can be written as

TPS(x) = δ(1− x0) +
1

2
(1− δ)

(
1−

K∑

i=0

x2i

)
. (5.14)

The battery lifetime constraint (5.1) is

∞∑

i=0

xi = 1, (5.15)

while the energy constraint (5.4) is

∞∑

i=1

βi−1xi ≤ 1. (5.16)

In addition there is an "integrity" constraint: thexi’s are restricted to multiples ofN−1.
We now consider the problem withN very large. xi is then interpreted as the long-

run fraction of time (orfrequency) that a power ofi units is used. The integrity constraint
disappears, and we are left with an optimization problem, which is easily seen tobe a
strictly convex one.

Lemma 5.2.8 The problem of maximizingTPS(x) in (5.14) subject to (5.15)– (5.16) is a
strictly convex optimization problem.
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Proof SinceTPS(x) is quadratic inxi with a negative multiplicative term−(1− δ), and
the constraints are affine, the optimization problem is (strictly) convex. Note that in the
case ofδ = 1 the trivial unique solution of this problem isx1 = 1. �

The optimal TPS in the asymptotic case is of course an upper bound to the maximal
TPS that can be obtained for everyN (with the integrity constraint present). We emphasize
that the last statement is valid not only for pure strategies, but also for mixedstrategies, as
the solution for the case ofN → ∞ may be viewed as the frequency in which each power
level should be used, regardless if the frequencies are obtained under pure or mixed poli-
cies. A complete characterization of the optimal policy for the asymptotic case is provided
below.

Theorem 5.2.9 AssumeN = K and letN → ∞. The optimal frequenciesxi as a function
of δ and the corresponding TPS are given by:

• 0 ≤ δ ≤ 1
3 :

{
x0 =

4−7δ
10(1−δ) ; xi =

(3−2i)δ+4−i
10(1−δ) , i = 1, 2, 3;

TPS = 7−2(δ+δ2)
20(1−δ) .

• 1
3 < δ ≤ 2

3 :

{
x0 =

2−3δ
6(1−δ) ; xi =

2+3δ(1−i)
6(1−δ) , i = 1, 2,

TPS = 1
12

4−3δ2

1−δ

• δ > 2
3 :

{
x1 = 1;

TPS = δ.

Proof Noting that

TPS(x) =
1

2

(
1−

K∑

i=0

x2i

)
+ δ

(
1

2
− x0 +

1

2

K∑

i=0

x2i

)
,

we introduce the Lagrangian

L(x) =
1

2
(δ + 1) +

1

2
(δ − 1)

K∑

i=0

x2i − δx0

+ λ

(
K∑

i=0

xi − 1

)
+ µ

(
K∑

i=1

βi−1xi − 1

)
, (5.17)

whereλ is the Lagrange multiplier associated with the number of time slots, andµ with
the power constraint. We ignore in (5.17) the positivity constraints for eachxi, assuming
thatxi involved are all positive, yet directly consider this constraint in our analysis below.

We recall from Proposition5.2.2 that the optimal solution satisfiesx1 ≥ x2 ≥ x3.
Depending onδ, the largesti for which xi > 0 is either 3, 2, or 1. This is a direct
consequence of Theorem5.2.3, which holds for everyN (and also in the limitN → ∞).
We shall denote this largesti by i∗. Assume thati∗ > 1 (the casei∗ = 1 is treated
separately below). In this case, the extremum of the Lagrangian corresponds to an interior
point. Indeed, since for1 ≤ i ≤ i∗, we focus on optimal solutions that satisfyxi > 0
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and we are thus away from the boundaryxi = 0 for these indices; additionallyx0 > 0,
since a power level larger than one is being used. The optimal solution is thusobtained by
equating the gradient of the Lagrangian to zero, which leads to the followingequations

∂L

∂x0
= (δ − 1)x0 − δ + λ = 0

∂L

∂xi
= (δ − 1)xi + λ+ µβi−1 = 0 for i = 1, . . . , i∗

or equivalently

x0 =
δ − λ

δ − 1
, xi = −λ+ µβi−1

δ − 1
. (5.18)

We now consider the different alternatives fori∗. Assumei∗ = 3. Substituting (5.18)
in the constraint equations (5.15)–(5.16) (recall that the inequality (5.16) is active in the
optimum, see Footnote2) and taking into account thatxi = 0 for i ≥ 4, we obtain that
µ = 3−β−β2−4δ

3β4−2β3+β2−2β+3
andλ = β2−β+δ

3β2−5β+3
. Substituting these quantities back in (5.18)

yieldsx3 =
(3β2−β−1)δ+β3−3β2+β

(δ−1)(3β4−2β3+β3−2β+3)
.

We will consider now the particular case where there is always an interferer, i.e.δ = 0.
Then the previous expressions becomeµ = 3−β−β2

3β4−2β3+β2−2β+3
, λ = β2−β

3β2−5β+3
, x3 =

− β3−3β2+β
(3β4−2β3+β3−2β+3)

.
Since the non-negativity constraints for thexi have not been explicitly considered in

the formulation of the problem, we have to deal now with them.
For 3−

√
5

2 < β < 3+
√
5

2 , x3 > 0, and we havex2 = β4−β3−β2+2β
(3β4−2β3+β3−2β+3)

, x1 =

β4−β2−2β+3
(3β4−2β3+β3−2β+3)

andx0 =
β2−β

3β2−5β+3
.

For the rest of values ofβ, it is negative, and thus only power levels up to 2 will be used.
Proceeding analogously we get thenµ = 2−β

2(β2−β+1)
, λ = (β−1)β

2(β2−β+1)
, x2 = 1

2
β

(β2−β+1)

always greater than 0,x1 = 1
2
(β2−2β+2)
(β2−β+1)

andx0 =
(β−1)β

2(β2−β+1)
.

The evolution of the optimal power allocation as a function ofβ is summarized in
Fig. 5.1.

5.2.3 Optimal policy in mixed policies

As shown in Section5.1.2, the use of mixed strategies may increase the TPS. The upper
bound on performance obtained in Section5.2.2, leads to the objective of achieving this
bound via mixed strategies. We next establish that the upper-bound is indeed achievable
for everyN , and explicitly derive the mixed policy that leads to the corresponding optimal
performance.

With some abuse of notations, we use the notationu = (n0, n1, n2, n3) for a policy
which uses a maximal power level of3. Consider the following three pure policies:
u(1) = (0, N, 0, 0),
u(2) = (N − ⌊N/2⌋ −mod(N/2),mod(N/2), ⌊N/2⌋, 0),
u(3) = (N − ⌊N/3⌋ −mod(N/3),mod(N/3), 0, ⌊N/3⌋)
(where⌊y⌋ stands for the largest integer smaller thany, andmod(y/z) is the reminder in
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Figure 5.1:Optimal distribution of power levels as a function of the SIR threshold.

dividing two integer numbersy andz). We show below that any required frequency vector
(x0, x1, x2, x3) can be obtained by a mixed policy that uses the above three pure policies.

Theorem 5.2.10Any required frequency vector(x0, x1, x2, x3) is attained by a mixed
policy that uses the pure policiesu(1), u(2), u(3) with probabilities p3 = x3

N
⌊N/3⌋ ,

p2 = x2
N

⌊N/2⌋ , andp1 = 1− p2 − p3.

Proof Note first that the battery lifetime constraint (5.15) is obeyed since
∑3

i=0 ni = N

for each of the three pure policies. Observe next that a power level of3 is used only in
u(3). Hence, the probability of transmitting at this power level isp3⌊N/3⌋

N = x3. Similarly,
a power level of2 is used only inu(2). Hence, the probability of transmitting at this power
level is p2⌊N/2⌋

N = x2. In order to obey the total energy constraint (5.16), it remains to be
shown thatx1 = 1− 3x3− 2x2. To that end, we examine the probability for using a power
level of 1 in each pure policy, and multiply it be the probability of using that policy. This
gives

(1− p2 − p3) +
mod(N/2)

N
p2 +

mod(N/3)

N
p3

= 1− p2

(
1− mod(N/2)

N

)
− p3

(
1− mod(N/3)

N

)

= 1− x2
N −mod(N/2)

⌊N/2⌋ − x3
N −mod(N/3)

⌊N/3⌋

= 1− x2
N −mod(N/2)

1
2(N −mod(N/2))

− x3
N −mod(N/3)

1
3(N −mod(N/3))

,

which means thatx1 = 1− 3x3 − 2x2. �
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The significance of Theorem5.2.10is that the upper bound TPS can be obtained for
everyN by implementing the optimal frequencies obtained in Theorem5.2.9via the mixed
policy derived above.

5.2.4 Discussion

The combination of Theorems5.2.9and5.2.10leads to a globally optimal (mixed) policy
that achieves the upper bound on performance and hence can be set as a unified protocol.
It is important to emphasize that the number of pure policies that are used in theopti-
mal mixed policy remains a constant (three), and does not grow withN . In addition, the
complexity in computing the optimal mixed policy relates to calculating expressions such
asN/2 andN/3, which do not become much more complex for a largeN . Hence, the
optimal policy is appealingly implementable.

At a higher perspective, we note that the approach used in Theorems5.2.9–5.2.10can
be applied in more general contexts, besides throughput optimality. For example, assume
that half of the population should be given some priority in terms of the obtainedTPS,
compared to the other half. The precise definition of the QoS differentiation between the
two sub-populations can be casted as a (continuous) optimization problem. After solving
the problem and obtaining the frequencies for each subset of the population, Theorem
5.2.10can be invoked in order to implement the corresponding protocol.

5.3 The Noncooperative Game

This section is dedicated to the study of the noncooperative framework andthe underlying
Nash equilibria. Our main focus is on symmetric equilibria5.6, which may be regarded as
protocols, from which no user has an incentive to unilaterally deviate. In Section5.3.1we
prove the uniqueness of the symmetric equilibrium point, and further providea complete
characterization thereof. Using the characterization, Section5.3.2compares the perfor-
mance of the optimal policy obtained in Section to the unified equilibrium policy via the
so-called price-of-anarchy (PoA) performance measure. We conclude this section by show-
ing that asymmetric equilibria exist in general, yet leave their full analysis forfuture work.
Throughout this section, we shall focus on the case ofN = K, which enables us to provide
a concrete comparison between optimal and equilibrium performance.

5.3.1 Symmetric Equilibria

We start our analysis by showing that in any symmetric equilibrium point (5.6), power
levels equal or greater than three would never be used.

Theorem 5.3.1 Letu be a unified equilibrium point. Thenxi = 0 for everyi ≥ 3.

Proof The idea behind the proof is to establish first that a power level of three would not
be used in any best response. The theorem’s claim would then follow by induction onxi.
The proof proceeds in the following steps.
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Step 1:There is no best-response withx3 > 0: Consider a policyu′ = (x′0, x
′
1, ..., x

′
K), for

all players . Letu = (x0, ..., xj) be a best response tou′. Note that the energy constraint
(5.2) is met with equality for a best-response, hence

∑j
i=1 ixi = 1. Assume by contradic-

tion thatxj > 0. Introduce also the policŷu = (x̂0, x̂1, x̂j−1, 0) wherex̂j−1 = xj−1 + xj ,
x̂0 = x0 − xj , x̂1 = x1 + xj (note thatû obeys the energy constraint (5.2)). We show
below that̂u obtains a larger value compared tou contradicting the optimality of the latter.

TPS(u, u′) = δ(1− x0) + (1− δ)

j∑

i=1

i−1∑

l=0

xix
′
l

= δ(1− x0) + (1− δ)(x1x
′
0 +

j−2∑

i=2

i−1∑

l=0

xix
′
l + xj−1

j−2∑

l=0

x′l + xj

j−1∑

l=0

x′l)

= δ(1− x0) + (1− δ)(x1x
′
0 + xjx

′
j−1 +

j−2∑

i=2

i−1∑

l=0

xix
′
l + (xj−1 + xj)

j−2∑

l=0

x′l)

< δ(1− x̂0) + (1− δ)(x̂1x
′
0 ++

j−2∑

i=2

i−1∑

l=0

x̂ix
′
l + x̂j−1

j−2∑

l=0

x′l)

= g(û, u′)

the inequality follows from̂x0 < x0 and also fromx′0 > x′j−1.
Step 2: x3 = 0 in any best-response. Consider now a general policyu′ =

(x′0, x
′
1, x

′
2, x

′
3, . . . ) employed by all users, and a best-response of a deviatoru =

(x0, x1, x2, x3, . . . ). The utility for the deviating user can be decomposed as:

g(u, u′) = g(u(0−3), u
′
(0−3)) + g(u(0−3), u

′
(≥4))

+ g(u(≥4), u
′
(0−3)) + g(u(≥4), u

′
(≥4)), (5.19)

where for everyI ⊂ N, the notationu(I) stands for the sub-vector{xi}i∈I (thus, for ex-
ample ,g(u(≥4), u

′
(0−3)) is the number of successful transmissions obtained in interactions

where all users use power levels0 − 3 and the deviator uses power levels greater or equal
to 4). Obviously,g(u(0−3), u

′
(≥4)) = 0. As before, assume by contradiction thatx3 > 0

and consider an alternative policy for the deviating userû = (x̂0, x̂1, x̂2, 0, . . . ) where
x̂2 = x2 + x3, x̂0 = x0 − x3, x̂1 = x1 + x3, x̂i = xi for i ≥ 4. It follows from Step
1 thatg(û(0−3), u

′
(0−3)) > g(u(0−3), u

′
(0−3)). Since the other three terms in (5.19) are not

affected by the transition fromu to û, we conclude thatg(û, u′) > g(u, u′). Hencex3 = 0

in any best response.
Step 3: In any best-responsexi = 0 for i > 2. Assume by induction onk thatxk = 0,
x′k = 0. It is readily seen that the policy(x0, x1, . . . , xk = 0, xk+1, . . . ) with xk+1 > 0 is
suboptimal, sincêu = (x0 − xk+1, x1 + xk+1, . . . , x̂k = xk+1, x̂k+1 = 0, . . . ) obviously
obtains strictly higher TPS. Indeed, the deviating user benefits from the use of power level
k as it did from power levelk + 1 (due to the induction assumption thatx′k = 0), and in
addition it obtains a strictly positive benefit from additional power-1 transmissions. Hence,
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xk+1 = 0. Sincexi = 0, i > 2 for any best response, there is no equilibrium point in
which mobiles use power levels above two. �

Taking into account thatx3 = 0, it follows from the energy constraint (5.2) (which is
met with equality) thatx0 = (β − 1)x2 for any user policy. We next express the utility of
a “deviating" user with such policyu = (x0 = (β − 1)x2, x1, x2), where all others use a
policy u′ = (x′0, x

′
1, x

′
2).

TPS(u, u′) = δ(1− x0) + (1− δ)
(
x2(x

′
1 + x′0) + x1x

′
0

)
(5.20)

= δ(1− (β − 1)x2) + (1− δ)
(
x2(x

′
1 + x′0) + (1− βx2)x

′
0

)

= δ + (1− δ)x′0 + x2(1− δ)

(
x′1 − (β − 1)

(
x′0 +

δ

1− δ

))
.

Define

A(x′1, x
′
0) =

(
x′1 − (β − 1)

(
x′0 +

δ

1− δ

))
. (5.21)

Clearly, the sign ofA(x′1, x
′
0) would determine the best-response (BR) of the deviating

user, as we summarize below.





A(x′1, x
′
0) > 0 : x0 =

β−1
β , x2 =

1
β , x1 = 0

A(x′1, x
′
0) < 0 : x0 = x2 = 0, x1 = 1

A(x′1, x
′
0) = 0 : Any strategy (x0, x1, x2) is BR.

(5.22)

Using (5.22), we may explicitly characterize the symmetric equilibrium point, as we
summarize in the next theorem. When the policies below result in non-integer numbers,
mixed policies are used in the spirit of Theorem5.2.10.

Theorem 5.3.2 (i) The symmetric equilibrium point exists and is unique wheneverδ > 1/2

or β < 1
δ . It is given by

{
δ ≤ 1

2 : x0 = x2 =
1−2δ
3(1−δ) , x1 =

1+δ
3(1−δ)

δ > 1
2 : x0 = x2 = 0, x1 = 1.

(5.23)

Whenδ < 1/2 andβ > 1
δ , the two previous policies constitute both equilibria.

(ii) The corresponding TPS are given by

{
δ ≤ 1

2 : TPS = δ + 1− 2δ β−1
2β−1 ,

δ > 1
2 : TPS = δ.

(5.24)

Proof (i) Consider first the case whereδ > 1
2 . For that case,A(x′1, x

′
0) =(

x′1 −
(
x′0 +

δ
1−δ
))

<
(
x′1 −

(
x′0 + 1

))
≤ 0, which immediately leads to the best re-

sponse policy ofx0 = x2 = 0, x1 = 1.
Consider next the case ofδ ≤ 1

2 and the possible values forA(x′1, x
′
0). Assume that

A(x′1, x
′
0) > 0; then obviouslyx′1 ≥ x′0; however, the best-response (5.22) in this case
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is such that0 = x1 < x0 = 1/2. HenceA(x′1, x
′
0) > 0 does not lead to a symmetric

equilibrium. Similarly, assume thatA(x′1, x
′
0) < 0. This implies thatx′1 < x′0 +

δ
1−δ ≤

x′0+1; the best-response in this case is such that1 = x1, x0 = 0. Hence in order to achieve
a symmetric equilibrium we must haveβ > 1

δ . The remaining case isA(x′1, x
′
0) = 0. Since

the deviating user is indifferent about its policy (as long as it uses power levels not greater
than two), a symmetric equilibrium is obtained forx1 = x0 + δ

1−δ . Using the energy

constraint, the last equation immediately implies thatx0 = β−1
2β−1

1−2δ
1−δ , x2 = 1

2β−1
1−2δ
1−δ ,

x1 =
β−1
2β−1

1−2δ
1−δ + δ

1−δ .

(ii) For δ > 1
2 , it is immediate that the TPS isδ, since users always transmit with a

power level of one; the TPS in this case is thus equivalent to the probability of not facing
an interferer. For the case ofδ ≤ 1

2 , we substituteA(x′1, x
′
0) = 0 and the allocation rule

(5.23) in (5.20) and obtain thatTPS = δ + 1− 2δ β−1
2β−1 which establishes the result.�

The evolution of the power allocation at the symmetric equilibrium as a function ofδ

is summarized in Fig.5.2, and the corresponding TPS is given in Fig.5.3.
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Figure 5.2:The distribution of power levels at the symmetric equilibrium as a function of the probability of
having no interferer.
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Figure 5.3:The TPS at the symmetric equilibrium as a function of the probability of havingno interferer.
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5.3.2 Efficiency Loss

Equipped with a complete characterization of both the symmetric optimal solution andthe
symmetric equilibrium point, we may compare the performance at both frameworks. A
popular measure for comparison is the PoA [Roughgarden 2005], which corresponds in
our case to the ratio between the TPS obtained in the team problem and the TPS at the
symmetric equilibrium3. We emphasize that we do not consider here asymmetric working
points.
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Figure 5.4:Efficiency loss as a function ofδ. The y-axis is the ratio between the symmetric-optimal TPS
and the symmetric equilibrium.

The PoA as a function ofδ is depicted in Figure5.4. It is seen that the efficiency loss
is always smaller than9 percent. An interesting direction for future work is to study the
efficiency loss in cases where the energy available is larger (i.e.,K > N ) and examine
whether users misuse the access energy.

5.3.3 Existence of Asymmetric Equilibria

We focused in preceding subsections on symmetric Nash equilibria. In this subsection we
show that asymmetric equilibria exist in general. In view of (5.21), any set of policies (that
use power levels less than3), for which theaveragedistribution of power levels among
the user-population satisfiesn1 = n0 +

δN
1−δ , leads to an equilibrium. Indeed, no user will

benefit from deviating, as all(n0, n1, n2) policies are in fact best responses. A particular
case of the above are the symmetric equilibria obtained in Theorem5.3.2. Based on this
observation, it is possible to construct asymmetric equilibria as, for instance,

• A fraction 1+δ
3(1−δ) of the population usen1 = N , n0 = n2 = 0. The remaining

fraction 2−4δ
3(1−δ) usen0 = n2 =

N
2 , n1 = 0.

3In general, the PoA corresponds to the ratio between the optimal solution and theworstNash equilibrium.
However, in our case, both the symmetric optimal solution and the symmetricequilibrium are unique.
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In the present work, we do not focus on asymmetric equilibria, yet point totheir exis-
tence. The numeric example above strongly relies on our characterization of the symmetric
equilibrium. It remains to be verified whether additional asymmetric equilibria (which
may lead to different TPS) do exist. The comprehensive analysis of asymmetric equilibria
remains a challenging direction for future work.

5.4 Extensions to the model

We briefly mention how to adapt the analysis to variations on the initial model, and present
some conclusions and future research directions.

5.4.1 Soft capture Network

Assume that if two stations transmit at the same power level then a given packet is suc-
cessfully received with probabilitya ≤ 1/2. Let a = 1 − a. If powers are different then,
as before, the packet transmitted with larger power is successful and theother is not. The
objective to maximize is given by

gcap = δ(N − n0) + (1− δ)
a

N

K∑

i=1

i−1∑

j=0

ninj + (1− δ)
a

N

K∑

i=1

i∑

j=0

ninj (5.25)

= δ(N − n0) + (1− δ)
1

N

( K∑

i=1

i−1∑

j=0

ninj + a
K∑

i=1

n2i

)
(5.26)

= δ(N − n0)− (1− δ)n20a/N (5.27)

+ (1− δ)
[1− 2a

N

K∑

i=1

i−1∑

j=0

ninj +
2a

N

( K∑

i=1

i−1∑

j=0

ninj +
1

2

K∑

i=0

n2i

)
(5.28)

= δ(N − n0)− (1− δ)
an20
N

+ (1− δ)
[1− 2a

N

K∑

i=1

i−1∑

j=0

ninj + aN
]
, (5.29)

(5.30)

where we used (5.8).
Considera = 1/2. In this case,gcap equals−δn0−(1−δ)n20/(2N) plus some constant

that does not depend onu. For anyδ, this utility is maximized atn0 = 0 which means
n1 = N andni = 0 for all i 6= 1.

The casea < 1/2 remains to be investigated in future work.

Asymptotic Analysis From eqs.5.27and5.8 we can write the asymptotic TPS in this
case as:

TPScap = δ(1− x0) +
(1− δ)

2

(
1− (1− 2a)

K∑

i=1

x2i − x20

)
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We have a convex optimization problem whose Lagrangian is

L(x) = δ(1− x0) +
(1− δ)

2

(
1− (1− 2a)

K∑

i=1

x2i − x20

)

+ λ

(
K∑

i=0

xi − 1

)
+ µ

(
K∑

i=0

ixi − 1

)
(5.31)

∂L

∂x0
= (δ − 1)x0 − δ + λ = 0

∂L

∂xi
= (δ − 1)(1− 2a)xi + λ+ µi = 0 i = 1, . . . , i∗

Let us assume only power levels up to 4 are used in the optimal solution. Then,calcu-
lating the values of the multipliers in order to satisfy the constraint, we can obtain

x4 =
1

15

(−1 + 2a)(−5δ + 12δa− 12a)

(−5 + 6a)(1− δ)(1− 2a)

which is always negative, meaning that power level 4 will not be used. Inaddition,
since we still haveni ≥ ni+1 for i > 0 we can conclude that only 3 power levels will also
be used in the soft capture case.

5.4.2 CaseK ≥ N

Proposition 5.4.1 We can obtain the socially optimal policy forN,K > N , starting from
the optimal (already known) policy forN,K ′ = N by recursively obtaining new policies
with one extra energy unit by using once power levelj +1 instead ofj, and leaving all the
remaining time slots unaltered.

Let us consider a fixedN and increaseK. ForN = K, we know the optimal policy,
in the social case,u = n0, n1, n2, n3, n4 = 0. From it, we may construct a new policy
usingK + 1 energy units,u′, by using once power levelj + 1 instead ofj, and leaving
all the remaining time slots unaltered. In order to maximize the throughput, the levelj

must be chosen asj = argmaxnj − nj+1. Defined = nj − nj+1, thenn3 ≤ d, n2 ≤
2d, n1 ≤ 3d, n0 ≤ 4d, N ≤ 10d.

Suppose, by contradiction, there exists a better policy thanu′, û = (n̂0, n̂1, ..., n̂k).
Conversely, we may construct new policies using K energy units,û′, from û, by using once
power levelj instead ofj+1, and leaving all the remaining time slots unaltered. But given
the optimality ofu this impliesn̂l − n̂l+1 ≥ d + 1 ∀l. Moreover,û must use at least
power level 4, or otherwise it could be constructed in the same way asu′, contradicting the
hypothesis. Then,̂n3 ≥ 1 + d + n̂4, n̂2 ≥ 2d + 2 + n̂4, n̂1 ≥ 3 + 3d + n̂4, n̂0 ≥
4 + 4d+ n̂4, N ≥ 10 + 10d+ 4n̂4, getting a contradiction.
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5.4.3 General Access Problems

Through the model we used for the power control problem, we intended to introduce a
methodology that can be useful for general control of priority access. We briefly comment
on some specific variations that may be needed in other network applications.In a general
priority assignment context, one may again enumerate priority levels using the integers
{0, 1, 2, . . . }; an access request with priorityi ≥ 1 would prevail if it is the only request,
or if all other requests are with lower priority. It may even be granted access (with some
positive probabilitya) in the case that another request is made with the same priority level
(as in the “soft-capture" model above). Yet, there may be a difference inthe way that
priority level 0 is treated, compared to the way that power level 0 is modeled in the power
control problem. In the power control framework, when the transmission power is zero then
transmission fails, in particular, for the following two cases: (i) there is no interference, or
(ii) there is interference with another mobile that “transmits" with a power of zero. This
need not be the situation in other priority assignment models.For example, the lowest
priority (i.e., zero) can be interpreted as “best-effort" service in QoS-supporting network
architectures.

To concretize our discussion, assume that a request with zero priority willbe successful
w.p.1 in case (i) above, and with positive probabilitya in case (ii) (i.e., the “soft-capture"
rule includes priority zero as well). The expected utility is given byδN plus the third term
of (5.29), which yields

ggeneral = δN + (1− δ)
[1− 2a

N

K∑

i=1

i−1∑

j=0

ninj + aN
]
.

Interestingly, the optimal and equilibria policies for anyδ coincide with those obtained for
the original power control problem withδ = 0. Note that forδ = 1 or for a = 0.5, the
performance does not depend on the policy anymore (all policies are thusoptimal).

5.4.4 Conclusions

We have considered the priority assignment problem that corresponds to“sparse" multiple
access networks, in which pairwise interactions occur. We have provided an explicit solu-
tion for the team problem, and a complete characterization of the symmetric equilibrium
in a noncooperative framework. Interestingly, the number of power levels that is used in
the competitive setup is smaller than the corresponding number for the team problem (this
holds for everyδ). This phenomenon is counter-intuitive perhaps, as in many noncooper-
ative networking scenarios, the users consume the network resourcesin a more aggressive
way, compared to the socially-optimal point (e.g., in queuing networks, see [Hassin 1997]).





CHAPTER 6

Conclusions

In this thesis we have considered several scenarios of resource allocation techniques for
multiuser uplink scenarios. Based on a general model allowing to consider different trans-
mission technologies, we have formulated the power allocation problems with the goal of
maximizing the throughput, either of the total system, or by each user in a selfishman-
ner. The goal was both to quantify the achievable gains and to propose power allocation
algorithms allowing to implement in practice these optimal solutions.

We have initially studied the optimal decoding order and power allocation for SIC
receivers, both MMSE and matched filter, considering different, realisticchannel models.
We have shown that, for the former, the optimal detection order depends onthe requested
SINR, eventually weighted, while in the latter, only on the channel energies.The use of
asymptotic tools from random matrix theory provide a neat framework for theanalysis of
SIC systems, allowing to consider different transmission technologies under a common
system model. It has also been shown that, under certain conditions, the power allocation
can be determined in a decentralized manner (by each user individually) when considering
a high number of users in the network.

Next we considered the problem of resource allocation in fast fading MIMO channels
with correlation. Our goal was to design power allocation algorithms while minimizingthe
amount of control signal from the BS, assuming to this end only CDIT (and CSIR). Two
scenarios were studied: in the first single user decoding was performedat the base station,
whereas in the second a random coordination signal was introduced allowing to perform
interference cancellation decoding and determining the decoding order ofeach user, and
thus significantly enhancing the system performance. A game theoretic settingwas used
to analyze both scenarios, determining the existence of equilibria, which effectively allows
the mobiles to choose their power allocation policies in order to selfishly optimize their
ergodic transmission rates. In addition, an iterative algorithm has been proposed to this end
which is guaranteed to converge to the optimum if it does converge (extensive simulations
indicate its convergence).

We then proceeded to consider an scenario in which mobile stations are able to connect
simultaneously to several base stations (which may be equipped with different transmis-
sion technologies such as OFDM, MIMO or CDMA), communicating on nonoverlapping
frequency bands. A cross-system power allocation algorithm has beenstudied in order to
exploit the available cross-system diversity. For the optimum receiver, itwas shown that a
simple cross-layer algorithm, analogous to the water-filling algorithm, can be implemented
at the central controller to schedule the powers of all the users in order tomaximize the net-
work capacity, and this can be done in a simple, iterative way, which generally converges
to the optimum.
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For the MF and MMSE receivers a water-filling solution can still be obtained by in-
troducing two additional assumptions, which simplify the optimization problem but at the
price of a performance loss that has to be evaluated in the situations of interest. For the
typical scenarios considered in this paper, we saw that they were reasonable. The potential
performance gain of cross-system diversity was shown to be important inseveral typical
simulation setups. For instance, by simply using MMSE receivers at the basestations and
uniform power allocation over the different systems, the mobile transmit power could be
divided by a factor greater than 10 with respect to a standard network using the MF and
hard handover power allocation scheme.

Finally we have considered a somewhat different scenario, the priority assignment
problem in “sparse" multiple access networks, in which pairwise users interactions occur.
We have provided an explicit solution for the team problem, and a complete character-
ization of the symmetric equilibrium in a noncooperative framework. Interestingly, the
number of power levels that is used in the competitive setup is smaller than the correspond-
ing number for the team problem (this holds for everyδ). This phenomenon may appear
counter-intuitive, as in many noncooperative networking scenarios, theusers consume the
network resources in a more aggressive way, compared to the socially-optimal point.

Future Research In this thesis we have presented a number of results on how to improve
the uplink performance through proper resource allocation, specially when limited channel
state information is available at the transmitters, and determining conditions underwhich
it can be done in a distributed way.

In chapter2 the results rely on simplified, separable channel model. The obtained
decoding order is still optimal for more general channel models under certain assumptions,
such as the high rate regime, but it would be interesting to study whether this is the case
also in general.

In chapter3 the use of a simple coordination signal was able to produce an important
performance improvement by allowing the use of successive decoding atthe BS. How-
ever, more sophisticated coordination signals could be considered, creating a closed loop
approach in which it would also transfer information about the channels. In addition, the
convergence of the proposed iterative algorithm was only obtained through simulation re-
sults, its theoretical analysis would add a significant result.

The results from chapter4 could be extended by considering other performance met-
rics such as the outage probability in order to further characterize the benefits of the cross-
system diversity. Extensions considering more heterogeneous networks might also be con-
sidered (e.g. introducing CDMA base stations with multiple antennas), since theRandom
Matrix theory results used could still be applied there. Finally, in order to consider a
possible practical implementations of the scheme a number of issues would haveto be
considered, such as the BS coordination problem.

In chapter5 a simpler, symmetric, channel model is assumed, based on some related
networking problems. Several directions appear to extend the interesting results obtained
here. First a fading channel could be considered, even a simple i.i.d. one, in order to be
able to exploit some of the properties obtained here. Secondly, to considergeneral battery
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life-time N and general budget K and obtain complete characterization of boththe team
and game problems. Another challenging extension is to relax the assumption onsparsity
an to consider interactions of more than two users and their consequences.





APPENDIX A

A.1 Optimum eigenvectors for decentralized MIMO MAC with
double-sided correlation

To prove Theorem3.3.1 for u(SU)
k we follow the same steps as [Soysal 2009] and use

an additional argument due to the fact that the receive antenna can be correlated here.

By definition Hℓ = R
1
2ΘℓT

1
2
ℓ = URD

1
2
RU

H
RΘℓUℓD

1
2
ℓ U

H
ℓ , whereΘℓ is a zero-mean

i.i.d. Gaussian identity covariance random matrix. Using the fact that multiplyingΘℓ by
a unitary matrix does not change its joint distribution and the fact that|UMUH + I| =
|M+ I| for any unitary matrixU one can write:
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(A.1)

Then we can spectrally decompose the matrixD
1
2
ℓ U

H
ℓ QℓUℓD

1
2
ℓ = ŨℓD̃ℓŨ

H
ℓ and

write that
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. (A.2)

We see that the function to be optimized depends on the eigenvectorsŨk only through
the power constraintTr(Qk) = Tr(ŨH

k D
−1
k ŨkD̃k) ≤ nt. The matrixŨk can be chosen

arbitrarily provided it meets the power constraintTr(Qk) ≤ nt. The choiceŨk = I

is feasible sinceTr(D−1
k D̃k) ≤ Tr(ŨH

k D
−1
k ŨkD̃k) ≤ nt. This shows thatQk can be

chosen without loss of optimality to be structured as:Qk = UkD
−1
k D̃kU

H
k . For the

optimization ofv(OL)k one has to note that for each userk ∈ {1, 2}, Q(1)
k andQk(2) are

optimized independently. For a given realizations of S, the optimum structure ofQ(s)
k for

the interference-free channel follows from [Jorswieck 2004a]. For the other user re-use the
derivation foru(SU)

k to conclude the proof.
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A.2 Proof of Theorem3.3.2

In the proof provided here we assumed for clarityR = I but the result can be easily proved
to hold in the general case. We want to derivate the utility functionũk given by eq. (3.10).
It turns out that the partial derivative with respect toPk(i) is the same as it would be ifα and
β would be assumed to be independent of these quantities. This result is useful because it
allows us to cope with the convergence issue of the quantitiesα, β towards strict constants
as the numbers of users and dimensions grow. Therefore, the main interest in the proposed
derivation is that one does not need to assumeα orβ to be independent ofPk(i). Otherwise
the result can be obtained much more easily. We want to prove that the derivative of the

approximated utility of userk can be expressed as:
∂γsum
∂Pk(i)

=
1

nr ln 2

Kρdk(i)α

1 +KρPk(i)dk(i)α
.

We have:

nrγsum = log2




∏

ℓ,j

[1 +KρPℓ(j)dℓ(j)α(Pk(i))] (A.3)

× (1 +Kρβ(Pk(i)))
nre−ntK2ρα(Pk(i))β(Pk(i))

}
. (A.4)

Define u ,
∏
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[1 +KρPℓ(j)dℓ(j)α(Pk(i))] and v , (1 +

Kρβ(Pk(i)))
nre−ntK2ρα(Pk(i))β(Pk(i)). With these notations:
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.

It turns out that
∂uv

∂Pk(i)
= uv × Kρdk(i)α

1 +KρPk(i)dk(i)α
. This is what we want to

show. We want to derivate the functionu. As u is a product of functionsuℓ,j , i.e.

u =
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uℓ,j , its derivativeu′ can be written as:u′ = u ×
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. More precisely
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Using a similar reasoning for v one can check that v′ = v ×
Kρ
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]
. Now using the relations proved in the previous

steps we have that
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Now using the definitions ofα andβ (see eq. (3.11)) we find, after simplifications, the pro-
posed expression for the derivative ofγsum. Finally, by setting the derivative ofLλk(Pk(i))
to zero we find equation (3.13).
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B.1 Proof of Lemma4.2.2

We want to derivate the argument of the maximum in equation (4.5) with respect toαk,s.
First note from the system of equations (4.6) that rt and qt do not depend onαk,s for
all t 6= s. Based on this observation one just needs to consider the following auxiliary
function:

φ(αk,s) = log2





K∏

ℓ=1

[1 + γℓαℓ,sr(αk)]×
N∏

j=1

(
1 + ρd2jq(αk,s)

)
× e−Kρr(αk,s)q(αk,s)





(B.1)
where we dropped the system indexs and receiver subscript(R) for sake of clarity.

Define u ,

K∏

ℓ=1

[1 + γℓαℓ,sr(αk,s)] and v ,

N∏

j=1

(
1 + ρd2jq(αk,s)

)
× e−Kρr(αk,s)q(αk,s). With these notations:

∂φ(αk,s)

∂αk,s
=

1

ln 2

1

uv

∂uv

∂αk,s
. (B.2)

It turns out that
∂(uv)

∂αk
= uv × γkr

1 + γkαk,sr
. This is what we want to show.

We want to derivate the functionu w.r.t. αk,s. As u is a product of functionsuℓ, i.e.

u =
K∏

ℓ=1

uℓ, its derivativeu′ can be written asu′ = u×
K∑

ℓ=1

u′ℓ
uℓ

where

u′ℓ =

∣∣∣∣
γℓαℓ,sr

′ if ℓ 6= k

γk(r + αk,sr
′) if ℓ = k.

(B.3)

Using a similar reasoning forv one can check that

v′ = v ×




N∑

j=1

ρd2jq
′

1 + ρd2jq
−Kρ(q′r + qr′)


 . (B.4)

Now using the relations proved in the previous steps we have that

∂(uv)

∂αk,s
= uv ×




K∑

ℓ=1

u′ℓ
1 + γℓαℓ,sr

+
N∑

j=1

ρd2jq
′

1 + ρd2jq
−Kρ(q′r + qr′)




︸ ︷︷ ︸
ψ

(B.5)
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with ψ expanding as

ψ =
∑

ℓ6=k

γℓαℓ,sr
′

1 + γℓαℓ,sr
+
γk(r + αk,sr

′)

1 + γkαk,sr
+

N∑

j=1

ρd2jq
′

1 + ρd2jq
−Kρ(q′r + qr′). (B.6)

(B.7)

Now by observing that





∑

ℓ6=k

γℓαℓ,sr
′

1 + γℓαℓ,sr
=

(
Kρq − γkαk

1 + γkαk,sr

)
r′

N∑

j=1

ρd2jq
′

1 + ρd2jq
= Kρq′r

(B.8)

we find that
ψ =

γkr

1 + γkαk,sr
, (B.9)

which concludes the proof.
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