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Abstract

In this thesis we study the subject of resource allocation for uplink comntigncgystems.

When users have target rate constraints and interference cancelatsauiat the base
station we provide the optimal decoding order and power allocation in ordainionize
the power consumption. In addition conditions are derived under whicallieation can
be done in a distributed way, with only some knowledge of the statistics of thensys

We then proceed to consider multiple-input multiple-output (MIMO) systentsohn
tain the optimal precoding matrices such that each user maximizes its own etrgodic
mission rate from the sole knowledge of the overall channel statistics. &redits of using
a coordination signal and successive decoding are analyzed.

Next, a scenario in which mobile terminals can be simultaneously connectecttalsev
base stations, using non-overlapping frequency bands is investigeltecoptimal power
allocation in terms of sum rate is derived for different receiver typelsaamiterative algo-
rithm proposed to achieve the optimal allocation.

Finally, we consider decentralized medium-access control in which manyigaiin-
teractions, where users compete for a medium access opportunitypeteeen randomly
selected users that belong to a large population. The choice of powkisldeme by each
user, and both team and noncooperative scenarios are analyzed.






Résumé

Dans cette thése nous étudierons I'allocation de puissance optimale paystizses de
communication multi utilisateur en lien ascendant.

L'ordre de décodage et I'allocation de puissance optimaux pour minimisenkom-
mation totale de puissance sont déterminés lorsque les utilisateurs ont tieéntes de
débit et que la suppression d’interférence est utilisée dans la stati@seelbde plus, nous
chercherons a déterminer dans quelles conditions il est possible deurf@irallocation
distribuée en ne se basant que sur les connaissances statistiqueghe sys

Par la suite nous considérerons les systémes a entrées multiples sorties maftiples
d’obtenir les matrices de précodage optimales pour que chaque utilisatemisgazon
taux de transmission ergodique avec la seule connaissance des statidéguzmaux.
Les bénéfices de I'utilisation d’un signal de coordination et de décadageessifs sont
analysés.

Ensuite, nous étudierons un scénario dans lequel les terminaux mobilepossikil-
ité de se connecter simultanément a plusieurs stations de base en utilisaahdes tie
fréquence non superposées. L'allocation de puissance optimaleriggedgour différents
types de récepteurs et un algorithme itératif est proposé pour obtenicéiila optimale.

Finalement, nous considérerons les contréles d’accés au canalrdésémntre utilisa-
teurs choisis aléatoirement parmi une population nombreuse, avec decusedinterac-
tions entre paires d’utilisateurs ou les utilisateurs sont en concurrencepe opportunité
d’'acces.

Le choix du niveau de puissance est fait par chaque utilisateur, stamalyserons a la
fois les scénarios d’équipe et non coopératifs.






Contents

Acknowledgments [
Abstract iii
Résumé %
List of figures X
List of Abbreviations Xi
List of symbols Xiv
1 Introduction 1

2 Optimal decoding order and power allocation under target rate coistraints 7

21 Systemmodel . .. .. ... 7

2.2 MMSE-SICreceiver. . . . . . . . . . 8

221 AsymptoticSINR . . .. ... ... .. ... 10
2.2.2 Decodingorderanalysis . . . . . ... ... .. .. .. 0. 10

2.3 Matchedfilter SICreceiver . . . . . . . . . . ... 11

2.3.1 AsymptoticSINR . . . . . .. ... 12
2.3.2 Decodingorderanalysis . . . . . . . ... ... 12

2.4 Distributed allocation . . . . . ... ... o 13

2.4.1 Groupwisedetection . . . .. .. .. ... . ... .. .. ... 14

25 Simulations. . . . . .. 14

26 Conclusions. . . . . . . .. 17
3 MIMO multiple access channels: Distributed power allocation 19

3.1 Systemmodel . . . ... ... 20

3.2 Scenariosconsidered. . . . . . ... 21
3.2.1 Nocoordination, single userdecoding . . . . . ... ...... 21
3.2.2 Coordination, successive interference cancellation decoding . 22

3.3 Optimalprecodingmatrix. . . . . .. .. .. .. ... .. .. .. .... 23
3.3.1 Optimaleigenvectors. . . . . .. .. .. ... .. ..., 23
3.3.2 Optimaleigenvalues . . . . . .. ... ... ... ... ..... 24

3.4 Numericalresults. . . . . . . .. . ... ..o 28

3.5 Conclusions. . . . . . . . 28



Viii Contents

4  Throughput Optimization in Heterogeneous Networks: Cross-Sys&m Diver-

sity 33
4.1 Systemmodel . . . . ... 34
4.2 Large Systems ScenarioAnalysis . . . . .. .. ... ... ..., 36
421 OptimumReceiver . . . . .. ... ... ... ... 37
422 MMSEReceiver. . . . ... ... . ... . 40
423 MatchedFilter. . . . . ... ... .. 43
4.3 Numericalresults. . . . . . . . ... 45
4.4 Conclusion . . . . . .. e 46
5 Team and Noncooperative Solutions to Access Control 51
5.1 Systemmodel . . . . .. ... 52
511 Generalsetting . . .. .. .. ... .. .. .. .. e 52
5.1.2 NumericExamples . . . . . .. .. .. ... .. ... .. ... 54
5.2 Theteamproblem. . . . . . . . . .. . . . ... 55
5.2.1 PureStrategies . . . . . . ... 55
5.2.2 AsymptoticAnalysis. . . . .. .. ... .. .. .. 58
5.2.3 Optimal policy in mixed policies. . . . ... ... ........ 60
5,24 DISCUSSION. . . . . . . . 62
5.3 The Noncooperative Game. . . . . . . . . . . . . v vi i 62
5.3.1 Symmetric Equilibria . . . . .. ... ... . . . 62
5.3.2 EfficiencyLoss. . . . . . ... 66
5.3.3 Existence of Asymmetric Equilibria. . . . . .. ... ... ... 66
5.4 Extensionstothemodel. . . . . . ... ... ... L. 67
5.4.1 Softcapture Network. . . . . .. .. .. .. ... .. ...... 67
542 Casd{ >N . .. . . . . . e 68
5.4.3 General AccessProblems. . . . ... ... ... ... .... 69
544 Conclusions . . . . . ... 69
6 Conclusions 71
A 75
A.1 Optimum eigenvectors for decentralized MIMO MAC with double-sided
correlation. . . . . . .. 75
A.2 Proofof Theorem3.3.2 . . . . . . . . .. . ... .. ... ... .. ... 76
B 77
B.1 ProofofLemmad.2.2. . ... .. . . . . . ... e 77

Bibliography 79



11

2.1
2.2

2.3

2.4

3.1

3.2

3.3

3.4

4.1
4.2

4.3

4.4

List of Figures

Scenarios considered in the differentchapters. . . . . . . . . . . . . ... L. 3
(@) Chapter 2: MAC channel with single antennaMS.. . . . . . . . .. .. .. 3
(b)  Chapter 3: MIMO - MAC channel (multiple antennaMS).. . . . . . . . . .. 3
() Chapter 4: Single antenna users communicating simultaneously to sBgeral. . 3
Matched filter withN = 256 receive dimensions anll = 100 users at 10dB.. . . . . . 15
Total power required for MMSE, matched filter SIC and MMSE-SIC with= 128 receive
dimensions and respective loads= 0.2, «=06at10dB. . . . . . . . . . .. .. 15
Distributed power allocation for MMSE-SIC witN = 64 receive dimensions anid = 30
USersat10aB. . . . . . . . e e e e e e e e e e e 16
Distributed power allocation for MMSE-SIC witl = 256 receive dimensions anl =
100USers at10aB. . . . . v v h e e e e e e e e e e e e e e 16

Relative error $%] on the mutual information as a function of SNR for different sizes of
MIMO systems:2 x 2,4 x 4,8 x 8with K = 1,71 =05 R=L1. . . . . . . .. .. 29
Ergodic sum-rate as a function of SNR for the optimized power allocationuaiform

power allocation wherk’ = 2,n; = n, = 4,71 = 0.2,72 = 0.8 in the scenario —no

Sum-rate as a function of the number or users for different powetatltm schemes: 1.

Team game + SIC + optimal power allocation (sum-capacity); 2. Opendoogpination

+ SIC + optimal power allocation; 3. Open loop coordination + SIC + unif@ower
allocation; 4. No coordination + Single user decoding + optimal power dlttaSetup:
ne=mn,=4,r,=04rr=02,p=3dB. . . ... ... 30
Sum-rate as a function of the number or users for different powetatitm schemes: 1.

Team game + SIC + optimal power allocation (sum-capacity); 2. Opendoogpination

+ SIC + optimal power allocation; 3. Open loop coordination + SIC + unif@awer
allocation; 4. No coordination + Single user decoding + optimal power dlttaSetup:

ne =n, =4,r = (0.4,0.6,0.4,0.3,0.7,0.2,0.5,0.3),7rr = 0,p = 10dB. . . . . . . . 30

Cross-SYSteM SCENANO. . . v &+« « v v v e e e e e e e e e e e e 34
Optimal receiver. Performance gains brought by cross-systesnsity (4 CDMA systems

with N, = [32, 16, 8, 4] receive dimensions anl = 50 users). . . . . . . . . . . . . 47
Optimal receiver. Performance gains brought by cross-systeansity (2 CDMA systems

with N, = [32, 16] receive dimensions and 2 MIMO systems with = [8, 4] receive
antennaskK =50 USEIS).. « « + v v v v v e e e e e e e e e e e e 47
Matched filter performance for the optimum (calculated exhaustiveppraximate opti-

mum, uniform and hard handover power allocations. (2 CDMA systeitis M, = [2, 4]

receive dimensions anl = 2USEIS) . . . . « . .« v v v e e e e e e e e 48



List of Figures

4.5

51
5.2

5.3

54

Average user rate vs. SNR for Optimum receiver, MMSE receivdmaatched filter, com-
paring the obtained power allocation, with hard handover and unifornepallocation. (3

CDMA systems withV = [32, 8, 4] receive dimensions anl =20 users) . . . . . . 48
Optimal distribution of power levels as a function of the SIR threshold.. . . . . . . . 61
The distribution of power levels at the symmetric equilibrium as a functioneoptbbabil-

ity of having nointerferer.. . . . . . . . . . . . L. oL L Lo 65

The TPS at the symmetric equilibrium as a function of the probability of hanmanter-

ferer. . o e e e e e e 65
Efficiency loss as a function @&. The y-axis is the ratio between the symmetric-optimal

TPS and the symmetric equilibrium.. . . . . . . . . . . .. ... .. 66



List of Abbreviations

AWGN Additive White Gaussian Noise

BS Base Station

CDIT Channel Distribution Information at the Transmitter
CDMA Code Division Multiple Access

CSI  Channel State Information

CSIR Channel State Information at the Receiver
CSIT Channel State Information at the Transmitter
GSM Global System for Mobile communications
i.i.d. independent and identically distributed

MAC Multiple Access Channel

MF  Matched Filter

MIMO Multiple-Input Multiple-Output

MMSE Minimum Mean Square Error

MS  Mobile Station

NE  Nash Equilibrium

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
pdf  probability density function

PoA  Price of Anarchy

Qos  Quality of service

SIC  Successive Interference Cancellation

SIMO Single Input Multiple Output

SINR Signal to Interference plus Noise Ratio

SIR  Signal to Interference Ratio

SISO Single Input Single Output



Xil List of Figures

TD Time Division
TPS  Throughput Per Slot
UMTS Universal Mobile Telecommunication System

WCDMA Wideband Code Division Multiple Access



List of Symbols

a scalar variable

a vector variable

a matrix variable

a set

The Set of natural numbers

The Set of complex numbers

The absolute value of an scalar

Euclidean norm of the vector

The cardinality of a set

The inverse of matrix

All zero matrix

Identity matrix

Transpose operator

Hermitian transpose operator

Trace operator

Determinant of the matrixX

Expectation operator

The base 2 logarithm

The natural logarithm

Mutual information between random variables X and Y
Remainder in dividing two integer numbers x and y
Largest integer smaller than x

The little-o notation, i.e. f=0(g) means thgat—> 0

max(.,0) operator






CHAPTER1

Introduction

During the last years, the appearance of hew wireless services sstteaming and real
time multimedia applications, video calls, Internet browsing or file transfer ltaklan
increasing demand of higher data rates, while at the same time requiringediftprality
of service constraints depending on the particular application.

These increased rates pose an important challenge, since the highiezdegpectral
efficiency calls for more aggressive frequency reuse schemedtimgsn turn in a higher
level of interference affecting all the communication links. One way to addids chal-
lenge is through proper allocation of the wireless resources. In partipolaer allocation
has been used in both the uplink and downlink of different communicatictersgsto
tackle interference management. This is specially important for the uplink dhe ton-
ited battery budget available at the mobile stations, making energy conservagiortant
for its lifetime, and power control helps minimize the total energy requirements.

Early power control research, intended for voice-centric wirelessarks, focused
either on balancing the signal to interference ratios (SIR) , where thetivgjés maximiz-
ing the minimum SIR level, or achieving a target SIR enabling a successfuhcmication
from the point of view of outage probability. A similar approach is adopted lhmechapter
2, although in our case the target signal to interference plus noise ratiRjSdre de-
termined by the varying data rates or quality of service (Qos) constraimgee for the
different applications, in contrast to the constant SINR required in a&vwatwork.

The remainder of this work, i.e. the contributions shown in chapters 3,4,awhben-
trates however on power allocation in the context of data wireless netywelniese in gen-
eral throughput optimization becomes a more relevant figure of merit, due po#sibility
of varying transmit rates, adapting them to the channel state conditionsrigyadaptive
modulation and coding schemes. The advent of services requiringfliestratffic, gives
an additional degree of flexibility when compared with traditional voice comnatioias,
allowing the allocation of more resources to users with better channel corgiiorder to
benefit from the so-called multiuser diversity and increase the total itgjpthe system.

The focus of this dissertation is on resource allocation for uplink systenparticular,
an emphasis is given to the possibility of determining this allocation in a distributgd wa
obtaining conditions under which this is possible, or at least with a reduredira of
channel state information at the transmitter in order to reduce the feedbstslkassociated
with it.

A common set of assumptions will be considered throughout most of the threept
where otherwise stated:

e We will consider mainly a cellular 4G system, although some of the results can also
be applied in the adhoc network context.
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e We will consider physical layer resource allocation, mainly power allocgtiopre-
coding matrices when multiantenna transmitters are considered), but Eobexdhd
other upper layer resource allocation issues will not be dealt with here.

e A single cell system is considered, so only intracell interference is préseercell
interference is implicitly taken into account into the noise). Only in chagtar
system with several base stations will be analyzed, but no intercell irdade will
be present either, as the different base stations are assumed to conenovecaon
overlapping frequency bands.

e The main figure of merit used will be the capacity or sum rate in its information theo
retic sense. As aresult, no assumptions are made regarding the particdildation
scheme. In addition, this means assuming ideal link adaptation, for whicliadap
modulation and coding schemes must be used. This is a reasonable assgimp&on
practical coding schemes performing close to Shannon limits exist.

e Multiple antennas or receive dimensions are assumed at the base statidaritoor
deal with the multiuser interference.

Another common thread in the thesis is the use of two set of tools, Random Matrix
Theory and Game Theory, which have created a great deal of iniertbst last few years
regarding their application to the wireless communications field.

Random Matrix Theory allows to exploit the averaging properties of laygeems (in
the number of users, receive dimensions) and thus characterize fiiergsrce of a system
in the asymptotic regime as a function of a few key parameters.

Game Theory is a convenient tool for the analysis of systems in which haeesto
make strategic choices independently (in our case selecting the transmissienigvel),
and their success will depend also on other users’ choices. Twoattitfscenarios will be
considered:

e The team problem, in which all users share the common objective of maximizing a
global criterion.

e The non cooperative game, in which each user maximizes its own perfoemaes:
sure and where the solution concept is the Nash equilibrium. We will study both
pure strategies, which determine the player’s choice for any situationue face,
and mixed strategies, composed of a collection of pure strategies, eadnakith
a given probability.

An outline and the contributions of each chapter are given below:



(a) Chapter2: MAC channel with single an- (b) Chapter3: MIMO - MAC channel (mul-
tenna MS. tiple antenna MS).

(c) Chapte#t: Single antenna users communicating simultaneously to several BS.

Figure 1.1:Scenarios considered in the different chapters



Chapter 1. Introduction

Chapter 2 - Optimal decoding order and power allocation under target rate con
straints

In this chapter, we consider the scenario illustrated in figui€a) several single-
antenna users, with target rate constraints, are communicating with a coms®ostétEon
equipped with multiple receive dimensions (either multiple antennas or chips irasiee ¢
of a code division multiple access (CDMA) system) and a multiuser receinatcbied
filter successive interference cancellation (MF-SIC) and minimum mearsguror SIC
(MMSE-SIC) are considered) to deal with the interuser interferenc@ndesults from
Random Matrix Theory, the optimal decoding order at the base statioroavet pllocation
across users are obtained to minimize the total power consumption while safigfgin
users’ rate constraints. In addition, conditions under which the poweradibkm can be
carried in a distributed way are discussed. The work in this chapter leagpoblished in:

e A. Suarez, R. de Lacerda Neto, M. Debbah, and N. Linh-Trung ‘@ allocation
under quality of service constraints for uplink multi-user MIMO systems” RIBY

I[EEE 10th Biennial Vietham Conference on Radio and Electromosrember 6-7,
2006, Hanoi, Vietnam

e A. Suarez, M. Debbah, L. Cottatellucci and E.Altman “Optimal decodingrande
der target rate constraint8th IEEE Workshop on Signal Processing Advances for
Wireless Communications (SPAWQ@)ne 17-20, 2007, Helsinki, Finland

Chapter 3 - MIMO multiple access channels: Distributed power allocationlin this
chapter, we consider multiuser MIMO multiple access channels (MAC) , intwiniabile
stations (MS) are also equipped with multiple antennas, as illustrated in figh(t® The
problem is analyzed under a game theoretic perspective, deriving timabprecoding
matrices when users maximize their own ergodic rate under statistical chatateiin-
formation (CSI) . Two scenarios are considered, in the first no coatidim is available
and thus single user decoding is performed at the base station (BS)eashethe second,
there exists a random coordination signal which can be heard by all tseh&he BS and
is used to determine the decoding order of the different users when aisiimgerference
cancellation receiver. The work in this chapter has been publishedtimpar

e S, Lasaulce, A. Suarez, M. Debbah, and L. Cottatellucci, “Power ditotgame
for fading MIMO multiple access”, in thdCM Proceedings of the International

Conference on Game Theory in Communications Networks (GAMECQ®I&H)-
ber 23-25, 2007, Nantes, France

Chapter 4 - Throughput Optimization in Heterogeneous Networks: Cross-Sysm
Diversity

In this chapter we introduce and study the problem where several ceserige con-
nected simultaneously to a set of BS (each of them using non overlapgqgefncy
bands), as depicted in figutel(c) The optimal power allocation is obtained, maximizing
the ergodic sum-rate. Three different type of receivers are camrsideptimum receiver,
matched filter and MMSE. For the first, exact expressions are dexitesteas for the last



two a concave approximation is analyzed and conditions for its validity stu@réd work
has been published in:

e S, Lasaulce, A. Suarez, R. de Lacerda Neto and M. Debbah, “Gya$sm resources
allocation based on random matrix theokgluetools 2007, 2nd International Con-
ference on Performance Evaluation Methodologies and Ta@utsober 23-25, 2007,

Nantes, France,

e S, Lasaulce, A. Suarez, R. de Lacerda Neto and M. Debbah, “Usaosg-system
diversity in heterogeneous networks : throughput optimizatiBatformance Eval-
uation, ElsevierVol.65, N°11-12, November 2008 , pp 907-921

Chapter 5 - Team and Noncooperative Solutions to Access Control

In this chapter we consider a decentralized medium access controlmprahtéer both
team and noncooperative game perspectives. It is shown that optimeapplicies do
not exist in the team framework, but both an optimal solution as well as edaikist
within the class of mixed policies. We establish structural properties as wel@git
characterization of these: We show that the optimal policy requires onlg thmierity
levels, whereas the noncooperative game possesses a unique symeuéliidem point
that uses at most two priority levels. This work has been published in:

e E. Altman, I. Menache, A. Suarez “Team and noncooperative solutm@aecess
control with priorities”Infocom 2009, 28th IEEE Conference on Computer Commu-

nications April 19-25, 2009, Rio de Janeiro, Brazil

and submitted for publication in:

e A. Suarez, E. Altman, |I. Menache “Team and noncooperative solutmmascess
control with priorities”submitted to IEEE Transactions on Networking






CHAPTER 2

Optimal decoding order and power
allocation under target rate
constraints

In this chapter we consider an uplink scenario in which each user hageatate constraint
that must be satisfied and the objective is to minimize the total power consumptie®S"
is equipped with an interference cancellation receiver in order to dealtkatimultiuser
interference. Successive interference cancellation is a simple schéiich, successively
subtracts the decoded signal from the composite received signal, rgsaltaduced inter-
ference for subsequent users. Here we will assume no decodorg are made, and thus
interference form previously decoded users is fully removed.

In its full generality, the target rate problem can be tackled through prppeer
allocation (when the rate regions are achievableBoche 2004 Jorswieck 2004b
Jorswieck 200B However, the power allocation scheme depends on the channel real-
izations of all users, the requested rates and the type of receivetuseriduller 2000
Caire 2004 Meshkati 2005hp In addition, when interference cancellation receivers are
considered, it is also influenced by the decoding order used at tHeeeda fact, in order
to meet the rate constraints, it is immediate to see that a given decoding orgeelyn
determines the associated power allocation. Thus, an added problem astpkexity in-
crease of the power allocation algorithm with the number of users, sincaarajeall the
possible decoding orders have to be considered, making it a NP-fcdrie por.

In this chapter, we derive the optimal (which minimizes the total power) degautorer
for MMSE-SIC and matched filter receivers for a given set of retpaesates, considering
rather general channel signatures. Similar work had been done psgvio [Li 2004], but
only for the MMSE-SIC receivers and the particular case of i.i.d. sigeatur

Interestingly, it is also shown that the power allocation (in the case of imdiepe and
identically distributed (i.i.d) signatures) can be determined in a decentralizetem@ach
user can determine his decoding order and power allocation based otflg &nowledge
of the discrete set of possible rates, whereas in general, the base statiputes the
algorithm and allocates the powers) for a high number of users in the etihMois result
can be applied to reduce the downlink signaling of multi-user systems.

2.1 System model

A system composed of a base station, witidimensions ands users, is considered. We
are interested in the uplink scenario. Each usisrsupposed to send a signal at a requested
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rate R;.. The input output relationship of the system is then given by:
1
y = HP2s + n, (2.2)

wherey, s, n, H andPz are respectively the received signal, transmitted signal, additive
white Gaussian noise (AWGN) of varianeé, the mixing matrix, and diagonal matrix of

transmitted powers. In the following, these terms are written out as:[y1, v, . . ., yn|’ ,
s = [s1,52,...,sk])7, n = [n1,n,...,ny|7,
hir hiz ... hg
H= . . ;
th e hNK
and o, )
p: 0 0 0
1
pi_ 0 p; O 0
S 0
1
L0 0 0 - pi |

The h;; are independent zero mean gaussian variables with varianggs In particular,
the mixing matrix can be written as

H=GoW

whereW and G are respectively atV x K i.i.d. zero mean Gaussian matrix and the
pattern mask specific to a given technold@y= [g;x)i=1..nk=1..x. © is the Hadamard
product, defined a(iél ® B)zg = Angz]

The model is broad enough to incorporate several technologies: tanoe MIMO
and flat fading CDMA systems.

In the following, columnh;, corresponding to useérwill be called a signature irrespec-
tive of the technology.

2.2 MMSE-SIC receiver

The MMSE receiver has several attributes that make it appealing forluseknown to
generate a soft decision output that maximizes the output SN\RIjow 1994

As far as the MMSE SINR is concerned and considering E%),(the output of the
MMSE detector, denoted ldy= [31,...,3k]|7, is given by

s =P2HY (HPHY 4+ 0°Iy) 'y
—P:H7A ly,

with A = HPH" + ¢2Iy. Each componen;, of § is corrupted by the effect of both
thermal noise and “multi-user interference” due to the contributions of ther sfmbols
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{s1}1x. Let us now derive the expression of the SINR at one of kheutputs of the
MMSE detector. Leth;, be the column o associated to elemen}, andU the N x
(K — 1) matrix that remains after extractirtg, from H. The component;, after MMSE
equalization has the following form:

Sk = N, Sk + Tk,

where
1 Hoa—1 1
Th, = pphy A7 pihy, (2.2)
1 1
Tk = Dj, thAlePE (15 vy Sk—1,0, Skt1y-- -y SK]T (2.3)
1
+phff A7 n. (2.4)

The SINR; at the outpuf: of the MMSE detector can be shown to be expressed as (see
e.g. [Tse 1999):
H H 2 -1
SINR;, = pghy’ (UPLUY +0°Iy)  hy,

wherePy, is the power matrix, from which the k-th column and row have been removed.
The MMSE receiver has the advantage of a very low complexity implementatios.

feature (due in part to its linearity) has triggered the search for other EIbSed receivers

such as the MMSE Successive Interference Cancellation (MMSE-RI©)fi 1995h

Cioffi 19954, which is at the heart of very famous schemes such as BLAZIden 1999
The algorithm relies on a sequential detection of the received biokijansky 1998

At the first step of the method, an MMSE equalization of m&lrix x = H is performed

by a multiplication ofy by matrix

Fi = P2 TU (Tn xPTY  + 01) 7",

Suppose that the algorithm starts by decoding symaRolThe estimated symbol goes
through a turbo-decoder chain in order to improve the reliability of the deteptiacess.
Assuming a perfect decision (this is possible if the informatignhas been encoded at a
rate oflog, (1 + SINR)), the resulting estimated symbét is subtracted from the vector
of received samples in the following manner:

1
ro =r1 — piSxt,

wheret; represents thé" column of T x and vectorr; = y. This introduces one degree
of freedom for the next cancelling vector choice which enables to eethe noise plus
interference influence and yields an increase in the decision prodiesslitg.

The second step can be virtually represented by a completely new syst&m-of
symbols(sy, ..., sx—1) transmitted with power§, . .., px—1) by anN x (K —1) matrix
Ty, x—1 on the same flat frequency fading channel. Equalizing with matrix

1
Fo= P?(—lTJIé,Kq(TN,K—1PK—1T§K_1 + U2IN)_1,
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one can retrieve symbely_; which has been encoded at a ratda@f,(1 + SINRx_1).
The same process described at the beginning can be re-iterated. vEin¢aa@ of such a

scheme is that
SIC MMSE

SINR{jc_;) > SINR ;).

which means that one is able to convey more information on the second sysmua the
SINR increases) than with MMSE equalization.
This analysis can be extended to iteratiabtaining the corresponding SINR as

K -1
SINR; = 7 = pihy’ ( > pihuby’ + 021) h;,
I=i+1

and the power

v
hi (YK wh 1 o21) b
i (lei—i-l pihyh” 4o ) i

pi =

2.2.1 Asymptotic SINR

The output SINR depends in an intricated manner on the different signagalizations.
Interestingly, when the dimensions of the system increase at the same rateKi.e> oo,
ﬁ = «), it can be shownGirko 2007 and [Tulino 20054 that the SINR;y, at the output

of the MMSE-SIC receiver is given by:

N 2
_ Dk Z | i |
Tk N o2+ L ZK pulgal® ”
i=1 N 2ui=k+1 1+,

Hence, the SINR does not depend on the channel realization.

2.2.2 Decoding order analysis

In this part, a flat fading scenario is considered, igg. = gx, where the SINR can be
rewritten as

2
NP . (25)

2 . 1 yK pulgl?
0%+ N Dkt 1+,

Result: For the case of flat fading channels, the optimal decoding orderingidsma
the user requested SINR, weighted by the individual path losses, bmdgdhe ordering
1*721 < 1+|7§ < ... < % Moreover, the power allocated to each user has an explicit

l91 T g2 lgx|?
form given by:

K

Y 2 I v
= * 5 1+ — .
P |91 |? i—lgﬂ[ N1+%']
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Proof:

Definefy, = %. Thus

Br—1 = Bk + %% =B (1+ vl + )

So it can be easily seen that the exchange of the decoding order ofs2wmdd not
affect the remaining ones. Let us now consider two possible orddrpgs, 7] (userk —1
is here decoded before uggrand |y, vx—1] with respective power allocationsy_1, px|
and[py,p;_;]. Then:

_ Brk
pk - 2
|9k |
BrYk—1 I v )
= 14—
Pt |gK—1/? N1+
p* _ BrVk—1
b |gk—1/?
o= Bk (1 1 >
P w2 N1+
Dk + DPk—1) — Pk +DPk—1) = 77k Vk—1 —
( )~ Wt pi) =T et PO ) 9P+ 7o)

Then in order to minimize the total power consumption with the orddripgy,—1] we
must have

196 (1 4+ ve-1) < |gr—1*(1 + )

L+ve—r 14+
|gr—1]? |gr|?

2.3 Matched filter SIC receiver

The matched filter for usek is given byu!! = h¥l = (g, ® w;). The signal at the
output of the matched filter is given by

1 1
u'y = p2 gk © wi*sic + > u™p? (g © wi)s; + u'ln
i£k
and the SINR can be expressed as

N
pk(zi:1 ’wik|2gi2k)2
N K N :
o2(3 iy ’wik‘ng'Qk) + Zl:kJrl pil D oisy Wi wagikgil?

Ve =
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2.3.1 Asymptotic SINR

In the case of a large number of users and dimensions increasing atntleerate (i.e
N, K — oo but the ratio% = «, also known as the load of the system), and tak-
ing into account that they;; are independent and{|w;;|?} = 1/N and E{|w;;|*} =

- with «a > 1, the SINRy, can be shown to be equal to

Noe
N
Pk(zz‘:1 gzzk)z

— 2.6)
N K N (
No?23 L, gz'gk + Zl:k—H (P2 gzzkgzzl)

Vk

2.3.2 Decoding order analysis

In this section a separable model will be considered for the channejyepssfiles, i.e.
gir = a;bx, which encompasses MIMO and frequency selective CDMA systems,@amon
others. Hence equatio.g) can be rewritten as

. Pib}(SL, a?)?
- N K N
No? 370, af + 3 gy (b 2055 af)

In the following, defineE,, = % Zf\[zl lgix|? as the average energy of ugetthen the
following result holds:

Result: For the matched filter SIC receiver, the optimal decoding order is given in
order of decreasing channel energies, Eg.> Ey > --- > Ex (where the index denotes
the decoding order of the user), and the power allocation to satisfy thestl rates is
given by

o S lgal®
=— [] Q+w== 2.7
Pk Ek ( +'7l E12 ) ( )
l=k+1

Proof: The proof follows the same steps as the on2.ih
Let Ay = & SN a2, andAy = £ 3| af. Then the SINR is given by:

_ prbRA3
02As + F ALY mib?

Yk

, b2 A2
Defines;, = p’“y%. Hence

K
1
/Bk = 0'2A2 + NA4 Z plle
I=k+1

1Ay
N v Az

So it can be easily seen that the exchange of the decoding order ofs2wmdd not
affect the remaining ones. Let us now consider two possible ordgnpgs, 7] (userk—1
is here decoded before uggrand |y, vx—1] with respective power allocationsy_1, px|
and[p;,p;_,]. Then:

Br—1 = Br(1+
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o= Br Yk
b2 A3
BrVk-1 1 Ay
= 1+ —ypa
p* _ ﬂk”Yk—l
h—1 =
by, A3
«_ Brve 1 Ay
— 14—y —=
P bzA%( +N7k IA%)
So that
. 1 Yeyr—144
1 — (p} )= —o— — — with ¢ = -+~ ~"——=
Pk + Pr—1 (pk +Pk71) biq bi N A%

and the ordering to minimize the requested power depends only on the teaengies
(since for usetk, the energy is given by, = b7 Zf\il a?) and therefore the decoding
order should be done in terms of decreasing energiges, (> b7). The result follows
therefore directly.

2.4 Distributed allocation

In many cases, the central entity can not feedback to the users thediff@wers in order
to satisfy the requested rates. Moreover, the downlink overhead sigmaly dramati-
cally impact the useful rate as the number of users in the system incréasiesse cases,
a decentralized approach may be used where each user determines$isgbeiyer. Pre-
vious attempts for the analysis of decentralized schemes rely mainly on ganetitheo
approaches. In this section, we will show how asymptotic analysis candukinghis
setting.

We consider a system in which users have a discrete set of M differaialale rates
to choose fromRy, ..., Ry, as is the case in universal mobile telecommunication system
(UMTS) or other wireless local area network standards. The numheses$ in each class
rate is denoted by, ..., K);. The users are supposed to know the average fraction of
users with a certain rate i€’ = pr(R = R;)K as well as the total number of useks
in the system. The valugs (R = R;) are usually provided by previous measurements on
the user’s system behavior. In the case of a high number of users,

K~ K =pr(R=R)K
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2.4.1 Groupwise detection

In the case of i.i.d signatures, a user in rate cldgscan estimate his SINR and his decod-
ing order since in this case, equati@f) boils down to:

1
2 1 M * _ Pl
+ N Zl:m Km 1+"/l

The receiver in this case needs to implement a Groupwise SIC. Indeedbitisssible
for the user to determine precisely in which order he will be decoded anibtige aisers
with the same rate requirements, since this decision can be taken arbitrarilg bagh
station. Users in the same class can be decoded either in an MMSE filter oENBWS
fashion. In the latter case, users will have a better SINR then the targeted/ich
will reduce the probability of error. Moreover, as previously, the poatcation has an
explicit form which depends only on the probabilities of the users to be intaioelass:

Vi = Dk (2.8)
g

M
1 i
k 2 *
= + — K . 2.9
P’ =0 N;ﬂ mio (2.9)
For the MMSE-SIC, the groups of users should be decoded in ordtecrefasing requested
rates, by a derivation following the lines of the one in sec&dh?2

Note that the same does not hold for the matched filter as the decoding eppeTds
on the channel strength (which is the same in the i.i.d case) and not the tiN&es$.S

2.5 Simulations

In this section, some numerical results are presented to illustrate the thdmlaiiva. All
simulation have been performed for an SNR (SN%) of 10dB.

Figure 2.1 presents the requested and achieved rates for the SIC matched filter with
optimal power allocation and decoding order. The users share a comman poofile
along the different dimensions and are supposed to be affected bymauath losses. As
one can see, the asymptotic results match for a reasonable systemV witR56 receive
dimensions and{ = 100 users.

In figure 2.2, the required power for a set of requested rates is plotted for the MMSE
and matched filter SIC for different loada: = 0.2 anda = 0.6. An important gain is
achieved with the MMSE-SIC filter, especially as the load increases.

In figures2.3 and 2.4, the achieved rates for the distributed power allocation scheme
with a MMSE-SIC receiver are shown fd&¥ = 64 and K = 30 as well asN = 256
and K = 100. In the system, four available rates are considered (which are randomly
requested by the users with equal probability). For each user, thesteguand obtained
rates for a certain channel realization are plotted. It can be seen thastlies obtained
are quite good already for a system with= 64 and X' = 30 when the users know only
the probabilities of the requested rates.
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Figure 2.1:Matched filter withV = 256 receive dimensions anll = 100 users at 10dB.
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Figure 2.2:Total power required for MMSE, matched filter SIC and MMSE-SIC with= 128 receive

dimensions and respective loagds= 0.2,

o = 0.6 at 10dB.
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O Obtained Rate
4.5+ : ® Reguested rate
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Figure 2.3:Distributed power allocation for MMSE-SIC withl = 64 receive dimensions and = 30
users at 10dB.
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Figure 2.4:Distributed power allocation for MMSE-SIC witl = 256 receive dimensions anl = 100
users at 10dB.
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2.6 Conclusions

In this chapter, the optimal decoding order and power allocation has legsedifor SIC
receivers, both MMSE and matched filter, considering different, reatibaninel models.
Remarkably, for the former, the optimal detection order depends on thesteq SINR,
eventually weighted, while in the latter, only on the channel energies. Wedtewn that
the use of asymptotic tools from random matrix theory provide a neat frarkdaothe

analysis of SIC systems. It has also been shown that, under certaiti@osidthe power
allocation can be determined in a decentralized manner (by each user uradliyjdvhen

considering a high number of users in the network.






CHAPTER 3

MIMO multiple access channels:
Distributed power allocation

In this chapter we consider distributed power allocation algorithms for theiiviltiple
access channel. The main difference with respect to the previous otie @esence
of multiple antennas also on the MS, and thus the multiple receive dimensionsB the
will also be multiple antennas. In this context we want to investigate the optimurarpow
allocation at the mobile stations when the signaling protocol overhead istatrseery
reduced.

From an information theoretic point of view, the optimal centralized powerratel
policies for the fast fading single input single output (SISO) MAC hawntgetermined by
[Gallager 1994 Shamai 199f'when channel state information at the receiver is assumed
(CSIR) and by Tse 1998 when CSI is assumed at the receiver and transmitters (CSIR
and CSIT) , which leads to the MAC ergodic capacity region. Recently, uki@oes of
[Soysal 200]] Soysal 200Paddressed the fast fading MIMO MAC with transmit antenna
correlation and covariance feedback at the transmitters and determirsgutithem power
allocation policy in terms of ergodic sum capacity. We consider the same frankew the
latter, fast fading MIMO MAC with CSIR and CDIT (channel distribution infeation at
the transmitters) , but we also assume correlation at the receiver and muemportantly
we do not assume the power allocation policies to be centralized. In ouxteaish user
wants to selfishly maximize its own utility instead of a global utility function such as the
sum-capacity.

A convenient tool to address decentralized problems turns out to be gaory (see
e.g. [Fudenberg 199Altman 20064)). The authors ofl[ai 200§ used a game theoretic
approach to characterize the ergodic information rates of fast fad®@ &hd single input
multiple output (SIMO) multiple access channels when perfect CSIR is assantkeach
user knows his channel and those of the other users. Althoughmeélai 200§ is prob-
ably the closest work to ours we also note that other authors have wonkedltiple access
or interference channels from a game theoretic perspective. For &xamfArslan 2007
the authors have chosen the individual mutual information as a utility funatidassumed
CSIR and CSIT for studying static MIMO interference channels Sleuari 200Bthe au-
thors have also considered the individual mutual information for studyinig ftaquency-
selective interference channels. Some authors have used difféifinfunctions, such as
those maximizing energy-efficiency (see edeghkati 20051 Meshkati 200§), in order
to study the existence and unigueness of a Nash equilibrium (NE) in MACs.

Our work can be considered as a partial extensiorLaf 200§ in the sense that we
address MIMO channels instead of SISO and SIMO channels but itglifiem it at least
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in four important points. First, each user is only informed with the statistics afitfezent
channels and not with their instantaneous knowledge. The CDIT assuniptenerally
considered to be more realistic in fast fading environments and in the parteasia of de-
centralized systems it involves much less feedback signals from the btse, stampared
to the CSIT assumption. Second, the transmit and receive antennas camdiated (this
feature cannot be considered when assuming perfect CSI sincdraashitter exploits
the realization of the channel itself). Third, we exploit the theory of ramaoatrices.
Considering (moderately) large systems in terms of numbers of antennaslbkast two
advantages: the underlying averaging effect makes predictable cguimities of inter-
est, which allows each player to partially/totally predict the strategy of otlaais,more
importantly it simplifies the derivation of distributed power allocation algorithmstaad
analysis of their properties. Concerning this point, random matrix theonpeilised with
the same approach as the authorsTaflino 20058, who studied the impact of antenna
correlation on fading MIMO single-user channels. As a fourth point,aeei$ more on the
sum-rate as a system performance criterion and present coordindtemes (there exists
a random coordination signal which can be heard by all the MSs and tlaa®8 used to
determine the decoding order of the different users when using argrgade cancellation
receiver), complementary to (and sometimes simpler to implement than) thodepaele
in the Stackelberg formulation oE&i 2009.

3.1 System model

We consider the uplink of a single cell witki active users. Each mobile station is equipped
with n; antennas whereas the base stationrhamtennas (thus we assume the same num-
ber of transmitting antennas for all the users). In our analysis the flaigfatiannel ma-
trices of the different links vary from symbol vector (or space-time aantd) to symbol
vector. We assume that the receiver knows all the channel matricegagheach trans-
mitter has only access to the statistics of the different channels. The leniitzaseband
signal received by the base station can be written as

K

y:ZHkxk—i—n (3.1)
k=1

wherexy is then;-dimensional column vector of symbols transmitted by useH; €
Crr-x™t is the channel matrix (stationary and ergodic process) of kserdn is an,.-
dimensional complex white Gaussian noise distribute @ 01,.). Each channel input
is subject to a power constraifit [E(x;x’)] £ Tr(Qx) < n¢Py. In order to take into
account the antenna correlation effects at the transmitters and reweiveiil assume the
different channel matrices to be structured according to the Krongckpagation model
[Shiu 2000 )

Vk € {1,..,K}, H, = R2©,T? (3.2)

whereR is the receive antenna correlation matflx, is the transmit antenna correlation
matrix for userk and®y, is ann, x n; matrix whose entries are zero-mean independent
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and identically distributed complex Gaussian random variables with vari;%ncet last,
note that for simplicity we will always assuni€é = 2 but all the results presented extend
to K—user MACs,K > 3. In this respect, in some plac&Swill be used instead ok = 2
and some numerical results will be provided for arbitrary

3.2 Scenarios considered

3.2.1 No coordination, single user decoding

We assume that the BS uses single user decoding (e.g. because the B&lsmtne game
or for limiting the receiver complexity). Each user treats the signal of thee#weadditive
(colored) noise and wants to selfishly maximize its own transmission rate. Tdienation
rate achieved by usér equals the mutual information betwegp andy conditioned on
the overall channel matrid = [H,H,...H]|. As conditioning the mutual information by
a random variable involves taking expectation over this random variablawe

K

> HQH{ +0°
=1

—E |log, Z H,QHY + 0’1

I(xp;yH) = E llogz
£k

(3.3)

We see that the second term of the mutual information does not deped and we

can therefore omit it for the individual utility function of usére {1, ..., K}, which is
chosen to be

K
u®”(Qr, Q) = E |log, I+pZH4Qsz] , (3.4)
=1
whereQ_; = (Q1, ..., Qx—1, Qx+1, ..., Qr) andp = % Clearly, the users have the same

utility function but each user has to maximize it with respect talatransmit covariance
matrix. We see that, with the proposed choice of utility functions in the scen&goamno
coordination is possible and single-user decoding is assumed at the BlSetheoncepts
of the non-cooperative game, team problem and global optimization pradewide. We
effectively want to optimize the ergodic sum-rate of the MIMO MAC.:

> HiQH{ + 071
Csum = max [E |log,

Q1,--,Qx |021]

(3.5)

under the classical trace constraints. What characterizes our prabteat we only want
to optimize the sum-rate ov&);, instead of(Q;, ..., Qk). In the particular scenario un-
der consideration the concavity of the ergodic sum-rate \A®t. ..., Q) is well known.
We further note that the subset of non-negative Hermitian matrices veyiflyatrace con-
straints is convex. Therefore there exists a global maximum for the sumMave since
the players maximize the same function, we can draw the two following conchisjan
the global optimum is clearly a NE. This establishes the existence of a NEg(biritt con-
cavity of the maximum sum-rate is equivalent to the diagonally strict concauwitgliton
of [Rosen 196F which implies that the NE is unique (see Theorem 2Rb$en 196p.
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The main technical issue is to determine the user strategies at the equilibrium.@oin
(Q71, ..., QJ), which is done in Sec.3.

3.2.2 Coordination, successive interference cancellati@ecoding

For the scenario considered now we assume the existence of a coordsigtial denoted
by S (see Altman 2006k where the authors apply a related idea for ALOHA protocol-
based MACs to obtain a correlated equilibriusufnann 1974). It could be obtained

in practice, for example, by sampling a broadcast signal (e.g. an FMIxighae real-
izations of this signal, which are assumed to be equiprobable, are in the fitibat

8§ ={1,..., K!}. For the casd( = 2 it is therefore simply binan$ € {1,2}. This signal

is known both by the BS and the MSs. Here we assume that the decodingloegenot
depend on the realizations Bf, which are known to the BS but not to the MSs. Thus the
coordination signal sent to the users does not provide them with any additidormation

on the channel conditions. For this reason we call this scheme “opendoogication”. In
this framework, we allow the users to apply two different strate@%?, f) for user 1
andQ\”, Q'Y for user 2 where the notatioig ™ and(.)® correspond to the realizations
of the coordination signal. Whe$i = 1, user 1 is privileged since it is decoded after user
2, and conversely fob = 2. Thus the achieved transmission rates are given by

Rgl)(le)anl)) = %E log, I_}_lele)H{{H
RP@QY, Q") = LE|log, [T+ pHiQVHI 1 pHQHY || (36)
— 3B |logy I‘i‘PHngl)H{{H
whensS = 1 and by
Rg)( é2)7Q52)> - %E 10g2 I+pH2Q§2)H5[H
RP@QP.QF) = B |log; 1+ pHLQPH] + pHQPHE|| (37)
— 3E |log, |I + pH, QS HY ]

whenS = 2. Therefore, whers = 1, user 1 sees a single-user MIMO system. The
optimum input covariance matrix is obtained by choosing the eigenvectmgbfo be the
eigenvectors ofl'; and water-filling over its eigenvalueddfar 2004 Jorswieck 2004a
User 1 has no interest in deviating from this strategy. User 2 knows it abdstsstrategy

is to maximize the sum-rate w.r.Q- given thatQ; = le). For this purpose he will
choose its eigenvectors to be equal to thos&pfand water-fill over its eigenvalues. The
same reasoning applies to the c&se- 2. Thus, this clearly establishes the existence of
a unique equilibrium. The users are thus following the coordination signalaptaheir
strategies and have no interest in ignoring it. The described strategid® acdrecked to
maximize the following utility functions:

OL
{vEO;(Q&?, 2.0ya) = 3rN@, o)+ 3RYQP.Q) g g
w29, Q?,.Q". @) = LrM@QY, Q)+ 1rP(QY, Q).
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Here we casted the considered scenario into an open loop coordinaged-bquilibrium,
but the game can also be seen as a hierarchical decision making problenpreBent
problem is a hierarchical decision making problem since, for a givdizatian of .S, the
last decoded user can be seen as a leader and the other as a follomarchse however,
the leader does not care about the follower since the actions of the follave no im-
pact on the leader. We note that the concept of the leader and folloveeedsa present

in the Stackelberg formulation. Indeed, by introducing a utility function forBise the
Stackelberg formulation otfai 200§ could be applied here but in this case the BS should
be involved and send a certain amount of control signal, which is notyalwegligible,
especially whenk increases. If the BS can use the information on the channels in order
to choose the decoding order, then the sighaknt to the MSs provides them with some
information on the channel conditions. This allows the users to have sommation on
the channel conditions and therefore we can refer to this scheme ad-ogecoordina-
tion. We can then repladd,, by H; which has the interpretation of the channel condition
of userk given that it receives the signal If the decision on the decoding order is such
that the statistical assumptions Hij, are those we had oH,, (for example eq. 3.1) still
holds with a possible dependence of the parametersayitiien we can still use eq3(6)

and @.7) for the utilities except thaH will now also depend on the coordination signal.
The equilibrium policies thus derived in the open loop case extend easily ¢tosded-loop
situation.

3.3 Optimal precoding matrix

As in [Jafar 200§ Jorswieck 2004j@Soysal 200Pwe distinguish two steps in the determi-
nation of the optimum covariance matrices: the optimum eigenvectors are degdrimin
Sec. 3.3.1by exploiting [Soysal 200§ Jorswieck 2004awhile the optimum eigenvalues
are determined in Se8.3.2by approximating the utility functions under the large system
assumption.

3.3.1 Optimal eigenvectors

In [Soysal 200pthe authors have determined the optimum structure for the transmit co-
variances matrices that maximizes the channel sum-rate. The prosbgédl 200Pcan

be reused and extended to the case wikeie arbitrary in order to assert that there is no
loss of optimality foru,(f u) andv,iOL) by restricting the search for the optimum covariance
matrix by imposing the structul®;, = U, P, U whereT;, = U, D, U is the spectral
decomposition of the transmit correlation matrix defined3r2yand the diagonal matrix

P; = Diag(Px(1), ..., Px(n:)) represents the powers of useallocated to the different
eigenvectors. This is what states the following theorem, which is provedpergixA.1.

Theorem 3.3.1 (Optimum eigenvectors)For all & < {1,2}, let Q; be the set
of n; x n; Hermitian matrices such thaflv(Q,) < Py ie. Qg
{Q,C e Cmx ™ . Q= Qk ,Tr(Qy) < nth} Additionally, let S, be the subset o@k
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such thatQ, = U, P,U whereUy, represents the eigenvectorsBf. Then, for any
Q €9 k!

e “’f Q) = max 0f*(Qi, Q1)
Qe QrESy
Jgnax u27@Q.Q)7.Q1.Q%) = max 477(@).Q).Q1L.Q%).
( I(c)’ 2))692 (Q;)’ 2))652

(3.9)

The best strategy for each user is always to choose an eigenvesi®wiiech matches
his own transmit correlation matrix and therefore does not depend on émaels of the
other users. This reduces the power allocation game to the choice of temir@owers
only.

3.3.2 Optimal eigenvalues

We have shown that for the two decoding schemes considered andcfousar, there
is no loss of optimality by choosing the eigenvectors @f to be equal to those
of T, = UkaUkH. As a consequence, one can exploit the asymptotic results of
[Tulino 2004[ Tulino 2005k derived for fading MIMO single-user channels with transmit
and receive antenna correlation. This will lead us to simple approximatiotie aftility
functions, which will make easier the optimization of the eigenvalues of thettasemit
covariance matrices.

From now on, we assume the asymptotic regime in terms of the number of antennas

which is defined by: (ap; — oo; (b) n, — oo; (€) . lim_> % =cwhere0 < ¢ <
Nt —>00,Nyr—+00 Ty

oo. For each usek € {1, ..., K'}, we also suppose thdj, (1), ..., dr(n:), which are the
elements of the diagonal matr]i)k defined in Sec.3.3.1, have an empirical distribution

that converges to a p.d.fx(¢) i.e. — Z O(t —di(i)) — fr(t).

3.3.2.1 No coordination, single user decoding

Under the assumptions made above, the capacity per receive aﬁi@maan be shown
to converge almost surely towards a limit, which can be obtained by applyiegrém 3.7
of [Tulino 2004. It can be verified that:

K ne

*Zzlogz + KpP(i)de(i)a]

" =1 i=1

+ —ZlogQ [1+Kpd(R)( NG| —
7=1

Osum

ny

ntKQ

paflogy e (3.10)

r

where the coefficientg? )( /) correspond to the spectral decomposition of the receive cor-
relation matrixR = UzDRU% with D = Diag(d¥(1),...,d"(n,)) and the pair
(c, B) is the unique solutiondilverstein 1995l Girko 2007 of the following system of
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equations:
T (R)
0 = R TR
Kny < 1+ KpdR)(5)8
K n Z)

f = Kntzzl—i—KpPg ()de(i)a’

(3.11)

In practice, for finiten;, n, the utility function u,(C Y) is therefore approximated by,

sum

defined asi, = n, x lim

NE—00,Np—00 Ny

userk, we want to determine the optimal way, in the sense of his approximated utility
function g, to share its available power between the transmit antennas. To solve this
constrained optimization problem we introduce the Lagrange multiplieand define the
function

. This defines ammpproximategame. For each

Loy (Pr(i)) 2 e = M x| Y Polj) — miPy (3.12)

and search for the solution(8} (i) such thatglfT*(’;) = 0. The solution of the corresponding
optimization problem is stated through the following theorem.

Theorem 3.3.2 (Optimum eigenvalues for single-user decodingdssume that the pair
(a, B) is the solution of the system of equatiords1(]). Then the spatial power allocation
maximizing the constrained approximated utility functi@l) is given by the following
water-filling solution:

(i) = 1 -
AL nyIn2)\,  Kpdg(i)a

(3.13)

where we used the notatidgn]* = max(z, 0).

The proof of this theorem is provided in Appendi@.
In the water-filling procedure the Lagrangian multipley, for userk, is calculated in

order to meet the power constraE P} (i) = nyP},. Note that the power allocation for

=1
a given user: is based on the knowledge of the statistics of his channel but also others
through /. We are now in position to describe the proposed iterative power allocation
algorithm:

1. Initialize o with a value in the interveky,,r, , Qmaq] With

LI )
Amin = ;
Kny i KpdB)(5)

Ty

1
- E (B) (5
Omax Knt =~ d (])
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2. Apply water-filling over thei (i) by using equation3.13 in order to findPy () for
alli e {1,....n;} andk € {1, ..., K'}.

3. By using the powers obtained at the previous step, update the valug/afearching
for the solution of the system of equatior&sXl).

4. If a has not converged (fix an arbitrary accuracy levetdigo to step 1. Otherwise,
apply for the last time step 2 and stop the iterative procedure.

A similar algorithm has been used b®ymont 200§ in order to derive the capacity of
single-user Rician MIMO channels with antenna correlation. Based onrémiits one
is ensured that the approximated utility functiop is a strictly concave function of the
transmit power vector§P, ..., Px}, with Vi € {1,..., K}, Pr = (Pr(1), ..., Pr(ne)),
and if the iterative power allocation algorithm converges, it convergearttsithe global
maximum (this result was only guaranteed in &xactgame described in Se8.3.1

Now we provide a modified version of the iterative power allocation algoritlem d
scribed above. In this modified version we exploit the idea of asymptotic +ikiteg,
originally introduced by Chuah 200R The asymptotic water-filling used in this version
allows us to restrict the knowledge of the transmitters to the pfg(t), & € {1, ..., K} in-
stead of the knowledge of the valuesdpf1), ..., dix(n;). The drawback is that in order for
the empirical distribution of the eigenvaluég(1), ..., dx(n:) to be well approximated by
the p.d.f. fx(¢), n, andn, need to be relatively high. Indeed, the first version of the power
allocation algorithm only relies on the approximation of the mutual information, lwisic
accurate for small values af;, n, as it will be seen in the simulations.

For the sake of clarity we assume here tRat= 1. By assuming a known lavfj, for
the diagonal termg (i), so that

fk
Z dk (3.14)

we can see that the water leyel = n, In2); can be expressed analytically and only
depends on the distribution df; (i) according to the following relation, which is obtained
from (3.13 and the power constraints:

- | 1 + +00 1
Py, :/0 [sz — Kptoz] fk(t)dt:/m (,uk Kpta) fr(t)dt (3.15)

Thereforeu;, can be obtained through the following fixed-point equation:

. = TS (3.16)
Pk+1/+ ul®) 4y

In addition, a transmit correlation profile has to be chosen and derivethesponding
probability density function (pdf) fx(¢). For instance the authors d8kupch 200bhave
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calculated it for an exponential correlation profit&i, j) € {1,...,n:}2, Ti(i,5) = rLZ 7l

wherery, is the correlation coefficient characterizing the correlation matgxthis model
1

mt/—t2 + 2apt — 1

is assumed in the simulations in S&c4). It was shown thaf(t) =

L=y a 1412

" and 0 otherwise, with, = Tt
k

I+r
<t <

if
1+ — Tk

3.3.2.2 Coordination, successive interference cancellation decodin

In the case where the BS applies successive decoding in the ordertéddmathe co-

ordination signal the equilibrium and the iterative algorithm analyses carmheucted

by using the same reasoning as used previously. In this section we will coidp the

expressions of the optimum transmit powers. Assume $hat 1. Then the achievable
transmission rates for the two users are:

E |logy |T+ lele)HfIH

D=

Vel -

T1

log, [T+ pH, Q" HY + pHQQél)Hé{H

D=
=

ul) _
(Q2 Q) = (3.17)

N[

E [log, I—i—lele)H{{H.

T1

By exploiting the results of Sec3.3.1 Theorem 3.7 of Tulino 2004 and choosing in
this theoremiK to be equal to the number of terms of the t)]ﬂ@QkaH present in the
argument of the operatdi{log |.|| to be approximated, it can be checked that

" njzlogz [1 + pP{" (i) (i)an |+ } Zlog [1 +pd" (7)1 _7pa161 logy €

Ny

i=1 j 1
(3.18)
where
L gs_ dBG)

ap = — _—

— 1+ pdR)(j) 51
m P(l z)d 0 (3.19)

B = Z :

1+ pPY ()dn (i) on

The proof of TheorenS 3 2can be re-used here. Then, optimizing the approximated rate
T =N, X lim L wirt. P( )( ) leads to the following water-filling equation

Nt —>00,Mp—00 Ty

pOsy o[ L 1" (3.20)
1 9= nrln2)\1 pdl(i)a . .
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We also know that user 2 will maximize the tefin= n, x lim Ts by choosing

ngE—00,Mr—+00 Ty

his input covariance matrix to be structured@s= U, P, UL with

2 nt
Ts 1 . .
- n—ZZlogQ [1+2pPz(1)(z)dg(z)a2}
" " =1 i=1
1 & . 4
3 ogy [1+420d @ ()8] — T pasfalogy e (3.21)
s = r
where
1 & dB) (5)
T m;Hzpd(R)(j)ﬁQ
2 n, (1) g g (3.22)
1 Py (i)de(2)

Ba =

20y £ S 1+ 2pPM (i) dy(i)ay

Eventually the powers for user 2 can be determined by

RO IS S S (3.23)
2 W= n.In2Xe  2pda(i)ag| '

3.4 Numerical results

First we show that in order to make the large system approximation accugatertibers of
antennas do not need to be very high. This is especially true when the nféhtierest is
the ergodic mutual information since one benefits from a double averaffgog, @ne from
the randomness of the matrices into play and the other one from the expeotagi@ior.
Fig. 3.1shows that the relative error is less thaft even for & x 2 MIMO system.

Fig. 3.2 compares the simplest decentralized power allocation scheme, which is the
uniform scheme, with the optimized power allocation scheme when no coordiratb
single-user decoding are assumed. Since single-user decoding & tise®S, the system
performance is inteference-limited, which clearly appears in the high SHiee We
note a significant performance gap between the uniform and optimizecheshevhich
remarkably increases at high SNR.

Figs. 3.3 and 3.4 represent the sum-rate versis for different power allocation
schemes. Here we assumBgd = ... = Px. We see that coordinating the system with an
equiprobable random signal allows us to be quite close to the (centralizdédpNAC
sum-capacity, which shows the interest in the proposed scheme in typicdhsimisce-
narios.

3.5 Conclusions

Our goal was to design power allocation algorithms in fast fading MIMO olkEnwith
correlation while minimizing the amount of control signal from the BS. To this wad
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Figure 3.1:Relative error 5] on the mutual information as a function of SNR for different sizes of@l
systems2 x 2,4 x 4,8 x 8with K =1, =05, R=1.
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Figure 3.2:Ergodic sum-rate as a function of SNR for the optimized power allocatidruaiform power
allocation whenK = 2,n; = n, = 4,71 = 0.2,72 = 0.8 in the scenario —no coordination + single-user
decoding—.
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Figure 3.3:Sum-rate as a function of the number or users for different poweradltm schemes: 1. Team
game + SIC + optimal power allocation (sum-capacity); 2. Open loopdémation + SIC + optimal power
allocation; 3. Open loop coordination + SIC + uniform power allocation; 4.cNordination + Single user
decoding + optimal power allocation. Setup: = n, = 4,7, = 0.4,rr = 0.2, p = 3 dB.
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Figure 3.4:Sum-rate as a function of the number or users for different poweratllm schemes: 1. Team
game + SIC + optimal power allocation (sum-capacity); 2. Open loopdaaation + SIC + optimal power
allocation; 3. Open loop coordination + SIC + uniform power allocation; 4.cNordination + Single user
decoding + optimal power allocation. Setup; = n, = 4,r = (0.4,0.6,0.4,0.3,0.7,0.2,0.5,0.3),rr =
0,p=10dB.
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only assumed CSIR and CDIT. A game theoretic setting was used to analfzredsn
narios, determining the existence of equilibria, which effectively allows thbile® to
choose their power allocation policies in order to selfishly optimize their ergoaiis-
mission rates. In addition, an iterative algorithm has been proposed to thigteah is
guaranteed to converge to the optimum if it does converge (extensive Sonalandicate
its convergence).






CHAPTER4

Throughput Optimization in
Heterogeneous Networks:
Cross-System Diversity

The scenario considered in this chapter can be seen as an extensian aff thapter2
where now the terminals have several BS to which they can communicate sinoulshne
on non-overlapping frequency bands. In addition the objective fumctimsidered now is
the maximization of the total network throughput.

As the number of wireless systems has increased over the last two dettediekea
of system convergence has been introduced (see Elgloify 1998 Vrdoljak 200Q), in
order to enable mobile terminals to operate with different standards. Thistgamce idea
was one of the driving forces behind the design of reconfigurable tatsyialso known as
software defined radio, flexible radim[tola 1999 or cognitive radio Fette 2006 Mobile
phones currently available on the market are usually multi-mode, which meatnthéy
can work with different standards. In addition, there are many situatitvesera terminal
can have access to several signals in non-overlapping frequendg:ba Global System
for Mobile communications (GSM) mobile station is able to listen to several GSM base
stations; an UMTS MS can listen to Wideband Code Division Multiple AccessWE)
base stations, but also possibly time division CDMA (TD-CDMA) base stationsall
these examples, the terminal operates with only one standard at a time, idgpemdhe
user location and/or the type of service requested by the user.

Our contribution presented in this chapter is based on an information-titeape
proach, but it still provides elements to understand the aforementionedaitjaand
give some ideas of what could be done to optimize the overall uplink netwookigh-
put, by using all the systems simultaneoudlg¢ 1999, instead of sequentially (hard han-
dover or best base station selection) as it is the case in existing systemstrisutmns
[Feng 2007Wang 1999. This will provide an additional form of diversity at the terminals,
which could be named cross-system diversity.

More specifically, we consider several mobile users and base statichyfgae latter
using a different frequency band. We assume that the base staticcemnaexted through
perfect communication links. For instance, in UMTS networks, base statferconnected
through a radio network controller and very reliable wired connection (epgic fiber),
which is not far from a perfect communication link. Users have wireless liolwards the
different base stations, and we want to derive the optimal power andllatations, given
a fixed power constraint for each user. The uplink power allocatioarsehis optimized
in order to maximize the sum-rate (over the users and systems) of the owratirk.
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There exist many works on how to optimally allocate the transmit power to theatiife
sub-channels. To our knowledgéiin 2005 is the closest work to the one presented here.
The authors address the problem of jointly allocating power and sulrsairrithe context
of orthogonal frequency division multiple access (OFDMA) systems. Wk differs
from theirs on several points: we consider a more general channalrfiading channels
instead of Gaussian channels), a very different context (heteeogemetworks), all the
sub-channels are (possibly) used wherea&im[2005 , only a subset of them is used by
each transmitter and also the optimization problenka{ 2005 is not convex, in contrast
with the power allocation problem for the optimum receiver investigated in ttapteh
In addition, our main goal is to optimize a global performance criterion undeit fower
constraints. Finally, our information theoretic approach exploits asymptotioramatrix
theory [Girko 2001, Silverstein 1995 in order to provide tractable expressions for the op-
timization problems under investigation. Hence, we will assume the dimensiors ofth
tems as well as the number of users large enough, in order to benefitfesalf-averaging
properties of the matrices under consideration. In particular, an inteydetiture of these
self-averaging properties shows that only the parameters of interest frablem (sys-
tem load, signal to noise ratio, ...) are kept, whereas all irrelevant panamksappear
[Hachem, Moustakas 2003Tulino 2004 Tulino 2005). This provides a neat analysis
framework for multi-dimensional problems. Moreover, although the restdtpeved in
the asymptotic regime, it turns out (due to fast convergence propert@&shty are accu-
rate even for rather small systems (see eRjgl[eri 2002, Dumont 2005 Dumont 200§
or results from previous chapters)).

We solve the optimal power allocation problem for three kinds of receitbesopti-
mum receiver, minimum mean square error and matched filters. Simulationstealigda
approach and illustrate the performance gain obtained by using sewdmabtegies simul-
taneously instead of one at a time.

4.1 System model

I

ﬂ
B/E’l \B//@

Figure 4.1:Cross-System scenario
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The global system under investigation is represented in4.It consists of’ mo-
bile terminals andS base stations using non-overlapping frequency bands (in ig.
S = 6). Each mobile terminal has one single antenna, while the base station ca&n poss
bly have multiple antennas depending on the radio technology. The numiienerisions
associated with base statienc {1, ..., S} is denoted byN,. For example, if a CDMA
system is usedy, represents the spreading factor; on the other hand, if the base station is
equipped with multiple antennad/s represents the number of receive antennas. Assum-
ing time selective but frequency non-selective channels, the equiadseband signals
received by the base stations can be written as

K
yi = \/Plzhe,we,l-Fnl
—1

K
y2 = /p2 ) hyowyo+my
VD | @1)

K
ys = ps Y hisris+ng
=1

wherevk € {1,...,K},Vs € {1,...,S}, z s is the signal transmitted by usgrto base
s
station s, satisfyingzIl:t\:nk,sy2 <1, hyg is the N,—dimensional stationary and zero-

mean ergodic comSIelx Gaussian channel vector associated witlt Gsethe systens,
n, is anNg-dimensional complex white Gaussian noise distribute@s n B,I), where
np IS the receive noise power spectral densidy, the bandwidth of system, p; is the
signal-to-noise ratio (SNR) in systesndefined ag; = ﬁ, andP is the transmit power
available at a given terminal. For simplicity and clarity, we henceforth implicitlyees
that the mobile terminals have the same transmit power, which is a reasonalvtgtes
(seee.g. [UMTS-World-Associatior] for more information). Otherwise, the case with
distinct transmit powers could be easily taken into account. In our analysiatifading
channel vectors of the different links can possibly vary from symeotar (or space-time
codeword) to symbol vector (or space-time codeword). We assume ¢higdbivers (base
stations) know their channel matrices (coherent communication assumpibsgnad the
channel distribution information (CDI) through reliable links to a centraticsier. Know-
ing the channels of all users, the central controller implements the algorittiimdicates
to each user how he has to share his transmit power between the diffiekeniThe trans-
mitters therefore do not need any knowledge on the channels (neithemedrstate nor
distribution information).

As we will consider the overall system sum-rate as the performance critarndnas-
sume a large system in terms of both the number of users and dimensions aséhe b
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stations {V1, ..., Ng), it is convenient to rewrite the received signal in matrix form:

yi = piHixi+m
Y2 = Vvp2Haoxo + ng ’ 4.2)
ys - VrsHsxs +ng

wherevs € {1,...,5}, Hy = [hy5...hg ] andxs = (z15,...,7x)7. We assume

that the channel matrix of a given system can be factorized, in the sétiseldadamard
product, as a product of two matrices

H, =G; © W, (4.3)

whereW is the matrix of the instantaneous channel gains which are assumed to be i.i.d
zero-mean and unit variance, at is the pattern mask specific to a given technology,
containing the arbitrary variances of the element&lgf This model is broad enough to
incorporate several radio access technologies. Here are thred gpaocaples:

e MIMO systems: N, represents the number of antennas at the base statind K
the number of users (each equipped with a single antenna). The maVicesd
G are respectively an i.i.d. zero mean Gaussian matrix aiNg & K correlation
matrix.

e Flat fading CDMA systemsiV, represents the spreading factor a@idhe number
of users. For a block fading chann®V ; and G are respectively the code matrix,
where each column represents the code of a given user, and theetbaims matrix,
where the columns are identical (due to the fact that we consider flagfatbdels);

e Orthogonal Frequency Division Multiplexing (OFDM) systenT§; represents the
number of sub-carriers anfl’ the number of users. Assuming for simplicity an
OFDMA system where each user uses one subcalNVerand G are respectively
an i.i.d. zero mean Gaussian matrix and the truncated identity matrix (as the thanne
matrices are not necessarily square). Note that & N, some sub-carriers are not
used.

4.2 Large Systems Scenario Analysis

In this section, we consider a much more realistic scenario for wireless coicatians.
The different links between transmitters and receivers are now blodkgiand the num-
bers of users, systems and base station dimensions can be arbitrarilgdsefatditionally,
the base stations can have different bandwid¥hs..., Bs. The numbers of users and di-
mensions have to be large enough in order to make our asymptotic analy&irestly
accurate. More precisely, we consider a scenario wiére» +oo, Vs € {1,...,S},

N, — +oo with lim — = ¢gand0 < ¢y < +00. However, it is now well-known
K—o00,Ns—00 INg
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that many asymptotic results from random matrix theory under the large sgstrmption
apply for relatively small system8&[glieri 2002, Dumont 2005Dumont 2006.

Under these assumptions our main objective is to derive the best powedtialioc
scheme in the sense of the sum-rate of the global system for differerst éfpeceivers.
One can notice that the selected performance criterion is global wheeas\ler con-
straints are local, which is a key difference with the conventional powesirgi problem
between different subchannels.

4.2.1 Optimum Receiver

When the optimum receiver is assumed at the base stations, maximizing thetsueada

to the Shannon sum-capacity of the global system. Considering the suneiat®ithe
system, instead of an arbitrary operating point of the capacity regionthkasdvantage
of simplifying the technical problem. In particular, considering the sum-ratbaperfor-
mance criterion allows us to exploit some results obtained for single-usegfaiMO
(e.g. [Tulino 2005K). Note that the considered system consists of several MACs with
multi-dimensional receivers and single-dimensional transmitters, undessbmation that
CSIR but no CDIT is available. The sum-rate of each MAC is simply a speagd of the
general case analyzed b§dysal 2007Soysal 200pfor Rayleigh MIMO multiple access
channels with input correlation with CSIR and CDIT. In our case wherealitmension of
the signal transmitted by a terminal is one, the CDIT assumption amounts for &éouse
knowing its transmit power. By considering the system of (orthogonaltans 4.2) the
network ergodic sum-capacity per user can be expressed as:

C= max E
Q1,..,Qs

S
% <Z By log, [T+ psH,QH,! })] (4.4)

s=1

whereVs € {1, ..., S}, Qs = E(x,x). As long as the signals transmitted by the different
users are independent, the matri€gsare diagonalQ, = Diag (a1 s, ..., ax ), Where
oy, denotes the fraction of its power ugeemploys in system. As the mobile terminals
have identical transmit power, we have € {1,..., K}, Y7 oy, = 1.

So far, we have not assumed anything about the numbers of userasmdthtion di-
mensions. From now on, in order to simplify the optimization problem associatbd w
equation 4.4) we will assume the asymptotic regime, as defined in the beginning of this
section. Interestingly, in that case, an explicit equivalent for the n&tawm-rate can be
obtained (from (Girko 2001), whatever the pattern madik,, as long as its continuous
power profile, defined fotr, ') € [0,1]% aspy, (7, 7') = gs(i,j) with 55+ < 7 < &

s

and]{,%}{ <7< ﬁ converges uniformly to a bounded and piecewise continuous func-
tion asN; — oo [Girko 2001, [Girko 199Q corollary 10.1.2]. However, if the pattern
mask is not structured at all, the expression of the large system equicalere quite
complicated and not always easy to exploit, whereas it is simpler for theaflasparable
channels €.g. CDMA and MIMO channels). This is why we will mainly focus on this
class of channels while having in mind that the proposed framework cartéeded to

other technologies. Note that the OFDM case needs a separate treatroerihsipower
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profile py, does not converge uniformly. However, it is not difficult to see that care
obtain the same capacity expression as in the separableHaskem, Moustakas 2003
Tulino 2003 Tulino 2004 Tulino 2005k with classical techniques. Therefore, for at least
the three aforementioned types of technologies the constrained optimizatienaomsid-
eration can be simplified by finding a certain approximatibaf C, which can be obtained
by exploiting the original results ofdirko 20073, Silverstein 1995pwhich have been ap-
plied by Hachem, Moustakas 2003Tulino 2003 Tulino 2004 Tulino 2005h to fading
single-user vector channels. This is stated through the following propasitio

Proposition 4.2.1 (Equivalent of the network sum-rate) An equivalent of 4.4) in the
asymptotic regime, i.e. whek — +oo, Vs € {l1,..,S}, Ny — +oo with

. K .
lim — =c¢sand0 < ¢; < 400, IS:
K—o00,Ns—00 [Ng

S K S N
. 1 AR
¢ = max — LZ; ; Bylogy (1 +7es0e,ms) + 2 ; ; B logy(1 + Bs0s)

S K S
— Z Bgvsqsrslogy e — Z DY, (Z Qys — 1)] (4.5)
s=1 /=1 s=1

wherev? € {1, ..., K}, Ay is the Lagrange multiplier associated with the power constraint
of user/, guaranteeing that the sum of power fractions over the different sysiqoads
one. The expression of depends on the technology used by sysiem; = Kp; if s
denotes the index of a MIMO system;= Nﬁgps if s denotes the index of a CDMA system.

-----

the following system of equations:

N,
1 - Bjs
re = ’
° Koy Z_; 1+ 5]',5(]5
7= , (4.6)
1 Ve,sC s
q =
s Kug ; 1+ g 50575

1 1
H, = R;©,T:, O, is a matrix with i.i.d entries with unit-variancey ; = vsd(T) a'

ls ' s
is the/'" eigenvalue ofl's, j3; s = vsdgﬁ), dgf? is thej*" eigenvalue oR . For the OFDM

case, equatiord(.5) holds withr, = p,, gs = 0 and~, , = g2(¢,0).

The proof directly follows from Tulino 2004 Tulino 20058 since in our case the chan-
nels are also separable. In order to better understand and interppebttded result and
make this chapter self contained, we provide a special case drawn Tridind 2003: a
single MIMO system with SNR, K inputs, N outputs and neither transmit nor receive
correlation. The approximate capacity per receive antenna can be writtbis case:
C = £ 58 logy [1+ pali)r] + logy (Nr) — X (X — 1) log, e wherer is determined
through the following fixed point equation

ro= %Hl
pq

1 K a(i (47)
{ ¢ = %2 1+p(()42i)7"
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Therefore we see that the large system approximation roughly allows sfdramthe exact
capacity expression of the fast fading MIMO system into a sum of indalidapacities
similarly to a parallel set of Gaussian sub-channels. Now let us go bac& getieral case.
In order to find the optimum power allocation scheme we need to derivate ghmant
of the maximum in equatiord(5), which we refer to ai?(al, ..., g ). Obviously for all
s € {1,...,S}, rs andg, are functions of the parameters to be optimizedo s, ..., ak s.

It turns out that the partial derivative with respectg; is the same as it would besif and
qs were assumed to be independent of this parameter, which is the purgbsdafowing
lemma.

Lemma 4.2.2 (Property of the equivalent of the network sum-ratg

For all (k,s) € {1,...,K} x {1,..., 5}, the derivative of the sum-rate approximation
R(ay,...,ax) with respect toay, s is the same as that obtained when assumipgnd

¢s to be independent ef;, ;.

This key property is proved in AppendB.1. This property of the large dimension equiv-
alent of the sum-rate is instrumental in the determination of the optimum powertalloca
policy because it considerably simplifies the optimization procedure and al®¥zscope

with the convergence issueaf andgs towards strict constants as the numbers of users and
dimensions grow. Based on this argument, the fact(at..., ax) — R(a1, ..., ax) is a
strictly concave function (its Hessian is strictly positive) and using the not&ioa b, x B
(whereB = B; + ...+ Bg) in order to use dimensionless quantities, one can show that the
optimum power fractions are given by the following proposition.

Proposition 4.2.3 (Power allocation for the optimum receiver)in the
asymptotic regime, the optimum power fraction of uUser systens is:

+

bs 1 1
apy = |=—F > — , (4.8)

b 1+
Et68$ t test Vet Vk,sTs

where for each usek the setsg represents the systems/sub-channels which receive a non-
zero power;|S;’| < S by definition. Usef will allocate power to systemif and only if
the quantityAkbfn2 — —1_ s strictly positive.

Vk,sTs

We have a water-filling equation for the optimum power allocation scheme, vidiich
due to the averaging effect induced by the large system assumptiors gieewone special
case of equation4(8): the case where the base stations have the same bandwigth (
UMTS-FDD + UMTS-TDD base stations):

+

1 1 1 1
aj, = > — . (4.9)

+
* hy r r
’8k| Sk | tES:’ Ve, Tt Vk,sT's

Here the optimum power fraction comprises a term corresponding to themnifower

allocation {(.e. the term |371+|) plus a term that characterizes the difference of qual-
k
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ity between the system under consideratigknﬁ;) and the average of all the systems

(@ Ztesz ﬁ)

The capacity of the system under consideration is achieved if and onlytliealiater-
filling equations (eq4.8) are verified simultaneously. This is obviously the case by con-
struction of the derivation of the water-filling equations and the convexithe@bptimiza-
tion region. The main issue to be mentioned now is the way of implementing the pobpos
power allocation scheme. We propose an iterative algorithm to implement the bptima
power allocation policy:

1. Initialization: assume a uniform power allocation schéme?(k, s) € {1, ..., K} x
{17 SE 5}7 Ok,s = %

2. Compute the corresponding value fQrby using the fixed-point method: the first
equation of systemd(6) can be written in the formis = fs(7s).

3. lterate the procedure while the desired accuracy on the power fradgsonot
reached.

e Forusers: € {1,...,K}:

— Update the power fractions by using the water-filling equatB8)(
— Update the value aof;.

A similar algorithm has been recently used IBufmont 2006 Dumont 2007 in order to
derive the capacity of single-user Rician MIMO channels with antennaledion. Based
on the results of[pumont 2006 Dumont 2007 one is ensured that the approximated er-
godic mutual information is a strictly concave function of the transmit powentifras
{a1,...,ax } and if the iterative power allocation algorithm converges, then it conserge
towards the global maximum. At each step of the iterative procedure, thestotal
rate of the system is therefore increasing and generally (all the simulatofsped in
[Dumont 2006 Dumont 200T and here confirmed this point) converges to a limit. At the
limit, all power fractions will verify the water-filling equations. As already mené&d,
the system sum-capacity would be achieved by using a maximum likelihoodeeeat®l
the base stations. More pragmatically we now turn our attention to sub-optinugnee
structures, which can be implemented more easily in real systems. One oefteoga we
want to answer is whether the optimal power allocation, in terms of the netwark ate,
for other types of receivers can also be expressed through a simigefillang equation.

4.2.2 MMSE Receiver

The MMSE receiver is known to be the best linear multi-user receivermnsef SINR. In
our context, the MMSE receiver at base station {1, ..., S} for userk € {1, ..., K} can
be written as:

K —1
wil, = hil, (Z agshhll + 021) : (4.10)
(=1
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and the SINR is given by:

-1
K

W;iizmse) = ak,sth,s Z O‘Z,shfhg] + 021 hk’,s- (411)
=104k
In order to express the sum-rate achieved by the overall system wh&tMISE re-
ceiver is used at the base stations, one just needs to determine the $idfihaut of each
MMSE receiver. It turns out that each of these SINRs converge$irtataand is especially
easy to express in the large dimensions regimedsgéDebbah 200Ror Chapter2). Let
ﬁgrgmsd be the asymptotic SINR for usérin the output of the MMSE receiver at base
stations. The achievable approximate ergodic sume-rate is then given by:

Rlmmse) _ [Z Z log, (1 + nﬂm“)) } : (4.12)

s=1 /=1

~(mmse)
Rk,s

The asymptotic SINR expression in the MMSE output can be shown to be.(sé&hapter
2):

o Z K a;s92(, !
NS i=1 02 + N Z]#Z 1_‘J_~gngns]e))

To find the amount of power usérhas to allocate to systemone needs to derivate the
sum-rate (eq.4.12) w.r.t. oy, ;. Unlike the asymptotic sum-rate achieved by the optimum
receiver, the asymptotic sum-rate achieved by using the MMSE receivet slways a
concave function ofay, ..., ax). In order to obtain an analytical solution (otherwise an
exhaustive numerical optimization of the sum-rate can always be perfoandd@void us-
ing possibly computationally demanding numerical optimization techniques, vp®sg0
to approximate the asymptotic sum-rate by a concave function by introducirgydhegp-
proximations (given below). This leads to the following proposition.

Proposition 4.2.4 (Optimum power allocation for the MMSE receiver) Assume that

mmse mmse . 8 S
L) = afm ) o, with S = 0;

’ ’ Qs

8R(mmse) 8R(mmse)
2. 7;’3 >> > (; -

Ak s £k QL s
In the asymptotic regime, the optimum power fraction of ésersystens is:
+
(mmse) 1
O s = |Wk — W (4.14)

wherew;, £ 115 is the water-level for usek and

N .
(mmse) A i gg(l,k)

k.s N - CYEI
, 2 1 K 25593(05)
S i=1 ag + Ny Z]#k 1+ﬁ<7flmse)
J,S

(4.15)
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Proof By setting the derivative of the constrained asymptotic sum-rate to zerdjracdy
obtains that:

D) K S
g | P = o0 (ZP> -
QL s —
a (mmse) (416)
1 o
& k—m -0

In?2 1 T ~(mmse)

The validity of assumptions (1) and (2) is discussed below and will also thenemted
in the simulation part. The first assumption is actually exactly verified in the finsie aad
we would also like its large system equivalent to have this property. Tlomdessumption
is motivated by the fact that in a many user network the behavior of a singteshsuld
have almost no impact on the SINR of another user of this network. Mathexigtias
the proof above shows, the motivations for assuming (1) and (2) is thaiptimaization
problem becomes very similar to the one investigated for the optimum recéhenefore,
like the optimum receiver, thepproximateoptimum power allocation policy is given by a
simple water-filling equation.

4.2.2.1 Approximating the asymptotic system sum-rate by a concav¥anction

For the user of interest. €. userk):

o)1 & g2 (i k) 4.17)
a o ﬁ Z 1 K aqj 592(i7j) '
QL s s 02 + v Z Q5,595 \BJ)

K .o ~(mmse)
1 592 on; 1
JQJF*Z @595 (i, ) <1+ak,s M}, )

N, = 1+n(mmse) 80%’8 1_i_ﬁ(mmse)
For all ¢ #£ k,
aﬁémmse) Ckg N, ,
— = - i, 0 4.18
P N ; g2 (i, £) % (4.18)

Sy ()
Ns 1+’71<£mse) Ns £aj#l =089 \D dag.s (1+ﬁj('n‘:mse)) }

2
24 1 0,593 (4,4)
g + N. 1 mms
< No Dkl D

~(mmse)

Let |7}, andgxs be the maxima ok ng;k andg;s(i, ¢) over all the tripletgi, ¢, s). By

~(mmse)

.. o . . .
definition g < |73|- In fact, under reasonable assumptions, one can tighten this

bound, this is the purpose of what follows. The main point is to assume thanthies
gs(i, j) take finite values and do not vanish. Note that for MIMO systems the enfriks 0
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mask matrixgs (i, ) are effectively bounded and they do not scale with However, for
CDMA and OFDM systems this is not true since for both case they représentaliza-
tions of the channel impulse. As a Rayleigh distribution is assumed for theehgains,

they are not bounded mathematically. However, many works applying manarix the-

ory (seee.g. [Debbah 200 assume that the channel has a compact support. In practice,
for physical reasons, the channel gains do not strictly vanish an@&eyively in a finite
interval and therefore the proposed assumption makes sense.

Forall (k,s)in{1,..., K} x {1, ..., S} one can easily check that

8772;”7158) Oéz gs o o aqﬁ::zms@)
(90%75 = N %ﬁ; (ZJ) (1 + ﬁ§?mse)>2 804]{75 . (}%flg)
..(mmse)
< 18 gM Z; ; 8ak : (4.20)
s(@Q iy (4.21)

Therefore we see that a sufficient condition for the MMSE output SINRser/ to be
considered as independent of the power allocation of kisér/ is that the ratio]% has to

be small. Under this sufficient but not necessary condition the approxibiisite 77, ; can

be considered to be proportionald@ , (Assumption (1)). For the second assumption to
hold a sufficient but stronger condition is that the quanﬁﬁyis small. We therefore see
that the validity of the proposed assumptions depends on the scenariccondieration.

4.2.3 Matched Filter

Now we go a step further in decreasing the receiver complexity. We assumatched filter
at all the base stations. The MF for ugeat base station simply consists in multiplying
the received signat, by thS. The signal at the MF output is expressed as

hk sYs = Hhk,s‘ |2xk,s + Z th,shZ,s'ff,s + hgszk,sy (422)
L#£k

and the corresponding SINR follows:

(mf) _ [y, | |* vk s
Mk,s (4.23)
B 02l 4 Y s
In the asymptotic regime the SINR becomes (see 36&c])
2
on) s (T 920, 8))
ks (4.24)

02N ST g2(i k) + Y g s Yoiey 926, k) g2(i, €)

The asymptotic system sum-rate achieved by using the MF at the reception is:

S
ZZlogQ (1 +n§mf))] : (4.25)

s=1 /(=1

Rmf) —

sum
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The optimum power allocation for the marched filter is then given by the followingo-
sition.

Proposition 4.2.5 (Optimum power allocation for the MF) Assume that
OR,(mese) aRérzmse) . . .
>> 27 In the asymptotic regime, the optimum power
80%73 1k Ak s

fraction of userk in systens is:

+
m 1
al(f,sf) = |WE — “(mf) ’ (426)
ak,s
where
2
ak s . . ) .
T T NG G20 k) X e S 02(i k)2 0)
andwy, £ 13 Is the water-level for usek.

Proof A quick look at the sum-rate expression shows that the situation is similar to that
encountered with the MMSE receiver. The only difference is that oms dot need to
introduce assumption (1) since the SIM@Z” is always proportional tey; ;, whatever

the dimensions of the system. The stated result follows.

4.2.3.1 Approximating the asymptotic system sum-rate by a concayanction

First, note that Assumption (1) is exactly verified both in the finite and large diines
settings. So, here we focus on the validity of Assumption (2). In a givetesy, we have

3Rgmf) 0 (mf) 1 K 877( h 1
1 — 4.28
Dk« aaksZOgQ( R ) 2 & dags 147" (4:26)
with
o) B ﬁ’(:;f)
aofk’ff) e
Oes™ D) S 920, k)g2 (i, £) for all € £ I
Otk s T OANG YO G200 0) 3y s Yoy 92 (1, 0)g2 (i, )
(4.29)

Defineg?, = max ¢2(i,¢) andg?, = min g¢2(i, ¢) and upper bound the quantity of

7871/ (£7S7Z)

interest that is
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)
ORy. 1 ZK: L
5 ORu | _ = (4.30)
= 0k,s In2 60"“ L+ f)
~(mf)
1 877@3
< R w— '
- IHZZ Oy s &3
04k ’
< Ly g iy 92 (i, k)g2 (i, ) (4.32)
n2 £ 02N, SN0 g2(i,0)
Ny
’ LZ ﬁ(mf)‘ 9 . (4.33)

1, N, ‘
In2 (#k ©Lo2NG YT 626, 0)

At this point we have to distinguish between MIMO systems on the one hanGRMA

and OFDM systems on the other hand. For MIMO systems we knov@j\éq g2(i, 0) >
N,g2, whereg,, is finite and different from zero. For CDMA and OFDM systems, as the
channel realizations are into play, we exploit the central limit theorem, witli@lvsus to
write Zf.vzsl g2(i,¢) = N; <M +o0 (W)) wherey is the average energy of the channel
gain (assumed to be normalized to one). In any case, the sum of intemds¢ t@unded

by const. x -, which gives us a sufficient condition in order for Assumption 2 to hold for
the matched fllter

4.3 Numerical results

In all the simulations the following channel model will be assumed. The entfid¥ o

will be chosen to be i.i.d. with zero-mean and variahc&or the CDMA case, the entries
of G will be generated according to a Rayleigh distribution with variahceith inde-
pendent columns and all the elements in each of them equal, corresponélatgading,
and for MIMO a matrix of ones (no correlation). First we assume the optinegaiver

at the base stations. We want to evaluate the performance gain brougkplbiting the
available cross-system diversity, in comparison with the standard pdweaton scheme
(hard handover). For this, let us assume the following typical simulatiop seticellular
system: 50 active user&(= 50) and 4 CDMA base station$'(= 4) with different spread-
ing factors (N1, Na, N3, Ny) = (4,8, 16,32)). Fig. 4.2 shows that for medium and high
SNRs the performance loss induced by using only one technology at a tinbe v&ry sig-
nificant, greater than dB typically, which means that the mobile transmit power could be
divided by a factor greater than 2 w.r.t. to the conventional strategy. Quililee hand, for
low SNRs, the hard handover solution performs better than the uniforrerpaiecation,
which shows the potential interest in implementing the optimum power allocationhwhic
provides the best performance whatever the SNR. Also, in contrastgiesiser MIMO
systems, it can be seen that the gap in performance between unifornptimdra power
allocation schemes does not shrink as the SNR increases. This obsehagtialso been
made in other simulation scenarios. Figdr8shows a scenario with the same parameters
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as the one just analyzed but now both CDMA and MIMO systems are coadidebtain-
ing relatively similar results. In all the tested scenarios the convergenite gfroposed
iterative power allocation algorithm was obtained after at most 10 iteratiats;that the
algorithm is said to have converged if the optimum power fractions are detmiith an
accuracy ofl0~*.

Now we assume the simplest receiver at the base stations, namely the mdtehed fi
There are two base stations and two users. The BS are equipped with muitgieas:
N1 = 2,Ny, = 4. Fig. 4.4 shows the network sum-rate achieved by using the MF for
four different power allocation schemes: the optimum power allocation olotdigean
exhaustive numerical search, the approximate power allocation obtaressbming the
two hypotheses stated in Se¢.2.2and4.2.3 the uniform power allocation scheme and
the hard handover. First, the figure shows that the correspondingxapgation of the
sum-rate is not very good but it still provides a performance gain oveotirer power
allocation schemes. Second, this simulation confirms that the uniform poweatiio
becomes more and more suboptimal w.r.t. to the exact optimum power allocatioa as th
SNR increases. Third, we clearly see that handover based poweatallosuffers from a
significant performance loss for medium and high SNRs. To sum up, weaathat, as
a rule of thumb, the uniform power allocation can always be used and wilige signifi-
cant gains with the advantage of being very simple to implement (no feedbaitianmism
required in particular).

The last figurei.e. Fig. 4.5sums up the network performance for the three receivers in-
vestigated in this chapter in the typical scendfie= 20, S = 3, (N1, N2, N3) = (4,8, 32).
It allows one to better evaluate the benefits from using the optimum recereertioe
MMSE receiver and MF. A typical information that can be drawn from thgsie is as
follows: by simply using a MMSE receiver with uniform power allocation indte&the
MF with hard handover (as used in current networks) a huge perfaregain could be ob-
tained by exploiting the available cross-system diversity. Of course,dahsnent holds for
medium and high SNRs. If the network is also likely to operate in the low SNR redlime
optimum power allocation should be used or a SNR-based switching mechaatamen
the hard handover and uniform power allocation could be introduced.

4.4 Conclusion

In this chapter, a cross-system power allocation algorithm has beeid@dan the context
of MIMO, CDMA and OFDM technologies in order to exploit the available srggstem
diversity. Interestingly, in the asymptotic regime, a radio access technokgye char-
acterized, from the information-theoretic point of view, by only a few paaters. Indeed,
the solution for all the receivers turns out to be dependent only on a limieter of
parameters: the dimensions of the system, number of users, channepagétin®ss, noise
variance and correlation at the transmitter and the receiver.

As a consequence, for the optimum receiver a simple cross-layer atgpétialogous
to the water-filling algorithm, can be implemented at the central controller to stehdte
powers of all the users in order to maximize the network capacity, and thisecdone in
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Figure 4.2:0ptimal receiver. Performance gains brought by cross-systesnsity (4 CDMA systems with
N, = [32, 16, 8, 4] receive dimensions anl = 50 users).
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Figure 4.3:0ptimal receiver. Performance gains brought by cross-systesnsity (2 CDMA systems with
N, = [32,16] receive dimensions and 2 MIMO systems with = [8, 4] receive antennad{ = 50 users ).
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Figure 4.4:Matched filter performance for the optimum (calculated exhaustivehgraximate optimum,
uniform and hard handover power allocations. (2 CDMA systems With= [2, 4] receive dimensions and
K =2users)
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Figure 4.5:Average user rate vs. SNR for Optimum receiver, MMSE receivemaatched filter, comparing
the obtained power allocation, with hard handover and uniform poweradidoc (3 CDMA systems with
N, = [32, 8, 4] receive dimensions anl = 20 users )
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a simple, iterative way, which generally converges to the optimum.

For the MF and MMSE receivers a water-filling solution can still be obtainethb
troducing two additional assumptions, which simplify the optimization problem tihiea
price of a performance loss that has to be evaluated in the situations oftntesethe typ-
ical scenarios considered in this chapter, we saw that they were réésoihe potential
performance gain of cross-system diversity was shown to be importaet/aral typical
simulation setups. For instance, by simply using MMSE receivers at thestatgmns and
uniform power allocation over the different systems, the mobile transmit ppoatdd be
divided by a factor greater than 10 with respect to a standard networg thee MF and
hard handover power allocation scheme.

The proposed work could be extended by considering the outagehilithia order to
further analyze the benefits of cross-system diversity, which will alloe/to complete our
comparisons between the hard handover, uniform and optimum poweatadloschemes.
It would also be interesting to study a more heterogeneous network, fanaesby intro-
ducing CDMA base stations with multiple antennas and exploiting the resultseddriv
[Hanly 2003. As mentioned here, more technologies can be considered since thie cond
tion on the patter mask matric€s, are mild and the strong results @irko 200] can be
directly applied in the proposed framework.

To conclude this chapter, it should be mentioned the fact that our agpi®adorma-
tion theoretical, and obviously, many issues would need to be addressedéoiemp the
proposed power allocation schemes. The way of coordinating base stasiog different
technologies is just one example of this kind of issues.






CHAPTERS

Team and Noncooperative Solutions
to Access Control

In this chapter we consider decentralized medium-access control in whioh pagrwise

interactions, where users compete for a medium access oportunity, loetueen ran-
domly selected users that belong to a large population. A given user hadanfimber
of access attempts and a fixed budget for buying different power Iéwedsmore general
setting, they could be considered priority levels, with only some minor diftenhat
will be pointed out). We consider situations in which the choice of power iswébne by
each user, without knowing in advance the choices of other usersacimtane-slot, the
access is attributed to the user with the largest power level. The perfoenaaterion is

the expected number of successful access attempts that a user may athtigira\given

budget.

We consider both the team framework, in which all users share the comnjextiod
of maximizing the above criterion averaged over the whole population, asw/#ie non-
cooperative framework, in which each user maximizes its own performanasumeeand
where the solution concept is the Nash equilibrium. We restrict to a regimeaif inter-
actions in which upon an access attempt, a user is either faced with no othé#aseous
attempt or might face a single opponent that attempts to access the netwoeksanibk
time. This framework is similar to the pairwise interaction paradigm in evolutionamnyeg
theory (see, e.g., [7]), and may correspond, for example, to spatwernk topologies (such
as ad-hoc networks). Due to the impliocit symmetry assumption on the chanrdgsbya
the model, both multiple acces and interference channels can be considered

Our analysis reveals that unlike many standard team problems, optimal @ligie$
do not exist in the team framework, but both an optimal solution, as well#bkea exist
within the class of mixed policies. Focusing on symmetric working points, we fllly-c
acterize both the team solution and the equilibrium point, which turn out to beewnitle
show that the optimal policy requires only three priority (or power) levelena the Nash
equilibrium uses only two priority levels. This result is significant from agieeering
perspective, as network architectures usually limit the number of powelsley priority
classes out of practical concerns.
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5.1 System model

5.1.1 General setting

We consider a large population of mobiles. Each has a batteryAvigimergy units. Time

is discrete. At each time unit a mobile has a transmission opportunity. If ithaskK
energy units left then it can transmit with aimtegerenergy levell <[ < k. If k =0

then it cannot transmit. Everly time units the battery is replaced with a new one with
energy levelK. Assume that there are pairwise interactions: when a mobile attempts
transmission, the receiver is with probability — ¢) in the range of yet another mobile
which is randomly selected from the whole population. At each transmissiooriymity

the interaction occurs with another randomly selected mobile. The time slotsrarearo

to all mobiles but when a mobile is at thign stage in his battery lifetime, it interacts with

a mobile that is at a random stagieuniformly distributed between 1 andv.

User Policy. Due to the above assumptions, a general transmission policgy be
characterized by the number of times each power level is used, sinceettiéicsfimes in
which each level is applied are insignificant. Hence, a (pure) paliayjll be described
by a K + 1 vectoru = (ng,ni,...,nk), wheren; represents the number of slots during
the lifetime of the battery in which a power af is used for transmissiom{ stands for
the number of slots in which there is no transmission). The following constraingt
obviously be met for every feasible user policy:

K
> ni=N (5.1)
i=0
K

i=1

Let z; = x;(N) := n;/N denote the fraction of time that power level is employed
for a given policyu. Throughout the chapter, we shall alternatively use the vecter

(0,1, ...,nK) to represent a policy.
Our model may allow for mixed policies as well. A mixed poligyis a a randomized
choice among a collection of pure policieg(1),...,u(m)), where policyu(i) is chosen

with probability ¢; andg; >= 0, > ¢; = 1. If policy (i) is selected then it is used
throughout the battery life.

Reception Rule At any given time, a transmission attempt with power level 0 is
successful, if and only if (i) there is no simultaneous transmission, or (ii) tieeféming
transmission uses a power levyesuch thatf. > (3, whereg is a positive SIR threshold
strictly greater than 1. In this case if a power le¥gls used, and assuming symmetric
policies, power levels; + 1, ..., 8i; — 1 offer no advantage with respect to it in terms of
interference avoidance, whereas requiring extra power. As a feslilnmediate than an
optimal policy will only use power§ and3*, k € N, thus returning to a problem where

More generally, we may consider any distribution for the random statfeeadpponent. In that case, the
results in this chapter will remain the same, if we plausibly assume thatetsaose the number of times that
each power level will be used, and then uniformly randomize over thsilple permutation for a given choice.
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whenever different power levels are used the higher one succetdgrabability one. If
we redefine;, i > 0 as the number of times power levgt! andng the number of times
the user is idle, the constrairisl and5.2become

K
=0
K
> B < K. (5.4)

5.1.1.1 Team problem

We denote byyy k(o) the expected number of successful transmissions per battery life-
time of a mobile when all mobiles use the same mixed palidgr given parameterdy
andK. Accordingly,gn, x (o) would be regarded as the utility of the mobile. The objective
in the team problem is to set a unified policy which maximizes the ufjlity; (o) overo.
The chosemr can be regarded as a fixed access protocol that all mobiles must obey.

In order to be able to compare strategies for different paramatekSwe introduce the
Throughput Per Slot (TPS) criterion which divides the former criteripmiimber of slots
N,ie,TPS(o) = “"N’TK(”). Obviously, maximizing'P.S (o) is an equivalent problem to
maximizinggn, x (o).

When restricting ourselves to pure policieghe team-objective becomes to maximize
gn,k (u) overu, where

1 K i—1

9N,k (u) =6(N —ng) + (1 _6)szninj' (5.5)
i=1 j=0

Indeed, when there is no interference, all non-zero power levelddemduccessful trans-
mission, whereas in the presence of interference, the probability thaisartission with
power level; is successful is given bE;;%) nj/N.

5.1.1.2 Noncooperative Game

In a noncooperative framework, users are self-optimizing and agetdreletermine their
own policy in order to maximize their expected number of successful trarismssgr
alternatively their expected TPS). A Nash equilibrium point is a collectiorsef strategies
for which no user can obtain a higher number of expected succesafigntissions by
unilaterally modifying its transmission strategy. In the current work, we gballs on
symmetricNash equilibria. A symmetric Nash equilibrium is a working point where all
mobiles use the same strategyand furthermore, for all other strategies

9Nk (o) > gn (G, 0), (5.6)

wheregy (7, 0) is the utility of a user who deviates to the poli€ywhile the rest of the
population uses.
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For simplicity, we shall restrict our attention in the bulk of this work to the casere/h
N = K. Afeasible policy under this setting is to use a power level of one at all time slots
Obviously, such policy would result in zero TPS whiens- 0, hence it is not an optimum
nor an equilibrium for this value af. However, for the other extreme 6f= 1, the same
policy becomes an optimal solution as well as an equilibrium point.

5.1.2 Numeric Examples

We provide below some numeric examples and derive some interesting tigepdror
simplicity, we consider cases whefé = K andd = 0, which corresponds to the case
where a user interacts with probability one with another user in each of itesstdg
addition, we focus below on pure strategies. We use the fofmat, . .. ) to describe a

policy.

The case of N = 3 The feasible policies that use all energy &e3,0,0), (1,1,1,0),
(2,0,0,1). The expected number of packets transmitted successfully in a cycleasfatur
3, if all use the same policy ig; 3(0,3,0,0) = 0, g33(1,1,1,0) = 1, ¢g33(2,0,0,1) =
2/3. The policy(1,1,1,0) is seen to be the best pure strategit is an equilibrium (in
pure strategies) as well; a deviation (@ 3,0,0) or to (2,0,0,1) decreases the utility
from 1 to 1/3.(0, 3,0, 0) is not an equilibrium as a deviation of a player(ig1,1,0) or
to (2,0,0,1) increases its utility to 1/3.(2,0,0, 1) is not an equilibrium since a player
deviating to(0, 3, 0, 0) increases its utility from 2/3 to 2.

The case of N = 4 The feasible policies that use all energy dfe4,0,0,0),
(1,2,1,0,0), (2,0,2,0,0), (2,1,0,1,0), (3,0,0,0,1). The policies (1,2,1,0,0)
and (2,1,0,1,0) are both optimal pure policies for the team problem, and obtain
91,4(1,2,1,0,0) = g4.4(2,0,2,0,0) = 5/4. None of the above policies is an equilibrium:
any deviation from(0, 4, 0, 0, 0) strictly increases the utility of the deviator. By deviating
from (1,2,1,0,0) to (2,0,2,0,0) the utility of the deviator increases to 6/4. A deviation
from (2,0,2,0,0) or from (2,1,0,1,0) to (0,4,0,0,0) increases the utility to 2. Finally,
deviating from(3,0, 0,0, 1) to (0,4, 0,0, 0) increases the utility to 3.

In the list below we provide the optimal pure policies for the team problem aad th
associated TPS up ¥ = 10.

e N=2.TPS=0.25

e N=3:TPS=0.333

N =4: TPS = 0.313
e N =5(21,2,0,0,0),(22,0,1,0,0), TPS = 0.32

o N =6 (222,0,.,0),(3,1,1,1,0,..,0), TPS = 0.333

2It can be easily shown that there always exists an optimal policy thatllghe available energy. Indeed,
given a policy that does not use all energy, we may always consrpoticy that does use all energy and
obtains the same TPS (by assigning the access energy to the highegowsedevel).
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o N =7:(3,2,1,1,0,..,0), TPS = 0.347
e N=28:(3,3,1,1,0,..,0), TPS = 0.344
e N =9:(3,3,3,0,..,0), (4,2,2,1,0,..,0), TPS = 0.346
e N =10:(4,3,2,1,0,..0), TPS = 0.35
We observe the following properties from our numerical study.
1. There need not be a (symmetric) equilibrium point in pure strategies.
2. A power greater than three is not used for the team problem.
3. The optimal TPS under pure strategies is not monotoRé. in

The potential of using mixed policies is highlighted in the next example. N.et 5,

and consider the mixed policy of using with probability bf2 each of the two policies
(2,1,2,0,0,0),(2,2,0,1,0,0). Note that the TPS in this case is equivalent to the one
obtained forN = 10 and (4, 3,2,1,0,..,0), which is also the optimal (pure) policy for
N = 10. The latter policy thus obtaifEPS = 0.35, which is a strictly higher value than
the one obtained while restricting the mobiles to pure strategies.

In the next section we show that a TPS0035 is a tight upper bound oany policy
(pure or mixed). We further show that it can be obtained for Ahy= K by the use of
mixed policies. The in-existence of an equilibrium in pure policies motivatesttity ®f
mixed policies for the noncooperative framework as well, which is covier&ection5.3.

5.2 The team problem

In this section we consider the team problem, in which a central authoritynassignified
policy to all users, who must obey it. The policy can be thus be viewedmstacol
The natural objective is to find a protocol that maximizes the average nwhgeaccessful
transmissions (or the TPS) across users. In Se&i@rl we consider this optimization
problem under pure policies, and obtain some structural properties besteolicy. In
Section5.2.2we derive an upper bound on the TPS for aay In Section5.2.3we show
that the upper bound is always achievable when mixed policies are alldm@tications
of these results are discussed in Sectich4

5.2.1 Pure Strategies

In this subsection we restrict attention to the set of pure policies, and andlgoptimal
policy among this set. From a practical-engineering viewpoint, the undertgngplexity
in implementing pure strategies can be lower compared to mixed policies, whiginereq
randomization between several pure policies.

We start our analysis with a lemma that provides an alternative expressigr o,
which will be central in our subsequent analysis of the problem.
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Lemma5.2.1 Letu = (ng,n1,...,nx) be a unified transmission policy. Then
1 K
9N,k (u) :5(N—n0)+(1—5)ﬁ (NQ—;W?> : (5.7)
Proof Note first that
K i-1 K
N% = (ng+mny + )2:222nm]+2nf
i=1 j=0 i=0
. Hence,
K i—1 K
N?
S5 in = %l—o o (5.8)
=1 j=0
Substituting $.8) into (5.5) gives 6.7). O

The following result is a direct consequence of Lenbral

Proposition 5.2.2 There always exists an optimal unified policy which satisfies the follow-
ing relation

ng S nK-—1 S S ni. (59)
Proof Letu = (no,...,nk) be an optimal unified policy. Assume that > n; for some
indexes: andj such that > ;. Consider now the modified policy = (ng,...,nn),

wheren, = ny, for everyk # i,j, n; = nj, n; = n;. Thenu obviously obeys the
constraints%.1)—(5.2). Moreover, noting%.7), o achieves the same throughputasience
it is an optimal policy as well. O

The above monotonicity result suggests that there is no benefit in usiner fgghver
levels more frequently than lower power levels are used. Note that foradeas) = 0
it can be further shown thatx < ng_1 < ... < ny < ng, i.e., the number of no-
transmissions is higher than the number of transmission at any power leweévelo this
inequality need not hold for general

In the remaining of this subsection, we consider the cas¥ ¢t K, which may be
relevant, for example, in ad-hoc or sensor wireless networks, in winiefge is relatively
limited. Our main result for that case suggests that a power level greates Whauld not
be used imnyoptimal unified policy (regardless of how largéand K are). Formally,

Theorem 5.2.3 Assume thalv > K. Letu be an optimal unified policy. Theny = 0 for
1> 3.

For the proof of the theorem we require four lemmas.
Lemma 5.2.4 For everypolicy u

ng > ng + 2ns + 3ny. (5.10)
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Proof Combining 6.1) and 6.4) and recalling thafvV > K we get that

n0+n1—|—---+nK2n1+ﬁn2+,82n3—|—---2n1—+—2n2—|—3n3—|—...

Thus

n2+2n3+3n4—|—---+(k—1)nk+...
no + 2n3 + 3ng4.

no

O

Lemma 5.2.5 Assume thafvV > K. Further assume that is an optimal unified policy
with ny > 0 thenn; > 0.

Proof Note first thatny, > 0 implies thatng > 3 by (5.10. Assume by contradiction
thatn; = 0 and consider the modified policyy = ny — 1, 7y = 2, g = np — 1, and
n, = ng for k # 1,2, 4. Note that this policy obeys the constrainss1j—(5.2). We next
show tha (g, x (2) — gn,x (w)) > 0 which contradicts the optimality af. Using 6.7),

2 (g, (0) — gn i (u)) =
20 4 (1 = 8)(n2 +n? + n% —(ng— 1) = (n1 +2)? = (no — 1)%) =

=25+ (1 —0)(2nq4 + 2np — 6),
which is obviously strictly positive since, > 1 andny > 3. (]

Lemma 5.2.6 Assume thalv > K. Letu be an optimal unified policy with, > 0 then
ng—niy <ng—ng+ 2, (5.11)
ny —ng < ng—nyg+ 2. (5.12)

Proof To prove 6.11), consider the modified policy with 7y = nqy — 1, 73 = n3 + 1,
n1 = ni + 1, ng = ng — 1 (note thatng > 0 from (5.10 and the lemma’s conditions,
henceny > 0), andn, = ny for k # 4,3, 1,0. Note thatz is a valid policy, since it obeys
(5.2) and 6.2) because: does (the energy investment of both policies is equal). Sirise
an optimal policy we must hav®(gn x (%) — gn i (v)) < 0. Using 6.7) this means that

26+ (1 —0)[n] +n3 +ni +nf — (na — 1)
—(n3+1)* = (m +1)® — (ng — 1)?] <0.

Noting that2é is non-negative and rearranging terms in the inequality above, this inequality
holds if

2ny —2n3 —2n1 +2n9 —4 <0

which is easily seen to be equivalent%0X(1). The inequality .12 is proven similarly,
yet instead of shifting an energy unit fromy to ny, we shift an energy unit from; to ns
(note that such shift is possible by Lemi5i2.5. O
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Lemma 5.2.7 Letu be an optimal unified policy for soné and K so thatN > K. Then
ng = 0

Proof Assume by contradiction that; > 0. Then
3ng +2n3+no—n1 <ng—ny <ng—ng+2, (5.13)

where the first inequality follows from5(10 and the second one frond.l1). Hence,
dng + n3 — 2 < n; —ny < nzg — ng + 2, where the first inequality follows fronb(13
and the second one frorB.(2. The last set of inequalities suggests thai < 4 which
contradicts the assumption that > 0. (]

We are now ready to prove the theorem. Note firstthat 0 for every optimal unified
policy by Lemmab.2.7. Assume by contradiction that there exists an optimal policy with
n; > 0 for somei > 4. Then as in the proof of Propositidn2.2 the policya, with
nE = ng, k # i,4, ny = n; > 0,7; = ng = 01is optimal as well. But this contradicts
Lemmab.2.7. U

5.2.2 Asymptotic Analysis

We henceforth restrict attention to the cdse= V. In the remaining of this section, we
use the vector = (zo, 1, ..., zy) for representing a policy, wherg = n;/N. With this
representation5(7) can be written as

K
1
TPS(x) = 6(1 - 20) + (1 -0) <1 - Z;:ﬂ) : (5.14)
The battery lifetime constrainb(l) is
in =1, (5.15)
=0
while the energy constrainb() is
d g <L (5.16)
=1

In addition there is an "integrity" constraint: thes are restricted to multiples af —.

We now consider the problem witN very large. z; is then interpreted as the long-
run fraction of time (orfrequency that a power of units is used. The integrity constraint
disappears, and we are left with an optimization problem, which is easily sees &0
strictly convex one.

Lemma 5.2.8 The problem of maximizing PS(x) in (5.14) subject to $.15— (5.16 is a
strictly convex optimization problem.
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Proof SinceT PS(x) is quadratic inz; with a negative multiplicative term-(1 — §), and
the constraints are affine, the optimization problem is (strictly) convex. Nateritthe
case of§ = 1 the trivial unique solution of this problemis = 1. O

The optimal TPS in the asymptotic case is of course an upper bound to the maximal
TPS that can be obtained for eve¥y(with the integrity constraint present). We emphasize
that the last statement is valid not only for pure strategies, but also for reirk@egies, as
the solution for the case @f — oo may be viewed as the frequency in which each power
level should be used, regardless if the frequencies are obtained pum@eor mixed poli-
cies. A complete characterization of the optimal policy for the asymptotic caseviglpd
below.

Theorem 5.2.9 AssumeV = K and letN — oo. The optimal frequencies as a function
of § and the corresponding TPS are given by:

— _4-76 . _ (3=2i)64+4—i . ]
Co<gs<l JTOERay  Ti=Tamg oi= L2
= T3 | rps = 2040
= 20(1-9) -
_ 2-30 . S 2436(1—4) .
.1<5<2,{wo—6(15), Ti = ga1g =12
3 =3 _ 1 4-3682
TPS = 37155

Proof Noting that
1 1K

2 2
TPS(x <1§ xz>+5<2xo+2§0xi>,

we introduce the Lagrangian

l\D\H

K
L(x) = (5+1 ~(6—-1 fo—axo
K K
+A<in—1>+u<26l ! —1) (5.17)
=0 =1

where\ is the Lagrange multiplier associated with the number of time slots panidh
the power constraint. We ignore i6.07) the positivity constraints for eacty, assuming
thatz; involved are all positive, yet directly consider this constraint in our asislyelow.
We recall from Propositios.2.2that the optimal solution satisfies > x5 > 3.
Depending ory, the largest for which z; > 0 is either 3, 2, or 1. This is a direct
consequence of Theoredn2.3 which holds for everyV (and also in the limitv. — o).
We shall denote this largestby i*. Assume that* > 1 (the casei* = 1 is treated
separately below). In this case, the extremum of the Lagrangian con@spo an interior
point. Indeed, since fot < i < i*, we focus on optimal solutions that satisfy > 0
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and we are thus away from the boundaty= 0 for these indices; additionally, > 0,
since a power level larger than one is being used. The optimal solution isiitmised by
equating the gradient of the Lagrangian to zero, which leads to the folloegugtions

0L
oL _ (6 —Da; +A+pB~t=0 for i=1,... "
8%1‘
or equivalently
0= A ppt
xo—m, T; — — 5—1 . (518)

We now consider the different alternatives f6r Assumei* = 3. Substituting .18
in the constraint equation®.(l5—(5.16 (recall that the inequality5(16) is active in the
optimum, see Footnot®) and taking into account that, = 0 for i > 4, we obtain that

_ _ 3-p—p>-45 _ BPpts ituti it
"= TFT2574 722373 angl)\ n 3575513 Substituting these quantities back B 18
; _ (38%2-B-1)§+B%-3B2+8
yieldszs = 6= hrgr—s5m 57353 _ |
We will consider now the particular case where there is always an ingerfer.d = 0.
. . _3_32 2
Then the previous expressions become= 364—236f*i5§—26+3' A= g U8 =
B3—-38°+8
(381-2B3+83-28+3)" . ) . . .
Since the non-negativity constraints for thehave not been explicitly considered in

the formulation of the problem, we have to deal now with them.

3—V5 3+V5 _ Br—p3—p2+28 _
F4or2T < B < =52, :c32 > 0, and we haver, = AP Y1 =
pE=pB—2p+3 B==pB

A —2p P —2573) ANAT0 = sprgaes- _
For the rest of values df, it is negative, and thus only power levels up to 2 will be used.

Proceeding analogously we get then= wg%gm A = %, Ty = %ﬁ
2_ _
always greater than @; = %% andzg = %

The evolution of the optimal power allocation as a functionSois summarized in
Fig.5.1

5.2.3 Optimal policy in mixed policies

As shown in Sectiorb.1.2 the use of mixed strategies may increase the TPS. The upper
bound on performance obtained in Sectm@.2 leads to the objective of achieving this
bound via mixed strategies. We next establish that the upper-bound isliadbvable
for every NV, and explicitly derive the mixed policy that leads to the corresponding optimal
performance.

With some abuse of notations, we use the notatioca (ng, ni,n2,n3) for a policy
which uses a maximal power level ®f Consider the following three pure policies:
u(1) = (0, N,0,0),
u(2) = (N — [N/2] - mod(N/2), mod(N/2), | N/2],0),
u(3) = (N — | N/3] — mod(N/3), mod(N/3),0,|N/3]|)
(where|y| stands for the largest integer smaller thamndmod(y/z) is the reminder in

N
N
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T
——No transmission
—o—Power level 1
0451~ | —+—Power level 2
——Power level 3
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25 3 35
SIR threshold, B

Figure 5.1:0ptimal distribution of power levels as a function of the SIR threshold.

dividing two integer numberg andz). We show below that any required frequency vector
(zo, 1,72, x3) can be obtained by a mixed policy that uses the above three pure policies.

Theorem 5.2.10 Any required frequency vectdrg, x1, x2, z3) IS attained by a mixed

policy that uses the pure policies(1), u(2),«(3) with probabilities ps = xgﬁ,

p2 = xzﬁ, andp; =1 — p2 — ps3.

Proof Note first that the battery lifetime constraif.15 is obeyed sianjS’:O ni = N

for each of the three pure policies. Observe next that a power lev&itised only in
u(3). Hence, the probability of transmitting at this power Ieve?i’ﬁéﬁ’ﬂ = x3. Similarly,

a power level of is used only inu(2). Hence, the probability of transmitting at this power
level is% = x. In order to obey the total energy constraibtl), it remains to be
shown thatr; = 1 — 3x3 — 2x4. To that end, we examine the probability for using a power
level of 1 in each pure policy, and multiply it be the probability of using that policy. This
gives

mod(N/Q)p | mod(N/3) s

(1 —p2—p3) + N 2 N
1 <1 B mod](vN/2)> . (1 B mod](VN/3)>
_1q N — mod(N/2) N — mod(N/3)
I V7T N P /E]

N — mod(N/2) N — mod(N/3)

:1*1‘21

I(N —mod(N/2)) “I(N —mod(N/3))’

which means that; = 1 — 323 — 229. O
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The significance of Theore®.2.10is that the upper bound TPS can be obtained for
everyN by implementing the optimal frequencies obtained in Thedse2rBvia the mixed
policy derived above.

5.2.4 Discussion

The combination of Theorents2.9and5.2.10leads to a globally optimal (mixed) policy
that achieves the upper bound on performance and hence can Iseasenidied protocol.

It is important to emphasize that the number of pure policies that are used optihe
mal mixed policy remains a constant (three), and does not growMitln addition, the
complexity in computing the optimal mixed policy relates to calculating expressiafis su
asN/2 and N/3, which do not become much more complex for a lafge Hence, the
optimal policy is appealingly implementable.

At a higher perspective, we note that the approach used in The&.@ms5.2.10can
be applied in more general contexts, besides throughput optimality. Fompéxaassume
that half of the population should be given some priority in terms of the obtaiifst]
compared to the other half. The precise definition of the QoS differentiagomeen the
two sub-populations can be casted as a (continuous) optimization probleer.sAlving
the problem and obtaining the frequencies for each subset of the gopulaheorem
5.2.10can be invoked in order to implement the corresponding protocol.

5.3 The Noncooperative Game

This section is dedicated to the study of the noncooperative frameworthanchderlying
Nash equilibria. Our main focus is on symmetric equilitiig, which may be regarded as
protocols, from which no user has an incentive to unilaterally deviateettih5.3.1we
prove the uniqueness of the symmetric equilibrium point, and further previamplete
characterization thereof. Using the characterization, Seé&i8r2 compares the perfor-
mance of the optimal policy obtained in Section to the unified equilibrium policy via the
so-called price-of-anarchy (PoA) performance measure. We adathis section by show-
ing that asymmetric equilibria exist in general, yet leave their full analysifufare work.
Throughout this section, we shall focus on the cas®¥ ¢t K, which enables us to provide

a concrete comparison between optimal and equilibrium performance.

5.3.1 Symmetric Equilibria
We start our analysis by showing that in any symmetric equilibrium p&ré),( power
levels equal or greater than three would never be used.

Theorem 5.3.1 Letu be a unified equilibrium point. Thery = 0 for everyi > 3.

Proof The idea behind the proof is to establish first that a power level of threddwmt
be used in any best response. The theorem’s claim would then follow bgtiod onz;.
The proof proceeds in the following steps.
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Step 1:There is no best-response with > 0: Consider a policy’ = (z(, 21, ..., '), for
all players . Letu = (xo, ..., z;) be a best response t. Note that the energy constraint
(5.2) is met with equality for a best-response, heEcéil ix; = 1. Assume by contradic-
tion thatz; > 0. Introduce also the policy = (Zo, z1,7;-1,0) wherez;_; = ;1 + z;,
Zo = x9 — xj, 21 = x1 + ; (note thatu obeys the energy constrairi.p)). We show
below thatu obtains a larger value comparedut@ontradicting the optimality of the latter.

Jjoi—1

TPS(u,v/) = 6(1—m0)+(1-08)) > xa

i=1 1=0
j—2i-1 j—2 j—1
= §(1 —mo) + (1 = 8)(z12( + Z Z:rzxf + a1 Z:U; + fo)
i=2 =0 1=0 1=0
j—2i-1 j—2
= 61— o)+ (1= 8)(mah + zaf_y + D> @)+ (w51 +3;) Y ap)
=2 1=0 1=0
j—2i-1 j—2
< 5(1 — /x\()) + (1 — (5)(5/6\1.%'6 + 4+ :/E\ZJ:‘; + fj_l ZC;)
i=2 1=0 1=0

= g(uv u/)

the inequality follows fronizy < zo and also fromwg > 2.

Step 2: 3 = 0 in any best-response Consider now a general policy’ =
(xg, 2}, 2, 2%, ...) employed by all users, and a best-response of a deviator
(zo,x1,x2,x3,...). The utility for the deviating user can be decomposed as:

g(u,u') = 9(“(073)71/(073)) + 9(“(073)7U/(>4))

+ 9(u(za), ufo_3)) + 9(u(z1), Usa)), (5.19)

where for everyl C N, the notationu ;) stands for the sub-vectdr; };c; (thus, for ex-
ample ,g(u(>4), u’(0_3)) is the number of successful transmissions obtained in interactions
where all users use power levéls- 3 and the deviator uses power levels greater or equal
to 4). ObViOUSIy,g(U(O_g),u/(24)) = 0. As before, assume by contradiction thagt > 0

and consider an alternative policy for the deviating uset (7o, z1,%2,0,...) where

To = x9 + 23, Tg = 2o — T3, T1 = x1 + x3, T; = x; for i > 4. It follows from Step

1 thatg(u(o_3), u’(o_g)) > g(u(o—3), u’(o_g)). Since the other three terms .19 are not
affected by the transition from to u, we conclude thag(u, u') > g(u,u'). Hencers = 0

in any best response.

Step 3:In any best-response; = 0 for i > 2. Assume by induction ot thatx; = 0,

z) = 0. Itis readily seen that the polidyo, 1, ...,z = 0, zp41,...) With 2341 > 0is
suboptimal, sinc& = (xo — k41,21 + Ty, .- Tk = Tht1, Th+1 = 0,...) Obviously
obtains strictly higher TPS. Indeed, the deviating user benefits from éefymwer level

k as it did from power levek + 1 (due to the induction assumption thgt = 0), and in
addition it obtains a strictly positive benefit from additional poweransmissions. Hence,
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zr+1 = 0. Sincex; = 0, ¢ > 2 for any best response, there is no equilibrium point in
which mobiles use power levels above two. O

Taking into account thats = 0, it follows from the energy constrainb ) (which is
met with equality) that:o = (8 — 1)z for any user policy. We next express the utility of
a “deviating" user with such policy = (zo = (5 — 1)x2, 21, x2), Wwhere all others use a
policy v’ = (xy, ), 5).

TPS(u,u') = 6(1—z0)+ (1—0)(wo(x] + 2p) + z120) (5.20)
= 01— (B —1D)z2) + (1 = 8)(w2(z) + x0) + (1 — Baz)xp)

— 4 (1= )2+ wa(1— 0) (x’l—(ﬁ—l)(:cg—i—&)).

Define 5
Ay, z)) = <m’1 — (B - 1)(1‘6 + —(5)> . (5.21)

Clearly, the sign ofA(z], ;) would determine the best-response (BR) of the deviating
user, as we summarize below.

Az, xp) > 0 xoz%,@:%,xlzo
/
0

/

1
A2, z() <0 To=a2=0,21 =1 (5.22)
Ax),xp) =0 Any strategy (xg, z1,z2) is BR.
Using 6.22), we may explicitly characterize the symmetric equilibrium point, as we

summarize in the next theorem. When the policies below result in non-integarers,
mixed policies are used in the spirit of Theor&r.1Q

Theorem 5.3.2 (i) The symmetric equilibrium point exists and is unique whenéver /2
or 3 < %. Itis given by

0 <

o>

Whend < 1/2andj > % the two previous policies constitute both equilibria.
(i) The corresponding TPS are given by

0 <
o>
1

Proof (i) Consider first the case wheré > ;. For that case,A(z},r;) =
<x’1 — (zh + %)) < (2} — (zp, +1)) < 0, which immediately leads to the best re-
sponse policy ofg = zo = 0,21 = 1.

Consider next the case 6f< 1 and the possible values fot(z}, z()). Assume that
A(x,z) > 0; then obviouslyz| > z{; however, the best-responge22 in this case

o . 1-2 _ 146
Trg = T2 = 3(1_5)?x1 T 3(1-9) (523)

ro =20 =0,21 = 1.

D= N[

TPS =6+1—204-%,

5.24
TPS =6. ( )

D= N[
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is such thal = z1 < zp = 1/2. HenceA(z),z{) > 0 does not lead to a symmetric
equilibrium. Similarly, assume that(z}, z{,) < 0. This implies thate] < z{, + %5 <
x(,+1; the best-response in this case is suchthatz,, o = 0. Hence in order to achieve
a symmetric equilibrium we must haye> % The remaining case i4(z], z;) = 0. Since
the deviating user is indifferent about its policy (as long as it uses powelslaot greater
than two), a symmetric equilibrium is obtained for = z¢ + >5. Using the energy

=
constraint, the last equatlon immediately implies that= =5 =2, x5 = 53752,
— b1 1 -
11 = 95— + 1

(i) For 5 > 1, |t is |mmediate that the TPS i§ since users always transmit with a

power level of one; the TPS in this case is thus equivalent to the probaHilitytdacing

an interferer. For the case 6f< 1, we substitute4(:c’1,:n6) = 0 and the allocation rule

(5.23 in (5.20 and obtain thaTPS =0+1-— 2525 7 which establishes the result.[]
The evolution of the power allocation at the symmetric equilibrium as a function of

is summarized in Figs.2, and the corresponding TPS is given in FBg.

——Power level 1
* Power level 2

0 01 02 ) s 07 _08 09 1
Probablllty of havmg no |nterferer 19

Figure 5.2:The distribution of power levels at the symmetric equilibrium as a functioneptbbability of
having no interferer.

1~

—=— Optimum symmetric strategy|
= v -Equilibrium

0.2 | | | | ]
0 0.1 0.2 03 04 05 06 07 0.8 0.9 1

Probability of having no interferer &

Figure 5.3:The TPS at the symmetric equilibrium as a function of the probability of havinigpterferer.
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5.3.2 Efficiency Loss

Equipped with a complete characterization of both the symmetric optimal solutiathend
symmetric equilibrium point, we may compare the performance at both framsweérk
popular measure for comparison is the PdRojighgarden 20Q5which corresponds in
our case to the ratio between the TPS obtained in the team problem and the ffleS a
symmetric equilibriurd. We emphasize that we do not consider here asymmetric working
points.

=
=)
>

Price of Anarchy

g
Q
5]

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9
Probability of having no interferer &

Figure 5.4:Efficiency loss as a function @f. The y-axis is the ratio between the symmetric-optimal TPS
and the symmetric equilibrium.

The PoA as a function aof is depicted in Figur&.4. It is seen that the efficiency loss
is always smaller thaf percent. An interesting direction for future work is to study the
efficiency loss in cases where the energy available is larger fi.e» N) and examine
whether users misuse the access energy.

5.3.3 Existence of Asymmetric Equilibria

We focused in preceding subsections on symmetric Nash equilibria. In théection we
show that asymmetric equilibria exist in general. In viewmP(l), any set of policies (that
use power levels less tha), for which theaveragedistribution of power levels among
the user-population satisfies = ng + % leads to an equilibrium. Indeed, no user will
benefit from deviating, as all, n1,n2) policies are in fact best responses. A particular
case of the above are the symmetric equilibria obtained in Thebrd Based on this
observation, it is possible to construct asymmetric equilibria as, for instance

e A fraction 3(114_55) of the population use; = N, ng = no = 0. The remaining
fractionzf(l‘—fg) useng =ny = 5, ny = 0.

3In general, the PoA corresponds to the ratio between the optimal soluticthewworstNash equilibrium.
However, in our case, both the symmetric optimal solution and the symreguitbrium are unique.
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In the present work, we do not focus on asymmetric equilibria, yet poithteio exis-
tence. The numeric example above strongly relies on our characterizéti@symmetric
equilibrium. It remains to be verified whether additional asymmetric equilibridcfwh
may lead to different TPS) do exist. The comprehensive analysis of asyimeguilibria
remains a challenging direction for future work.

5.4 Extensions to the model

We briefly mention how to adapt the analysis to variations on the initial model, ra@sé it
some conclusions and future research directions.

5.4.1 Soft capture Network

Assume that if two stations transmit at the same power level then a givent packe-
cessfully received with probability < 1/2. Leta = 1 — a. If powers are different then,
as before, the packet transmitted with larger power is successful aathreis not. The
objective to maximize is given by

_ K i1 K i
ca _ a . . — g . .
gew = 5(N—n0)+(1—5)NZan]+(1 5)sznmj (5.25)
i=1 j7=0 i=1 7=0
1 K i—1 K
— - 2
= 5(N—n0)—|—(1—6)N(;Zonmj+azlni> (5.26)
1=1 )= 1=
= §(N —no)— (1 —0)nda/N (5.27)
1 _9g J izl 9q ¢ izl K
2
+ (1—5)[ I ZZn,m%—N(Z nmj—i—52nl> (5.28)
i=1 j=0 i=1 57=0 =0
an? 1— 20 &L A
- — — (1 =620 _ _ s
= SN —no) = (1)L + (1 5)[ ~ ;jzonmﬁaﬂ,(s.zg)

(5.30)

where we usedy(8).

Considelz = 1/2. In this caseg“” equals—dno—(1—45)n2/(2N) plus some constant
that does not depend an For anyd, this utility is maximized atg = 0 which means
n1 = N andn; = 0forall i # 1.

The case: < 1/2 remains to be investigated in future work.

Asymptotic Analysis From egs.5.27and5.8 we can write the asymptotic TPS in this
case as:

K
TPS“? = §(1 — ) + (12_5) <1 —(1-2a)) a7 - x%)

i=1
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We have a convex optimization problem whose Lagrangian is
K
(1-9)
L(x) =01 =) + =5 | 1- (1-2@2953—:53

K K
+A (Z T — 1) + 1 <sz — 1) (5.31)
1=0 =0

oL

e— _1 — g

B2g (—1Dag—0+A=0
gf,=(5—1)(1—2a>xi+A+m':0 i=1,...,"

Let us assume only power levels up to 4 are used in the optimal solution. ddden;
lating the values of the multipliers in order to satisfy the constraint, we can obtain

1 (=14 2a)(—50 + 126a — 12a)
T 15 (<5 +6a)(1—0)(1 - 2a)

which is always negative, meaning that power level 4 will not be usedadtition,
since we still haven; > n; 1 for i > 0 we can conclude that only 3 power levels will also

be used in the soft capture case.

542 Casek > N

Proposition 5.4.1 We can obtain the socially optimal policy fof, K > N, starting from
the optimal (already known) policy fav, K/ = N by recursively obtaining new policies
with one extra energy unit by using once power levell instead ofj, and leaving all the
remaining time slots unaltered.

Let us consider a fixedV and increasd<. For N = K, we know the optimal policy,
in the social casey = ng,n1,n2,n3,n4 = 0. From it, we may construct a new policy
using K + 1 energy unitsy/, by using once power level + 1 instead of;j, and leaving
all the remaining time slots unaltered. In order to maximize the throughput, thejlevel
must be chosen gs= argmaxn; — n;i1. Defined = n; —njyq, thenng <d, no <
Qd, ny < 3d, no < 4d, N < 10d.

Suppose, by contradiction, there exists a better policy tHan = (7o, n1, ..., ng).
Conversely, we may construct new policies using K energy uiitésom 2, by using once
power levelj instead ofj + 1, and leaving all the remaining time slots unaltered. But given
the optimality ofu this impliesn; — n;.1 > d + 1 VI. Moreover,u must use at least
power level 4, or otherwise it could be constructed in the same waj; aentradicting the
hypothesis. Them3 > 1+d+ny, no>2d+2+n4, N1 >3+3d+n4, ng>
4+ 4d + ng, N > 10 + 10d + 4ny4, getting a contradiction.
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5.4.3 General Access Problems

Through the model we used for the power control problem, we intendedrtmirce a
methodology that can be useful for general control of priority acdégsbriefly comment
on some specific variations that may be needed in other network applicdtiangeneral
priority assignment context, one may again enumerate priority levels usingttduyeia
{0,1,2,...}; an access request with priority> 1 would prevail if it is the only request,
or if all other requests are with lower priority. It may even be grantedsac(eith some
positive probabilitya) in the case that another request is made with the same priority level
(as in the “soft-capture” model above). Yet, there may be a differentieeinwvay that
priority level O is treated, compared to the way that power level 0 is modele@ ipder
control problem. In the power control framework, when the transmissiarepis zero then
transmission fails, in particular, for the following two cases: (i) there is nafetence, or
(i) there is interference with another mobile that “transmits" with a power dd.z&his
need not be the situation in other priority assignment modEts. example, the lowest
priority (i.e., zero) can be interpreted as “best-effort" service in Qgiperting network
architectures.

To concretize our discussion, assume that a request with zero priorityengliccessful
w.p.1 in case (i) above, and with positive probabilitin case (ii) (i.e., the “soft-capture"
rule includes priority zero as well). The expected utility is giversby plus the third term
of (5.29, which yields

i—1

1-2
goeneral — §N 4 (1 — 5){ ¥ a S ning + aN}.
i=1 j=0

Interestingly, the optimal and equilibria policies for angoincide with those obtained for
the original power control problem with = 0. Note that for§ = 1 or for a = 0.5, the
performance does not depend on the policy anymore (all policies arepiiuzal).

5.4.4 Conclusions

We have considered the priority assignment problem that correspotgjztse” multiple
access networks, in which pairwise interactions occur. We have paaidexplicit solu-

tion for the team problem, and a complete characterization of the symmetric eguilibr

in a noncooperative framework. Interestingly, the number of powetddtat is used in

the competitive setup is smaller than the corresponding number for the teblamr(this
holds for every$). This phenomenon is counter-intuitive perhaps, as in many noncooper-
ative networking scenarios, the users consume the network resouacesore aggressive
way, compared to the socially-optimal point (e.g., in queuing networks Haess[n 199]).
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Conclusions

In this thesis we have considered several scenarios of resourcat@ifotechniques for
multiuser uplink scenarios. Based on a general model allowing to consffigedt trans-
mission technologies, we have formulated the power allocation problems witlh&hefy
maximizing the throughput, either of the total system, or by each user in a seldish
ner. The goal was both to quantify the achievable gains and to propass pdocation
algorithms allowing to implement in practice these optimal solutions.

We have initially studied the optimal decoding order and power allocation fGr S
receivers, both MMSE and matched filter, considering different, reatibtaminel models.
We have shown that, for the former, the optimal detection order depenitie saquested
SINR, eventually weighted, while in the latter, only on the channel enerdies.use of
asymptotic tools from random matrix theory provide a neat framework foamiaysis of
SIC systems, allowing to consider different transmission technologies endemmon
system model. It has also been shown that, under certain conditions vilee @iéocation
can be determined in a decentralized manner (by each user individuaty) eamsidering
a high number of users in the network.

Next we considered the problem of resource allocation in fast fading®thannels
with correlation. Our goal was to design power allocation algorithms while minimihiag
amount of control signal from the BS, assuming to this end only CDIT (a®HREL Two
scenarios were studied: in the first single user decoding was perfantiee base station,
whereas in the second a random coordination signal was introducedrajltmvperform
interference cancellation decoding and determining the decoding or@éecbfuser, and
thus significantly enhancing the system performance. A game theoretic se&ngsed
to analyze both scenarios, determining the existence of equilibria, whttigély allows
the mobiles to choose their power allocation policies in order to selfishly optimize the
ergodic transmission rates. In addition, an iterative algorithm has bepag®d to this end
which is guaranteed to converge to the optimum if it does converge (extesisiulations
indicate its convergence).

We then proceeded to consider an scenario in which mobile stations are athmé&xt
simultaneously to several base stations (which may be equipped with diffexaamis-
sion technologies such as OFDM, MIMO or CDMA), communicating on noriappeing
frequency bands. A cross-system power allocation algorithm hasdbeéied in order to
exploit the available cross-system diversity. For the optimum receiweastshown that a
simple cross-layer algorithm, analogous to the water-filling algorithm, can berimepied
at the central controller to schedule the powers of all the users in ordetimize the net-
work capacity, and this can be done in a simple, iterative way, which ggneocaverges
to the optimum.
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For the MF and MMSE receivers a water-filling solution can still be obtainethb
troducing two additional assumptions, which simplify the optimization problem thirea
price of a performance loss that has to be evaluated in the situations ostntEm the
typical scenarios considered in this paper, we saw that they werenaddso The potential
performance gain of cross-system diversity was shown to be importaet/aral typical
simulation setups. For instance, by simply using MMSE receivers at thestatgms and
uniform power allocation over the different systems, the mobile transmit poawdd be
divided by a factor greater than 10 with respect to a standard networy thee MF and
hard handover power allocation scheme.

Finally we have considered a somewhat different scenario, the priggigrament
problem in “sparse" multiple access networks, in which pairwise usersaiiens occur.
We have provided an explicit solution for the team problem, and a completaatba
ization of the symmetric equilibrium in a noncooperative framework. Interglstitthe
number of power levels that is used in the competitive setup is smaller than thepamd-
ing number for the team problem (this holds for evéyy This phenomenon may appear
counter-intuitive, as in many noncooperative networking scenariosisiies consume the
network resources in a more aggressive way, compared to the soqétyabpoint.

Future Research In this thesis we have presented a number of results on how to improve
the uplink performance through proper resource allocation, speciaéy ilmited channel
state information is available at the transmitters, and determining conditions whatsr

it can be done in a distributed way.

In chapter2 the results rely on simplified, separable channel model. The obtained
decoding order is still optimal for more general channel models und&icessumptions,
such as the high rate regime, but it would be interesting to study whether this ¢asle
also in general.

In chapter3 the use of a simple coordination signal was able to produce an important
performance improvement by allowing the use of successive decodithg &S. How-
ever, more sophisticated coordination signals could be consideretingraaclosed loop
approach in which it would also transfer information about the channeladdition, the
convergence of the proposed iterative algorithm was only obtainedghrsimulation re-
sults, its theoretical analysis would add a significant result.

The results from chaptef could be extended by considering other performance met-
rics such as the outage probability in order to further characterize theditsenf the cross-
system diversity. Extensions considering more heterogeneous nstmdght also be con-
sidered (e.g. introducing CDMA base stations with multiple antennas), sinéaifgom
Matrix theory results used could still be applied there. Finally, in order tsiden a
possible practical implementations of the scheme a number of issues wouldohbge
considered, such as the BS coordination problem.

In chapterb a simpler, symmetric, channel model is assumed, based on some related
networking problems. Several directions appear to extend the interessinljsrobtained
here. First a fading channel could be considered, even a simple i.i.¢linooeler to be
able to exploit some of the properties obtained here. Secondly, to cogeideral battery
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life-time N and general budget K and obtain complete characterization ofthetteam
and game problems. Another challenging extension is to relax the assumpsparity
an to consider interactions of more than two users and their consequences






APPENDIXA

A.1 Optimum eigenvectors for decentralized MIMO MAC with

double-sided correlation
To prove Theoren8.3.1for ufo) we follow the same steps aSdysal 200pand use
an additional argument due to the fact that the receive antenna canrretatam here.
1 1 1

By definition H, = R%@gTj = UzD3U%O,U/D2 U/, where®, is a zero-mean
i.i.d. Gaussian identity covariance random matrix. Using the fact that multipi@ingy
a unitary matrix does not change its joint distribution and the fact|lfatU” + 1| =
|M + I| for any unitary matrixU one can write:

(SU)
max u, =
Qrk
K

1 1 1 1
I+p> UrD;UH#O,UDZUIQU,D;U/O;UsD;UY ] =

/=1 ]
(A1)

K 1 1 1 1
I+p) D;0,D:U;/QUD;0; D}
1 1 -~ o~
Then we can spectrally decompose the maIﬁXUngUgDZ = UngUf and
write that

log

max[E
Qx

max[E |[lo
o !gz

/=1

K 1 ~ o~ o~ 1
maxulgSU) = maxE [log, I—l—pZDE@gUngUf@fDé
Qx Qx —
K1 1
_ r%axE logy T+ p) D30,D,0/D}|| . (A.2)
. =1

We see that the function to be optimized depends on the eigenvddjomly through
the power constraiffr(Qy) = Tr(UI'D, "UyDy) < n;. The matrixUy, can be chosen
arbitrarily provided it meets the power constraiit(Qy) < n;. The choiceU;, = I
is feasible sincélr(D, 'Dy) < Tr(UID_'UDy) < n;. This shows thaQ; can be
chosen without loss of optimality to be structured &3 = UkDglﬁkUkH. For the

optimization ofv,(COL) one has to note that for each ugee {1, 2}, QS) andQ(2) are

optimized independently. For a given realizatioof S, the optimum structure cﬁ),(:) for

the interference-free channel follows frodofswieck 2004ja For the other user re-use the

derivation forufo) to conclude the proof.
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A.2 Proof of Theorem3.3.2

In the proof provided here we assumed for claRty= I but the result can be easily proved
to hold in the general case. We want to derivate the utility funciipgiven by eq. 8.10.

It turns out that the partial derivative with respecfig) is the same as it would bedfand

£ would be assumed to be independent of these quantities. This resultusheseduse it
allows us to cope with the convergence issue of the quantiti@sowards strict constants
as the numbers of users and dimensions grow. Therefore, the maintinedresproposed
derivation is that one does not need to assure/ to be independent d?; (7). Otherwise

the result can be obtained much more easily. We want to prove that thatderiof the

. . sum 1 Kpdp (1
approximated utility of usek can be expressed agy— T2l it K pp Pk ((Z))g o
T k k

We have:
45
x (14 Kpﬁ(Pk(i)))mefntKQPa(Pk(i))ﬁ(Pk(i))} ) (A.4)

Define w2 [[0+KpP(j)de(j)a(Pe(i))] and v = (1 +

Z,j

‘ ; - . On,y 1 1 Ow
K pB(P, (7)) et K2 pa(P(0)B(Pk() \Wjith th tationser Ysum 1 .
pB(Pi(i))) e th these notationsz7 e = 105
K pdy (i)

It turns out that uv_ X This is what we want to
< = uv S
0Py (7) 1+ KpPy(i)di (i)
show. We want to derivate the functian As u is a product of functions., ;, i.e.

. - . up .
u= ]Jue,. its derivativeu’ can be written as’ = u x Y3, ;. More precisely

‘€7j
. . N(L,j)
u = 1+ KpPy(5)de (5" =L where
L1+ some e () ];1+K0PZ(J)dE(J)a
’ Kpd(i)(a + Py(i)a’) if (&J)z(k Z)
Using a similar reasoning forv one can check thatv’ = v X
Kp[p"r}fﬁ Knt(a’6+a6’)]. Now using the relations proved in the previous

steps we have that

ouv ./ /
BB () — UV ~+ uv

N(¢,
o }Z&] 1+K”Pe(j]>217<a>a +Kp [HKpﬁ — Kny(o/B + o) }

KpPy(5)de(j)a K pdy, (i) (ot Py (i) )’
Z(f,j)#kn‘) 1+f<p€Pe(j)[di(j)a + I/il-];(ppk( )dIZ(z) +Kp 1+Kp/3 — Kny(o/B + 045’)} }
Now using the definitions af ands (see eq. §.11)) we find, after simplifications, the pro-

posed expression for the derivative)gf,,,. Finally, by setting the derivative dfy, (P (%))
to zero we find equatiorB(13).

= Uuv X
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B.1 Proof of Lemma4.2.2

We want to derivate the argument of the maximum in equado®) (vith respect tay,

First note from the system of equatior&@) that; andg; do not depend omy, s for
all t # s. Based on this observation one just needs to consider the following awxiliar

function:
K N
¢(ak,s) = log, H 1 + Yoo, sr(ag)] H 1 +pd (o, s)) « e~ Kpr(aks)alan,s)
/=1 7j=1
(B.1)

where we dropped the system indeand receiver subscriff?) for sake of clarity.
K

= H [1 + yeapsr(a,s)] and v
/=1

(1>

Define U

N
H (14 pd2q(ak,s)) x e Priers)al@ns) Wwith these notations:

7=1
Op(aks) 1 1 Oww (B.2)
Oay, T In2w Doy s
It turns out that (uv) = uv X L. This is what we want to show.
Oay, 1+ ypou s7
We want to derivate the functiomw.r.t. a;, ;. Asu is a product of functions,, i.e
K

K

u= H g, its derivativeu’ can be written ag’ = u x Z £ where
=1 1=

;| yeag st if £ #£k (B.3)

Y= Ye(r + agsr') if £ =k.

Using a similar reasoning farone can check that

"= x — I~ Kp(d ! B.4
v =u ;1+pd§q p(g'r + qr') (B.4)
Now using the relations proved in the previous steps we have that
K N 2 1
a(u’l}) u% pd]q / /
= uv X —+ Y ——— —Kp(qr+aqr B.5
Oay, ; 1+ yeoup o7 ; 1+ pdiq p(q qr') (B.5)

v
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with ¢ expanding as

! / N 2 1
Ve sT Ve (7 + o o1”) pd3q / /
- agar | S+ ) s — Kp(dr+qr'). (B.6
(0 ; 14 yeap 57 1+ yrag s Zl+pd2q p(q qr'). (B.6)
#k ’ ) ]71 g
(B.7)
Now by observing that
/
YeQu,sT Otk
Lt L A — <qu _ ’7> r
¢ 1+ YeCy sT 1+ Vi sT
#k ,
N pd2q (B.8)
pa;q ,
> T o2~ Hedr
=1 TP
we find that .
k
T 1t vap B.9
v 1T+ yeagsr (B.9)

which concludes the proof.
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