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ABSTRACT
The counterfeiting of pharmaceutics or luxury objects is a major
threat to supply chains today. As different facilities of a supply
chain are distributed and difficult to monitor, malicious adversaries
can inject fake objects into the supply chain. This paper presents
TRACKER, a protocol for object genuineness verification in RFID-
based supply chains. More precisely, TRACKER allows to securely
identify which (legitimate) path an object/tag has taken through a
supply chain. TRACKER provides privacy: an adversary can neither
learn details about an object’s path, nor can it trace and link objects
in supply chain. TRACKER’s security and privacy is based on an
extension of polynomial signature techniques for run-time fault de-
tection using homomorphic encryption. Contrary to related work,
RFID tags in this paper are not required to perform any computa-
tion, but only feature a few bytes of storage such as ordinary EPC
Class 1 Gen 2 tags.

1. INTRODUCTION
Supply chain management is one of the major applications of

RFID tags today. The tags are physically attached to objects, there-
with enabling tracking of objects on their way through the steps of a
supply chain. Today, RFID-based supply chain applications range
from simple barcode replacements in supermarkets to more sen-
sitive application scenarios, where tags are used for product gen-
uineness verification, anti-counterfeiting, anti-cloning, and replica-
prevention of luxury products or pharmaceutics [8, 9, 13, 17, 19].
all these scenarios and the latter in particular raise new security and
privacy challenges.

First, with respect to security, it must be verifiable whether an
object has taken one of the valid paths through the supply chain,
i.e., the object went through a certain valid sequence of steps in
the supply chain. The goal is to allow the operator or manager
of the supply chain to be able to check the genuineness of an ob-
ject by simply scanning the object’s RFID tag. The problem is,
though, that supply chains are physically distributed and parties
involved in supply chain (the “steps”) may reside in different loca-
tions, even in different countries. The manager does neither have
full control over interconnections in between steps of the supply
chain, nor full control over some of the steps itself. Also, for sim-
ple feasibility reasons, it cannot be assumed that facilities of the
supply chain are permanently online or synchronized with a back-
end database. Consequently, supply chains today are prone to in-
jection of faked, counterfeit products. For example, World Health
Organization (WHO) has estimated that 10% of U.S. pharmaceuti-
cal products were already counterfeit in 2005 [6]. Hence, there is a
stringent requirement for a security solution to prevent an adversary
from tampering with tags in order to forge faked traces through the

steps of the supply chain.
The second problem regards the privacy of objects in the supply

chain. Typically, the manager of the supply chain does not want to
reveal any information about internal details, strategic relationships
and processes within the supply chain to adversaries, e.g., competi-
tors or customers. An adversary should not be able to trace and
recognize tags and objects through subsequent steps in the supply
chain and therewith learn something about the internal processes of
the supply chain. Similarly, by scanning an RFID tag attached to
an object, the adversary should not be able to gain any knowledge
about the history of that tag and the object it is attached to.

Solutions addressing these security and privacy requirements are
on the other hand, governed by the challenges of the RFID settings:
RFID tags have to be cheap for massive deployments and there-
fore can only afford lightweight computational capabilities. Tra-
ditional security and privacy solutions would overburden tiny tags
and therefore are ineligible. Note that security and privacy require-
ments for RFID-based supply chain management call for more than
just privacy-preserving authentication as already extensively cov-
ered in the literature, cf., Avoine [3]. As a new requirement raised
by the supply chain management, the soundness of the history kept
in the tags must be assured throughout the steps of the supply chain.

This paper presents TRACKER, a protocol for secure, privacy-
preserving supply chain management with RFID tags. The main
idea behind TRACKER is to encode paths in a supply chain using
polynomial signature techniques similar to software run-time fault
detection. These polynomials will be evaluated using homomor-
phic encryption, thereby providing security and privacy.

TRACKER’s major contributions are:

• TRACKER allows to determine the exact path that each tag1

went through in the supply chain.

• TRACKER provides provable security: an adversary cannot
create new tags or modify existing ones and fake that a tag
went properly through the supply chain.

• TRACKER is privacy-preserving: only the manager of the
supply chain, but no adversary, can find out a tag’s path.
Also, TRACKER achieves unlinkability. An adversary can-
not link tags it observes on subsequent occasions.

• Contrary to related work such as Ouafi and Vaudenay [15] or
Li and Ding [12], TRACKER does not require tags to perform
any computation. Instead, TRACKER relies on passive tags
with limited storage, such as standard EPC Class 1 Genera-
tion 2 tags. Due to lower hardware complexity, this implies

1Assuming that a tag is physically connected to an object and thereby representing it,
this paper uses “tag” and “object” interchangeably.
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less productions costs and cheaper (or cheapest) tags in com-
parison to related work.

• RFID readers do not need to be permanently online or syn-
chronized with a central data-base. In the same manner, the
manager is “offline”.

• TRACKER detects, but does not prevent, malicious tampering
with tags’ internal states by any adversary.

The rest of this paper is structured as follows: after presenting a
formal model for a supply chain as used throughout this paper in
Section 2, we will state the problem addressed by TRACKER and
the adversary model in Section 3. This also includes security and
privacy goals within TRACKER. In Sections 4 and 5 we describe
TRACKER’s details and formally analyze and prove TRACKER’s
security and privacy properties.

2. BACKGROUND
We use terms and expressions similar to the ones used by Vau-

denay [18] and Ouafi and Vaudenay [15].
A supply chain in this paper simply denotes series of consecu-

tive steps that a product has to pass through. The exact meaning or
semantic of such a “step” in the supply chain depends on the partic-
ular application and will not be discussed here, one could imagine
a step being a warehouse or a manufacturing unit. The actual busi-
ness or manufacturing process that takes place during each step of
a supply chain is out of the scope of this paper. From the point of
view of this paper, each step of the supply chain is equipped with
an RFID reader and when a product moves to the subsequent step
of a supply chain, an interaction takes place between the product’s
RFID tag and the reader associated with the step. At the end, a
manager wants to know whether a product went through the “cor-
rect” sequence of steps in the supply chain.

2.1 Entities
The following entities exist in TRACKER:

• Tags Ti: Each tag is attached to and therewith stands for a
single product or object. A tag Ti features re-writable mem-
ory representing Ti’s current “state” denoted sj

Ti
. The set

of all possible states is denoted with S, sj
Ti
∈ S, and |S|

is a sufficiently large security parameter of TRACKER, e.g.,
|S| = 2160.

• Issuer I: The issuer I prepares tags for deployment. While
attaching a tag Ti to a product, I writes an initial state s0

Ti

into Ti.

• Readers Rk: Representing a single step in the supply chain,
a reader Rk can interact with a product’s tag Ti: Rk reads
out Ti’s current state sj

Ti
and writes an updated state sj+1

Ti

into Ti. Here, Rk uses some function fRk to generate sj+1
Ti

out of sj
Ti

, i.e., fRk (sj
Ti

) = sj+1
Ti

. Each reader is assumed
to be “offline”, i.e., not permanently connected to the issuer,
manager, other readers, or some kind of back-end database.
Only during initial system preparation, we assume that issuer
I can connect to readers, e.g., to send some secrets to the
reader using some secure channel.

• Manager M : Eventually, a tag arrives at a special step in the
supply chain called a checkpoint. At a checkpoint, manager
M wants to check a tag’s genuineness or validity. M checks
whether tag Ti, and therewith the tagged object, has passed

through a valid (“correct”) sequence of steps in the supply
chain. To do so, M simply reads out the current state sj

Ti
of

Ti. Solely based on sj
Ti

, M decides whether Ti went through
a valid sequence of steps. We assume that M knows which
path in a supply chain are valid or not. As with readers, M is
assumed to be offline and not synchronized with the rest of
the system – besides during an initial setup.

2.2 Supply Chain
Formally, a supply chain is represented by a digraph G = (V, E)

consisting of vertices V and edges E.
Each vertex v ∈ V is equivalent to one step in the supply chain.

A vertex/step v in the supply chain is uniquely associated with a
reader Ri.

Each directed edge e ∈ E, e := −−→vivj , from vertex vi to vertex
vj , expresses that vj is a possible next step to step vi in the supply
chain. This simply means that according to the organization of
the supply chain, a product might proceed to step vj after being
at step vi. If products must not advance from step vi to vj , then
−−→vivj /∈ E. Note that a supply chain can include loops and reflexive
edges. Whenever a product in the supply chain proceeds from step
vi to step vj , reader Rj interacts with the product’s tag.

Issuer I is represented in G by the only vertex without incoming
edges v0.

A path P is a finite sequence of steps P = {v0, . . . , vl}, where
∀i ∈ {0, . . . , l − 1} : −−−→vivi+1 ∈ E and l is the length of path P .
Clearly, different paths can have different path lengths.

A valid path Pvalidi is a special path which manager M will
eventually check products for. A valid path represents a particu-
lar legitimate sequence of steps in the supply chain that M is in-
terested in. There may be up to ν multiple different valid paths
{Pvalid1 , . . . ,Pvalidν}, in a supply chain.

The last step vl of a valid path Pvalidi = {v0, . . . , vl} represents
a checkpoint. After tag Ti has passed through such a checkpoint,
M will check for Ti’s path validity.

While manager M might not know all possible paths in G, we
assume in the following that M knows the valid paths, i.e., the
sequences of steps, that he is willing to accept as valid.

a b 

e 

d 

c 

I 

Figure 1: Simple supply chain. Checkpoints are encircled

Figure 1 depicts a sample supply chain. Checkpoints, where
manager M verifies tags/objects, are encircled. So, after their de-
ployment at issuer I , tags can either start in steps a or b. Valid paths
in Figure 1 are, for example, {I, a, d}, {I, a, d, e} or {I, a, c, c, e}.
Other sequences such as {I, a, e} are not valid according to the
supply chain.

2.3 A Tracker System
Using the above definitions, a complete TRACKER system con-
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sists of

• a supply chain G = (V, E)

• a set T of n different tags

• a set of possible states S

• a total of η different readers, η = |E|

• issuer I and manager M

• a set of η state transition functions fi : S → S

• a set of ν valid paths

• a set of valid states Svalid

• a database DBclone, stored at manager M to protect against
cloned tags (see next section)

• a function READ : T → S that reads out tag Ti and returns
Ti’s current state sj

Ti

• a function WRITE: T × S → ∅ that writes a new state sj+1
Ti

into tag Ti.

• a function

CHECK: S →

Pvalidi , if tag Ti went through Pvalidi

∅, if @Pvalidi that Ti went through
that only based on a tag Ti’s current state sj

Ti
decides about

which valid path in the supply chain tag Ti has taken.

3. PROBLEM STATEMENT AND
ADVERSARY MODEL

In TRACKER, we assume that the readers in the supply chain
are independent. We assume as well, that a reader Ri at step vi

behaves correctly when it comes to the operations it has to perform
on tags going through vi. For instance, a reader Ri at step vi that
corresponds to quality control does not update the state of T unless
the product attached to T satisfies the quality requirements.

Within TRACKER, we identify the following security and privacy
challenges.

3.1 Security
The main security goal of TRACKER is to prevent an adversary

from forging a tag’s internal state with a valid path that was not
actually taken by the tag in the supply chain. Using the compo-
nents of the TRACKER system, this goal can be stated as follows:
if the verification of tags Ti’s internal state sj

Ti
by manager M us-

ing CHECK returns a valid path Pvalidi , then Ti must have gone
through the steps of Pvalidi in the supply chain.

Only the soundness of the CHECK function is required with re-
spect to identification of a valid path, since the completeness of the
CHECK function cannot be always assumed. As shown below, the
adversary might write any content, for example just “garbage”, into
Ti at any time to spoil detection of valid paths. Even if a tag Ti has
been through Pvalidi in the supply chain, the adversary might re-
place and invalidate the state of Ti leading to a CHECK output of
“∅".

We formalize this security property and our adversary model us-
ing game-based definitions in accordance with Juels and Weis [10].

An adversary A(ρ, r, ε), or just A, has access to a TRACKER
system in two phases. First, in a learning phase, cf., Algorithm 1,
A can read from and write into arbitrary tags. For the sake of sim-
plicity, we assume that products and tags go through a supply chain

in a clocked, synchronous way. At each “clock cycle”, all tags are
read and then re-written by the readers in their vicinity, and then
proceed to the subsequent step in the supply chain.

for i := 0 to (ρ− 1) do
ITERATESUPPLYCHAIN;
for j := 1 to r do

CHOOSETAG(Ti,j);
si

Ti,j
:=READ(Ti,j);

WRITE(Ti,j , s
i+1
Ti,j

);
QUERY−OM (Ti,j);

end
end

Algorithm 1: Learning phase of adversary A

Along these lines, the ITERATESUPPLYCHAIN command in Al-
gorithm 1 enables A to iterate or “executes” the supply chain by
one clock cycle, i.e., all tags advance by one step. A can execute
the supply chain a total of ρ times. Now per iteration, per clock
cycle, A can choose a set of r arbitrary tags, read-out their inter-
nal state, and re-write their state with some arbitrary data. Also, A
has access to an “oracle” like construction QUERY−OM : queried
with a tag Ti,j , QUERY−OM will return the output of the CHECK
function.

The above definition ofA reflects an adversary in the real-world
having full control over the network and knowledge about the valid-
ity of tags’ states. In summary, this definition is equivalent to the
adversary proposed by Juels and Weis [10] and the Non-Narrow
Strong adversary suggested by Vaudenay [18].

After the learning phase of Algorithm 1, A enters the (simple)
challenge phase as depicted in Algorithm 2.8<:

CHOOSETAG(Ti);
sj

Ti
:=READ(Ti);

WRITE(Ti, s
j+1
Ti

);

9=; or


CREATETAG Ti;
WRITE(Ti, s

j+1
Ti

);

ff

A→M : Ti;
M evaluates CHECK on Ti’s state;

Algorithm 2: Security challenge phase of adversary A

A can either arbitrarily choose one tag Ti ∈ T , read and re-write
it with sj+1

Ti
, or A can “create" its own tag Ti 6∈ T and write some

state s′Ti
in it. Finally, A sends Ti to M . Manager M will now

evaluate CHECK on Ti’s state.

DEFINITION 1 (FALSE POSITIVES). If M ’s evaluation of CHECK
on tag Ti’s state outputs one of the ν valid pathsPvalidi = {v0, . . . , vl},
andif Ti has not been through the exact sequence of steps {v0, . . . , vl}
in the supply chain, then this is called a false positive in TRACKER.

The probability of a false positive is denoted by Pr[False Positive].

Now, adversary A must not be able to generate a state corre-
sponding to a valid path with higher probability than simple guess-
ing:

DEFINITION 2 (SECURITY). TRACKER is said to be secure
⇔

For adversary A, inequality

Pr[False Positive] ≤ |Svalid|
|S| + ε

holds, where ε is negligible.
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Cloning.
As we assume cheap re-writeable tags without any computa-

tional abilities, no reader authentication is possible on the tag side.
Any adversary can read from and write into a tag. Trivially, an ad-
versary might “clone” a tag. This is impossible to prevent in our
setup with only re-writeable tags and offline, unsynchronized read-
ers.

To mitigate this problem, manager M utilizes a database DBclone.
Initially empty, this database will contain identifiers of tags that
went through a valid path of a supply chain and were checked by
M . Each time that M verifies a tag’s path, M will also check
whether this tag’s identifier is already in DBclone – to check for
cloning. Details about identifiers and handling of DBclone will be
given later in the protocol description of Section 4.

Therefore, an adversary cannot clone a tag more than once, and
thus, cloning cannot be performed in a large scale. On the other
hand, if the tag is attached to a luxury product, cloning is critical
even if a tag is cloned only once. However, as the cost of an active
tag will not affect drastically the actual price of a luxury product,
these products can be attached to tags with more computational
capabilities that could implement access control and authentication
to prevent cloning.

Furthermore, to get a malicious tag to be accepted by the man-
ager, the adversary has to break-in the supply chain, clone a tag,
inject its tag and get to the manager before the legitimate tag. We
conjecture, this is not easy for an adversary to do, as the internal
processes of the supply chain are well protected.

3.2 Privacy
An adversary A in TRACKER should not be able to tell if a tag

Ti went through some step v in the supply chain based on the data
stored on the tag.

While A can eavesdrop on communication between tags and
readers over different protocol sessions or tamper with the data
stored on the tags, it should not be able to violate tag privacy just
by reading the data from the tag.

We illustrate this notion of privacy by a formal privacy experi-
ment. In this experiment, A(r, s, ε) has access to the tags in the
supply chain in two phases. In the learning phase, A picks a step v
in the supply chain through CHOOSESTEP(v), reads out and tam-
pers with s tags that are going through the step v. It may as well
read out any tag in the supply chain without exceeding r readings.

In the learning phase, A calls two types of oracle as shown in
Algorithm 3. Opick is an oracle that randomly selects a tag from all
the n tags in the supply chain.
Opick,v is an oracle that returns a tag that went through the step

v in the supply chain.

CHOOSESTEP(v);
for i := 1 to s do

CHOOSETAG Ti = QUERY−Opick,v;
sTi :=READ(Ti);
WRITE(Ti, s

′
Ti

);
end
for j := 1 to r do

CHOOSETAG T ′
j = QUERY−Opick;

sT ′
j

:=READ(T ′
j);

WRITE(T ′
j , s

′
T ′

j
);

end
Algorithm 3: Learning phase of adversary A

In the challenge phase, A will be provided with an un-corrupted
tag Tchallenge ,i.e., A did not write into Tchallenge). Given the step

v and the information A acquired during the learning phase, A
outputs a bit b such that b = 1, if Tchallenge went through v and
b = 0 otherwise. A is successful if its guess is correct.

CHOOSETAG Tchallenge = QUERY−Opick;
sTchallenge :=READ(Tchallenge);
OUTPUT b;

Algorithm 4: Challenge phase of adversary A

DEFINITION 3. TRACKER is privacy preserving⇔ For adver-
sary A,
Pr(A outputs a right guess in the challenge phase) ≤ 1

2
+ε where

ε is negligible.

3.3 Unlinkability
An adversaryA can easily read the data stored on the tags. There-

fore, TRACKER should prevent A from binding the data it reads to
the tag. This differs from data privacy, a tag privacy could be met
through encryption but not tag unlinkability – A may always be
able to recognize the tag through the ciphertext it sends. Thus, the
need to change the data sent by the tag regularly to prevent such a
threat. In real world, tag unlinkability is the property that prevents
an eavesdropper from tracking and distinguishing items and goods
based on the non transient data they store – ID for instance.

Moreover, A may as well aim at distinguishing tags based on
their paths. Unlike the ID, the path of the tag is ephemeral and
it changes every time a tag Ti goes through a step v in the sup-
ply chain. Consequently, we need a new definition of unlinkabil-
ity which is called “path unlinkability" that captures such property.
Roughly speaking, path unlinkability should prevent an adversary
A from telling if two tags Ti and Tj took the same path or not. In
practice, path unlinkability will prevent an adversaryA from bind-
ing a tag Ti to a palet of tags in the supply chain.

More formally, TRACKER should afford the following two types
of unlinkability:

3.3.1 Path unlinkability
TRACKER should prevent an adversaryA from being able to tell

if a tag Ti went through the same path as a tag Tj that it has previ-
ously seen.

An adversary A(r, s, ε) picks a tag T in the supply chain and it
will be allowed to read out and write into up to s tags that went
through the same path as T . Meanwhile, A can read out and write
into up to r tags in the supply chain. The learning phase makes use
of an additional oracle Opick,P . Opick,P is an oracle that returns
tags that went through path P .

CHOOSETAG T = QUERY−Opick;
sT :=READ(T );
Let P denote the path T took;
for i := 1 to s do

Ti = QUERY−Opick,P ;
sTi :=READ(Ti);
WRITE(Ti, s

′
Ti

);
end
for j := 1 to r do

CHOOSETAG T ′
j = QUERY−Opick;

sT ′
j

:=READ(T ′
j);

WRITE(T ′
j , s

′
T ′

j
);

end
Algorithm 5: Learning phase of adversary A

In the challenge phase,A is provided with a challenge tag Tchallenge.
Given the data stored on Tchallenge, A outputs a bit b. b = 1 if
Tchallenge went through the same path as T and b = 0 otherwise.
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CHOOSETAG Tchallenge = QUERY−Opick;
sTchallenge :=READ(Tchallenge);
OUTPUT b;

Algorithm 6: challenge phase of adversary A

The adversary is successful if its guess is right.

DEFINITION 4. TRACKER is said to provide path unlinkability
⇔ For adversary A,
Pr(A outputs a right guess in the challenge phase) ≤ 1

2
+ε where

ε is negligible.

3.3.2 Tag unlinkability
As in Juels and Weis [10], in the learning phase, A(r, s, ε) will

be allowed to write into and read out up to r tags in the supply
chain.

It will be as well provided with two challenge tags T1 and T2. A
will have access to T1 and T2 at different steps of the supply chain
and it will be allowed to read each tag up to s times.

CHOOSETAG T1 = QUERY−Opick;
sT0 :=READ(T k

1 );
CHOOSETAG T2 = QUERY−Opick;
sT1 :=READ(T k′

2 );
for i := 1 to s do

ITERATESUPPLYCHAIN;
sT1 :=READ(T k+i

1 );
sT2 :=READ(T k′+i

2 );
end
for j := 2 to r + 2 do

CHOOSETAG Tj = QUERY−Opick;
sTj :=READ(Tj);
WRITE(Tj , s

′
Tj

);
end

Algorithm 7: Learning phase of adversary A

In the challenge phase, A is provided with a a tag Tb, b ∈ {1, 2}
through the oracle Oflip. Oflip is an oracle that is provided with
two tags T1, T2, randomly chooses b ∈ {1, 2} and returns Tb.

Given the data stored on Tb and the result of the different read-
ings A outputs its guess for the value of b.

CHOOSETAG Tb = QUERY−Oflip{T1, T2};
sTb :=READ(Tb);
OUTPUT b;

Algorithm 8: Challenge phase of adversary A

A is successful if its guess of b is right.

DEFINITION 5. TRACKER is said to provide tag unlinkability
⇔ For adversary A,
Pr(A outputs a right guess in the challenge phase) ≤ 1

2
+ε where

ε is negligible.

4. TRACKER PROTOCOL
Overview: In TRACKER, a tag T ’s state sl

T represents the se-
quence of steps in the supply chain T went through. The main
concept is to represent different paths in the supply chain using dif-
ferent polynomials. More precisely, at the end of a supply chain’s
valid path Pvalid, a tag’s state sl

T will match the evaluation of a
unique polynomial QPvalid(x) in a fixed value x0, i.e., sl

T :=
QPvalid(x0). Now, TRACKER’s security relies on the property that
for any two different paths P 6= P ′, valid or not, the equation
QP(x0) = QP′(x0) holds only with negligible probability. Two

different paths will result in two different polynomial evaluations.
As a result, the state of a tag T at the end of the supply chain can
be uniquely related to one single (valid) path.

TRACKER can be structured into three parts: 1.) issuer I writes
an initial state s0

T into a new tag T . 2.) Readers successively com-
pute the evaluation of a polynomial: to achieve the evaluation of
the “entire” polynomial QPvalid(x0) at the end of a valid path,
each reader visited by tag T computes T ’s new state si

T by ap-
plying simple arithmetic operations represented by the function fi

on the T ’s current state si−1
T . Eventually, this results in the eval-

uation of the entire polynomial QPvalid(x0). 3.) Finally, manager
M checks a tag’s state sl

T . M knows a set of |Svalid| valid poly-
nomials QPvalidi

(x0). M checks whether one of this polynomials
equals sl

T , and if so, M knows the path the tag has taken.
Security and privacy: To protect security and privacy in TRACKER,

tags store as state only encryptions of the polynomial path encod-
ing, and readers use homomorphic (re-)encryption techniques for
the arithmetic operations on encrypted state. At the end of the sup-
ply chain, the manager can then decrypt and identify the path.

Before the detailed protocol description in Section 4.3, the fol-
lowing paragraphs will first provide a quick overview about elliptic
curve encryption used in this paper and TRACKER’s polynomial
path encoding.

4.1 Path Encoding in Tracker
TRACKER’s polynomial path encoding is based on techniques

for software fault detection. Noubir et al. [14] propose encoding a
software’s state machine using polynomials such that the exact se-
quence of states visited during run-time generates a unique “mark”.
Therewith, run-time faults can be detected. TRACKER’s path en-
coding is based on the one by Noubir et al. [14] and will be de-
scribed in the following.

4.1.1 Polynomial path encoding
For each step vi, 1 ≤ i ≤ η in the supply chain, vi is associated

with a unique random number ai ∈ Fq , where q is a large prime.
Accordingly, issuer step v0 is associated with random number a0 ∈
Fq .

As mentioned above, a path in the supply chain is represented
as a polynomial in Fq . The polynomial corresponding to a path
P = −−−−−−→v0v1 . . . vl is defined in Equation 1:

QP(x) := a0x
l +

lX
i=1

aix
l−i. (1)

(All operations are in Fq .)
To have a more compact representation of paths, a path P is rep-

resented as the evaluation of QP(x) in x0, where x0 is a generator
of F∗q . We define the path mark as φ(P) := QP(x0) and can there-
with identify a path P using its polynomial evaluation φ(P).

Readers: These path marks are stored in the tag. A reader that is
visited by a tag T , reads the T ’ current path mark, updates the path
mark, and writes the updated path mark back into T . To eventually
achieve the evaluation φ(P) of pathP = −−−−−−−−−−−−−−−−−→v0v1 . . . vi−1vivi+1 . . . vl,
the per reader effort is quite low. Assume that T arrives at reader
Ri, i.e., step vi in the supply chain. So far, T went through (sub-
)path Pi−1 = −−−−−−−−→v0v1 . . . vi−1, and contains the path mark φ(Pi−1).

To get φ(Pi), with Pi−1 = −−−−−−→v0v1 . . . vi, reader Ri simply com-
putes φ(Pi) using Ri’s state transition function fRi defined as

fRi(x) := x0 · x + ai.

So, φ(Pi) := fRi(φ(Pi−1)) = x0 · φ(Pi−i) + ai. Ri stores
φ(Pi) in T . By construction, this will eventually result in φ(P) =
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a0x
l
0 +

Pl
i=1 aix

l−i
0

The above path encoding with marks has the desired property
that two different paths result in distinct path signatures with high
probability. That is, ∀P,P ′, P 6= P ′, equation φ(P) = φ(P ′)
holds with probability 1

q
, cf., Noubir et al. [14].

4.1.2 Tag state encoding and decoding
The state sl

T of a valid tag T in the supply chain that went
through a valid path Pvalid consists of a tuple of three elements
sl

T := (ID, φ(Pvalid), σ(Pvalid, ID)). The first element of that tu-
ple is T ’s unique, random identifier ID ∈ Fq . The second element
is the mark of Pvalid as given above.

The third element, σ(Pvalid, ID), acts as a signature combin-
ing ID and the path Pvalid that T took. Details about σ will be
given later in Section 4.3. The basic idea is that if Pvalid along
with ID are eventually identified by manager M , then M can use
σ(Pvalid, ID) to verify whether it was really the tag with ID that
actually went through Pvalid.

For decoding, M stores a set of |Svalid| valid marks φ(Pvalid)
and compares T ’s state to identifyPvalid. Then, M checks whether
Pvalid and ID match signature σ(Pvalid, ID).

As we will now see in the following paragraphs, tags in TRACKER
store encrypted versions of ID and the path mark φ(Pvalid). So in
conclusion, a tag stores the tuple

sl
T = (E(ID), E(φ(Pvalid)), σ(Pvalid, ID)).

4.2 Elliptic Curve Elgamal Cryptosystem
An elliptic curve Elgamal cryptosystem provides the following,

usual set of operations:
Setup: The system outputs an elliptic curve E over a finite field

Fp. Let P be a point on E(Fp) of a large prime order q such that
the discrete logarithm problem is intractable for G = (P ). Here, p
and q are TRACKER security parameters, e.g., |p| = |q| = 160 bit.

Key generation: The secret key is sk ∈ Fq . The corresponding
public key pk is the pair of points (P, Y = sk · P ).

Encryption: To encrypt a point M ∈ E , one randomly selects
r ∈ Fq and computes E(M) := (U, V ) = (r ·P, M + r ·Y ). The
ciphertext is c = (U, V ).

Decryption: To decrypt a ciphertext c = (U, V ), one computes
D(c) := U − sk · V = M .

In TRACKER, a tag in the supply chain stores the elliptic curve
Elgamal encryption of its path mark φ(P) along with the encryp-
tion of its ID and signature σ(Pvalid, ID)). The use of Elgamal
over elliptic curve requires a point mapping to transform some mes-
sage m ∈ Fq to a point in the elliptic curve E . We use two types
of point mappings. One, for path mark φ to point mapping, is ho-
momorphic, but not reversible. The other one, for ID to point map-
ping, is reversible, but not homomorphic.

4.2.1 Path mark to point mapping
To preserve the homomorphic property of Elgamal, we need a

homomorphic mapping Mφ : Fq → E to map a mark φ(P) to
a point in the elliptic curve such that ∀m1, m2 ∈ Fq,Mφ(m1 +
m2) =Mφ(m1) +Mφ(m2).

We define our mapping of a mark φ(P) ∈ Fq to a point as
Mφ(φ(P)) = φ(P) · P ∈ E .

This mapping is a one-to-one mapping, but not reversible. This
not an issue in TRACKER, as the manager knows the valid path
marks in advance. Consequently, the manager computes and stores
the mapping of the |Svalid| valid path marks, i.e., theMφ(φ(Pvalidi))
∈ E , instead of computing and storing the |Svalid| path marks
φ(Pvalidi) ∈ Fq .

4.2.2 ID to point mapping
Manager M has to be able to retrieve the ID of a tag T from

T ’s state. The mapping of a tag’s ID to a point in E calls for the
use of any reversible mapping, e.g., such as the one introduced by
Ateniese et al. [2]. In TRACKER, we use this mapping as a black
box, and it will be denotedM.

4.3 Detailed Protocol Description
TRACKER consists of an initial setup phase, the preparation of

new tags entering the supply chain, reader and tag interaction as
part of the supply chain, and finally a path verification conducted
by manager M .

4.3.1 Tracker initialization
Issuer I sets up an elliptic curve Elgamal cryptosystem and gen-

erates the secret key sk and the public key pk = (P, Y = sk · P )
such that the order of P is a large prime q, |q| = 160 bit.

Then, I selects x0 a generator of the finite field Fq , and selects
randomly a value a0 ∈ Fq . I generates a random bit string k0,
|k0| = 160 bit. The initial step v0, representing the issuer in the
supply chain, is associated with (a0, k0).

Similarly, I generates η random numbers ai ∈ Fq, 1 ≤ η, and
η random bit strings ki, each of length |ki| = 160 bit. I sends to
each reader Ri, representing step vi, the tuple (x0, ai, ki) using a
secure channel.

Also using a secure channel, I provides manager M with secret
key sk, generator x0, and tuples (i, ai, ki). Therewith, M is in-
formed which reader Ri at step vi knows which (ai, ki). As M
knows Svalid, i.e., which paths in the supply chain will be valid,
he now computes all the |Svalid| valid path marks φ(Pvalid) using
Equation (1). Finally, M computes and stores pairs

(Mφ(φ(Pvalidi)), steps),

where steps is the sequence of steps−−−−−−−−−−−−−−−−−−−−−→v0vPvalid,1vPvalid,2 . . . vPvalid,l

of Pvalidi . That is, M knows for each mapping the sequence of
steps.

In conclusion, x0 is public, the (ai, ki) are secret and only known
by reader Ri and M . M also knows sk.

4.3.2 Tag preparation
For each new tag T entering the supply chain, I draws a random

identification ID ∈ Fq and two random numbers rφ, rID ∈ Fq to
compute the following two ciphertexts:

c0
ID = E(ID) = (UID, VID) = (rID · P,M(ID) + rID · Y )

c0
φ = E(φ(v0)) = (U0

φ, V 0
φ ) = (rφ · P, a0 · P + rφ · Y )

Now, let HMAC be a (secure) HMAC algorithm [5], HMACk(m) :
Fq × Fq → Fq . Issuer I computes signature

σ0(v0, ID) := HMACk0(ID).

Finally, I writes state s0
T = (c0

ID, c0
φ, σ0) into T that can enter

the supply chain.

4.3.3 Tag and reader interaction in the supply chain
Assume a tag T arrives at step vi and reader Ri in the supply

chain. Without loss of generality, assume that the path that tag T
took so far is P = −−−−−−−→v0v1...vi−1. Ri reads out T ’s current state
si−1

T = (ci−1
ID , ci−1

φ , σi−1).
Given the ciphertext ci−1

φ = (U i−1
φ , V i−1

φ ), x0 and ai, Ri com-
putes ci

φ = (U i
φ, V i

φ):
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U i
φ = x0 · U i−1

φ = (x0r
i−1
φ ) · P

V i
φ = x0 · V i−1

φ + ai

= (a0x
i
0 +

iX
j=1

ajx
i−j
0 ) · P + (x0r

i−1
φ ) · Y

As you can see, the above is the homomorphic encryption variant
of the reader computation of Section 4.1.1.

Then, using σi−1(ID) stored in T , Ri computes

σi(ID) = HMACki(σ
i−1(ID)).

Reader Ri re-encrypts ci−1
ID , ci

φ. It picks randomly two numbers
r′ID and r′φ ∈ Fq and outputs two new ciphertexts

ci
ID = (U i

ID, V i
ID) = (r′ID · P + U i−1

ID , r′ID · Y + V i
ID)

c′iφ = (U ′i
φ , V i

φ) = (r′φ · P + U i
φ, r′φ · Y + V i

φ)

Finally, Ri writes the new state si
T = (ci

ID, c′iφ , σi(ID)) into T .

4.3.4 Path verification by M

Manager M reads out a tag T ’s state sl
T = (cl

ID, cl
φ, σl(ID)).

First, M decrypts cl
ID to get plaintext ID = D(cl

ID) ∈ Fq . M
checks for cloning, by looking up ID in M ’s database DBclone. If
ID ∈ DBclone, then M outputs ∅ and rejects T .

Otherwise, decrypting cl
φ will result in a point π = D(cl

φ) =
φ(P)·P . Now, M checks, whether π is in his list of valid mappings
Mφ(φ(Pvalidi)). If there is no match, M outputs ∅ and rejects the
tag.

Finally, M checks T ’s signature. Without loss of generality,
we assume that Mφ(φ(Pvalidi)) leads M to the path Pvalid :
−−−−−→v0v1...vl. Given σl(ID) stored on the tag and secret keys (k0, k1, . . . kl),
M checks if the following equation holds:

σl(ID) = HMACkl(HMACkl−1(. . . (HMACk0(ID))))

If it does, manager M outputs Pvalid, adds ID to DBclone, oth-
erwise M outputs ∅ and rejects the tag.

5. SECURITY AND PRIVACY ANALYSIS
Before giving the security and the privacy analysis, we introduce

the security properties of HMAC.

5.1 HMAC Security
An HMAC with key k, a message m and a cryptographic hash

function h is defined as HMACk(m) := h(k ⊕ opad||h(k ⊕
ipad||m)), where || is concatenation. For more details about opad
and ipad see Krawczyk et al. [11].

If the output of h and the secret key k are indistinguishable from
random data for an adversary, then HMACk holds the following
two properties [4, 5]:

Let OHMACk be an HMAC oracle that when it is provided with
a message m, returns HMACk(m).

1. Resistance to existential forgery: An adversary A(N, ε)
can choose N messages m1, ..., mN , and provide them to
the oracleOHMACk to get the corresponding HMACk(mi).
Still, the advantage ε of A(N, ε) to to come up with a new
pair (m, HMACk(m)), where m 6= mi, 1 ≤ i ≤ N is
negligible.

2. Indistinguishability: even knowing m,A(N, ε) cannot dis-
tinguish HMACk(m) from a random number. That is, HMACk

is a pseudo-random function.

5.2 Security
THEOREM 1. For (η+1) randomly chosen keys ki, 0 ≤ i ≤ η,

if HMACki is resistant to existential forgery, then TRACKER is
secure.

The aim of A(ρ, r, ε) is to win the security game, i.e., to come
up with a tuple (c′ID, c′φ, σ′i) that will be accepted by the manager.

PROOF. Assume there would be an adversary A that breaks the
security of TRACKER. That is, A(ρ, r, ε) can provide a valid tuple
(c′ID, c′φ, σ′i), then we construct an adversaryA′(2ρr, ε) that breaks
the resistance of existential forgery of HMACk.
A′(2ρr, ε) breaks the existential forgery of HMACk as follows:

• A′ creates a TRACKER system with a supply chain of only
one valid path Pvalid = −−−−−−→v0v1 . . . vl. It generates randomly
the secret keys k0, k1, ..., kl−1. ∀0 ≤ i ≤ l − 1, ki is the
key of the HMAC of step vi. A′ associates the step vl with
HMACk.
A′ generates a valid pair of keys (sk, pk) for Elgamal en-
cryption.

• A′ calls A(ρ, r, ε) that enters the learning phase. A′ iterates
the supply chain ρ times. At each iteration of the supply
chain, A′ provides A with r tags.

1. A′ picks r different randomly chosen IDi ∈ Fq .
2. Given its knowledge of the secret keys ki, 0 ≤ i ≤ l−1

and the public key of Elgamal, A′ can compute cor-
rectly HMACki corresponding to step vi, the encryp-
tion of IDi and the encryption of the path mark.

3. To compute HMACk at step vl,A′ does the following:

for tags Ti of state sl−1
Ti

:= (cl−1
(ID,i), c

l−1
(φ,i), σ

l−1
i )

arriving at step vl do

A′
σl−1

i−−−→ OHMACk ;
σl

i := HMACk(σl−1
i );

A′
σl

i←− OHMACk ;
sl

Ti
:= (cl

(ID,i), c
l
(φ,i), σ

l
i);

WRITE(Ti, s
l
Ti

);
end

4. A′ gives the r tags Ti to A.
5. A′ simulates the manager oracle OM as follows:

for i := 1 to r do
sl

Ti
= (cl

(ID,i), c
l
(φ,i), σ

l
i);

φi := D(cl
(φ,i));

if φi is valid then
IDi := D(cl

(ID,i));
σl−1

i := HMACkl−1(. . . (HMACk0(IDi)));

A′
σl−1

i−−−→ OHMACk .
σl(Pvalid, IDi) := HMACk(σl−1

i );

A′ σl(Pvalid,IDi)←−−−−−−−−− OHMACk

if σl
i := σl(Pvalid, IDi) then
OUTPUT 1;

else
OUTPUT 0;

end
else

OUTPUT 0;
end
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• After the learning phase, A returns a new tuple (c′ID, c′φ, σ′i)
to A′.

Let ID′ be the plaintext underlying the ciphertext c′ID.
A(ρ, r, ε) breaks the security of TRACKER means that
σ′i = HMACk(HMACkl−1(. . . (HMACk0(ID

′)))).
Once A′ receives (c′ID, c′φ, σ′i), it proceeds as follows:

1. It decrypts c′ID and gets ID′ using Elgamal secret key sk;

2. It provides the pair (m, σ′i) where

m = HMACkl−1(HMACkl−2(. . . (HMACk0(ID
′))))

Therefore, A′(2ρr, ε) breaks the existential forgery of HMACk in
N ≤ 2ρr queries with advantage ε. Therefore, the advantage of
breaking the security of TRACKER is the same as the advantage of
breaking HMAC.

Above, we have shown the equivalence between breaking an
HMAC and TRACKER with one valid path. In the following, we
show that if A(ρ, r, ε) has an advantage ε to break the security of
TRACKER with ν valid paths, Pvalidi , 1 ≤ i ≤ ν, there would
be an adversary A′(ρ, r, ε′) that breaks TRACKER with one valid
path Pvalid and therefore, breaks HMAC’s resistance to existential
forgery with advantage ε′ = ε

ν
.

In order to break TRACKER with one valid path Pvalid, A′ cre-
ates a supply chain of ν valid paths such that Pvalid is one of the
valid paths. SinceA(ρ, r, ε) breaks TRACKER with ν valid paths, it
may output a tuple (c′ID, c′φ, σ′i) that corresponds to the path Pvalid

with probability 1
ν
ε. Therefore, the probability that A′ succeeds

in the security game of TRACKER with one valid path is ε
ν

, and
consequently A′’s advantage is ε′ = ε

ν
.

5.3 Privacy Analysis
Let k0, ..., kl be randomly chosen HMAC keys. Let a “cas-

caded” HMAC be defined as
CHMAC(m) := HMACkl(HMACkl−1(. . . (HMACk0(m))).
The proofs for TRACKER’s privacy and unlinkability make use of
the following lemma:

LEMMA 1. If ∀i, 0 ≤ i ≤ l, HMACki are pseudo-random
functions, then CHMAC is as well a pseudo-random function.

PROOF SKETCH. If we assume that there would be an adversary
Adistinguish (for short A) that is able to distinguish the output of
CHMAC from a random number, we can construct anA′distinguish

(for short A′) that distinguishes the output of HMACkl on a mes-
sage m from a random number.

Let Odistinguish be the oracle query for the dinstinguishability
game. Given the secret key kl and a message m, it flips a coin
b ∈ {0, 1} and returns a message m′.

If b = 0, Odistinguish returns a random number. If b = 1,
Odistinguish returns HMACkl(m).

To break the indistinguishability property of HMACkl , A′ pro-
ceeds as following:

• A′ generates l keys ki, 0 ≤ i ≤ l − 1.

• A′ calls A.

• A provides a message m.

• A′ calls Odistinguish and provides it with
HMACkl−1(. . . HMACk0(m)).

• Odistinguish returns m′ to A′.

• A′ provides A with m′.

• IfA outputs 1 meaning that m′ is CHMAC(m), A′ outputs
1.

• IfA outputs 0 meaning that m′ is a random number,A′ out-
puts 0.

Therefore, ifA breaks the indistinguishability property of CHMAC
with a non-negligible advantage, thenA′ breaks the indistinguisha-
bility property of HMACkl with a non-negligible advantage. In
conclusion, if HMACkl is pseudo-random so is CHMAC. Also
note that if ∀0 ≤ i ≤ l, HMACki are pseudo-random, then is
CHMAC as well. The output of CHMAC on a message m is in-
distinguishable from a random number.

Consequently, given the indistinguishability property of HMAC
and therewith the indistinguishability property of CHMAC, we re-
duce the proofs of privacy and the unlinkability of TRACKER to the
semantic security of Elgamal.

LetOsemantic be the oracle that, provided with two points M1, M2

∈ E , randomly chooses b ∈ {1, 2}, encrypts Mb using Elgamal and
public key pk, and returns the resulting ciphertext cb = E(Mb).

5.3.1 Privacy

THEOREM 2. TRACKER is privacy preserving under the DDH
assumption and the security of HMAC.

PROOF. Assume there would be an adversary A whose advan-
tage in breaking TRACKER’s privacy is not negligible. We con-
struct a new adversary A′ that executes A and breaks the semantic
security of Elgamal. This leads to a contradiction under the DDH
assumption.
A′ breaks the semantic security of Elgamal as follows:

• Given the public key pk,A′ specifies two different plaintexts
m1 and m2.

• A′ creates a TRACKER system with two step supply chain
{v1, v2} and an issuer at step v0. It picks randomly an x0

generator of Fq . Then it selects a0, a1, a2 such that the fol-
lowing equations hold: m1 = a0x0 + a1 and m2 = a0x0 +
a2.

Therefore, m1 is the path mark corresponding to the path
P1 = −−→v0v1 and m2 is the path mark corresponding to the
path P2 = −−→v0v2.

Then, A′ selects randomly k0, k1, k2.

• A′ starts A that goes into the learning phase:

1. A picks a step vj , j ∈ {1, 2};
2. A′ simulatesOpick,vj and providesAwith s tags {T1, ..., Ts}

that went through vj such that (IDi, φ(Pj),
σ1(Pj , IDi)) is well constructed. Where IDi is the
identifier of tag Ti;

3. A′ provides A with additional r tags {T ′
1, ..., T

′
r} sim-

ulating Opick such that the tuple (ID′
i, φ(P ′i),

σ1(P ′i, ID′
i)) is well constructed. Where ID′

i is the
identifier of tag T ′

i and P ′i ∈ {P1,P2} is the path T ′
i

took.

• A′ transmits {M1 = m1 ·P, M2 = m2 ·P} to the challenge
oracle Osemantic.
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• Using the public key pk, Osemantic returns the encryption
cb, b ∈ {1, 2} of one of the points M1, M2 to A′.

• A′ prepares the challenge tag for A:

1. A′ picks randomly ID ∈ Fq , encrypts ID with the pub-
lic key pk and gets cID;

2. it selects randomly σ ∈ Fq .
3. A writes cb, cID and σ into a challenge tag Tchallenge.

• A′ calls the adversaryA and provides it with the tag Tchallenge,
simulating Opick.

• Provided the indistinguishability property of lemma 1 of CHMAC,
A′ cannot distinguish whether σ is a random number or cor-
responds to an HMAC. Consequently,A′ will simulateOpick

successfully.

AsA’s advantage in the privacy experiment is not negligible,A can
decide if the tag Tchallenge went through the step vj or not. Using this
information A′ can determine successfully which point Mb corre-
sponds the the ciphertext cb. Let assume vj = v1, ifA guesses that
Tchallenge went through v1, this means that cb corresponds to the en-
cryption of M1, otherwise it corresponds to the encryption of M2.
This breaks the semantic security of Elgamal that is ensured under
the DDH assumption.

In the proof above, we have shown that breaking the privacy of
TRACKER with two step supply chain and two paths is equivalent
to breaking the semantic security of Elgamal . Now, we show that
the privacy of TRACKER with η step supply chain and ν paths and
the privacy of TRACKER with two step supply chain and two paths
are equivalent.

As a point of fact, if there is an adversary A that breaks the
privacy of TRACKER with η step supply chain and ν valid paths, we
can construct an adversaryA′ that breaks the privacy of TRACKER
with two step supply chain v1, v2 and two valid paths P1 = −−→v0v1

and P2 = −−→v0v2.
In order to do so, A′ creates a TRACKER system with η step

supply chain and ν valid paths as follows: the supply chain is a tree
T of root v0, that consists of of two subtrees T1, T2. The roots of
T1, T2 are the steps v1 and v2 respectively. Therefore the steps of
the supply chain belongs whether to T1 or T2. If A can tell if a tag
Ti went through a step vj in the supply chain, it can also tell which
subtree Tk, k ∈ {1, 2} Ti went through. Therefore, A′ can tell if
Ti went through v1 or v2.

5.3.2 Path unlinkability

THEOREM 3. TRACKER provides path unlinkability under the
DDH assumption and the security of HMAC.

PROOF. Assume there is an adversary A whose advantage in
breaking the path unlinkability of TRACKER is not negligible. We
therefore build a new adversary A′ that executes A and breaks the
semantic security of Elgamal.
A′ breaks the semantic security of Elgamal as follows:

• A′ specifies two plaintexts m1 and m2.

• A′ creates a TRACKER system with two step supply chain
{v1, v2} and an issuer at step v0. It picks a random generator
of Fq x0. It selects then a0, a1, a2 such that the following
equations hold: m1 = a0x0 + a1 and m2 = a0x + a2.
Therefore, m1 is the path mark corresponding to the path
P1 = −−→v0v1 and m2 is the path mark corresponding to the
path P2 = −−→v0v2.
Then, A′ selects randomly k0, k1, k2.

• Given the public key pk, A′ encrypts m1 · P and writes the
corresponding ciphertext c1 into tag T .

• A′ picks an ID ID ∈ Fq and encrypts it. Then, given the
knowledge of the secret keys k0, k1, it computes σ1 = σ1(P1, ID).
Finally, it writes the tuple (cID, c1, σ1) into tag T .

• A′ calls the adversary A.

• Simulating Opick, A′ provides A with tag T .

• A′ simulates Opick,P1 in the learning phase:

for i := 1 to s do
PICK IDi ∈ Fq;
c(ID,i) := E(IDi);
σ1(P1, IDi) := HMACk0(HMACk1(IDi));
c(1,i) := RE-ENCRYPT(c1);
s1

Ti
:= (c(ID,i), c(1,i), σ

1(P1, IDi);
WRITE(Ti, s

1
Ti

)

end

• Since c(1,i) is a re-encryption of c1, it is also an encryption
of φ(P1) and therefore, ∀, 1 ≤ i ≤ s, Ti looks like a tag that
went through the path P1.

• A′ gives the tags to A.

• A′ simulates Opick and provides A with r arbitrary tags in
the supply chain.

• A′ transmits M1 = m1 ·P and M2 = m2 ·P to the challenge
oracle Osemantic.

• Osemantic returns the result c′b of encrypting one of the two
points M1, M2 to A′.

• A′ prepares the challenge tag Tchallenge for A:

1. A′ picks an ID ID′ ∈ Fq;

2. A′ picks a random σ that stores onto the tag as the sig-
nature.

3. A writes c′b as the encryption of the path mark, along
with the encryption of ID′ and σ into the challenge tag
Tchallenge. Finally, it provides A with the tag Tchallenge.

• Provided the indistinguishability of the cascaded HMAC,A
cannot distinguish σ from the valid signature. Therefore, A′
will successfully simulate Opick.

Given thatA’s advantage in the path unlinkability experiment is not
negligible,A can tell if the tag Tchallenge and the tag T1 went through
the same path with a non-negligible advantage. If A guesses that
Tchallenge went through the same path as T1, this means that c′b is
the encryption of M1, otherwise c′b is the encryption of M2. This
breaks the semantic security of Elgamal which is ensured under the
DDH assumption.

Using the same approach as in the proof in section 5.3.1, we can
show that the path unlinkability of TRACKER with η step supply
chain and ν valid paths and the path unlinkability of TRACKER
with two step supply chain and two valid paths are equivalent.
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5.3.3 Tag unlinkability

THEOREM 4. TRACKER provides tag unlinkability under the
DDH assumption and the security of HMAC.

PROOF. Assume we have an adversary A whose advantage to
break the unlinkability experiment is not negligible. We construct a
new adversaryA′ that executesA and breaks the semantic security
of Elgamal. To break the semantic security of ElgamalA′ proceeds
as follows:

• A′ specifies two plaintexts m1 and m2.

• A′ creates a supply chain for the TRACKER protocol.

• A′ prepares the challenge tags T1 and T2 for A:

1. Given the public key pk,A′ encryptsM(m1) andM(m2)
and obtains the corresponding ciphertexts c1, c2 respec-
tively. m1 corresponds the the ID of tag T1 and m2

corresponds to the ID of tag T2.

2. A′ picks a pathP without loss of generalityP = −−−−−→v0v1...vk.

3. A′ computes and encrypts φ(P) and gets c(φ,1), then it
computes σk

1 = σk(P, m1). It stores then (c1, c(φ,1), σ
k
1 )

onto tag T1.

4. A′ computes and encrypts φ(P) and gets c(φ,2), then it
computes σk

2 = σk(P, m2). It stores then (c2, c(φ,2), σ
k
2 )

onto tag T2.

5. A′ submits tags T1 and T2 to the adversaryA, simulat-
ingOpick. By construction T1 and T2 went through the
same path.

6. A′ simulatingOpick providesA′ with r additional tags.

7. A′ providesA with the data stored on T1 and T2 along
s steps in the supply chain such that T1 and T2 keep on
taking the same path.
If T1 and T2 stores different encryption of the path
mark,A′ cannot tell if they went through the same path,
given the path unlinkability proven above.

• A′ transmits M1 = M(m1) and M2 = M(m2) to the
challenge oracle Osemantic.

• Osemantic returns the result c′b of encrypting one of the two
points M1, M2 and therewith m1, m2 to A′.

• A′ prepares the challenge tag Tchallenge:

1. A′ picks a pathP ′ such thatP ′ is continuity of the path
T1 and T2 took. If the last path mark thatA reads from
T1 and T2 corresponds to Ps = −−−−−−−−−−→v0v1...vk...vk+s, P ′

should look likeP ′ =
−−−−→
Ps...vj . Without loss of general-

ity, P ′ =
−−−−−−→
Psvk+s+1 A′ then, encrypts the correspond-

ing path mark φ(P ′) that it stores onto Tchallenge.
Since, T1 and T2 went through the same path by con-
struction, A′ does not have to know the value of b to
provide a valid path mark that is compatible with what
A has seen in the learning phase.

2. A′ selects randomly σ that it stores onto the tag Tchallenge

as the signature.

3. A′ provides A with the tag Tchallenge.

4. AsA cannot distinguish the output of cascaded HMAC
and a random number, it cannot detect thatA′ is provid-
ing a non valid tuple. Therefore,A′ simulatesOflip{T1, T2}
successfully.

If A’s advantage in the tag unlinkability experiment is not negligi-
ble, A can tell which tag Tb, b ∈ {1, 2} corresponds to the chal-
lenge tag Tchallenge. If it outputs b = 1, this means that Tchallenge

corresponds to T1 and therefore, it stores the encryption of the ID
of T1, i.e.,M(m1). Otherwise, it stores the encryption ofM(m2).

Therefore,A′ can useA to break the semantic security of ELga-
mal that is ensured under the DDH assumption.

6. EVALUATION
TRACKER requires tags to only store data, i.e, the encrypted

ID, the encrypted path mark, and the signature. Consequently,
the tag stores two Elgamal ciphertexts cID = (rIDP,M(ID) +
rIDY ) and cφ = (rφP, φ(Pvalid)P + rφY ), together with signa-
ture σ(Pvalid, ID). With a secure HMAC of output size of 160 bits,
a tag stores 2 · 2 · 160 + 160 = 800 bits. However, we can further
optimize the storage on the tag by using the same Elgamal random-
ization factor for both ciphertexts. That is, rs = rID. In this case,
the tag stores 3 · 160 + 160 = 640 bits = 80 bytes. Storing only
80 bytes is feasible for today’s EPC Class 1 Gen 2 UHF tags, for
example Alien Technology’s Higgs 3 tags [1].

In TRACKER a reader Ri at step vi is required to store an element
ai ∈ Fq , the public key of Elgamal pk, and an HMAC key ki. So,
the total storage per reader is 80 bytes. On the other hand, Ri is
required to update the path mark of the tags passing by, to compute
an HMAC, and to re-encrypt two ciphertexts, that is two Elgamal
encryptions. We conjecture this is to be feasible even for embedded
readers.

The manager M is the entity verifying the path that a tag T went
through. Therefore, M is required to decrypt the ciphertexts stored
on the tag using the secret key sk and to verify the signature using
the secret keys ki. M have two hash tables: the first table stores
the list of valid paths in the supply chain and their corresponding
HMAC keys. The second table is DBclone. It is a hash table of the
IDs that M has read. Whereas, the storage required on the man-
ager side is linear in the number of valid paths O(ν) and the num-
ber of tags in the supply chain O(n), the path verification cost is
constant: when M reads a tag T , it decrypts the ciphertexts stored
on T and gets ID andMφ(φ(P)). To detect cloning, it checks if
DBclone contains ID. This operation is a look-up operation of cost
O(1). If no cloning is detected, M uses Mφ(φ(P)) to trace the
tag path by looking up into the table of valid paths. And finally, if
the path is valid, it verifies the signature stored on the tag against
σ(P, ID). M therefore, performs two decryptions, a signature ver-
ification and two look-up operations per tag. As a conclusion, the
cost of TRACKER on the manager side is of O(n + ν) storage and
O(1) computation.

7. RELATED WORK
Although historically one of the major applications for RFID

tags, secure and privacy-preserving supply chain management has
not received much attention in research. Instead, research focuses
more on privacy-preserving authentication protocols and their cryp-
tographic primitives [3].

Ouafi and Vaudenay [15] address counterfeiting of products us-
ing strong cryptography on RFID tags. To protect against malicious
state updates, tags authenticate readers at every step in the supply
chain. Only if readers are successfully authenticated, tags will up-
date their internal state. Ouafi and Vaudenay [15] require tags to
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evaluate a cryptographic hash function twice: for reader authenti-
cation and for the state update. A similar approach with tags evalu-
ating cryptographic hash functions is proposed by Li and Ding [12].
While such setups using cryptography-enabled tags might lead to a
secure and privacy-preserving solution of the counterfeiting prob-
lem, tags will always be more expensive than read/write-only tags
in TRACKER.

Chawla et al. [7] check whether covert channels exist in a supply
chain that leak information about a supply chain’s internal details
to an adversary. Therefore, tags’ state is frequently synchronized
with a backend-database. If a tag’s state contains “extra” data not
in the database, the tag is rejected. TRACKER’s focus, however, is
on the secure, privacy-preserving detection of which path a tag has
taken.

Shuihua and Chu [16] investigate the detection of malicious tam-
pering of a tag’s state in a supply chain using watermarks. How-
ever, there is neither a way to identify a tag’s path, nor to protect its
privacy in the supply chain.

Regarding simple product genuineness verification, solutions ex-
its that rely on physical properties of a “tag”. For example, TAGSYS
produces holographic “tags” that are expensive to clone [17]. Ver-
ayo produces tags with Physically Unclonable Functions (PUF) [19].
While these approaches solve product genuineness verification, they
do neither support identification of tag’s paths, nor do they support
any kind of privacy properties.

8. CONCLUSION
In this paper, we presented TRACKER to address security and pri-

vacy challenges in RFID-based supply chain management. TRACKER’s
main idea is to encode valid paths in a supply chain using poly-
nomials. Readers representing steps in the supply chain evalu-
ate polynomials successively, such that eventually the manager of
the supply chain can uniquely identify the exact path a tag has
taken. TRACKER’s security, privacy, and unlinkability against ad-
versaries relies on the semantic security of Elgamal and the seu-
crity of HMAC, and therefore, these properties are provable. Con-
trary to related work, TRACKER does not require any computa-
tional complexity on the tag, but only 80 bytes of storage. This
shows TRACKER’s feasibility for today’s cheap EPC Class 1 Gen 2
RFID tags.
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