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ABSTRACT
Traditionally, the performance of blind SIMO channel estimates has
been characterized in a deterministic fashion, by identifying those
channel realizations that are not blindly identifiable. In this paper,
we focus instead on the performance of Linear Equalizers for fading
channels when they are based on blind channel estimates. Our anal-
ysis shows that with Zero Forcing Linear Equalizer (ZF-LE) at least
one order of the diversity is lost depending on the way by which
the scalar ambiguity that results from the blind channel estimation
is resolved. However, in some Tx scenarios we are able to recover
the diversity with MMSE-LE. Various Tx scenarios are considered
in detail.

Index Terms— channel estimation, blind, receiver diversity.

1. INTRODUCTION

Consider a linear modulation scheme and single-carrier transmission
over a Single Input Multiple Output (SIMO) linear channel with ad-
ditive white noise. The multiple (subchannel) outputs will be mainly
thought of as corresponding to multiple antennas. After a receive
(Rx1) filter (possibly noise whitening), we sample the Rx signal to
obtain a discrete-time system at symbol rate2. When stacking the
samples corresponding to multiple Rx antennas in column vectors,
the discrete-time communication system is described by:

yk︸︷︷︸
nr×1

= h[q]︸︷︷︸
nr×1

ak︸︷︷︸
1×1

+ vk︸︷︷︸
nr×1

(1)

where k is the symbol (sample) period index, nr is the number of
Rx antennas. The noise power spectral density matrix is Svv(z) =
σ2

v Inr
, q−1 is the unit sample delay operator: q−1 ak = ak−1, and

h[z] =
∑L

i=0 hi z−i is the SIMO channel transfer function in the
z domain. The channel delay spread is L symbol periods. In the
Fourier domain we get the vector transfer function h(f) = h[ej2πf ].

We introduce the vector containing the SIMO impulse re-
sponse coefficients3 h = [hT

0 · · · hT
L ]T . Assume the energy nor-

malization tr{Rhh} = nr with Rhh = E {hhH}. By de-
fault we shall assume the i.i.d. complex Gaussian channel model:
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1In this paper, ”Rx” stands for ”receive” or ”receiver” or ”reception” etc.,
and similarly for ”Tx” and ”transmit”, ...

2In the case of additional oversampling with integer factor w.r.t. the sym-
bol rate, the Rx dimension would get multiplied by the oversampling factor.

3In this paper, .∗, .T , and .H denote complex conjugate, trans-
pose and Hermitian (complex conjugate) transpose respectively, and

h ∼ CN (0, 1
L+1

Inr(L+1)) so that spatio-temporal diversity of order
nr (L + 1) is available (which is the case from the moment Rhh is

nonsingular). The average per Rx antenna SNR is ρ =
σ2

a

σ2
v

.

In practice the Linear Equalizer (LE) is often used since its set-
tings are easier to compute and there is no error propagation. Also in
practice, for both LE and Decision Feedback Equalizer(DFE), only
a limited degree of non-causality (delay) can be used and the filters
are usually of finite length (FIR). Analytical investigations into the
diversity for SISO with LEs are much more recent, see [1],[8] for
linearly precoded OFDM and [9] for Single-Carrier with Cyclic Pre-
fix (SC-CP). In [1], it was shown that the introduction of redundant
linear precoding in OFDM allows a MMSE-ZF linear block receiver
to regain full diversity in the SISO (or SIMO) case. The ZP intro-
duces redundancy in the time (delay) dimension which allows a LE
of inter-symbol interference (ISI) to maintain full diversity: every
input symbol can be recovered linearly unless the whole channel im-
pulse response becomes zero. Moreover analysis in [2] reveal a fun-
damental link between a channel parameter orthogonality deficiency
(od) of the channel matrix and the diversity and capacity of LEs. In
all the above mentioned references the channel was assumed to be
perfectly known at the Rx and in some cases at the Tx too. However,
practical receivers must estimate the channel, thereby incurring esti-
mation error that needs to be accounted for in the performance anal-
ysis. In [3] the effect of channel estimation error on the performance
of the viterbi equalizer is studied in the SIMO framework. In [4]
the bit-error rate (BER) performance of multilevel quadrature am-
plitude modulation with pilot-symbol-assisted modulation channel
estimation in static and Rayleigh fading channels is derived, both
for single branch reception and maximal ratio combining diversity
receiver systems. However, in [5] they show that the practical ML
channel estimator preserves the diversity order of MRC (Maximum
Ratio Combining), see also [6] for more profound analysis. In this
paper we consider the channel to be estimated at the Rx using blind
deterministic algorithms then we investigate the effect of the result-
ing channel estimation error on the diversity achieved by LE.

2. OUTAGE ANALYSIS OF SUBOPTIMAL RECEIVER
SINRS

A perfect outage occurs when SINR = 0. For the MFB this can only
occur if h = 0. For a suboptimal Rx however, the SINR can vanish
for any h on the Outage Manifold M = {h : SINR(h) = 0}. At
fixed rate R, the diversity order is the codimension of (the tangent

h†[z] = hH [1/z∗] denotes the paraconjugate (matched filter). Note that
h†[ej2πf ] = hH(f).
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subspace of) the outage manifold, assuming this codimension is con-
stant almost everywhere and assuming a channel distribution with
finite positive density everywhere (e.g. Gaussian with non-singular
covariance matrix). For example, for the MFB (which only depends
on h) the outage manifold is the origin, the codimension of which
is the total size of h. The codimension is the (minimum) number
of complex constraints imposed on the complex elements of h by
putting SINR(h) = 0. Some care has to be exercised with com-
plex numbers. Valid complex constraints (which imply two real con-
straints) are such that their number becomes an equal number of real
constraints if the channel coefficients were to be real. A constraint
on a coefficient magnitude however, which is in principle only one
real constraint, counts as a valid complex constraint (at least if the
channel coefficient distributions are insensitive to phase changes).
An actual outage occurs whenever h lies in the Outage Shell, a (thin)
shell containing the outage manifold. The thickness of this shell
shrinks as the rate increases.

3. LINEAR EQUALIZATION (LE) IN SINGLE CARRIER
CYCLIC PREFIX (SC-CP) SYSTEMS

The diversity of LE for SC-CP systems has been studied in [9] for
the SISO case with i.i.d. Gaussian channel elements, fixed rate R
and block size N = L+1. The LE DMT for SIMO SC-CP systems
appears in [10]. Consider a block of N symbol periods preceded
by a cyclic prefix (CP) of length L (as a result of the CP insertion,
actual rates are reduced by a factor N

N+L
, which is ignored here in

what follows). The channel input-output relation over one block can
be written as

Y = H A + V (2)

where Y = Y k = [yT
k yT

k+1 · · ·y
T
k+N−1]

T etc. and H is a banded
block-circulant matrix (see (13) in [10]). Now apply an N -point
DFT (with matrix FN ) to each subchannel received signal, then we
get

FN,nr
Y︸ ︷︷ ︸

U

= FN,nr
H F−1

N︸ ︷︷ ︸
H

FN A︸ ︷︷ ︸
X

+ FN,nr
V︸ ︷︷ ︸

W

(3)

where FN,n = FN ⊗ In (Kronecker product: A ⊗ B = [aijB]),
H = blockdiag {h0, . . . , hN−1} with hn = h(fn), the nr × 1
channel transfer function at tone n: fn = n

N
, at which we have

un = hn xn +wn . The xn components are i.i.d. and independent
of the i.i.d. wn components with σ2

x = N σ2
a, σ2

w = N σ2
v . Now we

proceed to introduce the channel estimation error by splitting the true
channel into two parts, the estimated part ĥn and the corresponding
error part h̃n that results from the estimation process. However,
one of the drawbacks of the blind channel estimation is that it yields
ĥn with a scalar ambiguity. Thus, after the blind channel estima-
tion process we have αĥn and not ĥn where α is the same across
all tones. There are many methods to resolve this scalar ambiguity
available in the literature either by using a differential transmission
or by forcing a constraint. Hence, after resolving the scalar ambi-

guity ̂̂
hn and ˜̃

hn denote respectively the resolved estimated channel
and the corresponding resolved error.

un =
̂̂
hn xn +

˜̃
hn xn + wn

=
̂̂
hn xn + zn

(4)

Where Sznzn
= E {znzH

n } = σ2
x S˜̃

hn
˜̃
hn

+ σ2
w I . It is worthy

to note that if we treat zn as independent of ̂̂
hn xn then we get

a capacity (or mutual info) lower bound (that is fairly tight). We

can also notice that Sznzn
is spatially colored due to the color of

the estimation error that results from the blind channel estimation
process. Moreover, we assume here that the blind channel estimation
error is independent of the Tx symbols. This is true if we estimate
the channel from one Rx block and use that channel to detect the
symbols in the following Rx block. Thus, a ZF (δ = 0) or MMSE
(δ = 1) LE is defined per tone as:

fn =

(̂̂
h

H

n S−1
znzn

̂̂
hn + δσ−2

x

)−1 ̂̂
h

H

n S−1
znzn

(5)

Applying this LE to the received signal we get x̂n = fnun from
which ân is obtained after IDFT with

SINRδ
CP−LE =

σ2
x

1
N

∑N−1
n=0

(̂̂
h

H

n S−1
znzn

̂̂
hn + δσ−2

x

)−1 − δ. (6)

Practically, Sznzn
is not known in advance. Moreover, concern-

ing the other cases where the channel and the Rx symbols are de-
tected from the same Rx block, the previously mentioned formula
for Sznzn

is not applicable. Hence, we use an approximate LE

fn =

(̂̂
h

H

n
̂̂
hn + δσ−2

x

)−1 ̂̂
h

H

n . Our simulations show that all the

conclusions drawn in this paper are still valid even in such cases. On
the other hand, as we will see in the following sections, the way by
which we resolve the scalar ambiguity has a major effect on the di-
versity achieved by the receiver. In this paper we deal with three dif-
ferent constraints namely, Linear constraint, Least square constraint
and Fixing one-tap constraint. Moreover, we simulate a differential
transmission scenario within the context of OFDM where it is possi-
ble to define a ZF-LE as in the non-differential case.

3.1. Linear Constraint

Generally, the cost function of any blind deterministic channel esti-

mation can be represented by ̂̂hH

Q ̂̂h. To resolve the scalar ambi-
guity we minimize this cost function subject to the linear constraint

as follows: min
hH ̂̂

h=hHh
||
̂̂hH

Q ̂̂h||2. Applying the Lagrange multiplier

we get: ̂̂h =
hHh

hHQ−1h
Q−1h (7)

This constraint yields ˜̃h ⊥ h and leads to the minimal Cramer
Rao lower Bound CRB. Normally, CRB is defined as the inverse
of the Fisher Information Matrix FIM while for singular FIM with
the above mentioned linear constraint the formula of the CRB is
given by the pseudo inverse of the FIM.

CRB =

(
N−1∑
n=0

GH
n FIMn Gn

)†
(8)

FIMn is the FIM over tone n and is given by:

FIMn = σ−2
w

(
Inr

−
hnhH

n

||hn||2

)
(9)

and † denotes a Moore-Penrose pseudo inverse while Gn is a trans-
formation matrix (containing DFT portions) such that hn =
Gn h . To be more accurate, Gn is of size nr × nr (L + 1)
such that it contains the first nr (L + 1) elements of the nth block
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row of FN,nr
. Generally speaking, we know that at high SNR the

error covariance matrix of all well behaved deterministic blind chan-
nel estimation methods attain the CRB. With the linear constraint
discussed above, Rh̃h̃ attains CRB in (8) and consequently S˜̃

hn
˜̃
hn

attains the per-tone CRBn which can be obtained from (8) after
transforming it back to frequency domain. Hence we can write:
Sznzn

= E {znzH
n } = σ2

x CRBn + σ2
w I . We start with the ZF

(δ = 0), SINR in (6) vanishes when either ̂̂
hn vanishes or Sznzn

blows up. This is valid for any tone n. Since Q in (7) is singular

then ̂̂
hn needs only nr − 1 constraints to vanish.

dLin
CP−ZF = (nr − 1) (10)

Thus, ZF equalizer doesn’t even attain the full spatial diversity.
Moreover, any frequency diversity is lost.

3.2. Least Square Constraint

In this case the minimization process is done in two steps. First we

minimize as follows: min
||ĥ||=1

||ĥ
H

Q ĥ||2 to get ĥ = Vmin(Q) then

the scalar ambiguity is resolved by forcing a least square constraint
as follows: min

α
||h − αĥ||2. After a little manipulation we get the

following solution: ̂̂h =
ĥ

H
h

||ĥ||2
ĥ (11)

so that ˜̃h ⊥
̂̂h which is a well known feature of the least square esti-

mation. Now following the same intuition presented in the previous
section (linear constraint case) we conlcude that the number of con-
straints required for the SINR (δ = 0) in (6) to vanish is (nr − 1)

dLeastSq
CP−ZF = (nr − 1) (12)

3.3. Fixing One Tap (FOT) Constraint

Again to resolve the scalar ambiguity we minimize the cost func-
tion by considering without loss of generality that the first tap
of the channel that corresponds to the first Rx antenna is known.

min̂̂
h[1]=h[1]

||
̂̂hH

Q ̂̂h||2. Applying the Lagrange multiplier we get:

̂̂h =
h [1]

V [1]
V (13)

Where V is the first column vector of Q−1 and V [1] is the first

element of that vector. It is obvious from (13) that for ̂̂h to vanish it
is sufficient that h [1] gets very small. Hence the diversity achieved
is one regardless of the LE used.

dFOT
CP−LE = 1 (14)

4. LE IN OFDM SYSTEMS

For SC-CP as defined in (3) the Tx symbols are represented by A
hence they are in time domain while in OFDM the same formula (3)
is still applicable but now the Tx symbols are represented by X so
they are in frequency domain. Now each tone is carrying a separate
symbol hence,

SINRδ
OFDM−LE =

σ2
x(̂̂

h
H

n S−1
znzn

̂̂
hn + δσ−2

x

)−1 − δ. (15)

Following the same intuition used in the SC-CP case and since the
matrix Q is still singular this means that the ZF-LE yields a diver-
sity order nr − 1 for both linear and least square constraints while it
yields one for FOT constraint for the same reason discussed before.
However, for MMSE the SINR and due to the regularization term
σ−2

x introduced in the denominator of (15) doesn’t vanish when the
previous nr − 1 constraints are available. This means more con-
straints are required for outage to occur but it is well known that in
case of OFDM the best diversity achieved is the full spatial diver-
sity. This leads us to conclude that the diversity order achieved by
MMSE-LE is nr .

dOFDM−MMSE = nr (16)

On the other hand, we are able here to introduce within the fame-
work of OFDM a differential transmission system that uses a linear
M-PSK modulation where the Tx information (symbols) are rep-
resented by the difference of phases between any two consecutive
tones of the same OFDM symbol. At the Rx we can utilize the LE
introduced in (5) to compute the estimated symbols at different tones
as follows x̂n = fnun, x̂n+1 = fn+1un+1 and so on then we can
extract the information buried between any two consecutive tones
by computing the angle of x̂

∗
n+1x̂n. The differential transmission

usually leads only to a loss in the coding gain while it preserves the
diversity order (nr − 1) and this what our simulations show as we
will see later.

5. FIR LINEAR EQUALIZATION

Consider now the use of an FIR LE of length N . For SIMO chan-
nels, there exist indeed FIR equalizers for FIR channels, due to the
Bezout identity, as long as N ≥ L

nr−1
. The LE design is based on a

banded block Toeplitz input-output matrix H which can be obtained
by starting from a block circulant H (as in the CP case) of size N+L
and removing the top L block rows. Now, we play the same game as
in the case of CP to introduce the channel estimation error.

Y = Ĥ A + H̃ A + V

= Ĥ A + Ah̃ + V

= Ĥ A + V ′

(17)

Where RV ′V ′ = σ2
v I + Ea {ARh̃h̃A

H}, A = A′ ⊗ Inr
and A′

is a Hankel matrix filled with the elements of A. As in the case of
CP, the estimated channel has a scalar ambiguity that can be resolved
using the same techniques utlizied over there. However, we omit the
double hat and the double tilde notation here seeking for simplicity.
Hence with no structure on the unknown A, we can only do MMSE-

ZF with Ĥ. Hence, Â = (Ĥ
H

Ĥ)−1Ĥ
H

Y with error covariance

matrix given by: RÃÃ = (Ĥ
H

Ĥ)−1Ĥ
H

RV ′V ′ Ĥ(Ĥ
H

Ĥ)−1. Then
for symbol ak we get C = log (1+σ2

a/σ2
ãk

). This is the capacity for

given Ĥ and given H where σ2
ãk

is a kth diagonal element of RÃÃ.

So we get outage whenever Ĥ loses full column rank or whenever
Rh̃h̃ explodes, which happens whenever H loses full column rank.
This in turn occurs whenever h [z0] = 0 for some z0, in other words,
the subchannel transfer functions have a zero in common. This im-
poses on the nr − 1 other subchannels to have a zero equal to a zero
in the first subchannel. Hence the codimension of the outage mani-
fold is nr − 1. This is true when we resolve the scalar ambiguity by
either linear or least square constraint or even using differential Tx.

dLin,LeastSq,diff
FIR−ZF = (nr−1) (18)
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However, if FOT is used then again, as in the SC-CP case, the diver-
sity order is one, dFOT

FIR−ZF = 1.

6. SIMULATIONS

We have used SRM (Subchannel Response Matching) as a blind
channel estimation algorithm for ZF-LE. While we have used WCM
(Weighted Covariance Matrix) with the MMSE-LE. The WCM has
been initialized by PQML (Pseudo Quadratic Maximum Likelihood)
and the latter initialized by SRM. In all the subsequent simulations
we have used 8PSK and 3 Rx antennas (nr = 3). In Fig. 1 we have
simulated the ZF-LE with SRM within the SC-CP framework with
the three different constraints explained in our article. We can ob-
serve that both linear and least square constraints attain a diversity of
two that is nr − 1 while the FOT attains only a diversity of one (i.e.
no diversity). In Fig. 2 we show that the differential transmission
scheme in the context of OFDM along with ZF-LE also leads to a
loss of one order in the diversity so two out of three is only achieved.
However, when MMSE-LE is used the diversity is recovered so full
spatial diversity is achieved. Finally, in Fig. 3 we prove the results
stated in the FIR-LE section namely, with FOT no diversity exists at
all (div = 1) while with the linear constraint diversity loses one order,
hence again here two out of three is attained.

23 24 25 26 27 28 29 30 31

10
−5

10
−4

10
−3

10
−2

 SNR (dB)

 Pr
(e)

P = 10, L = 1, N = 10, MonteCarlo = 1000000,  nr = 3

 SRM−LSq
 SRM−Lin
 SRM−FOT

Fig. 1. Probability of error vs. SNR for SC-CP ZF-LE using SRM
with different constraints.

10 11 12 13 14 15 16 17 18 19 20
10

−4

10
−3

10
−2

10
−1

 SNR (dB)

 Pr
(e)

L = 4, N = 100, MonteCarlo = 1000, nr= 3

WCM−OFDM−diff
SRM−OFDM−diff

Fig. 2. Probability of error vs. SNR for OFDM with ZF-LE and
MMSE-LE using SRM and WCM respectively with differential Tx.

7. CONCLUSION

We have investigated in this paper the diversity of the LE in the con-
text of blind SIMO channel estimates. We have shown that the di-
versity achieved by the LE is highly affected by the method used to
resolve the scalar ambiguity that results from the blind channel esti-
mation process. We have treated both CP and non-CP cases showing
that the ZF-LE for CP contrary to the case of perfect channel knowl-
edge at the Rx is not capable of achieving the full spatial diversity
nr . Consequently, the diversity order loses one rank when either

20 22 24 26 28 30

10
−4

10
−3

10
−2

 SNR (dB)

 Pr
(e)

L = 5, N = 100, MonteCarlo = 10000, nr= 3

SRM−LSq
SRM−FOT

Fig. 3. Probability of error vs. SNR for FIR ZF-LE using SRM with
different constraints.

the linear constraint or the least square constraint is used and the
same result holds for non-CP with ZF-LE. The worst scenario oc-
curs when the scalar ambiguity is resolved by considering one chan-
nel tap is known. In this case the diversity order is just one for both
CP and non-CP. Moreover, as an alternative to resolving the scalar
ambiguity by forcing a constraint, we have investigated a differential
transmission scenario in the context of OFDM where the diversity of
the ZF-LE is shown to be nr − 1. However, using MMSE-LE then a
full spatial diversity is recovered. Now we are working on the semib-
lind case which we think that it is promising in terms of the diversity
order that it can attain.
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