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Abstract—We propose an iterative algorithm to design optimal
linear transmitters and receivers in a K-user frequency-flat
MIMO Interference Channel (MIMO IFC) with full channel stat e
information (CSI). The transmitters and receivers are optimized
to maximize the weighted sum rate (WSR) of the MIMO IFC.
Maximization of WSR is desirable since it allows the system
to cover all the rate tuples on the rate region boundary for a
given MIMO IFC. This algorithm is rooted in a recent result
showing a correspondence between local optima of the minimum
weighted sum mean squared error (MWSMSE) and maximum
weighted sum rate (MWSR) objective functions for the MIMO
Broadcast Channel (BC). This connection between the MWSR
and MWSMSE is shown hold true in the MIMO IFC and is
exploited to design an alternating minimization algorithm for
MIMO IFC that maximizes the weighted sum rate. An interesting
by product of this paper is the result that for the BC, the overall
iterative process proposed in [1] for the MIMO BC is identical
to the extension of the iterative algorithm proposed in [2] to the
MIMO BC. Since the former adopts the transmitter optimizati on
procedure proposed in [3] we are able to establishing optimality
of this seemingly ad-hoc technique for the MIMO BC.

Index Terms—MIMO, MMSE, Interference Channel

I. I NTRODUCTION

A. TheK-user MIMO interference channel

Multiple input multiple output (MIMO) systems have been
shown to have tremendous potential in increasing the average
throughput in cellular wireless communication systems. The
performance gain in channel capacity, reliability and spectral
efficiency in single user (point-to-point) MIMO (SU-MIMO)
systems has spurred the inclusion of SU-MIMO in various
cellular and wireless communication standards such as 3GPP
high-speed packet access (HSPA) and long term evolution
(LTE) where it has successfully demonstrated its ability to
enhance the performance of wireless networks. In cellular
systems where spectrum scarcity/cost is a major concern,
frequency reuse factor1 is desirable. Such systems how-
ever, have to deal with the additional problem of inter-cell
interference which does not exist in simple point-to-point
systems. Interference is being increasingly accepted as the
major bottleneck limiting the throughput in wireless communi-
cation networks. Traditionally, the problem of interference has
been dealt with through careful planning and (mostly static)
radio resource management. With the widespread popularityof
wireless devices following different wireless communication
standards, the efficacy of such interference avoidance solutions
is fairly limited. Indeed, major standardization bodies are now
including explicit interference coordination strategiesin next

generation cellular communication standards. A systematic
study of the performance of cellular communication systems
where each cell communicates multiple streams to its users
while enduring/causing interference from/to neighboringcells
due to transmission over a common shared resource comes
under the purview of MIMO interference channels (MIMO
IFC). A K-user MIMO-IFC models a network ofK transmit-
receive pairs where each transmitter communicates multiple
data streams to its respective receiver. In doing so, it generates
interference at all other receivers.

B. Rate maximization: Beyond interference alignment

While the interference channel has been the focus of intense
research over the past few decades, starting from the celebrated
paper by Carleial [4], the capacity of this channel in general
remains an open problem and is not well understood even for
the 2-user case [5]. However, recent research [6] has shown
that interference does not fundamentally limit the channel
capacity and that at least in the high signal to noise ratio
(SNR) regime, the per-user capacity of an interference channel
with arbitrary number of users, scales at half the rate of
each user’s interference-free capacity. Such a scaling was
obtained in [6] using the concept of interference alignment
(IA) which has been shown to maximize the capacity pre-
log factor in aK-user IFC. The key idea behind interference
alignment is to process the transmit signal (data streams) at
each transmitter so as to align all the undesired signals at
each receiver in a subspace of suitable dimension. Alignment
allows each receiver to suppress more interfering streams than
it could otherwise cancel. The focus of this paper is on the
K-user frequency-flat MIMO IFC. In contrast to the multi-
user MIMO broadcast channel (MIMO BC) or multiple access
channel (MIMO MAC) where it is reasonable to assume that
the number of antennas at the transmitter or receiver exceed
the total number of data streams that constitute the transmit
(respectively receive) signal, in a frequency-flat MIMO IFC,
the total number of streams contributing to the input signal
at each receiver are, in general, greater than the number of
antennas available at the receiver. This would lead one to
believe that, at least in the high-SNR regime, the network
(comprising ofK user pairs) performance can be maximized
(i.e, the sum-rate can be maximized) using IA since aligning
the streams at the transmitter will now allow each receiver to
cancel more steams than the number of ”spare antennas” at its
disposal. A distributed algorithm that exploits the reciprocity



of the MIMO IFC to obtain the transmit and receiver filters
in a K-user MIMO IFC was proposed in [7]. It is was shown
here that that IA is a suboptimal strategy at finite SNRs. In
the same paper, the authors propose a signal-to-interference-
noise-ratio (SINR) maximizing algorithm which outperforms
the IA in finite SNRs and converges to the IA solution in the
high SNR regime. However, this approach can be shown to be
suboptimal for multiple stream transmission since it allocates
equal power to all streams. Moreover, the convergence of this
iterative algorithm has not be proved. Thus an optimal solution
for MIMO IFC in finite SNRs remains an open problem.
Some early work on the MIMO IFC was reported in [8] by
Ye and Blum for the asymptotic cases when interference to
noise ratio (INR) is extremely small or extremely large. It was
shown here that a ”greedy approach” where each transmitter
attempts to maximize its individual rate regardless of its effect
on other un-intended receivers is provably suboptimal. It was
also noted here that the network capacity in general is neither a
convex nor concave function of transmit covariance matrices
thus making it difficult to find an analytical solution to the
optimization problem. The MIMO IFC was studied in a game
theoretic framework in [9] where such a greedy approach
was modeled as a non-cooperative game and shown to have
a unique Nash-equilibrium point subject to mild conditions
on the channel matrices. The maximum weighted sum rate
(MWSR) problem is well studied in the context of MIMO
broadcast channel (MIMO-BC) in [10] (and references therein)
and in [1] where the authors elegantly exploit the connection
between the MWSR problem and the weighted minimum mean
squared error (WMMSE) problem to obtain locally optimum
solutions for the (non-convex) MWSR problem. There have
been some early attempts to port the solution concepts of
the MIMO BC and MIMO MAC to the MIMO IFC.T For
instance, the problem of joint transmitter and receiver design to
minimize the sum-MSE of a multiuser MIMO uplink was con-
sidered in [11] where iterative algorithms that jointly optimize
precoders and receivers were proposed. Subsequently [12]
applied this algorithm to the MIMO IFC where each user
transmits a single stream and a similar iterative algorithmto
maximize the sum rate was proposed in [13].

II. SIGNAL MODEL

Fig. 1 depicts aK-user MIMO interference channel with
K transmitter-receiver pairs. Thek-th transmitter and its
corresponding receiver are equipped withMk andNk antennas
respectively. Thek-th transmitter generates interference at all
l 6= k receivers. Assuming the communication channel to
be frequency-flat, theCNk×1 received signalyk at the k-th
receiver, can be represented as

y
k

= Hkkxk +

K
∑

l=1
l 6=k

Hklxl + nk (1)

whereHkl ∈ CNk×Ml represents the channel matrix between
thel-th transmitter andk-th receiver,xk is theCMk×1 transmit
signal vector of thek-th transmitter and theCNk×1 vectornk
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Fig. 1. MIMO Interference Channel

represents AWGN with zero mean and covariance matrixRnn.
Each entry of the channel matrix is a complex random variable
drawn from a continuous distribution. It is assumed that each
transmitter has complete knowledge of all channel matrices
corresponding to its direct link and all the other cross-links in
addition to the transmitter power constraints and the receiver
noise variances.

We denote byGk, the CMk×dk precoding matrix of thek-
th transmitter. Thusxk = Gksk, wheresk is a dk × 1 vector
representing thedk independent streams of communicated
between thek-th user pair. We assumesk to have a Gaussian
distribution with zero mean and unit variance,N (0, I k). Thek-
th receiver appliesFk ∈ Cdk×Nk to suppress interference and
retrieve itsdk desired streams. The output of such a receive
filter is then given by

rk = FkHkkGksk +
K
∑

l=1
l 6=k

FkHklGlsl + Fknk

III. W EIGHTED SUM RATE MAXIMIZATION FOR MIMO
IFC

The stated objective of our investigation is the maximization
of the WSR of MIMO IFC. For a given MIMO IFC, the
maximization of the weighted sum rate (WSR) allows to cover
all the rate tuples on the rate region boundary. It is for this
reason that, in this paper we consider the weighted sum rate
maximization problem for aK-user frequency-flat MIMO IFC
and propose an iterative algorithm for linear precoder/receiver
design. While it is expected that the capacity-optimal
transmission strategy may involve sophisticated non-linear
techniques, from the practical standpoint, linear precoding
(beamforming coupled with an appropriated power allocation
strategy) in conjunction with linear processing at the receiver
presents an attractive alternative due to its simplicity. For the
MIMO IFC, one approach to linear transmit precoder design
is joint design of precoding matrices to be applied at each
transmitter based on channel state information (CSI) of all
users. Such acentralizedapproach [8] requires information
exchange among transmitters. Nevertheless, studying such



systems can provide valuable insights on the limits of the so
calleddistributedalgorithms [14] [15] that do not require any
information transfer among transmitters.

The WSR maximization problem can be mathematically
expressed as follows.

{G⋆
k
, F⋆

k
} = arg min

{Gk, Fk}
R s. t Tr(GH

k
Gk) = Pk ∀k (2)

where
R =

∑

k

−ukRk.

with uk denoting the weight assigned to thek-th user’s
rate andPk it’s transmit power constraint. We use the no-
tation {Gk, Fk} to compactly represent the candidate set of
transmittersGk and receiversFk ∀k ∈ {1, . . . , K} and the
corresponding set of optimum transmitters and receivers is
represented by{G⋆

k
, F⋆

k
}. Assuming Gaussian signaling, the

k-th user’s achievable rate is given by

Rk = log |Ik + FkHkkGk(FkHkkGk)
H(FkRk̄FH

k
)−1|. (3)

we use here the standard notation|.| to denote the determinant
of a matrix.

The MIMO IFC rate region is known to be non-convex. The
presence of multiple local optima complicates the computation
of optimum precoding matrices to be applied at the transmitter
in order to maximize the weighted sum rate. What is known
however, is that, for a given set of precoders, MMSE receivers
are optimal in terms of interference suppression.

A. Optimality of LMMSE interference suppression filters

We discuss here the optimality of linear minimum mean
squared error (LMMSE) interference suppressors (in terms of
maximizing weighted sum-rate in the finite SNR regime and
maximizing achievable DoF in the high SNR regime) for a
given set of linear precoders applied at the transmitters. In
general, for fixedGks, the received signal can be expressed as

y
k

= Hkkxk + vk = HkkGksk + vk (4)

vk =
∑K

l=1;l 6=k Hklxl + nk accounts for the total interference
and noise contribution iny

k
. The achievable rate at each

receiver can now be expressed as

Rk = log |I k + R−1

k̄
HkkGkGH

k
HH

kk
| (5)

Rk̄ = Rnn +
∑

l 6=k

HklGlG
H

l
HH

kl
.

Rk̄ represents the interference plus noise covariance matrix at
the k-th receiver. The LMMSE receiver for thek-th user is
then given by

FLMMSE

k
= GH

k
HH

kk
(Rk̄ + HkkGkGH

k
HH

kk
)−1 (6)

It can be shown that by substitutingFLMMSE

k
in (3), the

resulting expression forRLMMSE

k
is exactly the same as (5).

The implication is that, for a given set of linear beamforming

filters applied at the transmitters, the LMMSE interference-
suppressing filter applied at the receiver does not lose any
information of the desired signal in the process of reducing
the Nk dimensionaly

k
to a dk dimensional vectorr k. This is

of course under the assumption that all interfering signalscan
be treated as Gaussian noise. In other words, the linear MMSE
interference suppressor filter is information lossless andis thus
optimal in terms of maximizing the WSR.

B. Gradient of weighted sum rate for the MIMO IFC

Consider the WSR maximization problem in (2). Let

Ẽk = (Ik + FkHkkGk(FkHkkGk)
H(FkRk̄FH

k
)−1)

−1 . (7)

Expressing the WSR in terms of̃Ek, we have

R =

K
∑

k=1

−uk log |Ẽ−1

k
|

The Karush-Kuhn-Tucker (KKT) conditions for this opti-
mization problem obtained by setting the gradient of the WSR
w.r.t Fk proves difficult to solve. Therefore we consider the an
optimization problem where MMSE processing at the receiver
is implicitly assumed. The rationale for this assumption will
become clear as we proceed in this section. For now, we simply
state that this assumption allows us to leverage a connection
between the weighted sum MSE minimization problem and
the WSR maximization problem that is the focus of our
investigations. The alternative optimization problem that we
consider is expressed as

{G⋆
k
}=arg min

{Gk}

K
∑

k=1

−uk log |E−1

k
| s. t Tr(GH

k
Gk) = Pk ∀k

(8)
whereEk is given by

Ek = (I + GH

k
HH

kk
R−1

k̄
HkkGk)

−1. (9)

In order to obtain the stationary points for the optimization
problem (8), we solve the Lagrangian:

J ({Gk, λk}) =

K
∑

k=1

−uk log |E−1

k
| + λk(Tr{GH

k
Gk} − Pk)

Now setting the gradient of the Lagrangian w.r.t. the transmit
filter Gk to zero, we have:

∂J({Gk,λk})
∂G∗

k

= 0

∑

l 6=k
ulHH

lk
R−1

l̄
HllGlElG

H

l
HH

ll
R−1

l̄
HlkGk

−ukHH

kk
R−1

k̄
HkkGkEk + λkGk = 0

(10)

Notice that it is now possible to derive the gradient of the
WSR expression w.r.tGk for fixed Fi and Ei ∀i 6= k.
However, direct computation ofλk that satisfies the KKT
conditions now becomes complex. For single antenna receivers
in a broadcast channel, a solution for transmit filter design
that minimizes the MSE at the receiver was proposed in [3].
The key idea was to allow for scalars to compensate for



transmit power constraints. Our approach to the design of
the WSR maximizing transmit filters for the MIMO IFC is
inspired by this idea. Before we explain the computation of
λk any further, we digress in order to highlight an important
connection between the WSR maximization and the weighted
sum mean squared error (WSMSE) minimization problem that
we exploit in our iterative algorithm.
Consider the problem where it is desired to optimize the
transmit filters so as to minimize the WMMSE across all users
(i.e., assuming MMSE receivers). Denote byWk the weight
matrix of thek-th user. Then this problem can be expressed
as

arg min
{Gk}

K
∑

k=1

Tr{WkEk} s.t. Tr{GH

k
Gk} = Pk ∀k

and the corresponding Lagrangian reads

L({Gk, λk}) =

K
∑

k=1

Tr{WkEk} + λk(Tr{GH

k
Gk} − Pk)

Deriving L({Gk, λk}) respect toGk we have

∂L({Gk,λk})

∂G∗

k

= 0
∑

l 6=k
HH

lk
R−1

l̄
HllGlElWlElG

H

l
HH

ll
R−1

l̄
HlkGk

−HH

kk
R−1

k̄
HkkGkEkWkEk + λkGk = 0

(11)

Comparing the gradient expressions for the two La-
grangians (10) and (11) we see that they can be made equal
if

Wk = ukE−1

k
(12)

In other words, with a proper choice of the weighting matrices,
a stationary point for the weighted sum minimum mean square
error objective function is also a stationary point for the maxi-
mum WSR problem. This is the extension of [1] to the MIMO
IFC. We exploit this relationship to henceforth compute the
Gk that minimizes the WSMSE whenWk = ukE−1

k
instead

of directly maximizing the WSR. We are now ready to extend
the solution in [3] to MIMO IFC problem at hand. Since we
are interested in minimizing the WSMSE, we have

min

K
∑

k=1

Tr{WkE[(d − α−1

k
Fky

k
)(d − α−1

k
Fky

k
)H ]}

s.t. Tr{GH

k
Gk} = Pk

where theαk allows to compensate for the (scalar) transmit-
filter power constraint. AssumingE{ddH} = Ik, the MSE
covariance matrix becomes:

Ek = E[(d − α−1
k

Fky
k
)(d − α−1

k
Fky

k
)H]}

= I − α−1
k

GH

k
HH

kk
FH

k
− α−1

k
FkHkkGk

+ α−2
k

FkHkkGkGH

k
HH

kk
FH

k

+ α−2
k

∑

l 6=k FkHklGlG
H

l
HH

kl
FH

k
+ α−2

k
FkRnnFH

k

(13)
The corresponding Lagrangian can be written as:

J({Gk, αk, λk}) =
K
∑

k=1

Tr{WkEk} − λk(Tr{GH

k
Gk} − Pk)

(14)

Optimizing for αk we get:

∂J({Gk,αk,λk})
∂αk

= α−2
k

Tr{WkGH

k
HH

kk
FH

k
}

+ α−2
k

Tr{WkFkHkkGk}
−2α−3

k
Tr{WkFkHkkGkGH

k
HH

kk
FH

k
}

−2α−3
k

∑

l 6=k Tr{WkFkHklGlG
H

l
HH

kl
FH

k
}

−2α−3
k

Tr{WkFkRnnFH

k
}

= 0

solving the expression w.r.t.αk

αk = 2
Tr{∑K

l=1 WkFkHklGlG
H

l
HH

kl
FH

k
+ WkFkRnnFH

k
}

Tr{WkGH

k
HH

kk
FH

k
} + Tr{WkFkHkkGk}

(15)
For the Lagrange multiplierλk, we set

Tr{GH

k

∂J ({Gk, αk, λk})
∂G∗

k

} = 0

and obtain

λk =
1

Pk

(

K
∑

l=1

α−2

l
Tr{GH

k
HH

lk
FH

l
WlFlHlkGk}

−α−1

k
Tr{GH

k
HH

kk
FH

k
Wk})

It is interesting to note that fixing the receivers to be MMSE
leads to the simplified expressionαk = 1 ∀k. Therefore,
assuming MMSE receives, the above expression simplifies to

λk = 1
Pk





∑

l 6=k

Tr{WlFlHlkGk(FlHlkGk)
H}





− 1
Pk





∑

l 6=k

Tr{WkFkHklGl(FkHklGl)
H}





− 1
Pk

(Tr{WkFkRnnFH

k
}) (16)

Thus, assuming MMSE receivers, from (13) (14) and (16) we
have the expression (17) for the transmit filterGk. We thus
have the following two-step iterative algorithm to computethe
precoders that maximize the weighted sum rate for a given
MIMO IFC (c.f Table Algorithm 1 )

Algorithm 1 MWSR Algorithm for MIMO IFC
Fix an arbitrary initial set of precoding matricesGk, ∀ ∈
k = {1, 2 . . .K}
setn = 0
repeat

n = n + 1
Given G(n−1)

k , computeFn
k and Wn

k from (6) and (12)
respectively∀k

Given Fn
k andWn

k , computeGn
k ∀k

until convergence



Gk =

(

K
∑

l=1

HH

lk
FH

l
WlFlHkl −

1

Pk

((

∑

l 6=k

Tr{WlJ(k)

l
} − Tr{WkJ(l)

k
}
)

− Tr{WkNk}
)

I

)−1

HH

kk
FH

k
Wk (17)

J(k)

l
= FlHlkGkGH

k
HH

lk
FH

l

J(l)

k
= FkHklGlG

H

l
HH

kl
FH

k

Nk = FkRnnFH

k

C. Convergence analysis

As mentioned earlier, the non-convexity of the MIMO IFC
rate region precludes the possibility of a rigorous proof of
convergence of our iterative algorithm to a global optimum.
However, convergence to a local optimum is guaranteed and
we devote this section to prove this. In order to prove the
monotonic convergence of our iterative algorithm we use a
more general optimization problem that requires optimization
of receivers as well as MSE weight matrices in addition to the
precoders applied at the transmitters.
Our new optimization problem is mathematically expressed as

{G⋆
k
} = arg min{Gk, Fk, Wk}

∑

k

Tr(WkEk)

−uk

(

log | 1
uk

Wk| + dmax

k

)

s. t
∑

k

Tr(GkGH

k
) = Pk.

(18)

wheredmax

k
= min{Nk, Mk} represents the maximum number

of independent data streams that can be transmitted to user
k. Notice that the cost function for this new optimization
problem is now a function of the MSE weights in addition
to the transmit precoders and receivers. Let

fk (Wk, Gk, {Fk}) , Tr(WkEk) − uk(log | 1

uk

Wk| + dmax

k
).

(19)
The optimization problem considered above is amenable to an
alternating minimization solution. For a fixed set of precoding
and weight matrices, the optimum receiver for thek-th user
turns out to beFLMMSE

k
and requires the knowledge of only

the set of precoding matrices{Gk}. Plugging in the optimal
receivers in the cost function and optimizing for the weight
matricesWk which is a function ofFk results in W⋆

k
=

ukE−1

k
where Ek is precisely the expression in (9). Finally,

substituting W⋆
k

and {FLMMSE

k
} in (19) it is immediately

seen that the optimization problem in (18) corresponds to the
original MSWR optimization problem. Thus the more general
optimization problem reduces to the MWSR problem when
optimized solely w.r.t the precoding matricesGk.

The alternating minimization solution explained above (first
fixing {Gk} to find {Fk}, {Wk} then computing{Gk} for
fixed {Fk}, {Wk}) monotonically reduces the cost function
in (18) at each step of the iteration. This, together with the
fact that the cost function itself is lower bounded for a fixed
power constraint on each transmitter proves convergence of
the MWSR algorithm to a local optimum.

D. Asymptotic behavior of MWSR algorithm

As SNR → 0, the interference due to other users is
overwhelmed by the noise power seen at the receivers. The
sum rate maximizing beamformers in this regime are simply
the dominant right singular vectors obtained from the singular
value decomposition of the direct linkHkk of thek-th user. The
power allocation strategy reduces to that of single-user MIMO
scenario. i.e., water filling. AsSNR → ∞, the solution
offered by the algorithm can be interpreted as an ”optimized
interference alignment” solution. The optimality here is on
similar lines of the optimality of MMSE-ZF solution versus
ZF solution. Among all the possible IA solutions, the MWSR
algorithm results in the solution that maximizes the weighted
sum rate.

E. Some connections to MIMO BC

An alternative approach is the extension of [2] to the MIMO
IFC and involves normalizing the transmit filter so as to satisfy
the power constraint. i.e.,

Ḡk =

√

Pk

Tr{GH

k
Gk}

Gk =
√

P kβkGk

This converts the constrained optimization problem considered
in the previous section to an unconstrained optimization prob-
lem thereby doing away with the computation of the Lagrange
multipliers. The sum rate expression with the beamformer
normalization can be written as

R =

K
∑

k=1

uk log |Ik + Pkβ
2

k
HkkGk(HkkGk)

HR−1

k̄
|

whereRk̄ is now given by

Rk̄ = Rnn +
∑

l 6=k

Plβ
2

l
HklGlG

H

l
HH

kl
.

To find the optimal transmit filter we derive the WSR expres-
sion first w.r.t.Gk, and absorb the scalar contributionPkβk of
the resulting equation in̄Gk.

∂R(Gk)

∂G∗

k

= 0

−uk

1
Pk

ḠkTr{EkḠ
H

k
HH

kk
R−1

k̄
HkkḠk} + ukHH

kk
R−1

k̄
HkkḠkEk

+
∑

l 6=k
ul

1
Pk

ḠkTr{ElḠ
H

l
HH

ll
R−1

l̄
HlkḠkḠk

H

HH

lk
R−1

l̄
HH

ll
Ḡl}

−∑
l 6=k

ulHH

lk
R−1

l̄
HllḠlElḠlH̃

H

ll
R−1

l̄
HlkḠk = 0

(20)
In contrast to a MISO system, solving the above expression
for Ḡk is not straightforward for a general MIMO IFC. In a



MISO system, simply extending [2] makes it possible to fix
all scalar quantities involved in the expression and thereby
allowing us to find the the beamformer by iterating between
the beamformer vectors and the fixed scalars. However, in
moving from the MISO IFC to the MIMO IFC, the scalars
now become matrices (Ek andFk) and hence a more structured
reasoning is required.To this end, we derive the expressionfor
the WSR, now with the receiver matrix in place as

R =

K
∑

k=1

uk log |I k +Pkβ
2

k
FkHkkGk(FkHkkGk)

H(FkRk̄FH

k
)−1|

Denoting the cascade of the receive filter and the channel
matrix asH̃kl = FkHkl and the noise covariance matrix after
the receive filter as̃Rk̄, the WSR expression is rewritten as

R =

K
∑

k=1

uk log |Ik + Pkβ
2

k
GH

k
H̃

H

kk
R̃

−1

k̄
H̃kkGk|

=

K
∑

k=1

uk log |Êk|

Proceeding as before, we find the optimal transmit filter by
first deriving this WSR expression w.r.t.Gk, absorbing the
scalar contributionPkβk of the resulting equation in̄Gk and
finally, solving for Ḡk, assuming alldk × dk matrices to be
constant to get (21). It can be shown that the expression forḠk

in (21) andGk in (17) are identical to within some algebraic
manipulations. Thus the extension of [2] to the MIMO IFC as
well as the extension of [1] to the MIMO IFC yield exactly
the same solution. Interestingly, it was observed that extending
the approach in [2] to the MIMO BC leads to the same
solution as that of [1] thus proving the optimality of integrating
the [3] solution in the approach proposed in [1] (i.e., iterating
between transmit filters and receive filters with corresponding
weights). Indeed, it can be shown that the KKT conditionGk

is satisfied when the solution forGk and λk are substituted
thereby proving optimality of using the [3] approach both for
the MIMO BC and MIMO IFC.

IV. SIMULATION RESULTS

We provide here some simulation results to compare the per-
formance of the proposed max-WSR algorithm. i.i.d Gaussian
channels (direct and cross links) are generated for each user.
For a fixed channel realization transmit and receiver filtersare
computed based on IA algorithm and max-WSR algorithm
over multiple SNR points. The non convexity of the problem
may lead the algorithm to converge to a stationary point that
represents a local optimum instead of the global one which
we are interested in. To increase the probability of reaching
the optimum a common strategy in non convex problem is to
to choose multiple random initial beamforming matrices and
adopting the solution of the algorithm that determines the best
WSR. Using these filters individual rates are computed. The
resulting rate-sum is averaged over several hundred Monte-
Carlo runs. The average rate-sum plots are used to compare
the performance of the proposed algorithm.

In Fig. 2, we plot the results for a3-user MIMO IFC.
The antenna distribution at the receive and transmit side
is Mk = Nk = 2 ∀k. The max-WSR algorithm results
in a DoF allocation ofd1 = 1 d2 = 1 d3 = 1 with
uk = 1 ∀k In Fig. 3, we plot the results for a3-user MIMO
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Fig. 2. 3-user MIMO IFC withMk = Nk = 2 ∀k.

IFC with Mk = Nk = 3 ∀k. The resulting DoF allocation
is d1 = 2 d2 = 1 d3 = 1 with uk = 1 ∀k In Fig. 4, the
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Fig. 3. 3-user MIMO IFC withMk = Nk = 3 ∀k

performance of a3-user MIMO IFC with Mk = Nk = 4 ∀k

is shown. Withuk = 1 ∀k, the max-WSR algorithm allocates
2 streams for all users in this case. Finally, Fig. 5 shows the
convergence behavior of our algorithm for the same3-user
MIMO IFC with Mk = Nk = 4 ∀k in a given SNR point,
SNR=5dB

V. CONCLUSIONS

We addressed maximization of the weighted sum rate for the
MIMO IFC. We introduced an iterative algorithm to solve this
optimization problem. In the high-SNR regime, this algorithm
leads to an optimized Interference Alignment (IA) solution
Optimality here is on similar lines of the MMSE-ZF solution
w.r.t general ZF solutions. In the finite SNR regime the
performance of this algorithm is superior to that of IA and all
known algorithms since it maximizes the WSR as opposed to



Ḡk = (
K
∑

l=1

ulH̃
H

lk
R̃

−1

l̄
H̃llḠlÊlḠlH̃
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Fig. 4. 3-user MIMO IFC withMk = Nk = 4 ∀k
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Fig. 5. Convergence behavior for a3-user MIMO IFC withMk =

Nk = 4 ∀k at SNR=5dB

previous attempts that maximize the sum rate. Convergence to
a local optimum was also shown experimentally. Convergence
to local optima is known and is related to the non-convexity
of the MIMO IFC rate region. As an interesting by product of
this paper we are able to show that the overall iterative process
proposed in [1] for the MIMO BC is identical to the extension
of the iterative algorithm proposed in [2] to the MIMO BC.
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