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Abstract— Traditionally, the performance of blind SIMO
channel estimates has been characterized in a deterministi
fashion, by identifying those channel realizations that ae not
blindly identifiable. In this paper, we focus instead on the
performance of Zero-Forcing (ZF) Linear Equalizers (LEs) o
Decision-Feedback Equalizers (DFEs) for fading channelsven
they are based on (semi-)blind channel estimates. Although
has been known that various (semi-)blind channel estimatio
techniques have a receiver counterpart that is matched in tens
of symbol knowledge hypotheses, we show here that these (3em
)blind techniques and corresponding receivers also matchni
terms of diversity order: the channel becomes (semi-)bliny
unidentifiable whenever its corresponding receiver struatre

goes in outage. In the case of mismatched receiver and (semi-

blind) channel estimation technique, the lower diversity oder
dominates. Various cases of (semi-)blind channel estimati and
corresponding receivers are considered in detail. To be copfete
however, the actual combination of receiver and (semi-)btid
channel estimation lowers somewhat the diversity order w.t.
the ideal picture.

Index Terms— channel estimation, blind, semi-blind, receiver
diversity, imperfect channel state information

I. INTRODUCTION

where k is the symbol (sample) period index,. is the
number of Rx antennas. The noise power spectral density
matrix is Syv(z) = 02 1,,., ¢~ is the unit sample delay
operator: ¢~ 'ar = ax_1, andh[z] = ZZ—L:() h; 2% is the
SIMO channel transfer function in thedomain. The channel
delay spread i€. symbol periods. In the Fourier domain we
get the vector transfer functidm( f) = h[e/27f].

We introduce the vector containing the SIMO impulse
response coefficiert$ = [h] ---h7]7. Assume the energy
normalization t Rhp} = n, with Ry, = E {hh”}. By
default we shall assume the i.i.d. complex Gaussian channel
model: h ~ CN(0, LLHI,LT(LH)) so that spatio-temporal
diversity of ordern, (L + 1) is available (which is the case
from the momentRy, is nonsingular). The average per Rx
antenna SNR i = 02 /02.

Whereas in non-fading channels, the probability of error
P, decreases exponentially with SNR, for a given symbol
constellation, in fading channels the probability of error
taking channel statistics into account behavesas- p—¢
for large SNRp, whered is the diversity order. Also, at

Consider a linear modulation scheme and single-carrié®igh SNR, theF, is dominated by the outage probability
transmission over a Single Input Multiple Output (SIMO)% and has the same diversity order for a well-designed
linear channel with additive white noise. The multiple (subSystem. If the data rat& is adapted with SNR such that
channel) outputs will be mainly thought of as correspondingie get a normalized rate = lim R € [0,1], then the

to multiple antennas. After a receive (Rxilter (possibly
noise whitening), we sample the Rx signal to obtain
discrete-time system at symbol rateVhen stacking the

samples corresponding to multiple Rx antennas in colum

vectors, the discrete-time communication system is desdri

b

y y, = hlg ar + o (1)
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1In this paper, "Rx” stands for "receive” or "receiver” or ‘reption” etc.,
and similarly for "Tx” and "transmit”, ...

2In the case of additional oversampling with integer factar.twthe
symbol rate, the Rx dimension would get multiplied by thereaenpling
factor.

— 00

diversity becomed(r) [1]. For all ZF Rx’s considered in this
%aper, we get the following Diversity-Multiplexing Trad&o
(TI1DMT): d(r) = d(0)(1—r). Hence it suffices to limit the
diversity analysis to the fixed rat® case with diversity
d(0) = d.

In practice also the Linear Equalizer (LE) is often used
because of low detection complextity. Also in practice, for
both LE and DFE, only a limited degree of non-causality
(delay) can be used and the filters are usually of finite
length (FIR). Analytical investigations into the diveysit
for SISO with LEs are much more recent, see [3],[5] for
linearly precoded OFDM and [6] for Single-Carrier with
Cyclic Prefix (SC-CP). The DMT for various forms of
LE and DFE with frequency-selective SIMO channels is
investigated in [7]. In [3], it was shown that the introdwcti
of redundant linear precoding in OFDM allows a MMSE-

3In this paper,.*, .T, and .¥ denote complex conjugate, trans-
pose and Hermitian (complex conjugate) transpose resphgti and
ht[z] = h#[1/2*] denotes the paraconjugate (matched filter). Note that
hf[e’2™/] = h ().



ZF linear block receiver to regain full diversity in the SISOmore complete analysis is required. An actual outage occurs
(or SIMO) case. For instance Zero Padding (ZP) introduceshenever the rate exceeds the capadity(1 + SINR) < R,
redundancy in the time (delay) dimension which allows a LEvhich occurs whenh lies in the Outage Shell, a (thin)
of inter-symbol interference (ISI) to maintain full divéss  shell containing the outage manifold. The thickness of this
every input symbol can be recovered linearly unless thghell shrinks as the rate increases and depends also on the
whole channel impulse response becomes zero. In all thegularization appearing in MMSE equalizers.
references mentioned above the channel was assumed to be
perfectly known at the Rx and in some cases at the Tx Ill. BLIND (B) AND SEMI-BLIND (SB) CHANNEL
too. However, practical receivers must estimate the cHanne ~ ESTIMATION AND MATCHED ZF EQUALIZATION
thergby incurring estimation error that needs to be acaalint Consider a block Tx system with Rx signal in the time
for in the performance analysis. In [10] we treated th%omain 2]
effect of blind channel estimation on the diversity of ZF-
LE within the context of SIMO Tx system. Howeyer, We Y =—HA+V =Hg Ax +Hy Ay +V = Ah+V (2)
focused there more on the the effect of the constraint ysuall
used to handle the ambiguity that results from blind chann&there A is the vector of Tx symbols, containing possibly
estimation. In [12] the effect of channel estimation errar o known symbolsA g (training/pilots, semi-blind case) and
the performance of the Viterbi equalizer is studied in a SIM@nknown symbolsd;; (actual data, i.i.d. with variance?).
framework. In [13] the bit-error rate (BER) performanceH = H(h) is the channel convolution matrix of which the
of multilevel quadrature amplitude modulation with pilot-partHx is affected byAx and the parHy is affected by
symbol-assisted modulation channel estimation in statit a Ay. Due to the commutativity of convolutiot] A = .Ah
Rayleigh fading channels is derived, both for single brancih which A = A(Ak, Ay) andh contains the vectorized
reception and maximal ratio combining diversity receivechannel impulse response coefficier#sis the AWGN with
systems. However, in [14] it is shown that the(practicalyariancecs?. Eben though we shall investigate the diversity
ML channel estimator preserves the diversity order of MR®f receivers due to fading channels, for (semi-)blind clehnn
(Maximum Ratio Combining), see also [15] for a moreestimation purposes, the chanrielis considered a deter-
thorough analysis. ministic unknown. In the (semi-)blind techniques consadir
In this paper we assume the channel to be estimated hgre, alsoAy is considered a deterministic unknowds
the Rx using blind and semi-blind deterministic algorithmsind.A are assumed to have full column rank w.p. 1 wien
and we investigate the effect of the resulting channel estnd A would be considered random.
mation error on the diversity achieved by the corresponding Maximum likelihood (ML) estimation oh (with Ay as
equalizers (matched to the channel estimation hypotheses)uisance parameters) leads to the least-squares cosibfunct

(8]

Il. OUTAGE ANALYSIS OF SUBOPTIMAL RECEIVER
SINRs

A perfect outage occurs when SINRO. For the Matched g s cost function is separable [8], we can first optimize
Filter Bound (MFB) this can only occur ih = 0. For a w.rt. Ay, which leads to

suboptimal Rx however, the SINR SINR(h) can vanish for

any h on the Outage Manifold M = {h : SINR(h) = 0}. Ay = (H{}’HU)*ng(Y —Hg Ag) . (4)

At fixed rate R, the diversity order is the codimension of

(the tangent subspace of) the outage manifold, assumisg thi the semi-blind case4x # 0), this is a particular form
codimension is constant almost everywhere and assumingg&a MMSE-ZF block DFE, with feedback only from the
channel distribution with finite positive density everywde known symbolsA . Here, the diversity of a DFE will only
(e.g. Gaussian with non-singular convariance matrix). Fd@et analyzed with a matched semi-blind channel estimate,
example, for the MFB (which only depends di) the in which the feedback symbols play the role of pilots. In
outage manifold is the origin, the codimension of whicHhe blind caseAx =0, Hy = H and (4) corresponds to a
is the total size oth. The codimension is the (minimum) MMSE-ZF block LE. The ML (semi-)blind channel estimate
number of complex constraints imposed on the compleg obtained by minimizing (3) after having plugged in (4),
elements oh by putting SINRh) = 0. Some care has to be leading to
excercised with complex numbers. Valid complex constsaint

(which imply two real constraints) are such that their numbe
becomes an equal number of real constraints if the channel
coefficients were to be real. A constraint on a coefficierivhere we introduced the projection matricBs = 7 — Py
magnitude however, which is in principle only one realand Py = H(HHH)*lHH. Note that the Rx diversity with
constraint, counts as a valid complex constraint (at Iefast (semi-)blind channel estimate to be considered here is not
the channel coefficient distributions are insensitive taggh restricted to only ML channel estimates however; any other
changes). For ZF equalizers, consideration of the outageemi-)blind method that exploits the same informatior wil
manifold is suffucient. For MMSE equalizers however, dead to similar diversity results.

min Y — HA|?. 3)
hA,

h = argmin | A, (¥ — HicAx]) (5)



The Fischer Information Matrix (FIM) for the joint esti- IV. GENERAL TREATMENT OF THE CASE OF

mation of§ = [AF h|H is NON-MATCHED RECEIVERS
. 1 - The channel impulse responkecan be decomposed into
FIMjgin, = 52 Hu A" Hu Al . (6) its estimateh and its estimation erron: h = h + h. In

v

) ) the (semi-)blind caseh represents the channel estimate in
The marginal Cramer-Rao Bound (CRB) fdr; (treatingh  \hich possible ambiguities have been resolved. This cHanne

as nuisance parameters) is decomposition leads to the following signal model
CRBY = o? (Ml PiHU) 7) Y=HA+HA+V=HgAgx+Hy Av+2Z (11)

while for h (treating Ay as nuisance parameters), itis ~ With H = H(h), H = H(h), and whereZ = H A + V' =
i Ah+V has covariance matrik  , = EAUARﬁﬁ A7+
CRB{? = o} (.AHPﬁU.A) (8) o2I (if we assume that the channel estimate is obtained
from data independent of th¥ considered here, to make
in which the inverses become pseudo-inverses in the blinflgngd v independent). If we treaZ as Gaussian noise that
case or in the semi-blind case with insufficient pilots [9h O is independent oh and Ay, then we get a capacity (or
the other hand, if the channel is known (full Channel Statgutual information (MI)) lower bound (that is fairly tight)
Information at the Rx (CSIR)), the CRB fod; becomes  The correlations inR > depend on the correlation;. -
CSIR _ 2 (4 H -1 in the channel estimation error, but may get suppressed by
CRBAU — v <HUHU> ' 9) the averaging over;, depending on the structure od.

The CRB for symbok in A provides a lower bound on the As far as the independence & and Ay is concerned,
symbol estimation (reception) error variance, which le@ds this independence is correct if we estimate the channel from

an SINR upper bound one Rx block and use that channel to detect the symbols in
) a different Rx block (with independent data). In any case,
SINR, = % (10) con_sidering outage probability, the MI lower bound leads to

(CRBA, )k, a diversity order upper bound.

In the case of full CSIR, this is not an upper bound but the Whereas the considerations so far pave the way to consider

correct SINR. In the (semi-)blind case, the bound becoméﬁsrbltrary RX structures, in what follows we shall again fecu

tight at high SNR, which is the regime of interest for diveysi BEJCTSa)tCt]I'?]?JSR); W?Erii 6((bft O?;pg'r'e,\‘lethd'gerf“;)data
analysis. Now, we get SINB'® = (0 wheneverH; loses LE/DFE output is obtained as -
full column rank, in which casngHU becomes singular. output1s obtained as
The number of constraints that this loss of column ranky,, — (QHR—l A +5072I)71QHR—1 (Y —Hg Ak)
. . . . . . vtz ztu a vtz z K AK
imposes orh will be the diversity order. This diversity order (12)
will be considered in detail for various cases in the furthe‘ljwth resumng error covariance matrix
sections. SH N

Now, considering SINR” (see (8), (9) also), we get Ra,a, =MHyRyHy +d00,71)7 . (13)

B SIR ; H

SINRZ® =0 whenever SI!\II%_ = 0. Hence the diversity a east, this expression becomes correct at high SNR, where
order of the Rx with (semi-)blind channel estimate will be atye can limit the expression to first order termsdp and

most that of the Rx with full CSIR. The Rx signal dimension,hered A and A, become decorrelated Asdecomes linear
reduction due to the projectioR on the noise subspace iy the noise. The resulting SINR for symbblin A then
leads to some reduction in diversity order. Note that dug

to the randomness aofi, the orientation of the subspaces SINRMMEz _ o2 5 14
considered is random. Due to this randomness, the effect k - <R~ ~ ) T (14)
of this reduction should become negligible whenever the AvAv )y

relative effect of this dimension reduction becomes neglieractically, Rz 7 is not known because it depends on

gible, namely whenever the ratio of channel delay spreafle true channel througtk = R.-(h). However, at

hh hh''/
over block Iength becomes small, - .__high SNR, one can equivalently usiéﬁ~(h). A different
In the paradigm of matched (semi-)blind channel estimate o . h .
8mpl|catlon arises when the channel gets estimated and the

and Rx considered so far, the channel estimation and t .
X symbols get detected from the same Rx signal block.

data reception are based on the same data block. Howe that th ion f&t ds to b dified
simulations show that the diversity to be analyzed does n!ﬂ at case the expression 16z 7z ljee S 1o be moditie
order to account for the correlation betwekrand V.

change when the channel estimation and data reception &e ) : .
performed on disjoint data blocks, where the Rx for on&inally, oné has to admit that accounting ffiry 7 in the
data block is constructed with the channel estimate from 3% @S in (12) complicates the Rx quite a bit. To avoid all
different data block (see the next section also). This wouli€Se complications, one could consider the simplified Rx
indicate that the diversity effect of the (semi-)blind chah ~s ~H ~ 02 | ~H ~

estimate dominates. Ay = (HyHu +0 a'_gj> Hy (Y —Hr Ax)  (19)



which corresponds to ignoringlf-l A and hence using represents the eigenvector that corresponds to the minimum
Rz7z = Ryy = o2I. Now further neglectingd A leads eigenvalue. Then the scalar_ambiguity is resolved by least
to a symbol estimation error covariance matrix lower boundquares as followsnin ||h — ah||?. After some manipulation

Ry 4 =o2H Hu+s 20" and to a corresponding SINR we get the following solution:

Ay Ay R’
upper bound 2 h— hA_hﬁ = Pgh (18)
SINRMMFzs — %o 5. (16) - . I
(R‘iU;‘U) bk so thath L h which is a well known feature of LS estimation.

Also with this constraint, the corresponding CRB is the
- ) T - .o £ pseudo-inverse of the FIM. As a result, both the Linear and
(HyHu+6% 1) '(Hy Rz zHu+0Z 1) (HyHy+621)~!.  Least-Squares constraints lead to the same diversity .order
Our simulafions show that these’ approximate ‘equalizeEsther of these constraints will be assumed in the further
(15) achieve the same diversity order as those of (12), lsiscussion of diversity in the blind case.

it in terms of outage using the SINR in (16) (with either~ Fixing One Tap (FOT) Constraint

of the two approximate expressions foZ\UAU) or (14),
or in terms of probability of error of these Rxs with QAM

A perhaps more accurate approximation Would‘l% Pl
UAauU

Now we minimize the cost function by considering wlog.
that the first tap of the channel on the first Rx antenna is

transmission. Indeed, according to the various expression ~H

for SINRMMF* an outage should occur whenevely — known: ef'h = 1 with eff = [10---0], min h Q h.

loses full column rank and/ak  ; explodes (becausﬁ~ﬁ ) o efh=1

explodes). In the simulations shown in [10], we workedPPIYing the Lagrange multlpllgzwe get.

with (12) except for the case of FIR. h=0Q le 1{1771 . (19)
e’'Q er

V. FIXING THE SCALAR AMBIGUITY IN THE BLIND CASE

The blind channel estimate can only be determined up
to a scalary and to make it comparable to the true chann

(or to use it in a Rx), this ambiguity needs to be fixed t ) . L
_ _ S« part explain the bad performance of blind channel estimatio
obtain the final estimath = h . As we shall see (see [10] algorithms using this constraint

also), the way by which we resolve the scalar ambiguity has a

major effect on the diversity achieved by the receiver. s th  VI. ZF EQUALIZATION IN SINGLE CARRIER CYCLIC

paper we deal with three different constraints namely, &ine PREFIX (SC-CP) §STEMS

(Lin) constraint, Least-Squares (LSq) constraint andrigixi  The diversity of LE for SC-CP systems has been studied in

one-tap (FOT) constraint. Admittedly, these fixings arbeat [6] for the SISO case with i.i.d. Gaussian channel elements,

theoretical. In practice, one needs to consider diffea¢ntifixed rate R and block sizeN = L+1. The LE DMT for

modulation (see [10]) or a semi-blind approach. SIMO SC-CP systems appears in [7]. Consider a block of

. . . symbol periods preceded by a cyclic prefix (CP) of lenfth

A. Linear (Lin) Constraint (as a result of the CP insertion, actual rates are reduced by
Generally, the cost function of any blind deterministica factor -2-, which is ignored here in what follows). The

. . ~H o~ N+L® : .
channel estimation can be representedhbyQ h where channel input-output relation over one block can be written

-~

possibly Q = Q(h). To resolve the scalar ambiguity we as
can minimize this cost function subject to a linear conaetrai Y=HA+V =Ah+V; (20)

It is obvious from (19) that foh to vanish it is sufficient
etpat ef’h gets very small. Hence the diversity achieved is
$ne regardless of the Rx used”°” = 1. This may in

H ~
as follows: min [[h Q h||%. Applying the Lagrange whereY = Y, = [yl yi,, -yl y /7 etc. His a
.. h"h=h"h banded block-circulant matrix (see (13) in [7]) atl =
multiplier we get: A @I, where A is a toeplitz matrix filled with the
= h¥7h . elements ofA. Now apply anN-point DFT (with matrix
h= mQ h. (17)  Fy) to each subchannel received signal, then we get
_ = o FnnoY =Fy, HFN' Fy A+Fy,V (21)
This constraint yield$ L h and leads to the minimal CRB. —_ ——— Y~ Y——
Normally, the CRB is defined as the inverse of the FIM while U H X w
for a singular FIM with the linear constraint consideredeher where Fy ,, = Fy ® I,,, (Kronecker productA @ B =
the corresponding CRB is the pseudo-inverse of the FINki;B]), H = blockdiag{ho,...,hy_1)} with h, =
[11]. h(f.), the n, x 1 channel transfer function at tone:
. fn = %, at which we have
B. Least-Squares (LSq) Constraint
In this case the minimization process is done in two steps.
First: min ﬁHQ hto geth = Vin(Q), where Vi, The z,, components are i.i.d. and independent of the i.i.d.
I1A1=1 w,, components withr2 = N 02, o2 = No2.

w

U, = h, &, +Ww, . (22)



A. Blind Channel Estimation VIIl. ZF FIR/NON-CP EQUALIZATION
The Rx matched to blind channel estimation is the ZF For time domain FIR equalization of lengfHi, the block

LE. In the case of full CSIR, the SINR is given by (9), (10).gjgna| Tx model can be derived from the SC-CP case in (20)
In this caseHy = H is block cwculqnt and loses column by considering a SC-CP block length &L and removing
rank whenh,, = 0, i.e. when there is a complete fade ony,q 1, first Rx samples in the blockd is now replaced by a
one of the tones, which represents constraints orh. So Nn, x (N+L) banded block Toeplitz matrikl which can

in this case simultaneously the ZF LE fades and the chanr};é obtained from the block circulakt by removing thel.
becomes unidentifiable. Hence, the full CSIR diversity,is top block rows, andA is replaced byA containing N+L
In the case of the LE with blind channel estimate, we nee, mbols. For a’ZF FIR LE with full CSIR and&’ > L. it

to consider (7), (10). As mentioned earlier, the combimatio
of the blind channel estimate in the LE Rx leads to some
dimension and hence some diversity loss dueP{p. As a
result we can state that

B—ZF CSIR—ZF _
dscZop S dgecp ™ =nr (23)

was shown in [7] that the diversity i = n, — 1. There

RX a diversity order loss of 1 compared to the SC-CP case
because now the LE SINR fades or the channel becomes
blindly unidentifiable whenevehr|z] has a zero anywhere in
the z-plane, as opposed to a zero /&t discrete points on
the unit circle as for the SC-CP case. So the constraint on

. . . L+1 .
where the inequality becomes an equality —0.In his that then,.—1 other subchannels have a zero equal to a

the case of full CSIR, the SINR is identical for all symbols in(@ny) zero of the first subchannel, whicfvis—1 constraints.
the block. The SINR becomes position dependent in the bliryS @ result, we get for the FIR ZF LE with matching blind

case. We have investigated via simulations the dependerfd®nnel estimate

of the diversity order on the symbol position but did not find JB-ZF < JOSIR-ZF _ . 4 (28)
any. Also replacing the per symbol MSE by an average over FIR —="FIR S

the block led to the same diversity. For the semi-blind case, we can expect similaty; 27 <
B. Semi-Blind Channel Estimation d3e_Z5.

We consider her@/ consecutive pilot symbols in the time
domain. For the symbol following th&/ pilots, the block
DFE Rx configuration is exactly that. a classical Dl_:E vy|th The probability of error for Tx symbols drawn from an
feedback lengtid/. It has peen shown |n.[7] that the diversity gpsk constellation is simulated, averaged ot Monte-
for such a full CSIR DFE igl = n,(1+min{}M, L}). HeNc® a0 runs of AWGN noise, symbols and i.i.d. Rayleigh
we conclude fading channel realizations. We consider Tx block leNth-
dBo2E < dé?:éfi < dggf_%;zp = n,(1+min{M, L}). 20,7, =3 Rxantennas, and channe_l_memdiryt 1. Fpr the_

(24) case of comparable outage probability Pr(O) considerstion
In this case the inequality is not only due to channel estimatWe assume a rat&® = g log(K), where K = 8 is
Rx coupling for a finite block length as in the blind casethe constellation size. In Fig. 1 we have simulated Pr(O)
but possibly also depends on the distribution of Mepilots ~ (Via (7), (10)) for the SC-CP and FIR scenarios with blind

IX. SIMULATIONS

over the b|0ck, as simulations reveal (See further)_ channel estimation. It is obvious that in both scenadies 2.
This result confirms our interpretation that blind channel
VII. ZF EQUALIZATION IN OFDM SYSTEMS estimation leads to a loss in the diversity order of a ZF-LE.

Whereas for SC-CP the Tx symbols a#en time domain, In Fig. 2 we simulate all the Tx scenarios considered in this
in OFDM the symbols are inX in frequency domain. The paper but this time with semi-blind channel estimation. We
same block processing formulas remain valid, if consideregssume thafl/ = 4 training symbols (pilots) are inserted at
in frequency domain. In OFDM, the channel is flat at everyhe beginning of each block. We observe that SC-CP attains
tone and transmission at different tones is decoupled. Asaafull diversity order ofd = 6 while OFDM achieves] = 3

result, we get for the blind case (full spatial diversity) and the Non-CP case achieves just 2
gB-ZF _ JOSIR-ZF _ (25) (less than full spatial diversity). However, in Fig. 3 we ued
OFDM = “OFDM T M to 2 SC-CP and OFDM, but/ = 3 for Non-CP (1 at the
In the semi-blind case, pilots are now placed in the frequendeginning of each block and 2 at the end). For SC-CP we
domain. If we introducé{ X = X'h then we get getd = 4 while for OFDM d = 3 only. This result reveals
1 the effect of the length of the training sequence (pilotgdus
CRB%’U = o (Hgl%HU) (26)  on the diversity order achieved. On the other hand, for the

whereH,; is obtained fromH by eliminating the columns Non-CP case with the distributed 3 training symbols, we get
corresponding to the pilot positions. The pilots have ng = 4 which is higher than in the previous simulation even

incidence on reception, only on channel estimation. As &ough 4 training symbols were inserted at the beginning of
result we get the block. This shows the necessity to distribute the tnaini

sequence over both edges of the Tx block to achieve higher

dgrpm < dorras < dorpu . = (27)  diversity orders for the Non-CP case.

OFDM OFDM OFDM  — Tr.



R =2.8571,L =1, N = 20, MonteCarlo = 1000000, n = 3
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Fig. 1. Probability of outage vs. SNR for SC-CP and FIR (Nd®}Ox
scenarios with blind channel estimation and ZF-LE.
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Fig. 2. Probability of outage vs. SNR for SC-CP, OFDM and FiNorg-
CP) Tx scenarios with semi-blind channel estimation and EekbDFE
with 4 pilots at the start of the Tx block.

R =2.8571, Np\lu\s =2,L=1,N =20, MonteCarlo = 1000000, n =3

Pr(0)

10 || =——©— SC-CP-Sem-blind-ZF
=——#— Non—-CP-Semi-blind-ZF(3 symbols training seq)
OFDM-Semi-blind-ZF

T T T T T i i i
0 2 4 6 8 10 12 14 16
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Fig. 3. Probability of outage vs. SNR for SC-CP, OFDM and FNorg-
CP) Tx scenarios with semi-blind channel estimation andDHE where 3
pilots are used for the case of Non-CP and 2 pilots for SC-CRRDM.

X. CONCLUSIONS

In this paper we have analyzed the diversity order of
MMSE-ZF Linear and Decision-Feedback Equalization for
frequency-selective SIMO channels, with the receiveradpei
constructed from matching (semi-)blind channel estimates
The matching is furthermore interpreted here in a strickeen
in which both the symbols and the channel get estimated
on the basis of the same block of data. We have seen that
matching leads essentially to the same diversity order for
the receivers considered, built from (semi-)blindly estied
channels or from the true channel. For finite block lengths,
the combination of receivers and channel estimates leads to
some diversity reduction that requires further investarat
The effect of the positioning of pilot symbols also requires
further investigation, as also the analysis of non-mathin
scenarios,
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