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Abstract— Blind and semiblind channel estimation is a topic
that enjoyed explosive developments throughout the ninets,
and then came to a standstill, probably because of perceivath-
satisfactory performance. Blind channel estimation techigues
were developed and usually evaluated for a given channel
realization, i.e. with a deterministic channel model. Suctblind
channel estimates, especially those based on subspacestia t
data, are often only partial and ill-conditioned. On the other
hand, in wireless communications the channel is typically md-
eled as Rayleigh fading, i.e. with a Gaussian (prior) distthution
expressing variances of and correlations between channebef-
ficients. In recent years, such prior information on the chamel
has started to get exploited in pilot-based channel estimain,
since often the pure pilot-based (deterministic) channelstimate
is of limited quality due to limited pilots. In this paper we
explore a Bayesian approach to (semi-)blind channel estintian,
exploiting a priori information on fading channels. In the case of
deterministic unknown input symbols, it suffices to augmenthe
classical blind (quadratic) channel criterion with a quadratic
criterion reflecting the Rayleigh fading prior. In the case d a
Gaussian symbol model the blind criterion is more involvedThe
joint ML/MAP estimation of channels, deterministic unknown
symbols, and channel profile parameters can be conveniently
carried out using Variational Bayesian techniques. Variaional
Bayesian techniques correspond to alternating maximizatin
of a likelihood w.rt. subsets of parameters, but taking inb
account the estimation errors on the other parameters. To
simplify exposition, we elaborate the details for the case fo
MIMO OFDM systems.

|. INTRODUCTION

Blind and semiblind channel estimation techniques have
been developed and are usually evaluated for a given channel “~~
realization, i.e. with a deterministic channel model, s&g [
for an overview of such techniques. Such blind channel
estimates, especially those based on subspaces in the data,
are often only partial and ill-conditioned. Indeed, onlyrtpa
of the channel is blindly identifiable, especially in the €aswhere H(q
of MIMO channels. The type of blind channel estimation

part of the channel that can be identified blindly is larger
in the Gaussian input model case than in the deterministic
input model case, but is in any case incomplete. Many of the
deterministic input approaches are also quite sensitiva to
number of hypotheses such as correct channel length (filter
order) and no channel zeros. In general this means that these
blind channel estimates can often become ill-conditioned,
when the channel impulse response is tapered (e.g. due to
a pulse shape filter) or when the channel is close to having
zeros. In fact this means that the blind information on the
channel can be substantial, but is limited to only part of the
channel.

An overview of blind channel estimation techniques can
be found in [1] for SIMO systems and in [2] for MIMO
systems. Specific blind channel estimation techniques for
Cyclic Prefix systems, as will be considered here, were
introduced in [3], see also [4]. The concept of Bayesiandlin
channel estimation was introduced in [5], with in particula
some considerations on identifiability issues. In this pape
we focus on algorithms. The superscripts .7 and .Z
denote complex conjugate, transpose and complex conjugate
(Hermitian) transpose resp.

II. MIMO CycLIic PREFIX BLOCK TX SYSTEMS

Consider a MIMO system witly inputsz;, p > ¢ outputs
y; per (symbol/sample) period

yim] = YL, YL bl aifm—j]
M~ N
px1 . . px1 . 1x1 (1)
= 2o hlj] x[m—j] = H(q) x[m]
a1 wa oa

Zh ¢’ is the MIMO system transfer

7=0

techniques we are mostly referring to here involve an FIRuNction correspondlng to the transform of the impulse
multichannel and are typically based on the second-ordegsponseh[.]. Equation (1) mixes time domain andtrans-
statistics of the received signal. Two types of techniqué@rm domain notations to obtain a compact representation.
can be considered, treating the unknown input symbols # H(q), = is replaced byg (not to be confused with the
either deterministic unknowns or Gaussian white noise. IRUmber of transmit antennas) to emphasize its function as an
the first case, the techniques are often based on the subspelégnentary time advance operator over one sample period.
structure induced in the data by the multichannel aspee. THS inverse corresponds to a delay over one sample period:
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g 'x[n] = x[n—1].

Consider a (OFDM or single-carrier) CP block transmis-
sion system withV samples per block. The introduction of a
cyclic prefix of K samples means that the ldstsamples of
the current block (corresponding fé samples) are repeated
before the actual block. If we assume w.l.0.g. that the cuirre
block starts at time), then samplex[N—K]---x[N—1]



are repeated at time instantg, ..., —1. This means that and similarly for Fisher information matrices. So in what
the output at sample periods..., N—1 can be written in follows, we shall concentrate on the cost function for a give
matrix form as tone.

= Y[0] = H X[0] + V0] (2) IV. DETERMINISTIC SYMBOLS CASE

Algorithms that fall under this category are
where the matrix H is not only (block) Toeplitz but even « subspace fitting (MIMO)

(bloc_k) circulant: ea_ch row is obta_ined by a cycli_c shift to « Subchannel Response Matching (SRM)/ Cross Relation
thg right of the previous row. Consider now applying /&n (CR) method (SIMO)
point FFT to both sides of (2) at block: « DML, IQML, DIQML, PQML (SIMO)

FnpY[m| = Fn,H Fjg_lq Fy oX[m]+ Fn,V[m]  (3) « singular prediction parameters (MIMOYP(z) H(z) =
' h[0] = (h*[0] P(2)) H(z) =0
« deterministic approach by itself of limited use in MIMO
Um] = H Alm] + Wim] @) case unless channels of different sources of same length:
the case of spatial multiplexing MIMO systems

or with new notations:

where Fy, = Fy ® I, (Kronecker productA @ B =

l[a;jB]), Fy is the N-point N x N DFT matrix, H =

diag{hy,...,hxy_1} is a block diagonal matrix with di-
agonal blocks hy = >/, h[l] e 727%H, the p x g Let us focus in particular on the signal subspace fitting

channel transfer function at tone (frequency= k/N  method (noise subspace fitting can be similarly formulated
times the sample frequency). In OFDM, the transmittegor the SIMO case using the linear noise subspace param-
symbols are in An] and hence are in the frequency domaineterization in terms of the channel, considered in the next
The corresponding time domain samples are {m)X The section). For the (spatiotemporally) white noise case (and
OFDM symbol period index isn. In Single-Carrier (SC) assuming spatiotemporally white symbols for simplicityg

CP systems, the transmitted symbols are jmXand hence eigendecomposition of the covariance matrix of a block of

are in the time domain. The corresponding frequency domagiignal in the time domain can in fact easily be computed

data are in An]. The components of V are considered whitefrom the eigendecompositions at each tone! Indeed

noise, hence the components of W are white also. At tone

(subcarrier)n € {0,..., N—1} we get the following input- Ryy = o2 HH" + 02 Iy,

output relation

V. SIGNAL SUBSPACEFITTING

—1
= FN,pRYY FN,p

9)
u,|m| = h, a,|m|+w,m 5 _ - - (
L[ ] v L[ ] [ ] ( ) — O’% FN,pHFN71qFN,qHHFN71p+U12} FN,pFN}p

px1 PXq  gx1 px1

. = o2HH" + 02 Iy,

where the symboh,,[m] belongs to some finite alphabet

(constellation) in the case of OFDM. where the matrix in square brackets is block diagonal. Hence

the eigenvectors in the time domain are the IDFTs of the

eigenvectors at each tone, and the eigenvalues are thesame i
In what follows, we shall see that for methods and perfofme or frequency domain. This exact relationship no longer

mance analysis, we get a cost function or information at eagy|ds for the eigenvectors based on sample covariances in

tone _forthe _channel_response at that tone, and to get the cggie and frequency domain due to the noise (it remains

function or information for the temporal channel responsgyye in the absence of noise). Nevertheless this relatipnsh

it suffices to sum up the cost functions or '”format'on%ncourages us to develop subspace fitting problems in the

over the tor_1es after traqsformirlg back to the time doma”ﬂrequency domain, involving eigendecompositions\op x p

To be a bit more explicit, leth, = vec(hy) and let matrices instead of the eigendecomposition of dhex Np

h be tge vectogzedHchanneI impulse response, he= matrix. Let E denote a sample average, then the details of
vec ([h[0] - --h™[L]]). Then there exists transformationthe signal subspace fitting method are

matricesGy, (containing DFT portions) such that

IIl. SOME GENERALITIES FORCP SYSTEM METHODS

o 1y = Ewg[njufl[n] = o2 hphif + o2 I,

h, = Gy h. (6) = VsuAs Vil + 0%, Vva Vi,
Now, if at tonek we have a cost function of the form o T = Ewmow}! = Vs As i V3l + VvaAn eVl s
—H _ « signal subspace fitting cost function
h, Q hy (7)
N-1
_then this induces a cost function for the overall channel min Z ”thka”%
impulse response of the form h —
N-—-1
. function per tone= not very costly to introduce
! GFQuGr| h = W Qh 8 cost n p
kz;o k Qi G @ ®) optimal weighting.




VI. MOREDETERMINISTIC APPROACHES « Linear prediction based methods:
« Deterministic (symbols) ML (DML):

N-1 N-1
max Z tr {Pn,Tr} < m&n Z tr { Py, Tk becomes
k=0 k=0 Pk hk = h[O]
o IQML: in the SIMO case, we can introduce a linear (in
the channel parameters) parameterization of the noise
subspacehi- so that Py = P,. =

tonewise.
« For MIMO, the proper exploitation of the Gaussian case
is quite advantageous over the deterministic symbols
N—-1 e e L approach.
min Z tr { (b "hi) " hy Meehy In Gaussian ML (GML), since both symbols and noise are
k=0 Gaussian, the received signal is Gaussian with a channel-
« Subchannel Response Matching (SRM)/Cross Relatiafependent covariance matrix. This leads to the GML likeli-

method (CR): hood, in which the symbols are eliminated. Alternativetys i
N—1 quite straightforward to add the Bayesian Rayleigh channel
min Z tr {hi-"Trh; } prior to the likelihood for the joint estimation of channel
h = and Gaussian symbols, leading to joint MAP estimation of
« Denoised IQML (DIQML): channel and symbols:
N-1 1 2 1 2 H -1
—||lU-HA —|A h v h 11
min 3 tr { (0t 7ht) b (5 — 33, 1,)hi'} 7y IV~ A+ A+ R (G ()
k=0

) o which is quadratic inh for fixed A, or in A for fixed h.
Of course, one can now go further in denoising angnowing that (2) can be written in another form as follows:
replacer; — 8ij[,, by its pure signal subspace part.

« WSSF/large sample Gaussian (symbols) ML (GML): Y =HX+V=Xh+V (12)

i whereX = X' @ I, and X" is a circulant matrix filled with

~2
S Rx A-1DH
max Z tr {Phkvsva&kA&kV&k} the elements (vectors) of X. Then after some manipulation
k=0 we get the following solutions:
VII. BAYESIAN BLIND WITH DETERMINISTIC SYMBOLS
2
O'w

-1
Assume the Rayleigh fading channel has a prior distribu- A= <ﬁHﬁ + _21) HHU (13)
tion h ~ CN(0, Cy), then a Bayesian blind criterion can be Oq
obtained straightforwardly by augmenting a classical dlin R o 1
criterion as follows h= (XHX + aﬁ)(Cﬁ)*l) XTFE{ U (14)

1
h# — 5 @h+ h (C)~'h (10) Hence the Alternating GMAPGMAP (AGMAPGMAP) al-
o ] - reratively minimiz
v gorithm, by iteratively minimizing forh or A. Note that,

which still remains (pseudo) quadratic i (||h||? refers although the (non-Gaussian) joint posterior densithafnd
to a separate estimate ¢h||?). (10) would correspond to A would be difficult to compute, the joint posterior is not
joint ML for the symbols and MAP for the channel @ required to obtain their MAP estimate, which is fairly simpl
corresponds to one of the DML versions. Under a unit norrto compute (at least when done iteratively as suggestedl. here
constraint, the minimization of (10) leads to

h = ||h] V’”"”(W Q +(Cg)~1) (which may need to be IX. VARIATIONAL BAYESIAN TECHNIQUES
solved iteratively if) depends orh). A recent tutorial on Variational Bayesian (VB) estimation
VIII. G AUSSIAN SYMBOLS APPROACHES techniques can be found in [6]. VB provides an approximate

technique to determine the posterior probability densitycf
tion (pdf) of the quantities to be estimated. lbetlenote the
ri, = Ewy[njuy [n] = o2 hyhy + 02 I, vector of all quantities to be estimated, including pararset
) . _ . and possibly signals (e.g. the "hidden variables” in EM
= separate noise variance identifiable at every tong, minglogy). AndY denotes the measurements. In many
this corresponds to a circulant noise covariance mat”ﬁfroblems, the joint posterior pdf(Y) can be complicated

« Tone-wise covariance analysis

in the time domain. _ to determine. Consider now a partitionfinto X subgroups
« GML: has the same gradient as WCM below. of quantities that will get estimated per subgrofp=
« Weighted Covariance Matching (WCM): {k, K = 1,...,K}. The idea of VB is to approximate
N-1 F(0]Y) by a product formg(4]Y) = [, 9(6x|Y) where
min Y tr {r; " (rx — Tp)ry ' (rk — Tk) } the g(A|Y") in general will differ from the true marginal

h,o?

k=0 pdfs f(0x]Y). The g(6|Y") are determined by minimizing



the Kullback-Leibler distance betweqF[szlg(Gk|Y) and
f(8]Y). This leads to the following implicit relations

hlg(ele) = Eg(G,;\Y) hlf(Y, (91“9];) ,k} = 1, .. .,K (15)

where 6;, is 6 minus 6, henced = {6;,6;}. In practice,

(15) needs to be solved iteratively by consecutively swegpi

throughk = 1,..., K, at all times using forg(6;|Y") the

not just replaced by its estimate, but the channel estimatio
error is taken into account also. On the other hand,
Inf(U,A,h) =t = 3, { [, — (al ® I,)G,h]|?

hiGH(G,CeGH)~1G,h}
(18)
using e.gh,a, = (al ® I,)G,h.

latest version available. This iterative process can bevsho Hence with (15)g(h|U) ~ CN(mn, Cw) where

to converge montonically. Typically, whefi(Y'|#) and the

prior f(6) are exponential family pdfs (typically Gaussian), Ch

then one can see from (15) thatf.|Y") will also be of

the exponential family. VB techniques have mainly been
introduced to deal with hierarchical signal models: signalThe

= (S (R, © B)C + ()

(19)
n = Ch g% Zn G,I;I(m;n Y Ip)un

estimation of the channel can be seen to correspond

that contain parameters with a prior that depends itself ap a Bayesian MMSE estimate, using all symbols as pilots,
parameters with a prior etc. However, VB techniques can lsut taking into account that they have estimation error

useful in simpler problems also.

also. Upon convergence, the posterior means and my

Note that Variational Bayesian techniques can also b&re both MAP and MMSE estimates (due to Gaussianity)

applied in the presence of deterministic unknowWps There
are two ways to think about deterministic unknowns:

(i) as truly deterministic, with priotf (6p) = 6(6p — 6%)
where 69, is the unknown true value dfp; in other
words,0p ~ N (0%, Cg ) whereCg =01.

(i) as random with no prior information, henag, ~
N(0%,Cg,) whereCg = oo I and69, is unimportant
(e.g.6% =0).

according tog(8]Y) = g(h|U) ], 9(an|U). However, they
are neither MAP nor MMSE estimates according to the
true posteriorf(6Y). But it is intuitively clear that they
should be reasonable approximations of the true MMSE
estimates, which contrasts with the true MAP estimates of
the AGMAPGMAP algorithm.

Remarks
The case of deterministic symbols can be handled also by

In case (i), VB becomes EM [6], in which case during thgust settingo? = oo in (16), (17).

iterations the deterministic parameters are simply sutigti  The extension to semiblind, with some symbols being pilots,
by their current estimate. Case (ii) is closer to the VB gpiri hence being known exactly, is immediate. Their error covari

If & = {6p,05} wherefs are the stochastic parameters@nce matrix will remain zero and their mean equals the pilot
then it suffices to replacé(Y,6) in (15) by f(Y,6s/6p) = Vvalue. _

f(Y']6) f(6s). In this case also for the deterministic paramExtensmns of the methods presented can be considered to
eters not only their current estimates (posterior meares) aicorporate the estimation of e.gy, (or a set of parameters

accounted for but also their estimation error. parameterizing’y), which would be especially meaningful
in the scenario in which multiple realizations hfwith the

sameCy need to be estimated (e.g. in a sequence of OFDM
symbols).

X. VARIATIONAL BAYESIAN BLIND CHANNEL
ESTIMATION

We shall focus on the MIMO OFDM case with Rayleigh
fading FIR channel and Gaussian symbol model. In this case
Y = U andd = {A,h}. When applying the VB technique,
g(A|U) factors asg(A|U) = [T2_, g(a,|U). We have

XI. IDENTIFIABILITY CONSIDERATIONS

Consider the joint estimation of the transmitted symbols in
time domain X and the collective channel impulse response
coefficientsh, making up together the parameter vedos
(XA hH}H. Then the Fisher Information matrix (FIM) on
the basis of the data Y in (12) alone is

hlf(u'mana hn) = Ct + g%{_ughnan

—al'hu, +alf (h'h, + Z£1,)a,}
‘ (16)

where ¢ denotes a constant. With (15) we hence get Jy = %[H X" H ) (20)
g(an|U) ~ CN(ma,,Ca,), Where To
1 6 is unidentifiable since indeed for @ x ¢ mixing filter
Ca, = (ZUb(RL }+51,) an L(2), we haveH (q) xim] = (H(2)(a)) (% *(a) xm)) =
Ma, = LCamf u, H(q)x[m]. Hence it is impossible to distinguisti(¢) from
" Tw T e H(q). If the delay spread ofi(q) is known and/or there

where trb of a block matrix denotes a matrix obtained byre border conditions on the transmitted signal, then the
taking trace of its blocks (e.d/'h,, = trb{ (b, )7 }), frequency-selective mixture(z) becomes a frequency-flat
h, = vec(h,), mg = Gpmn, O = GnCh GH and 1. In this case,Jy has a null space which is the column
mp, = unvec{my, }. In general,R, = mym# + Cy. The space of{ X" —hH}H. Indeed[H ] [X* —hH]H =0. So
estimation of the symbols can be seen to correspond to thiee multiplicative ambiguityyy translates into an (additive)
output of a MMSE linear equalizer in which the channel isingularity in the FIM.



In the case of Gaussian white symbols, the prior informasf the Normalized MSE gNMSE) vs. SNR. The per receive

tion on X translates into an additional FIM antenna SNR is SNR- %
1 . - 1}v —h|? = N
Jx == [ é 8 } (21)  The NMSE is defined as agvglgh;l‘l' whereh = hy
0% is the channel estimate adjusted for blind channel estima-

so at this point the overall FIM isly = Jy + Jx which tion ambiguities. As we assume the channel length known
will have become non-singular. This would indicate identihere, ¢ represents an instantaneous mixing matrix of size
fiability. The ambiguity in this case is indeed reduced fronfg % ¢). The mixing matrixt) can be obtained by mini-
an unconstrained) to a unitarys. However, there is still Mizing the Frobenius norm of the following matrix error:
ambiguity and hence unidentifiability. Actually, the propemin [[h’ — h'|[7 where h’ = (h"[0]---h#[L])” and
treatement with Gaussian symbols does not allow presenting _ (h¥[0]---RH[L])". For an unconstrained mixture,
the FIM in the compact complex form presented here. | e geteh — (E’Hﬁ’)*lﬁ’Hh’ — USVE where the last

fact, @ needs to be doubled in size by considering separate pression represents the SVD of the resultingn the case

its real and imaginary components and the associated Fl : . : .
. . at ets constrained to be a unitary matrix, the solution
needs to be considered, in order to see the FIM nuIIspaFe v y

dina t " biauit - Sy =UVH, see [2].
corresponding to a unitary amoiguity matrix. _ . Both (B and VBB) algorithms are initialized by using (for
When now furthermore (or alternatively) a Gaussian prior

. . En) noisy perturbations of the true channels. In the first
for the chann_elh is considered, then the FIM fa¥ gets iteration of (17) we usez = mz m! , henceCr = 0.
augmented with n n

In Figure 1 we can notice how close the performance of both
0 0 29 the Variational Bayesian and the Bayesian algorithms isesin
o = { 0 (Ccp)~t } (22) both fully exploit the prior information that exists aboubtt
. . . channel and the symbols. However, we can notice that the
which will again render the overall FIMp = Jy +Ju(+Jx)  yyBB method (with + marker, also called "Deterministic”

_nonsingl_JIar. .So it V.VOUId_ seem that the addition of pr!ogn the legend) lags behind the normal Variational Bayesian
information with an identical non-zero Power Delay Profile, .t « marker) where the prior information is taken into

(PDP) for each of the antenna pair channels (correspondi nsideration. This is an expected result since the moog-inf

to a nonsingular diagondl)) renders.Jp nonsingular and 1 4ion we exploit the better performance we get. However,
hence leads to (channel) identifiability. However this is no

v th h ; . hi btﬂt higher SNR the performance of the deterministic blind
necessarly the case. In. the case o Gaussmn white sym @orithm converges to that of the Bayesian blind algorghm
and a unitary ambiguity matrixp, if CP

is such that Also this result is expected since at very high SNR the

H o _ o (i H
(% @ Lyp41)) " CR(¥ ® Iyr41)) = Cy, (in which case the ;o tion of prior information becomes negligible.
channel prior is insensitive to a unitary mixture), theii gie

Bayesian blind problem remains unidentifiable. The abov L =5, =2,N =20, MonteCarlo = 586,p = 3
condition occurs ifCy, is of the formCy = I, ® C for any 0 T T

square matribxC of sizep(L+1). Hence the regularization of

the blind channel estimation problem via prior informatior
is a tricky issue due to the multiplicative nature of the
ambiguity.

XIl. SIMULATIONS

We simulate in this section both Bayesian and Variation:
Bayesian Blind (VBB) channel estimation techniques base
on (13), (14) and (17), (19) appearing above. Moreove
we simulate also a version of the Variational Bayesial

approach where the channel parameters are determinis 0/ G Bayesan

unknowns, treated as random with no prior information —$— Variaiional Bayesian

so Cf = ool in (19). We shall refer to this approach as et ]
Uniformed VBB (UVBB). In each MonteCarlo simulation o 5 0 5 20 BN B4 550

i : A | SNR
we generate a Rayleigh fading channel with exponentiall,. .
Fig. 1. NMSE vs. SNR for B, VBB, UVBB algorithms, foN = 20,

decaying power delay profile (PDP) for the channel betweeL;p,it'ary .

each transmitting and receiving antenna pair as follows:

e " wheren = 0 : L andw = 2 normally. Hence Cy, Whereas Fig. 1 uses a unitary, Fig. 2 uses an un-
is the diagonal matrixCy, = I, ® C ® I, where C = constrainedyy, which leads to reduced NMSE since more
diag{e ", n = 0 : L}. As for the symbols, we generate prior information is exploited. At least, Fig. 1 shows thia¢ t
i.i.d. Gaussian symbols (which are hence i.i.d. Gaussi&im boexploitation of the white character of the symbols as we do
in time and frequency domain). The performance of thlere leads to a reduced unidentifiabilityspfto just a unitary
different Bayesian channel estimators is evaluated by sieamixing matrix.



L =5,q=2,N =20, MonteCarlo = 100,p = 3
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Fig. 2. NMSE vs. SNR for B, VBB, UVBB algorithms, foN = 20,

unconstraineap.

L =5,q=2,N =100, MonteCarlo =100, p = 3
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Fig. 3. NMSE vs. SNR for B, VBB, UVBB algorithms, foN = 100,

unconstraineap.

L =5,q=2,N=20,MonteCarlo =100,p =3

NMSE

350 =©~ Bayesian

==f= Deterministic
I I
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I
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Fig. 4. NMSE vs. SNR for B, VBB, UVBB algorithms, foN = 20,

unconstrainedp, w = 0.5

in PDP.

In Fig. 3 the OFDM block lengthV gets increased from
20 (as in the previous two figures) to 100. The result is that
the prior information introduced by a Bayesian approacly onl
helps at low SNR, as could be expected. The other noticeable
effect is that the Variational approach outperforms the-non
Variational version over a wide SNR range.

In Fig. 4 finally, an exponential PDP with much shorter
time constant® = 0.5) is used, as comparedte= 2 in the
previous three figures. The result is that the prior infofarat
only helps at very high SNR.
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