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Abstract— Blind and semiblind channel estimation is a topic
that enjoyed explosive developments throughout the nineties,
and then came to a standstill, probably because of perceivedun-
satisfactory performance. Blind channel estimation techniques
were developed and usually evaluated for a given channel
realization, i.e. with a deterministic channel model. Suchblind
channel estimates, especially those based on subspaces in the
data, are often only partial and ill-conditioned. On the other
hand, in wireless communications the channel is typically mod-
eled as Rayleigh fading, i.e. with a Gaussian (prior) distribution
expressing variances of and correlations between channel coef-
ficients. In recent years, such prior information on the channel
has started to get exploited in pilot-based channel estimation,
since often the pure pilot-based (deterministic) channel estimate
is of limited quality due to limited pilots. In this paper we
explore a Bayesian approach to (semi-)blind channel estimation,
exploiting a priori information on fading channels. In the case of
deterministic unknown input symbols, it suffices to augmentthe
classical blind (quadratic) channel criterion with a quadratic
criterion reflecting the Rayleigh fading prior. In the case of a
Gaussian symbol model the blind criterion is more involved.The
joint ML/MAP estimation of channels, deterministic unknown
symbols, and channel profile parameters can be conveniently
carried out using Variational Bayesian techniques. Variational
Bayesian techniques correspond to alternating maximization
of a likelihood w.r.t. subsets of parameters, but taking into
account the estimation errors on the other parameters. To
simplify exposition, we elaborate the details for the case of
MIMO OFDM systems.

I. I NTRODUCTION

Blind and semiblind channel estimation techniques have
been developed and are usually evaluated for a given channel
realization, i.e. with a deterministic channel model, see [1]
for an overview of such techniques. Such blind channel
estimates, especially those based on subspaces in the data,
are often only partial and ill-conditioned. Indeed, only part
of the channel is blindly identifiable, especially in the case
of MIMO channels. The type of blind channel estimation
techniques we are mostly referring to here involve an FIR
multichannel and are typically based on the second-order
statistics of the received signal. Two types of techniques
can be considered, treating the unknown input symbols as
either deterministic unknowns or Gaussian white noise. In
the first case, the techniques are often based on the subspace
structure induced in the data by the multichannel aspect. The
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part of the channel that can be identified blindly is larger
in the Gaussian input model case than in the deterministic
input model case, but is in any case incomplete. Many of the
deterministic input approaches are also quite sensitive toa
number of hypotheses such as correct channel length (filter
order) and no channel zeros. In general this means that these
blind channel estimates can often become ill-conditioned,
when the channel impulse response is tapered (e.g. due to
a pulse shape filter) or when the channel is close to having
zeros. In fact this means that the blind information on the
channel can be substantial, but is limited to only part of the
channel.

An overview of blind channel estimation techniques can
be found in [1] for SIMO systems and in [2] for MIMO
systems. Specific blind channel estimation techniques for
Cyclic Prefix systems, as will be considered here, were
introduced in [3], see also [4]. The concept of Bayesian blind
channel estimation was introduced in [5], with in particular
some considerations on identifiability issues. In this paper
we focus on algorithms. The superscripts.∗ , .T and .H

denote complex conjugate, transpose and complex conjugate
(Hermitian) transpose resp.

II. MIMO C YCLIC PREFIX BLOCK TX SYSTEMS

Consider a MIMO system withq inputsxl, p > q outputs
yi per (symbol/sample) period

y[m]︸︷︷︸
p×1

=
∑q

l=1

∑Ll

j=0 hl[j]︸︷︷︸
p×1

xl[m−j]︸ ︷︷ ︸
1×1

=
∑L

j=0 h[j]︸︷︷︸
p×q

x[m−j]︸ ︷︷ ︸
q×1

= H(q)︸ ︷︷ ︸
p×q

x[m]︸︷︷︸
q×1

(1)

whereH(q) =

L∑

j=0

h[j] q−j is the MIMO system transfer

function corresponding to thez transform of the impulse
responseh[.]. Equation (1) mixes time domain andz trans-
form domain notations to obtain a compact representation.
In H(q), z is replaced byq (not to be confused with the
number of transmit antennas) to emphasize its function as an
elementary time advance operator over one sample period.
Its inverse corresponds to a delay over one sample period:
q−1x[n] = x[n−1].

Consider a (OFDM or single-carrier) CP block transmis-
sion system withN samples per block. The introduction of a
cyclic prefix ofK samples means that the lastK samples of
the current block (corresponding toN samples) are repeated
before the actual block. If we assume w.l.o.g. that the current
block starts at time0, then samplesx[N−K] · · ·x[N−1]



are repeated at time instants−K, . . . , −1. This means that
the output at sample periods0, . . . , N−1 can be written in
matrix form as


y[0]
· · ·

y[N−1]


 = Y[0] = H X[0] + V[0] (2)

where the matrix H is not only (block) Toeplitz but even
(block) circulant: each row is obtained by a cyclic shift to
the right of the previous row. Consider now applying anN -
point FFT to both sides of (2) at blockm:

FN,pY[m] = FN,pH F−1
N,q FN,qX[m] + FN,pV[m] (3)

or with new notations:

U[m] = H A[m] + W[m] (4)

where FN,p = FN ⊗ Ip (Kronecker product:A ⊗ B =
[aijB]), FN is the N -point N × N DFT matrix, H =
diag{h0, . . . ,hN−1} is a block diagonal matrix with di-
agonal blocks hk =

∑L

l=0 h[l] e−j2π 1

N
kl, the p × q

channel transfer function at tonek (frequency = k/N
times the sample frequency). In OFDM, the transmitted
symbols are in A[m] and hence are in the frequency domain.
The corresponding time domain samples are in X[m]. The
OFDM symbol period index ism. In Single-Carrier (SC)
CP systems, the transmitted symbols are in X[m] and hence
are in the time domain. The corresponding frequency domain
data are in A[m]. The components of V are considered white
noise, hence the components of W are white also. At tone
(subcarrier)n ∈ {0, . . . , N−1} we get the following input-
output relation

un[m]︸ ︷︷ ︸
p×1

= hn︸︷︷︸
p×q

an[m]︸ ︷︷ ︸
q×1

+wn[m]︸ ︷︷ ︸
p×1

(5)

where the symbolan[m] belongs to some finite alphabet
(constellation) in the case of OFDM.

III. SOME GENERALITIES FORCP SYSTEM METHODS

In what follows, we shall see that for methods and perfor-
mance analysis, we get a cost function or information at each
tone for the channel response at that tone, and to get the cost
function or information for the temporal channel response,
it suffices to sum up the cost functions or informations
over the tones after transforming back to the time domain.
To be a bit more explicit, lethk = vec (hk) and let
h be the vectorized channel impulse response, i.e.h =
vec ([hH [0] · · ·hH [L]]H). Then there exists transformation
matricesGk (containing DFT portions) such that

hk = Gk h . (6)

Now, if at tonek we have a cost function of the form

h
H

k Qk hk (7)

then this induces a cost function for the overall channel
impulse response of the form

hH

[
N−1∑

k=0

GH
k Qk Gk

]
h = hH Q h (8)

and similarly for Fisher information matrices. So in what
follows, we shall concentrate on the cost function for a given
tone.

IV. D ETERMINISTIC SYMBOLS CASE

Algorithms that fall under this category are

• subspace fitting (MIMO)
• Subchannel Response Matching (SRM)/ Cross Relation

(CR) method (SIMO)
• DML, IQML, DIQML, PQML (SIMO)
• singular prediction parameters (MIMO):P (z)H(z) =

h[0] ⇒ (h⊥[0]P (z)) H(z) = 0
• deterministic approach by itself of limited use in MIMO

case unless channels of different sources of same length:
the case of spatial multiplexing MIMO systems

V. SIGNAL SUBSPACEFITTING

Let us focus in particular on the signal subspace fitting
method (noise subspace fitting can be similarly formulated
for the SIMO case using the linear noise subspace param-
eterization in terms of the channel, considered in the next
section). For the (spatiotemporally) white noise case (and
assuming spatiotemporally white symbols for simplicity),the
eigendecomposition of the covariance matrix of a block of
signal in the time domain can in fact easily be computed
from the eigendecompositions at each tone! Indeed

RYY = σ2
x H HH + σ2

v INp

⇒ FN,pRYYF
−1
N,p

= σ2
x FN,pHF−1

N,qFN,qHHF−1
N,p + σ2

v FN,pF
−1
N,p

= σ2
x HHH + σ2

v INp

(9)

where the matrix in square brackets is block diagonal. Hence
the eigenvectors in the time domain are the IDFTs of the
eigenvectors at each tone, and the eigenvalues are the same in
time or frequency domain. This exact relationship no longer
holds for the eigenvectors based on sample covariances in
time and frequency domain due to the noise (it remains
true in the absence of noise). Nevertheless this relationship
encourages us to develop subspace fitting problems in the
frequency domain, involving eigendecompositions ofN p×p
matrices instead of the eigendecomposition of oneNp×Np
matrix. Let Ê denote a sample average, then the details of
the signal subspace fitting method are

• rk = Euk[n]uH
k [n] = σ2

a hkh
H
k + σ2

wk
Ip

= VS,kΛS,kV
H
S,k + σ2

wk
VN ,kV

H
N ,k

• r̂k = Êuku
H
k = V̂S,kΛ̂S,kV̂

H
S,k + V̂N ,kΛ̂N ,kV̂

H
N ,k

• signal subspace fitting cost function

min
h

N−1∑

k=0

‖hH
k V̂N ,k‖

2
F

• cost function per tone⇒ not very costly to introduce
optimal weighting.



VI. M ORE DETERMINISTIC APPROACHES

• Deterministic (symbols) ML (DML):

max
h

N−1∑

k=0

tr {Phk
r̂k} ⇔ min

h

N−1∑

k=0

tr
{
P⊥

hk
r̂k

}

• IQML: in the SIMO case, we can introduce a linear (in
the channel parameters) parameterization of the noise
subspace,h⊥

k so that P⊥
h = Ph⊥ ⇒

min
h

N−1∑

k=0

tr
{
(h⊥H

k h⊥
k )−1h⊥H

k r̂kh
⊥
k

}

• Subchannel Response Matching (SRM)/Cross Relation
method (CR):

min
h

N−1∑

k=0

tr
{
h⊥H

k r̂kh
⊥
k

}

• Denoised IQML (DIQML):

min
h

N−1∑

k=0

tr
{
(h⊥H

k h⊥
k )−1h⊥H

k (r̂k − σ̂2
wk
Ip)h

⊥
k

}

Of course, one can now go further in denoising and
replacêrk − σ̂2

wk
Ip by its pure signal subspace part.

• WSSF/large sample Gaussian (symbols) ML (GML):

max
h

N−1∑

k=0

tr

{
Phk

V̂S,k
˜̂
Λ

2

S,kΛ̂−1
S,kV̂

H
S,k

}

VII. B AYESIAN BLIND WITH DETERMINISTIC SYMBOLS

Assume the Rayleigh fading channel has a prior distribu-
tion h ∼ CN (0, Co

h), then a Bayesian blind criterion can be
obtained straightforwardly by augmenting a classical blind
criterion as follows

hH 1

σ2
v ‖h‖

2
Q h + hH (Co

h)−1 h (10)

which still remains (pseudo) quadratic inh (‖h‖2 refers
to a separate estimate of‖h‖2). (10) would correspond to
joint ML for the symbols and MAP for the channel ifQ
corresponds to one of the DML versions. Under a unit norm
constraint, the minimization of (10) leads to
h = ‖h‖Vmin( 1

σ2
v
‖h‖2 Q+(Co

h)−1) (which may need to be
solved iteratively ifQ depends onh).

VIII. G AUSSIAN SYMBOLS APPROACHES

• Tone-wise covariance analysis

rk = Euk[n]uH
k [n] = σ2

a hkh
H
k + σ2

wk
Ip

⇒ separate noise variance identifiable at every tone,
this corresponds to a circulant noise covariance matrix
in the time domain.

• GML: has the same gradient as WCM below.
• Weighted Covariance Matching (WCM):

min
h,σ2

N−1∑

k=0

tr
{
r−1

k (rk − r̂k)r−1
k (rk − r̂k)

}

• Linear prediction based methods:

P (z)H(z) = h[0]

becomes
Pk hk = h[0]

tonewise.
• For MIMO, the proper exploitation of the Gaussian case

is quite advantageous over the deterministic symbols
approach.

In Gaussian ML (GML), since both symbols and noise are
Gaussian, the received signal is Gaussian with a channel-
dependent covariance matrix. This leads to the GML likeli-
hood, in which the symbols are eliminated. Alternatively, it is
quite straightforward to add the Bayesian Rayleigh channel
prior to the likelihood for the joint estimation of channel
and Gaussian symbols, leading to joint MAP estimation of
channel and symbols:

1

σ2
w

‖U −HA‖2 +
1

σ2
a

‖A‖2 + hH (Co
h)−1 h (11)

which is quadratic inh for fixed A, or in A for fixed h.
Knowing that (2) can be written in another form as follows:

Y = H X + V = Xh + V (12)

whereX = X ′ ⊗ Ip andX ′ is a circulant matrix filled with
the elements (vectors) of X. Then after some manipulation
we get the following solutions:

Â =

(
ĤHĤ +

σ2
w

σ2
a

I

)−1

ĤHU (13)

ĥ =
(
X̂HX̂ + σ2

w(Co
h)−1

)−1

X̂HFH
N,pU (14)

Hence the Alternating GMAPGMAP (AGMAPGMAP) al-
gorithm, by iteratively minimizing forh or A. Note that,
although the (non-Gaussian) joint posterior density ofh and
A would be difficult to compute, the joint posterior is not
required to obtain their MAP estimate, which is fairly simple
to compute (at least when done iteratively as suggested here).

IX. VARIATIONAL BAYESIAN TECHNIQUES

A recent tutorial on Variational Bayesian (VB) estimation
techniques can be found in [6]. VB provides an approximate
technique to determine the posterior probability density func-
tion (pdf) of the quantities to be estimated. Letθ denote the
vector of all quantities to be estimated, including parameters
and possibly signals (e.g. the ”hidden variables” in EM
terminology). AndY denotes the measurements. In many
problems, the joint posterior pdff(θ|Y ) can be complicated
to determine. Consider now a partition ofθ intoK subgroups
of quantities that will get estimated per subgroupθ =
{θk, k = 1, . . . ,K}. The idea of VB is to approximate
f(θ|Y ) by a product formg(θ|Y ) =

∏K

k=1 g(θk|Y ) where
the g(θk|Y ) in general will differ from the true marginal
pdfs f(θk|Y ). The g(θk|Y ) are determined by minimizing



the Kullback-Leibler distance between
∏K

k=1 g(θk|Y ) and
f(θ|Y ). This leads to the following implicit relations

ln g(θk|Y ) = Eg(θ
k̄
|Y ) ln f(Y, θk, θk̄) , k = 1, . . . ,K (15)

where θk̄ is θ minus θk, henceθ = {θk, θk̄}. In practice,
(15) needs to be solved iteratively by consecutively sweeping
throughk = 1, . . . ,K, at all times using forg(θk̄|Y ) the
latest version available. This iterative process can be shown
to converge montonically. Typically, whenf(Y |θ) and the
prior f(θ) are exponential family pdfs (typically Gaussian),
then one can see from (15) thatg(θk|Y ) will also be of
the exponential family. VB techniques have mainly been
introduced to deal with hierarchical signal models: signals
that contain parameters with a prior that depends itself on
parameters with a prior etc. However, VB techniques can be
useful in simpler problems also.

Note that Variational Bayesian techniques can also be
applied in the presence of deterministic unknownsθD. There
are two ways to think about deterministic unknowns:

(i) as truly deterministic, with priorf(θD) = δ(θD − θo
D)

where θo
D is the unknown true value ofθD; in other

words,θD ∼ N (θo
D, C

o
θD

) whereCo
θD

= 0 I.
(ii) as random with no prior information, henceθD ∼

N (θo
D, C

o
θD

) whereCo
θD

= ∞ I andθo
D is unimportant

(e.g.θo
D = 0).

In case (i), VB becomes EM [6], in which case during the
iterations the deterministic parameters are simply substituted
by their current estimate. Case (ii) is closer to the VB spirit.
If θ = {θD, θS} where θS are the stochastic parameters,
then it suffices to replacef(Y, θ) in (15) by f(Y, θS|θD) =
f(Y |θ) f(θS). In this case also for the deterministic param-
eters not only their current estimates (posterior means) are
accounted for but also their estimation error.

X. VARIATIONAL BAYESIAN BLIND CHANNEL

ESTIMATION

We shall focus on the MIMO OFDM case with Rayleigh
fading FIR channel and Gaussian symbol model. In this case
Y = U and θ = {A,h}. When applying the VB technique,
g(A|U) factors asg(A|U) =

∏N

n=1 g(an|U). We have

ln f(un,an,hn) = ct + 1
σ2

w

{−uH
n hnan

−aH
n hH

n un + aH
n (hH

n hn +
σ2

w

σ2
a

Iq)an}
(16)

where ct denotes a constant. With (15) we hence get
g(an|U) ∼ CN (man

, Can
), where

Can
=

(
1

σ2
w

trb{RT

hn

} + 1
σ2

a

Iq

)−1

man
= 1

σ2
w

Can
mH

hn
un

(17)

where trb of a block matrix denotes a matrix obtained by
taking trace of its blocks (e.g.hH

n hn = trb{(hnh
H

n )T }),
hn = vec (hn), m

hn
= Gnmh, C

hn
= Gn ChG

H
n and

mhn
= unvec{m

hn
}. In general,Rx = mxm

H
x + Cx. The

estimation of the symbols can be seen to correspond to the
output of a MMSE linear equalizer in which the channel is

not just replaced by its estimate, but the channel estimation
error is taken into account also. On the other hand,

ln f(U,A,h) = ct −
∑

n{
1

σ2
w

‖un − (aT
n ⊗ Ip)Gnh‖2

hHGH
n (GnC

o
hG

H
n )−1Gnh}

(18)
using e.g.hnan = (aT

n ⊗ Ip)Gnh.
Hence with (15),g(h|U) ∼ CN (mh, Ch) where

Ch =
(∑

nG
H
n { 1

σ2
w

(
R∗

an
⊗ Ip

)
}Gn + (Co

h)−1
)−1

mh = Ch
1

σ2
w

∑
nG

H
n (m∗

an
⊗ Ip)un

(19)

The estimation of the channel can be seen to correspond
to a Bayesian MMSE estimate, using all symbols as pilots,
but taking into account that they have estimation error
also. Upon convergence, the posterior meansman

andmh

are both MAP and MMSE estimates (due to Gaussianity)
according tog(θ|Y ) = g(h|U)

∏
n g(an|U). However, they

are neither MAP nor MMSE estimates according to the
true posteriorf(θ|Y ). But it is intuitively clear that they
should be reasonable approximations of the true MMSE
estimates, which contrasts with the true MAP estimates of
the AGMAPGMAP algorithm.

Remarks
The case of deterministic symbols can be handled also by
just settingσ2

a = ∞ in (16), (17).
The extension to semiblind, with some symbols being pilots,
hence being known exactly, is immediate. Their error covari-
ance matrix will remain zero and their mean equals the pilot
value.
Extensions of the methods presented can be considered to
incorporate the estimation of e.g.Co

h (or a set of parameters
parameterizingCo

h), which would be especially meaningful
in the scenario in which multiple realizations ofh with the
sameCo

h need to be estimated (e.g. in a sequence of OFDM
symbols).

XI. I DENTIFIABILITY CONSIDERATIONS

Consider the joint estimation of the transmitted symbols in
time domain X and the collective channel impulse response
coefficientsh, making up together the parameter vectorθ =[
XH hH

]H
. Then the Fisher Information matrix (FIM) on

the basis of the data Y in (12) alone is

JY =
1

σ2
v

[H X ]H [H X ] . (20)

θ is unidentifiable since indeed for aq × q mixing filter
ψ(z), we haveH(q)x[m] = (H(q)ψ(q)) (ψ−1(q)x[m]) =
H̃(q) x̃[m]. Hence it is impossible to distinguishH(q) from
H̃(q). If the delay spread ofH(q) is known and/or there
are border conditions on the transmitted signal, then the
frequency-selective mixtureψ(z) becomes a frequency-flat
ψ. In this case,JY has a null space which is the column
space of

[
XH −hH

]H
. Indeed[H X ]

[
XH −hH

]H
= 0. So

the multiplicative ambiguityψ translates into an (additive)
singularity in the FIM.



In the case of Gaussian white symbols, the prior informa-
tion on X translates into an additional FIM

JX =
1

σ2
x

[
I 0
0 0

]
(21)

so at this point the overall FIM isJθ = JY + JX which
will have become non-singular. This would indicate identi-
fiability. The ambiguity in this case is indeed reduced from
an unconstrainedψ to a unitaryψ. However, there is still
ambiguity and hence unidentifiability. Actually, the proper
treatement with Gaussian symbols does not allow presenting
the FIM in the compact complex form presented here. In
fact,θ needs to be doubled in size by considering separately
its real and imaginary components and the associated FIM
needs to be considered, in order to see the FIM nullspace
corresponding to a unitary ambiguity matrix.

When now furthermore (or alternatively) a Gaussian prior
for the channelh is considered, then the FIM forθ gets
augmented with

Jh =

[
0 0
0 (Co

h)−1

]
(22)

which will again render the overall FIMJθ = JY +Jh(+JX)
nonsingular. So it would seem that the addition of prior
information with an identical non-zero Power Delay Profile
(PDP) for each of the antenna pair channels (corresponding
to a nonsingular diagonalCo

h) rendersJθ nonsingular and
hence leads to (channel) identifiability. However this is not
necessarily the case. In the case of Gaussian white symbols,
and a unitary ambiguity matrixψ, if Co

h is such that
(ψ ⊗ Ip(L+1))

HCo
h(ψ ⊗ Ip(L+1)) = Co

h (in which case the
channel prior is insensitive to a unitary mixture), then still the
Bayesian blind problem remains unidentifiable. The above
condition occurs ifCo

h is of the formCo
h = Iq ⊗ C for any

square matrixC of sizep(L+1). Hence the regularization of
the blind channel estimation problem via prior information
is a tricky issue due to the multiplicative nature of the
ambiguity.

XII. S IMULATIONS

We simulate in this section both Bayesian and Variational
Bayesian Blind (VBB) channel estimation techniques based
on (13), (14) and (17), (19) appearing above. Moreover
we simulate also a version of the Variational Bayesian
approach where the channel parameters are deterministic
unknowns, treated as random with no prior information,
so Co

h = ∞I in (19). We shall refer to this approach as
Uniformed VBB (UVBB). In each MonteCarlo simulation
we generate a Rayleigh fading channel with exponentially
decaying power delay profile (PDP) for the channel between
each transmitting and receiving antenna pair as follows:
e−wn wheren = 0 : L andw = 2 normally. Hence,Co

h

is the diagonal matrixCo
h = Iq ⊗ C ⊗ Ip where C =

diag{e−wn, n = 0 : L}. As for the symbols, we generate
i.i.d. Gaussian symbols (which are hence i.i.d. Gaussian both
in time and frequency domain). The performance of the
different Bayesian channel estimators is evaluated by means

of the Normalized MSE (NMSE) vs. SNR. The per receive
antenna SNR is SNR= σ2

x
tr {Co

h
}

p σ2
v

.

The NMSE is defined asavg ||h−
̂̂
h||2

avg ||h||2 where ̂̂
h = ĥψ

is the channel estimate adjusted for blind channel estima-
tion ambiguities. As we assume the channel length known
here,ψ represents an instantaneous mixing matrix of size
(q × q). The mixing matrixψ can be obtained by mini-
mizing the Frobenius norm of the following matrix error:
min
ψ

||h′ − ĥ′||2F where h′ = (hH [0] · · ·hH [L])H and

ĥ′ = (ĥH [0] · · · ĥH [L])H . For an unconstrained mixture,
we getψ = (ĥ′H ĥ′)−1ĥ′Hh′ = UΣV H where the last
expression represents the SVD of the resultingψ. In the case
thatψ gets constrained to be a unitary matrix, the solution
is ψ = UV H , see [2].

Both (B and VBB) algorithms are initialized by using (for
m

hn
) noisy perturbations of the true channels. In the first

iteration of (17) we useR
hn

= m
hn
mH

hn

, henceC
hn

= 0.
In Figure 1 we can notice how close the performance of both
the Variational Bayesian and the Bayesian algorithms is since
both fully exploit the prior information that exists about the
channel and the symbols. However, we can notice that the
UVBB method (with + marker, also called ”Deterministic”
in the legend) lags behind the normal Variational Bayesian
(with * marker) where the prior information is taken into
consideration. This is an expected result since the more infor-
mation we exploit the better performance we get. However,
at higher SNR the performance of the deterministic blind
algorithm converges to that of the Bayesian blind algorithms.
Also this result is expected since at very high SNR the
contribution of prior information becomes negligible.
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Fig. 1. NMSE vs. SNR for B, VBB, UVBB algorithms, forN = 20,
unitaryψ.

Whereas Fig. 1 uses a unitaryψ, Fig. 2 uses an un-
constrainedψ, which leads to reduced NMSE since more
prior information is exploited. At least, Fig. 1 shows that the
exploitation of the white character of the symbols as we do
here leads to a reduced unidentifiability ofψ to just a unitary
mixing matrix.
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Fig. 2. NMSE vs. SNR for B, VBB, UVBB algorithms, forN = 20,
unconstrainedψ.
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Fig. 3. NMSE vs. SNR for B, VBB, UVBB algorithms, forN = 100,
unconstrainedψ.
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Fig. 4. NMSE vs. SNR for B, VBB, UVBB algorithms, forN = 20,
unconstrainedψ, w = 0.5 in PDP.

In Fig. 3 the OFDM block lengthN gets increased from
20 (as in the previous two figures) to 100. The result is that
the prior information introduced by a Bayesian approach only
helps at low SNR, as could be expected. The other noticeable
effect is that the Variational approach outperforms the non-
Variational version over a wide SNR range.

In Fig. 4 finally, an exponential PDP with much shorter
time constant (w = 0.5) is used, as compared tow = 2 in the
previous three figures. The result is that the prior information
only helps at very high SNR.

REFERENCES

[1] E. de Carvalho and D. Slock, “Semi–Blind Methods for FIR Multichan-
nel Estimation,” inSignal Processing Advances in Wireless & Mobile
Communications, G. Giannakis, Y. Hua, P. Stoica, and L. Tong, Eds.
Prentice Hall, 2001.

[2] D. Slock and A. Medles, “Blind and Semiblind MIMO Channel
Estimation,” in Space-Time Wireless Systems, From Array Processing
to MIMO Communications, H. Bölcskei, C. P. D.̃Gesbert, and A.-J.
van der Veen, Eds. Cambridge University Press, 2006.

[3] D. Slock, “Blind FIR Channel Estimation in MultichannelCyclic
Prefix Systems,” inProc. IEEE Sensor Array and Multichannel Signal
Processing Workshop (SAM), Barcelona, Spain, July 2004.

[4] S. Omar and D. Slock, “Structured Spatio-Temporal Sample Covariance
Matrix Enhancement with Application to Blind Channel Estimation
in Cyclic Prefix Systems,” inProc. IEEE Int’l Workshop on Signal
Processing Advances in Wireless Comm’s (SPAWC), Perugia, Italy, June
2009.

[5] D. Slock, “Bayesian Blind and Semiblind Channel Estimation,” in Proc.
IEEE Sensor Array and Multichannel Signal Processing Workshop
(SAM), Barcelona, Spain, July 2004.

[6] D. Tzikas, A. Likas, and N. Galatsanos, “The VariationalApproxima-
tion for Bayesian Inference, Life After the EM Algorithm,”IEEE Signal
Processing Magazine, Nov. 2008.


