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CHAPTER

15Semi-blind methods for
communications

V. Zarzoso, P. Comon, and D. Slock

15.1 INTRODUCTION

15.1.1 Blind source separation and channel equalization
The problem of BSS arises in a wide variety of real-life applications, which helps
explain the intense interest this research area has attracted over the last years. A typical
example is encountered in multi-user communication systems, where several mobile
users sharing the transmission medium over the same time-frequency-code slot cause
co-channel interference (CCI) to each other. CCI is due to signals from different spatial
origins interfering with the signal of interest, giving rise to spatial mixtures observed at
the receiving end. Hence, CCI cancellation can naturally be set out as a problem of blind
source separation (BSS) in instantaneous linear mixtures, where the signal transmitted by
each co-channel user represents one of the sources. These transmission scenarios are also
known as instantaneous or static multi-input multi-output (MIMO) channels.

In digital communication systems, transmission effects such as multipath propagation
and limited bandwidth produce linear distorsion over the transmitted signals, causing
intersymbol interference (ISI) at the receiver output, even if the channel is excited by
a single input. Such distorsions become more significant as the transmission rate and
the user mobility (in the context of wireless communications) increase. ISI arises when
a transmitted signal gets corrupted by time-delayed versions of itself, thus generating
at the receiver end what could be described as temporal mixtures. The problem of
ISI suppression is referred to as deconvolution or channel equalization. Classically,
equalization is based on training or pilot symbols known by the receiver, which leads to
a reduced bandwidth utilization. Blind equalization methods spare the use of training
information [31,65,69,78], with the subsequent gain in bandwidth efficiency. If the
transmitted symbols are temporally statistically independent (e.g., iid sequences), channel
equalization can be formulated as a BSS problem of independent sources in instantaneous
linear mixtures, that is, it accepts an ICA model [7,89,99]. Note that this model still
holds if each symbol sequence is a linear process instead of an iid process. In the ICA
formulation, the mixing matrix exhibits a Toeplitz structure fully characterized by the
channel impulse response. In time-dispersive multi-input channels typically associated
with high-data rate multi-user wireless communication systems, both ISI and CCI need
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to be tackled simultaneously, which calls for spatio-temporal equalization techniques or,
in the BSS/ICA jargon, for BSS methods in convolutive mixtures. These transmission
scenarios are also referred to as convolutive or dynamic MIMO systems.

On account of the above connections, generic methods for BSS used in other
applications could also be employed to perform digital channel equalization. However,
digital communication channels present particular features that can be capitalized on
to improve the source recovery. Firstly, digital modulations have finite support or, in
other words, they contain only a small number of possible complex amplitudes. Criteria
such as the constant modulus (CM) or the constant power (CP) are specifically adapted
to the blind estimation of signals with such modulations and, as shown in Chapter 3,
constitute valid contrasts for the separation and extraction of these signals in linear
mixtures, either instantaneous or convolutive. The CM has long been used in blind
equalization [31,65,78], whereas the CP criterion has been recently proposed for inputs
with q -ary phase shift keying (q -PSK) modulation, for an arbitrary integer q ¾ 2 [14].
These principles can be considered as quasi-deterministic rather than statistical criteria,
in the sense that signals with adapted modulations cancel exactly (in the absence of
noise) the sample version of the contrasts for any data length. As a result, these contrasts
offer the potential of achieving good performance even for short sample size. A related
benefit is that constellation-adapted criteria spare the input statistical independence
assumption [14]. Secondly, training symbols known by the receiver can be incorporated
into the transmitted signal to assist the equalization process, thus giving rise to semi-
blind methods. By appropriately combining pilot information with blind criteria, semi-
blind methods can outperform traditional training-based techniques at a fraction of the
bandwidth utilization and with just a moderate increase in computational cost.

15.1.2 Goals and organization of the chapter
The present chapter studies a number of strategies for semi-blind equalization of dig-
ital communication channels. Only direct equalization, i.e., without previous channel
identification, is addressed. For completeness, semi-blind channel estimation will also
be treated, though briefly, at the end of the chapter. Our focus is on digital-modulation
based contrasts like the CM and CP and, more particularly, semi-blind criteria that can
be derived from them. In addition, we develop two other strategies aiming at improving
the deficiencies of blind equalizers, which can also be employed in conjunction with
semi-blind criteria: equalizer initialization by means of algebraic solutions and itera-
tive search based on optimal step size computation. Algebraic methods are associated
with challenging matrix and tensor decomposition problems analogous to those found
in BSS based on statistical independence (ICA problem). Efficient iterative equalization
techniques can be developed by the optimal step size approach presented at the end of
Chapter 6. As shown there for the kurtosis contrast, the CM and CP criteria also admit
algebraic solutions for the step size globally optimizing the contrast function along the
search direction at each iteration. As demonstrated throughout the chapter, the combi-
nation of these three strategies, namely semi-blind contrasts, algebraic initialization and
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optimal step-size iterative search, leads to equalizers with increased robustness, high con-
vergence speed and modest complexity. For reasons of space, our attention is restrained
to the basic single-input single-output (SISO) systems characterized by a single user with-
out space-time diversity. However, these results are readily extended to the multi-channel
case, including single-input multi-output (SIMO) systems [95] and MIMO systems typical
of multi-user environments [96–98], more directly related to the BSS problem.

We begin the exposition by briefly reviewing the basic concepts of training-based and
blind equalization in section 15.2; some strategies for improving their limitations are
then summarized in section 15.3. The signal model and notational conventions that will
be employed throughout the rest of the chapter are presented in section 15.4. Semi-
blind equalization criteria are put forward in section 15.5. Algebraic solutions to the
corresponding contrast optimization problems are then studied in section 15.6, whereas
iterative methods based on algebraic optimal step-size optimization (introduced on the
kurtosis contrast in the fully blind case in Chapter 6) are the topic of section 15.7.
A thorough experimental study aiming to illustrate the performance of the presented
techniques is reported in section 15.8. Finally, section 15.9 comments on the related
problem of semi-blind channel identification. For the sake of clarity, the reader is referred
to references [92–95] for details, proofs and other mathematical derivations.

15.2 TRAINING-BASED AND BLIND EQUALIZATION
15.2.1 Training-based or supervised equalization
Traditional equalization techniques are based on a sequence of symbols known by the
receiver, the so-called pilot or training sequence, incorporated to the transmitted signal
frame. The supervised equalizer is simply obtained by optimal Wiener filtering of the
received signal using the pilot sequence as desired output. In this context, Wiener filters
are also known as minimum mean square error (MMSE) equalizers and, in practical
settings involving finite data, are usually obtained as the solution to the associated
least squares (LS) problem. Due to their simplicity and robustness, supervised methods
are employed by most of the current wireless communication systems; for instance,
the second-generation GSM standard dedicates 20% of each burst to training [73].
The periodic transmission of pilot sequences reduces the useful data rate, and proves
particularly ineffective in broadcast, multicast or non-cooperative environments, where
synchronization is difficult [80,84]. Bandwidth utilization can be improved by reducing
the pilot sequence length, but the sequence may become too short relative to the channel
delay spread and additional information is thus necessary to render the supervised
approach more robust in these conditions. The use of additional information in this
context can sometimes be considered as a regularization [43].

15.2.2 Blind equalization
In the late 1970s, the drawbacks of training-based methods spurred a rising interest
in blind techniques. The papers by Sato [65], Godard [31] and Treichler [78] are the
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pioneering contributions to the blind approach. By sparing the pilot sequence, blind
equalization techniques increase the effective transmission rate and alleviate the need for
synchronization.

In the fundamental SISO case, non minimum phase systems cannot be identified using
circular second-order statistics (SOS) only [44]. It is thus necessary to resort, explicitly or
otherwise, to higher-order statistics (HOS), or to non-circular SOS [36]. Essentially, most
blind methods aim to restore at the equalizer output a known property of the input
signal, such as a modulation alphabet with a finite number of symbols or with constant
modulus. Under certain conditions, the use of these properties through the minimization
of an appropriate cost function, or the maximization of a contrast function, guarantees
the extraction of the signal of interest.

Despite their improved bandwidth utilization and versatility, blind methods present a
number of important shortcomings:

• indeterminacy of the amplitude and/or the phase of the equalized signal;
• multi-modality, that is, existence of local extrema in the cost function to be

optimized;
• increased computational complexity;
• larger data volume (block size) than supervised techniques required for the same

equalization quality;
• in certain situations, slow convergence or tracking of the variations of the system

parameters.

The last two drawbacks are mainly due to HOS estimation errors, which are typically
more important than those of SOS for the same sample size.

15.2.3 A classical blind criterion: the constant modulus
The CM criterion [78] – a particular member of the more general family of Godard
methods [31] – is perhaps the most widespread blind equalization principle, probably
due to its simplicity and flexibility. Indeed, the CM criterion is easy to implement
in an iterative fashion and can also deal with non-CM modulations at the expense of
an increased estimation error due to constellation mismatch. The CP criterion, also
studied in this chapter, can be considered as a modification of Godard’s family, with a
power parameter adapted to the number of symbols in the constellation; hence the name
“constant power”. Although Godard methods are globally convergent in the combined
channel-equalizer space, they present suboptimal equilibrium points in the equalizer
space [21,22]. Such points correspond to stable local extrema associated with filters
unable to open sufficiently the eye diagram at the equalizer output, so that the detection
device cannot extract the transmitted symbols with a reasonably low probability of
error. Suboptimal equilibria are often called spurious solutions in the literature. Yet these
solutions are typically very close to Wiener equalizers, which may question the term
“spurious”. In any case, the presence of suboptimal attractors renders the performance
of gradient-type iterative algorithms based on Godard criteria very dependent on the
initial value of the equalizer impulse response.
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15.3 OVERCOMING THE LIMITATIONS OF BLIND METHODS
As discussed in [21,22], among other works, the convergence problems of iterative blind
SISO equalizers requires ad hoc strategies for suitable filter tap initialization, and even
for maintaining the tap trajectories far from spurious attractor basins. Three of such
strategies are algebraic solutions, multi-channel systems and semi-blind approaches.

15.3.1 Algebraic solutions
Algebraic methods (sometimes called analytic) provide an equalization solution in a
finite number of operations, and can always be employed as judicious initializations
to iterative equalizers. An algebraic CM solution is obtained in [25], where the CM
criterion is formulated as a nonlinear least squares (LS) problem. Through an appropriate
transformation of the equalizer parameter space, the nonlinear system becomes a linear
LS problem subject to certain constraints on the solution structure. Recovering of the
correct structure is particularly important when multiple zero forcing (ZF) solutions exist;
for instance, in all-pole channels with over-parameterized finite impulse response (FIR)
equalizers, several ZF equalization delays are possible. From a matrix algebra perspective,
enforcing this structure can be considered as a matrix diagonalization problem, where
the resulting matrix is composed of the equalizer vectors. Once a non-structured solution
has been obtained via pseudo-inversion, the minimum-length equalizer can be extracted
by a subspace-based approach or other simple procedures for structure restoration.

The blind equalization method of [25] has strong connections with the analytical CM
algorithm (ACMA) of [82] for BSS. ACMA yields, in the noiseless case, exact algebraic
solutions for the spatial filters extracting the sources from observed instantaneous
linear mixtures. It is interesting to note that the recovery of separating spatial filters
from a basis of the solution space is equivalent to the joint diagonalization of the
corresponding matrices. This joint diagonalization can be performed by the generalized
Schur decomposition [32] of several (more than two) matrices, for which a convergence
proof has not yet been found. Either for source separation or channel equalization,
ACMA requires special modifications to treat signals with one-dimensional alphabets
(e.g., binary) [25,81,82]. Such modifications give rise to the real ACMA (RACMA) method
[81].

Other solutions aiming at estimating algebraically the best SISO equalizer, or to iden-
tify the SISO channel, when the input belongs to a known alphabet have been proposed
in [1,18,19,28,33,36,42,46,48,76,83,86,90]. The discrete alphabet hypothesis is then crucial,
and replaces the assumption of statistical independence between symbols [14], which is
no longer necessary. The alphabet-based CP criterion also admits algebraic solutions,
which, as reviewed in section 15.6, can be considered as a generalization of the algebraic
CM solutions. Algebraic CP solutions are linked to challenging tensor decomposition
problems. For a q -symbol constellation, the minimum-length equalizer can be deter-
mined from the joint decomposition of qth-order tensors, which, in turn, is linked to
the rank-1 linear combination problem in the tensor case. To surmount the lack of effec-
tive tools for performing this task, approximate solutions can be proposed in the form
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of a subspace method exploiting the particular structure of the tensors associated with
satisfactory equalization solutions. As opposed to [25], the subspace method proposed
here takes into account a complete basis of the solution space. The use of this additional
information allows one to increase the robustness of the algorithm with respect to the
structure of the minimum-length equalizer. Moreover, the proposed blind algebraic solu-
tion deals naturally with binary inputs (BPSK, MSK) without any modifications.

15.3.2 Multi-channel systems
Multi-channel implementations, enabled by time oversampling or the use of multiple
sensors, can avoid some of the deficiencies of blind SISO equalizers. Indeed, SIMO
channels can be identified blindly by using SOS, regardless of their phase (minimal or
non-minimal). Moreover, FIR SIMO channels can be perfectly equalized in the absence
of noise by FIR filters [55,71,77]. However, the channel must verify strict diversity
conditions, and a good number of these methods do not work when the channel length
is overestimated [16]. In any case, the indeterminacy problems remarked in section 15.2.2
remain in the blind context.

Similarly, Godard SIMO equalizers do not present suboptimal minima for noiseless
channels satisfying certain length and zero conditions [49]. All minima are indeed global,
and coincide with MMSE solutions associated with achievable equalization delays. This
feature results in iterative blind equalizers with improved performance. In the presence of
noise, however, some of these minima become local and the respective equalizers provide
different MSE performance [40]. Depending on its performance, a local minimum can
also lead to a suboptimal solution. Consequently, the need for strategies to avoid local
extrema remains pertinent in the multi-channel context. In some practical scenarios, it
is not possible to attain the degree of spatio-temporal diversity required for a SIMO
formulation, due to an insufficient excess bandwidth or hardware constraints limiting the
number of receiving sensors (consider, for instance, the reduced spatial diversity available
in a mobile phone). These are among the reasons for which this chapter is mainly focused
on the SISO case, even if principles extend beyond that case.

15.3.3 Semi-blind approach
The combination of a training-based and a blind criterion can avoid their respective
drawbacks while preserving their advantages. Indeed, it has been shown that any channel
(SISO or SIMO) is identifiable from a small number of known symbols. Thanks to
the use of a blind criterion, the pilot sequence necessary to estimate a channel of given
length can become shorter relative to the training-only solution; spectral efficiency can
thus be increased for a fixed estimation quality. As a result, semi-blind techniques often
outperform supervised and blind techniques. When they fail, their semi-blind association
can succeed [16]. On the one hand, the semi-blind approach can be interpreted as
the regularization of the conventional supervised approach, avoiding its performance
degradation for insufficient pilot length. On the other hand, the incorporation of a
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few pilot symbols “softens” the cost function, suppressing local minima, accelerating
convergence and eliminating the indeterminacies of fully blind criteria. These features
will be illustrated throughout the chapter.

The performance and robustness of the semi-blind approach justify the interest in this
kind of techniques. The fact that many of the current as well as future communication
systems include pilot sequences in their definition standards (in particular to assist
synchronization) provides a strong additional motivation for semi-blind equalization
techniques. Nevertheless, their use in currently available commercial products is rather
limited.

In the context of algebraic methods, it has been recalled above that ACMA requires
a joint diagonalization stage (a costly QZ iteration) in the general case where multiple
solutions exist [82], although its complexity can be alleviated if the different solutions are
delayed versions of each other [25]. The semi-blind ACMA (SB-ACMA) proposed in [74]
avoids the costly joint diagonalization step of its blind version by constraining the spatial
filter or beamformer to lie in a certain subspace associated with the pilot symbol vector.
Nevertheless, the uniqueness of this semi-blind solution as well as its performance in the
presence of noise remain to be ascertained in more detail.

15.4 MATHEMATICAL FORMULATION
15.4.1 Signal model
A digital signal s (t ) =

∑

n snδ(t − nT ) is transmitted at a known symbol rate 1/T
through a dispersive channel with impulse response h(t ). The channel is linear and time
invariant (at least over the observation window), and has a stable causal possibly non-
minimum phase transfer function. The baseband signal at the receiver output is given by
x(t ) = r (t ) + v(t ), where r (t ) = h(t ) ? s (t ) denotes the noiseless observation and v(t )
an additive noise independent of s (t ). Assuming perfect synchronization and carrier
residual elimination, symbol-rate sampling produces the discrete-time output:

xn = rn + vn =
∑

k

hk sn−k + vn (15.1)

where xn = x(nT ) while hk , sn and vn can be defined similarly. Each observed
sample consists of a noisy linear mixture of time-delay versions of the original data, a
phenomenon known as ISI. The goal of channel equalization or deconvolution is to
recover the original data from the signal corrupted by convolutive channel effects (ISI)
and noise. To this end, we seek a baud-rate FIR discrete-time equalizer with coefficients
f= [ f1, . . . , fL]

T ∈CL. The equalizer vector is sought so that the equalizer output

yn = fHxn

is an accurate estimate of the source symbols sn , where:

xn = [xn , xn−1, . . . , xn−L+1]
T.
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Signal blocks composed of Nd symbol periods are observed at the channel output. These
samples can be stored in a Toeplitz matrix:

X = [xL−1,xL, . . . ,xNd−1] (15.2)

with dimensions L×N , where N = (Nd − L+ 1). A similar signal model holds if the
channel output is sampled at an integer multiple of the symbol rate (fractional sampling),
if there exist multiple spatially separated sensors at reception (spatial oversampling), or if
several signal sources transmit simultaneously, giving rise to additional CCI (multi-input
system).

To enable the semi-blind mode of operation, we further assume that the transmitted
block includes a pilot or training sequence composed of Nt symbols, denoted by
s̆ = [ s̆0, s̆1, . . . , s̆Nt−1]

H. For the sake of simplicity, the training symbols are assumed to
appear, without loss of generality, at the beginning of each block. It has been proven
that, as far as channel estimation is concerned, the location of the pilot sequence at the
beginning of the block is generally suboptimal [16]; this result probably applies as well to
the direct equalization problem under study here. Nevertheless, the following results can
be easily extended to an arbitrary location of the pilot sequence, including the optimal
placement analyzed in [16].

15.4.2 Notations
Scalars, vectors and tensors (of which matrices are considered as particular cases)
are denoted by lowercase (a), bold lowercase (a) and bold uppercase (A) symbols,
respectively, except structures derived from Kronecker tensorial products, as detailed
below. As will be explained in section 15.6, tensor structures will be employed in the
derivation of algebraic solutions to the CP contrast. In refers to the identity matrix
with dimensions (n × n), whereas 0n represents the vector with n zeroes; ‖ · ‖ is the
conventional L2 norm. (A)i1 i2...iq

stands for the (i1, i2, . . . , iq )-element of qth-order tensor
A. Re(·) et Im(·) represent the real and imaginary parts, respectively, of their complex
argument; j =

p
−1 is the imaginary unit. Symbols ⊗, � and ⊗ denote, respectively,

the Kronecker product, the element-wise product and the outer product. Given a
vector a ∈ CL, we define its qth-order tensor product as the following rank-1 tensor:
a⊗q = a⊗ · · · ⊗a

︸ ︷︷ ︸

q

. For instance, matrix a⊗2 = a⊗a can also be written as aaT. Note that

on an appropriate basis, tensor a⊗q will have vector a⊗ a⊗ · · · ⊗ a as coordinates1; but
this representation does not take into account the reduced dimension of the associated
space due to symmetries. Indeed, a symmetric tensor of order q and dimension L can be
stored in a vector vecs{A} that contains only the Lq =

�

L+q−1
q

�

different components
of A. Moreover, they can be normalized by the number of times they appear, so as to
preserve the Frobenius norm [13]. In particular, we will write a�q = vecs{a⊗q}. Similarly,

1Recall that ⊗ denotes the Kronecker product, whereas ⊗ denotes the tensor (outer) product.
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unvecsq{b} denotes the symmetric qth-order tensor made up of the elements of vector
b with dimension Lq .

15.5 CHANNEL EQUALIZATION CRITERIA
15.5.1 Supervised, blind and semi-blind criteria
The supervised MMSE criterion aims at the minimization of the cost function:

ΥMMSE(f) =E{|yn − s̆n−τ |
2}. (15.3)

Symbol τ represents the equalization delay, on which performance strongly depends,
and s̆ denotes the pilot sequence, as introduced before.

Concerning blind approaches, the CM criterion is defined by:

ΥCM(f) =E{(|yn |
2− γ )2} (15.4)

where γ =E{|sn |4}/E{|sn |2} is an alphabet-dependent constant.
A widely used criterion is the standardized cumulant [44], whose most elegant

introduction is due to Donoho [26]. At fourth order, the standardized cumulant is called
kurtosis (see also Chapters 3 and 6), and is given by

ΥKM(f) =
cum4{yn}
cum2

2{yn}
(15.5)

where cum2{yn} is the variance of yn and cum4{yn}= cum{yn , y∗n , yn , y∗n} can be defined
as:

cum4{yn}=E{|yn |
4}− 2E{|yn |

2}2− |E{y2
n}|

2.

When the source sequence sn is white, the channel performs a mixture of independent
random variables, so that the observation xn is more Gaussian than sn . The maximization
of this criterion, or its square modulus when its sign is unknown, renders the equalizer
output as non-Gaussian as possible. This kurtosis maximization (KM) criterion has widely
been used for SISO and MIMO channel equalization, as well as for source separation
in instantaneous linear mixtures (static MIMO channels). More generally, it is shown
by Proposition 3.11, page 84, that if the r th-order source cumulant cumr {sn} is not Q1

null, one can maximize the normalized r th-order cumulant of the equalizer output,
cumr {yn}/cumr/2

2 {yn}.
For the application of the blind constant power (CP) approach, the transmitted symbols

are assumed to belong to a q -PSK digital modulation, represented by the finite alphabet
Aq = {ak}q−1

k=0, where aq = d depends on the constellation; for instance, (q , d ) = (2, 1)
for BPSK and (q , d ) = (4, 1) for QPSK sources. In addition, allowing a time-varying
d , the above definitions are directly extended to modulations other than PSK, such as
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MSK [33], which can be described by (q , dn) = (2, (−1)n). As sn ∈ Aq , it follows that
s q
n = dn . Consequently, a rather natural way to measure the proximity of the equalizer

output to the original symbols is through the criterion:

ΥCP(f) =E{|y
q
n − dn |

2}. (15.6)

This function is a particular case of the more general class of alphabet polynomial fitting
(APF) criteria, where the equalizer output constellation is matched to that of the source,
characterized by the complex roots of a specific polynomial [14,62]. In the context of BSS,
the criterion is equivalent, for a sufficiently low noise level, to the maximum a posteriori
(MAP) principle [10,34]. Moreover, it has been proved in [14] that, when the global
channel-equalizer impulse response is of finite length and the input signal is sufficiently
exciting, the global minima of the sample average of (15.6) in the combined channel-
equalizer space correspond to ZF solutions. Nevertheless, this result does not guarantee
that the desired solutions can always be attained. Indeed, spurious extrema can appear
when the cost function is observed from the equalizer parameter space, due to the finite
equalizer length, as remarked in [21,22] for Godard criteria. The existence of suboptimal
extrema in the CP criterion will be illustrated by some simple experiments in section
15.8.

The linear combination of the above cost functions provides in a quite natural fashion
the semi-blind CM-MMSE (SB-CM-MMSE) and CP-MMSE (SB-CP-MMSE) criteria:

ΥSB−CM(f) = λΥMMSE(f)+ (1−λ)ΥCM(f) (15.7)
ΥSB−CP(f) = λΥMMSE(f)+ (1−λ)ΥCP(f). (15.8)

Parameter λ is a real-valued constant in the interval [0, 1]. It can be considered as the
relative degree of confidence in the blind and pilot-based parts of the criterion.

Remark that, in practice, mathematical expectations are replaced by sample averages
over the data available in the observed signal block.

15.5.2 Relationships between equalization criteria
The CP criterion (15.6) bears close resemblance to the Godard class [31], which in the
PSK case becomes:

Υ(q ,2)
G (f) =E{(|yn |

q − |sn |
q )2}=E{(|yn |

q − |dn |)
2}. (15.9)

For q = 2, this function corresponds to the CM criterion [31,78]. For BPSK sources
and real-valued channels and equalizers, the CP and CM criteria are identical; in this
case, we anticipate that the algebraic treatment of CP minimization (section 15.6) is also
equivalent to that of ACMA for binary modulations (RACMA) [25,81]. The parallelism
between the CM and CP cost functions suggests the existence of local extrema for the
latter, even in the case q > 2.
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The phase insensitivity of the CM criterion is one of its main interests, as it allows the
independent operation of the equalization and carrier recovery stages [31,78]. However,
for the same reason the carrier residual cannot be detected or identified by using this
criterion. By contrast, the CP criterion can incorporate an appropriate carrier residual
compensation mechanism into the algorithm or, otherwise, it requires the previous
suppression of the residual before applying the algorithm. On the other hand, all PSK
constellations being CM, the CM criterion does not make the difference between PSK
modulations; similarly, the more general criterion (15.9) cannot privilege a particular
PSK modulation. In contrast, criterion (15.6) explicitly takes into account the discrete
nature of PSK alphabets, so that it may exhibit better discriminating properties among
CM constellations.

If dn is replaced by the available pilot symbols s̆n , the CP cost function (15.6) reduces,
with q = 1, to the MMSE supervised equalization principle (15.3). This fact will be
exploited when designing semi-blind iterative methods in section 15.7.

We have seen that the KM criterion (15.5) maximizes non-Gaussianity at the equalizer
output. This is also what the CM criterion does by forcing the equalizer output to
approach the unit circle. To realize this connection, it is interesting to compare the CM
and KM criteria. First, note that the KM criterion, as opposed to the CM, is insensitive
to scale. Hence, we can write yn = ρȳn , where ρ is a positive scale factor, and also f= ρf̄,
where f̄ has fixed norm. This normalization is equivalent to fixing the variance of ȳn . Let
us minimizeΥCM(ρf̄)with respect to ρ. We obtain ρ2

0 = γ
2µ2/µ4, denoting µr =E{ȳ r

n }.
For this optimal value of ρ, we have:

1

γ 2
ΥCM(ρ0f̄) = 1−

µ2
2

µ4
.

The CM criterion can then be linked to the KM criterion, provided that the source
has a distribution with second-order circular symmetry, that is, E{s2

n} = 0. Under this

assumption, ΥKM(̄f)+ 2=µ4/µ
2
2 and we have the following simple relationship:

1

γ 2
ΥCM(ρ0f̄) = 1−

1

ΥKM (̄f)+ 2
(15.10)

which shows that both criteria have the same stationary points in f̄. Hence, this
equivalence, already established in [23, Chapter 4] [59–61], applies to most complex
alphabets. However, the equivalence does not hold any more when the channel is
complex-valued and the source real-valued (e.g., PAM modulations); indeed, in such a
case the observation is no longer second-order circular.

Semi-blind CM-MMSE criterion (15.7) was initially proposed in [43], but using the
so-called “CMA 1-2” cost instead of the “CMA 2-2” cost (15.7). The originality was
to surmount the deficiencies of the LS solution to (15.3) (see the next section) when
the pilot sequence is not long enough, an improvement known by its regularization
capabilities. In addition, it has been proven that the incorporation of pilot symbols is
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capable of reducing the probability of converging towards spurious solutions due to
the non-convexity of the CM cost function. The techniques presented in the following
sections further reduce the impact of local extrema on equalization performance while
accelerating convergence. As far as iterative techniques are concerned (section 15.7),
we propose to minimize the hybrid criteria CM-MMSE (15.7) and CP-MMSE (15.8)
through an efficient gradient algorithm where the step size is determined algebraically
at each iteration by computing exhaustively all roots of a low degree polynomial.
As demonstrated in the numerical experiments of section 15.8, this optimal step size
accelerates convergence and makes performance attain the MMSE bound, even from a
reduced number of pilot symbols. In addition, these optimal step-size iterative techniques
can be judiciously initialized with the aid of the algebraic solutions presented next.

15.6 ALGEBRAIC EQUALIZERS
Perfect ZF equalization of a SISO channel is possible when both of the following
conditions hold:

C1. The channel admits a noiseless M th-order auto-regressive (AR) model.
C2. The FIR equalizer length is sufficient, L¾ L0, with L0 = (M + 1).

Indeed, a channel satisfying C1 can be equalized by an FIR filter f0 with minimum
length L0. If the equalizer filter is over-parameterized, i.e., its length verifies L > L0,
there exist P = (L− L0 + 1) exact ZF solutions, each one corresponding to a different
equalization delay:

fp = [0
T
p−1, fT

0 , 0T
P−p]

T, 1¶ p ¶ P. (15.11)

As will be seen in the following, under these conditions the MMSE, CM and CP criteria
can be perfectly minimized (even cancelled if the sources verify the conditions of each
criterion), and the global minimum can be computed algebraically, that is, without
iterative optimization. The algebraic solution to the CP criterion (section 15.6.2) can be
considered as a extension of the ACMA algorithm [82] to the CP principle; consequently,
it can be referred to as algebraic constant power algorithm (ACPA). The algebraic solutions
to the supervised and blind criteria are later combined (section 15.6.3), giving rise to
algebraic semi-blind equalizers. In practice, even if conditions C1–C2 are not satisfied,
algebraic solutions can be used as judicious initializations for iterative equalizers (section
15.7).

15.6.1 Algebraic MMSE equalizer
It is well known that the MMSE criterion (15.3) is minimized by the Wiener-Hopf
solution:

fτMMSE = R−1
x pτ , with Rx =E{xnxH

n } and pτ =E{xn s̆∗n−τ}.
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Assuming that the source signal is normalized (i.e., it has zero mean and unit variance),
the mean square error (MSE) of the MMSE solution with delay τ is given by:

MSEτ = 1−pH
τ

R−1
x pτ .

Let the observed block associated with the pilot symbols at delay τ be denoted by:

X̆τ = [xτ ,xτ+1, . . .xτ+Nt−1]

with Nt ¾ L. Cancelling the criterion (15.3) would be tantamount to solving the linear
system:

X̆
H
τ

f= s̆. (15.12)

However, such a system does not generally have an exact solution, as it consists of more
equations than unknowns. Its LS solution is given by:

fτLS = (X̆τX̆
H
τ
)−1X̆τ s̆, (15.13)

which we consider here as the algebraic solution to the MMSE criterion (15.3). This
solution exists and is unique as long as matrix X̆τ is full rank, which is the case in the
presence of noise. In the noiseless case, the whole observation matrix X given in (15.2)
has rank L0, so that it exists an infinite number of solutions to system (15.12) as soon as
L> L0. Under conditions C1–C2, the minimum-norm solution is given by fτLS = X̆τ

†s̆,
where (·)† denotes the Moore-Penrose pseudo-inverse. This solution corresponds to one
of the exact ZF equalizers (15.11), which are identical up to a delay. In the presence of
noise, the impact of delay on equalization performance may become important. The
optimal delay in the MMSE sense, τopt, can be determined by comparing the MSE of the
different equalization delays according to (15.13):

τopt = argmin
τ

MSEτ = argmax
τ

pH
τ

R−1
x pτ .

15.6.2 Algebraic blind equalizers
The algebraic solution to the CM criterion has been developed at length in [25,81,82].
Hence, we only describe in this section the solution to the CP criterion, that we naturally
refer to as ACPA. We will see that the search for such solutions can be associated with
interesting tensor decomposition problems.

15.6.2.1 Determining a basis of the solution space
The exact minimizers of (15.6) are the solutions to the system of equations:

(fHxn+L−1)
q = dn , n = 0, 1, . . . , N − 1. (15.14)
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This nonlinear system can be linearized by taking into account that (fHxn)
q = f�q Hx�q

n ,
and can be compactly expressed as:

Xq Hw= d (15.15)

where Xq = [x�q
L−1, x�q

L , . . . , x�q
Nd−1] and d = [d0, d1, . . . , dN−1]

H. Equation (15.15) must

be solved under the following structural constraint: w ∈ CLq must be of the form form
w= f�q , for certain vector f ∈CL.

Under conditions C1–C2, there must be P linearly independent solutions. Conse-
quently, the dimension of the null space of Xq H, denoted ker(Xq H), is (P − 1), and the
solutions of (15.15) can be expressed as an affine space of the form w=w0+

∑P−1
p=1 αpwp ,

where w0 is a particular solution to the non-homogeneous system (15.15) and wp ∈
ker(Xq H), for 1¶ p ¶ (P − 1).

As in [82], we find more convenient to work in a vector space, obtained through a
unitary transformation Q with dimensions (N ×N ), such that Qd= [

p
N , 0T

N−1]
T. For

instance, Q can be a Householder transformation [32] or, if d is composed of N equal
values (as is the case for PSK sources), an N -point DFT matrix. Then, denoting:

QXq H =
�

rH

R

�

,

system (15.15) reduces to:
¨

rHw=
p

N
Rw= 0N−1.

under the constraint w= f�q . Similarly to [82, Lemma 4], it is possible to prove that this
problem is equivalent to the solution of:

�

Rw= 0N−1
w= f�q

followed by a scaling factor to enforce:

cHw= 1, with c=
1

‖d‖2

N−1
∑

n=0

dnx�q
n (15.16)

or, equivalently:

1

‖d‖2

N−1
∑

n=0

dn(f
Hxn)

q = 1. (15.17)

If dimker(Xq H) = (P − 1) and

Nd ¾ Lq + L0− 1 (15.18)
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(or N > Lq−P ), then dimker(R) = P , where L0 is defined in condition C2 above. Hence,
all the solutions of Rw = 0 are linearly spanned by a basis {wk}

P
k=1 of ker(R). Such a

basis can be computed from the singular value decomposition (SVD) of matrix R by taking
its P least significant right singular vectors. The structured solutions {f�q

p }
P

p=1
are also a

basis of this subspace and, as a result, there exists a set of scalars {αpk}
P
p,k=1

such that:

f�q
p =

P
∑

k=1

αpkwk , 1¶ p ¶ P (15.19)

where matrix (A)k p = αpk is full rank. The problem of finding structured solutions to the
linearized problem (15.15) is hence a particular subspace fitting problem with structural
constraints. In terms of qth-order tensors, Eq. (15.19) can be rewritten as:

f⊗q
p =

P
∑

k=1

αpk Wk , 1¶ p ¶ P (15.20)

where Wk = unvecsq{wk}. This is the tensorial rank-1 linear combination problem,
which can be stated as follows: given a set of qth-order tensors {Wk}, find the scalars
{αpk} in Eq. (15.20) yielding rank-1 tensors. The obtained rank-1 tensors correspond to
{f⊗q

p }. This tensor decomposition is generally a non-trivial task [13,15].
Before resuming our search for algebraic solutions to the CP contrast, it is interesting

to remark that satisfactory algebraic equalization can be achieved in practice with
observation windows shorter than the sample size bound (15.18), as illustrated by the
numerical analysis of section 15.8.

15.6.2.2 Structuring the solutions: a subspace approach
A subspace method reminiscent of [55] can be used to recover the minimum-length
equalizer f0 from a basis of (generally) unstructured solutions {wk}

P
k=1. The subspace

fitting problem (15.19) can be written in compact form as WA = F, with W =
[w1, . . . , wP ] and F = [f�q

1 , . . . , f�q
P ]. Since A is full rank, matrices W and F span the

same column space, denoted by range(W) = range(F). In particular, ∀ui ∈ ker(WH),
uH

i F = 0T
P . There are dimker(WH) = (Lq − P ) such linearly independent vectors.

Since equalization solutions have the form (15.11), the corresponding columns of F
have a particular structure whereby the elements non associated with the minimum-
length equalizer f0 are all zero. The remaining L0q =

�

L0+q−1
q

�

elements form f�q
0 . Let

σp describe the set of L0q positions of f�q
0 in f�q

p , that is, σp = { j1 + L( j2 − 1) + . . .+
Lq−1( jq − 1)}, with jk ∈ [p, p + L0− 1], k = 1, . . . , q , and j1 ¾ j2 ¾ . . . ¾ jq . Similarly,
(ui )σp

∈ CL0 q is the sub-vector composed of the elements of ui in positions σp . Denote

by U i = [(ui )σ1
, . . . , (ui )σP

] ∈CL0 q×P . Hence:

uH
i F = 0T

P ⇔ UH
i f�q

0 = 0P .
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The above equalities define a set of P (Lq − P ) linear equations, characterized by matrix

U = [U1, . . . , ULq−P ] ∈ C
L0 q×P (Lq−P ), where the unknowns are the components of f�q

0 .
As long as L> L0, this linear system determines, up to a scale factor, the well-structured
vector f�q

0 ; its amplitude can then be set via (15.17) from a zero-padded version of the
estimate of f0, yielding one of the solutions fp in Eq. (15.11). In practice, we minimize

the quadratic form ‖UHf�q
0 ‖

2 = f�qH
0 UUHf�q

0 , which leads to the estimation of f�q
0 by

the least significant left singular vector of matrix U.
Once matrix F has been reconstructed, an LS estimate of coefficients {αk p} can be

obtained as ÂLS = (W
HW)−1WHF =W†F. The elements of ÂLS provide a solution to

the rank-1 linear combination problem.

15.6.2.3 Recovering the equalizer vector from its symmetric tensor
In order to recover the equalizer impulse response f0 from its symmetric vectorization
f�q
0 , it is possible to perform the SVD of a matrix unfolding of f⊗q

0 = unvecsq{f
�q
0 } [11,

35]. Denote by F0 ∈ CL0×Lq−1
0 the matrix with elements (F0)i1,i2+L0(i3−1)+...Lq−2

0 (iq−1) =

(f⊗q
0 )i1 i2 i3...iq

. Then, F0 = f0f̄
T

0 , with (̄f0)i2+L0(i3−1)+...Lq−2
0 (iq−1) = (f0)i2

(f0)i3
. . . (f0)iq

. Hence,

f0 can be estimated (up to a scale factor) as the dominant left singular vector of the matrix
unfolding of F0. This matrix has rank one in the absence of noise.

In the presence of noise, it is generally no longer possible to express the estimated
vector f̂

�q

0 as the symmetric vectorization of a rank-1 tensor. In other words, no vector f0

exists such that f̂
�q

0 = vecsq{f
⊗q
0 } is verified exactly. Consequently, the matrix unfolding

will not be of rank one, and the SVD-based procedure explained above will only yield an
approximate solution. One is actually facing the problem of the rank-1 approximation
to the symmetric tensor f̂

⊗q

0 . To date, only iterative solutions, e.g., inspired on the
iterative power method [17,41], have been proposed to solve this problem. However, our
experiments reveal that the solution previously described for the noiseless case is an
excellent initialization.

15.6.2.4 Other structuring methods
In the context of the CM criterion, a subspace method similar to that of section 15.6.2.2
was proposed in [25, section III.C], operating on a single non-structured (LS) solution (see
also [24]). This structure forcing procedure can be interpreted as the diagonalization of
the matrix associated with the non-structured solution. By contrast, our approach takes
advantage of a whole basis of the solution subspace, which should lead to an improved
robustness, particularly for large values of P . The method of [35] and [25, section III.B]
is based on the observation that the first L components of a solution wk are equal to
α̃k1 f q−1

1 [ f1,pq f2, . . . ,pq fL0−1,pq fL0
, 0T

P−1]
T, α̃k p = (A

−1)pk , from which f0 can be
extracted. This method is simple and ingenious, but inaccurate when coefficient α̃k1 or
the first term f1 of the equalizer are small relative to the noise level.
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To surmount this limitation, we can note that the last components of wk are equal to
[25, section III.B]:

α̃kP f q−1
L0
[0T

P−1, . . . ,
p

q f1,
p

q f2, . . . ,
p

q fL0−1, fL0
]T.

Appropriately combined with the estimation carried out from the first L components,
this second option can provide an improved estimation of f0. In the simulation study of
section 15.8, we employ the following heuristic (suboptimal) linear combination. Let us
suppose that the filters estimated from the first and the last non-overlapping components
of a non-structure solution are, respectively, f̂1 = β1f̃0 and f̂2 = β2f̃0, with f̃0 = f0/‖f0‖.
Then, the unit-norm minimum-length equalizer LS estimate is given by

ˆ̃
f0 = [̂f1, f̂2]γγγ ,

with γγγ = βββ∗/‖βββ‖2, βββ = [β1, β2]
T. The coefficients of βββ can simply be estimated

from the equation βi = ‖̂fi‖, i = 1, 2. This type of linear maximal ratio combining is
reminiscent of the RAKE receiver and the matching filter [58]. Robustness can still be
improved by exploiting a whole set {wk} instead of a single solution, as explained above.

15.6.2.5 Approximate solution in the presence of noise
In the presence of additive noise at the sensor output, conditions C1–C2 are no longer
satisfied, and an exact solution of (15.14) may not exist. An approximate solution in the
LS sense can be obtained by minimizing ‖Xq Hw− d‖2, under the structural constraint
w= f�q . This minimization generally requires an iterative method, as detailed in section
15.7.

Nevertheless, the guidelines for determining an exact solution in the noiseless case
can still provide a sensible initialization to an iterative equalizer in the noisy case. After
applying the transformation Q, the LS problem proves equivalent to the minimization
of the quadratic form:

|cHw− 1|2+ ‖Rw‖2. (15.21)

To find a basis of the solution space, we seek a set of vectors minimizing ‖Rw‖2 (for inst-
ance, the least significant P right singular vectors of R), then structure them as in section
15.6.2.2 and finally normalize the solution to satisfy cHw = 1 [cf. Eqs (15.16)–(15.17)].
Although suboptimal, this solution will be tested in the experimental study of section
15.8.

A more accurate solution can be determined by realizing that expression (15.21)
represents a non-negative quadratic form in vector [wT, 1]T. Formulating the problem
in the projective space, we can look for the least significant eigenvector vm of matrix:

�

RRH+ ccH −c
−cH 1

�

and take as an approximate estimation of w the first dim(w) components of vm norm-
alized by the first one.
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15.6.3 Algebraic semi-blind equalizers
By extending the above ideas, we can also develop algebraic solutions to the semi-blind
criterion CP-MMSE (15.8), the solutions to criterion CM-MMSE (15.7) being obtained
in a totally analogous manner. To minimize algebraically the CP-MMSE criterion, we
seek the simultaneous solution of systems (15.12) and (15.15):

X̆
H
τ

f= s̆ (15.22)

Xq Hw= d (15.23)

under the structural constraint w= f�q , where now

Xq = [x�q
τ+Nt

, x�q
τ+Nt+1, . . . , x�q

Nd−1]

and d = [dNt
, dNt+1, . . . , dNd−τ−1]

H. Note that only the symbols not employed in the
supervised part contribute to the blind part of the criterion.

The case where conditions C1–C2 are verified is trivial, since both solutions of the
composite system are exact and identical. Hence, let us first consider the case of a
noisy AR channel with a sufficiently long equalizer. A suboptimal solution can be
obtained by combining the solutions computed separately for the two sub-systems
[11,35]. Let f̂MMSE denote the solution of (15.22) and f̂

�q

CP that of (15.23) associated
with the same equalization delay τ; these solutions are computed as explained in
sections 15.6.1 and 15.6.2, respectively. Let us unfold unvecsq {̂f

�q

CP} into a matrix FCP

with dimensions (L× Lq−1), as described in section 15.6.2.3. Then, the joint solution
to (15.22)–(15.23) can be approximated by the dominant left singular vector of matrix
FSB = [λf̂MMSE, (1−λ)FCP]. In the noiseless case, solutions f̂MMSE and f̂CP coincide with
the dominant left singular vector of the rank-1 matrix FSB; an iterative search is not
necessary.

In the case of an FIR channel, no exact solution to system (15.22)–(15.23) exists, even
in the absence of noise. However, the two sub-systems can be solved separately in the LS
sense and the respective solutions can then be combined according to the above SVD-
based procedure. We refer to this method as semi-blind algebraic constant power algorithm
(SB-ACPA).

The combined solution just described can initialize an iterative minimization algo-
rithm aiming to refine this algebraic approximate solution.

15.7 ITERATIVE EQUALIZERS

15.7.1 Conventional gradient-descent algorithms
In practice, exact ZF equalization may not be feasible, due to noise or just to an insuf-
ficient equalizer length. In such cases, the cost function must be minimized iteratively,
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for instance, via a gradient-descent or a Newton algorithm. We describe here gradient-
descent methods; these results can easily be extended to Newton implementations. If a
good initialization has been obtained, only a few iterations will usually be necessary for
convergence.

We define the complex gradient of a generic real-valued function Υ(f) with respect to
complex variable f as:

∇Υ(f) =∇fr
Υ(f)+ j∇fi

Υ(f)

where fr = Re(f) and fi = Im(f) represent the real and imaginary parts, respectively,
of vector f. Up to an inconsequential scale factor, this definition corresponds to Brand-
wood’s complex gradient [3]. Accordingly, the gradients of the CM (15.4) and CP (15.6)
criteria can be expressed as:

∇ΥCM(f) = 4E{(fHxn)
∗[|fHxn |

2− γ ]xn} (15.24)

∇ΥCP(f) = 2qE{(fHxn)
q−1[(fHxn)

q − dn]
∗xn}. (15.25)

From the relationships remarked in section 15.5.2, the gradient of MMSE criterion
(15.3) can be computed from that of the CP criterion by setting q = 1 and replacing s̆n
by dn in expression (15.25). This yields:

∇ΥMMSE(f) = 2E{[(fHxn)− s̆n]
∗xn}. (15.26)

The gradients of the semi-blind CM-MMSE and CP-MMSE criteria are simply obtained
by linear combination of (15.24)–(15.26) according to (15.7)–(15.8). We refer to the result-
ing iterative methods as constant modulus algorithm (CMA) and constant power algorithm
(CPA); and their semi-blind versions as semi-blind constant modulus algorithm (SB-CMA)
and semi-blind constant power algorithm (SB-CPA).

As a judicious initialization in the blind case, we can employ the equalizer vector
provided by an algebraic method, such as the direct LS (generally non-structured)
solution of the linearized problem (15.15), f̂LS = (X

q H)†d, or the structured solution
described in section 15.6.2. In the semi-blind case, the algebraic solution of section
15.6.3 becomes applicable as initialization. At each iteration, the equalizer vector can
be adjusted by means of a gradient-based update:

f+ = f−µ∇Υ(f). (15.27)

Iterations are stopped when

‖f+− f‖
‖f‖

< η/N (15.28)

where η is a small positive constant.
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We advocate the use of block or batch implementations [10], also known as fixed-
window methods [61], rather than stochastic algorithms. The latter approximate the
gradient by a single-sample estimate, which may be seen as dropping the expectation
operator in the gradient expression. This simplification, which in the case of the CM
criterion gives rise to the stochastic-gradient CMA, generally leads to a slow convergence
and a poor final accuracy. Indeed, a single parameter, µ, must control at the same
time the step size in the search trajectory and the implicit statistical average; this is a
difficult balance. Stochastic algorithms found justification when the available computer
power was rather limited. Nowadays, computer power is no longer the limiting factor
of equalization performance, but the algorithms that are implemented, or the operating
conditions (e.g., channel non-stationarity).

By contrast, batch methods estimate the gradient from a whole block of channel
output samples, using the same data block at each iteration. This gradient estimate
is more accurate and thus improves the convergence speed and equalization quality
of the resulting algorithm [10,61]. Moreover, tracking capabilities are not necessarily
sacrified, since good performance can be achieved from small data blocks; it suffices
that the channel be stationary over the (short) observation window. Block methods
are particularly suited to burst transmission systems (e.g., TDMA). The possibility of
combining batch and stochastic operation in iterative optimization methods is discussed
in section 6.4.3, Chapter 6.

It is well known that gradient-based algorithms for blind equalization, despite their
simplicity, present numerous drawbacks such as lack of robustness to local extrema,
dependence on initialization and slow convergence [21,22,40]. These problems persist
in block implementations, even though convergence is often accelerated. When the
function to be optimized is convex in the unknowns, this problem can be alleviated with
more elaborate approaches such as the conjugate gradient [57]. Nevertheless, the blind
and semi-blind functions based on the CM and CP criteria (section 15.5) are not convex.
This leads us to consider alternative optimization strategies without compromising the
simplicity and numerical convenience of the implementation.

15.7.2 Algorithms based on algebraic optimal step size

15.7.2.1 Step-size polynomials
Exact global line search aims at finding the step size minimizing the cost function along
the search direction:

µopt = argmin
µ
Υ(f−µg).

A possible search direction is simply the gradient, g=∇Υ(f). These algorithms are gen-
erally unattractive due to their complexity, because the one-dimensional minimization
must typically be carried out by costly numerical techniques. Another drawback is the
orthogonality between successive gradient vectors (see section 15.7.2.3), which, depend-
ing on the initialization and the shape of the cost-function surface, can slow down con-
vergence [57].
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However, it has been observed in [14,34] that, for a number of equalization criteria,
including the CM, the CP and their semi-blind versions studied herein, functional
Υ(f−µg) is a rational function in the step size µ. This allows us to find µopt algebraically,
so that it is possible to globally minimize the cost function in the descent direction while
reducing complexity. Indeed, for the CM criterion (15.4), some algebraic manipulations
show that the derivative of ΥCM(f−µg) with respect to µ is the following cubic:

p(µ) = b3µ
3+ b2µ

2+ b1µ+ b0. (15.29)

Its real coefficients are given by [93]:

b3 = 2E{a2
n}, b2 = 3E{an bn}

b1 =E{2an cn + b 2
n}, b0 =E{bn cn}

where an = |gn |2, bn = −2Re(yn g ∗n ), and cn = (|yn |2 − γ ), with gn = gHxn . Similarly,
for the CP criterion (15.6), the optimal step size µopt is found among the roots of the
(2q − 1)th-degree polynomial [92]:

pCP(µ) =
2q−1
∑

m=0

Re(bm)µ
m (15.30)

where

bm =



















m
∑

p=0

(m+ 1− p)E{a∗m+1−p ap}− (m+ 1)E{a∗m+1dn}, 0¶ m ¶ q − 1

q
∑

p=m+1−q

(m+ 1− p)E{a∗m+1−p ap}, q ¶ m ¶ 2q − 1

with

ap = (−1)p
�

q

p

�

g p
n yq−p

n , 0¶ p ¶ q .

The step-size polynomial of the MMSE criterion is easily determined by taking into
account the link between the MMSE and CP criteria observed in section 15.5.2, which
leads to:

pMMSE(µ) = b1µ+ b0 (15.31)
b1 =E{|gn |

2}, b0 =−Re(E{g ∗n (yn − s̆n)}). (15.32)

The polynomials defining the optimal step size for the semi-blind CM-MMSE and CP-
MMSE criteria are made up of polynomials (15.29), (15.30) and (15.31) according to the
linear combinations of the respective cost functions (15.7)–(15.8). A similar polynomial
(a quartic) is obtained for the kurtosis contrast, leading to the RobustICA algorithm
described in section 6.11.2 of Chapter 6.
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Once the coefficients have been determined, the roots of the optimal step-size
polynomial can be obtained as explained in section 15.7.2.2. The optimal step size
corresponds to the root attaining the minimal value of the cost function, thus leading
to the global minimization of Υ(·) in the descent direction. After determining µopt, the
equalizer vector coefficients are updated as in (15.27), and the process is repeated with the
new equalizer and gradient vectors, until convergence, which is tested with (15.28). We
refer to this technique as optimal step-size (OS) algorithm, which gives rise, in particular,
to the blind OS-CMA and OS-CPA algorithms and to the semi-blind OS-SB-CMA and
OS-SB-CPA algorithms.

To improve numerical conditioning in the determination of µopt, it is useful to
normalize the gradient vector g beforehand. Since the pertinent parameter is the search
direction g̃ = g/‖g‖, this normalization does not cause any inconvenience. As a
consequence, vector g is replaced by g̃ when computing the optimal step-size polynomial
coefficients, as well as in the update rule (15.27).

15.7.2.2 Root extraction
Standard procedures such as Cardan’s formula, or often less costly iterative methods [27,
45], are available to extract the roots of cubics (15.29) and (15.30) with q = 2; an efficient
MatlabTM implementation, valid for polynomials with real or complex coefficients, is
given in [57] (see also [95]). For solving quartics, elementary algebra textbooks present
the method developed by Ferrari, Cardan’s student, in the 16th century. Since the end of
the 18th century, we know that polynomials of degree higher than four cannot be solved
by radicals; one thus needs to resort to iterative methods.

Concerning the roots of cubics (15.29) and (15.30) with q = 2, two options are
possible: either all three roots are real-valued, or one is real and the two other form a
complex-conjugate pair. In the first case, one just needs to verify which one provides the
smallest value of Υ(f−µg). In our computer experiments, when a complex-conjugate
pair exists, it is the real root that typically minimizes the cost function. Even when the
real root does not produce the minimal value of Υ(·), it often provides lower MSE at the
equalizer output than the complex roots. Real roots are thus preferred. This observation
is also applicable to polynomials of higher degree; for instance, (15.30) with q > 2.
Another possibility, employed in the RobustICA method based on the kurtosis contrast
(section 6.11.2 of this book) is to consider only the real parts of the roots.

15.7.2.3 Convergence of optimal step-size algorithms
By construction of exact line search algorithms, gradient vectors of consecutive iterations
are orthogonal, which, depending on initialization and the shape of the cost-function
surface, can slow down convergence [57]. Gradient orthogonality is mathematically
expressed as Re(gHg+) = 0, with g+ = ∇Υ(f+). This relationship can easily be derived
by taking into account that

∂ Υ(f−µg)

∂ µ
=−Re(gH∇Υ(f−µg)) = 0.
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In our numerical experiments, the optimal step-size algorithms have always converged in
fewer iterations than its fixed step-size counterparts [95]. Fast convergence and improved
stability have also been reported in [87]. Moreover, the probability of converging to local
extrema is decreased with the optimal step-size strategy, as shown empirically in [95] and
section 15.8.

15.7.2.4 Variants
The coefficients of OS-CMA (15.29) and OS-CPA (15.30) cubics, the latter with q = 2,
can also be determined from the sensor-output statistics, computed before starting the
iterations [95,96]. This alternative requires the previous computation of the covariance
matrix and the whole fourth-order cumulant tensor of the channel output. Indeed, the
equalizer-output statistics can be deduced by multi-linearity; this way of computing the
cumulants is called deductive estimation in [9]. Both alternatives are equivalent regarding
equalization performance and convergence speed measured in terms of iterations. The
only difference lies in their computational cost in terms of number of operations (section
15.7.2.5).

The algebraic optimal step-size technique can also be applied to other equalization cri-
teria. For instance, the kurtosis maximizaton (KM), also called Shalvi-Weinstein criterion
[69] in the context of blind SISO equalization, can also be globally optimized along a
given direction by rooting a fourth-degree polynomial in µ; all stationary points can be
computed by Ferrari’s formula for quartics. This naturally gives rise to the OS-KMA,
developed in the context of BSS and referred to as RobustICA algorithm in [96] (see also
section 6.11.2 of this book), with a complexity per iteration similar to OS-CMA’s. On the
other hand, the optimal step-size technique remains applicable if data are prewhitened,
for instance through a QR decomposition of the observation matrix, as in the QR-CMA
method of [61]. Prewhitening improves conditioning and can accelerate convergence
under the hypothesis of iid inputs. Finally, by using the Hessian of the cost function,
the optimal step-size technique can easily be combined with Newton optimization, as
well as with any other method constructing successive search directions {gk}.

15.7.2.5 Computational complexity
The complexity of the optimal step-size technique is dominated by the computation of
polynomial coefficients [Eqs (15.29), (15.30), etc.]. In practice, mathematical expectations
are replaced by sample averages over the observed signal block. The cost of these averages
for (15.29) is of order O(LN ) per iteration, for data blocks composed of N vectors xn .
For the alternative procedure based on the previous computation of the second- and
fourth-order moments of the sensor output (section 15.7.2.4), the cost per iteration
is approximately of the order of O(L4), with an additional initial cost of O(L4N )
operations. Depending on the number of iterations needed for convergence and the
relative values of N and L, this initial burden can render the second method (that we refer
to as OS-CMA-2) more costly than the first one (OS-CMA-1) [93,95]. Similar alternatives
are possible for the OS-CPA and OS-CPA algorithms.

Table 15.1 sums up the computational cost of different optimal step-size techniques
in terms of number of real-valued floating point operations (flops); a flop represents a
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Table 15.1 Computational cost in terms of number of flops for different iterative equalization
algorithms in the case of real-valued signals and filters. L: number of equalizer filter coeffi-
cients; N : number of data vectors in the observed data burst

Initialization Per iteration
OS-CMA-1 – (3L+ 10)N

OS-CMA-2
��

L+3
4

�

+
�

L+1
2

��

N 6L4+ 3L2+ 2L

OS-CPA – [3L+q(q+4)]N

OS-KMA – (5L+ 12)N

SG-CMA – 2(L+ 1)

CMA – 2(L+ 1)N

QR-CMA [61] L2N (2L+ 3)N

RLS-CMA [5] – 2L(2L+ 3)

AAF-CMA [70] – 6L

product or a division followed by an addition, and typically corresponds to a multiply-
and-accumulate (MAC) cycle in a digital signal processor (DSP). Also considered are
other representative equalization techniques, specially those based on the CM criterion:
the stochastic CMA (SG-CMA), the QR-CMA of [61], the recursive least squares CMA
(RLS-CMA) of [5] and the accelerating adaptive filtering CMA (AAF-CMA) of [70].
Only dominant terms in the pertinent parameters (L,N ) are retained in the flop
counting, under the hypothesis of real-valued signals and filters. In the complex case,
the cost is around four times that of the real case with the same parameters. Remark that
the cost of the optimal step-size polynomial root extraction is independent of (L,N ) and
can thus be considered as negligible (see section 15.7.2.2).

The complexity per iteration of the OS-CPA and OS-CMA-1 is of the same order of
magnitude, for moderate alphabet size relative to the equalizer length; both algorithms
present practically the same cost for BPSK sources (q = 2). Finally, the complexity
per iteration of the semi-blind techniques is essentially the same as that of their blind
counterparts.

15.8 PERFORMANCE ANALYSIS
By means of a detailed empirical analysis, this section evaluates the performance of the
different methods studied in this chapter.

15.8.1 Performance of algebraic blind equalizers
We begin by comparing the performance of the algebraic blind equalizers based on
the CP criterion developed in section 15.6. The methods considered are: the direct
non-structured LS solution of (15.15) (“LS, no struct”); the structuring method of [35]
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from the first non-overlapping components of the LS solution (“LS, top”); idem, from
the last components (“LS, bottom”); the maximal ratio combination of the first and
last components (“LS, top+bottom”); idem, from a whole basis of solutions (“basis,
top+bottom”); and the subspace method of section 15.6.2.2 (“basis, subspace”). The “LS,
top”, “LS, bottom”, “LS, top+bottom” and “basis, top+bottom” solutions are explained
in section 15.6.2.4. After estimating the symmetric Kronecker vectorization in the direct
LS and subspace solutions, the respective equalizer vectors are obtained from the SVD-
based rank-1 tensor approximation described in section 15.6.2.3. The performance of the
supervised MMSE receiver (15.13) is also computed as a reference. In the first simulation
example, a QPSK signal (q = 4) excites the AR-1 channel:

H1(z) =
1

1− 0.5z−1
, |z |> 0.5

with a pole located at zp = 0.5. The impulse response of this channel is well approximated
by an order-50 FIR filter. ISI is perfectly cancelled for the equalizer f0 = [1, −0.5]T, with
a dominant first coefficient. The minimal equalizer length is thus L0 = 2, but we suppose
its length has been overestimated as L= 5, generating P = 4 possible ZF solutions, which
are just delayed versions of each other [as in (15.11)]. Complex circular additive white
Gaussian noise corrupts the channel output, with a signal-to-noise ratio (SNR) given by
E{|r |2}/E{|v |2}. Blocks of size Nd = 100 symbol periods are observed, and performance
indices are averaged over ν independent Monte Carlo (MC) iterations, with νNd ¾ 105.
Figure 15.1a shows the symbol error rate (SER) obtained by the algebraic equalizers as a
function of the SNR. The performance of the direct LS solution stresses the need for
structuring. Yet structuring from only the last components of the LS solution (“LS,
bottom”) also offers poor results. By contrast, the other methods present a superior
performance, just 2–4 dB over the MMSE bound. It is interesting to note that the
first components of the LS solution provide the best results for moderate SNR in this
scenario. This superiority, however, depends on the optimal equalizer configuration, as
shown by the next example.

We repeat the experiment, but moving the AR channel pole to zp = 2, and taking a
causal stable implementation of the channel transfer function:

H2(z) =
1

1− 2z−1
, |z |< 2

by delaying the truncated impulse response. The minimum-length equalizer is now f0 =
[1, −2]T, with a dominant last coefficient. Figure 15.1b shows the algebraic equalization
results. The performance of the“LS-top” method degrades considerably, and becomes
similar to that of the“LS-bottom” method in the previous experiment. The performance
of the subspace-based structuring method remains practically unchanged compared to
the simulation of Fig. 15.1a, thus showing its robustness to the relative weight of the
equalizer coefficients.



COMON-B15 PII: B978-0-12-374726-6.00020-5 ISBN: 978-0-12-374726-6 PAGE: 618 (593–638)

618 CHAPTER 15 Semi-blind methods for communications

(a)

(b)

FIGURE 15.1

Algebraic blind equalization based on the CP
criterion for different structuring methods, with
a QPSK input (q = 4), Nd = 100 symbol
periods, L= 5 (L0 = 2), 1000 MC iterations: (a)
channel H1(z); (b) channel H2(z).

FIGURE 15.2

Algebraic blind equalization based on the CP
criterion. Channel H1(z), QPSK input (q = 4),
L= 5 (L0 = 2), SNR = 15 dB, ν MC iterations,
with νNd ¾ 105.

Figure 15.2 assesses the sample size needs of algebraic solutions, under the general
conditions of the first experiment and with SNR= 15 dB. Satisfactory equalization from
a basis of the solution space is obtained even under the bound imposed by (15.18) for this
simulation example, Nd ¾ 71. The subspace approach provides better results for short
observation windows. However, the simplified procedure combining the first and last
components of a single non-structured (LS) solution seems to yield reasonable results for
a sufficient sample size.

The algebraic semi-blind solutions will be evaluated from section 15.8.4.

15.8.2 Attraction basins of blind and semi-blind CP equalizers
The following experiment evaluates the iterative methods based on the CP criterion, in
blind as well as semi-blind operation (section 15.7). In particular, we aim at illustrating
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Table 15.2 Average number of iterations for convergence in the experiments of Figs 15.3–15.4

Step size Blind Semi-blind

Fixed 422 363

Optimal 11 9

the ability of the optimal step-size technique in escaping from spurious solutions and that
of the training sequence in eliminating them.

We observe a burst of Nd = 200 symbols with SNR = 10 dB at the output of
channel H1(z) excited by a BPSK input. Figure 15.3a shows the contour lines (in the
equalizer parameter space) of the logarithm of the CP criterion (15.6) for L = L0 = 2,
computed from the data. Solid lines represent the trajectories of the equalizer coefficients
updated by the CPA (section 15.7.1) from 16 different initial configurations (marked by
“+”) and η = 10−5 in termination criterion (15.28); convergence points are marked by
“×”. A fixed step size µ = 10−2 is chosen to obtain the fastest convergence without
compromising stability. The plot also shows the MMSE solutions with delays zero and
one, fMMSE,0 = [0.85, −0.38]T and fMMSE,1 = [0, 0.70]T, yielding an output MSE of−8.66
and −4.98 dB, respectively. From most starting points, the algorithm converges to the
desired solutions, near the optimal-delay MMSE equalizer. However, the trajectories get
trapped in stable extrema located at ±[0.01, 0.58], near the suboptimal-delay MMSE
equalizer. The attraction basins of these spurious solutions are not negligible and
can have a significant negative impact on equalization performance. CPA requires, on
average, around 500 iterations to converge (Table 15.2).

Under identical conditions, and operating on the same observed data, the trajectories
of the OS-CPA equalizer (section 15.7.2) are plotted in Fig. 15.3b. Not only are
undesired solutions avoided, but also convergence is considerably accelerated relative to
the previous case: just about 10 iterations suffice (Table 15.2).

Using Nt = 10 pilot symbols and a confidence parameter λ = 0.5, the contour
lines of semi-blind CP-MMSE criterion (15.8) have the shape shown in Fig. 15.4a.
The introduction of training data modifies the CP cost function by stressing the
global minimum near the optimal MMSE solution while suppressing the previously
admissible equilibrium points symmetrically located across the origin. The optimal step
size still leads to good equalization solutions (Fig. 15.4b) and, again, notably accelerates
convergence (Table 15.2).

Similar results for the CM criterion are reported in [95].

15.8.3 Robustness of optimal step-size CM equalizers to local extrema
The following experiment demonstrates the faster convergence speed of the OS-CMA
compared with the fixed step-size CMA and the RLS-CMA of [5], as well as its ability to
escape the attraction basins of undesired equilibria in the CM cost surface.
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(a)

(b)

FIGURE 15.3

(Dashed lines) Blind CP criterion contour
lines. (Solid lines) Iterative equalizer
trajectories: (a) CPA with µ= 10−2; (b)
OS-CPA. Channel H1(z), BPSK input
(q = 2), Nd = 200 symbol periods,
L= L0 = 2, SNR = 10 dB. ‘‘+’’: initial
point; ‘‘×’’: final point; ‘‘◦’’: optimal-delay
MMSE solution; ‘‘ �’’: suboptimal-delay
MMSE solution.

(a)

(b)

FIGURE 15.4

(Dashed lines) Semi-blind CP-MMSE
criterion contour lines. (Solid lines)
Iterative equalizer trajectories: (a)
SB-CPA with µ= 10−2, (b) OS-SB-CPA.
Same conditions as in Fig. 15.3, with
Nt = 10 pilot symbols and λ= 0.5. ‘‘+’’:
initial point; ‘‘×’’: final point; ‘‘◦’’:
optimal-delay MMSE solution.

Bursts of Nd = 200 baud periods are observed at the output of a channel oversampled
at twice the symbol rate (fractionally-spaced SIMO system) excited by a BPSK source
(γ = 1) and corrupted by additive white Gaussian noise with 10-dB SNR. We choose the
channel with impulse response:

{0.7571, −0.2175, 0.1010, 0.4185, 0.4038, 0.1762}

corresponding to the second example of [40, section 2.4, pp. 82–83], and a 4-tap equalizer.
This system presents the theoretical output MMSE against equalization delay profile of
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FIGURE 15.5

Theoretical output MMSE as a function of the
equalization delay, for the experiment of
section 15.8.3.

Fig. 15.5: delay 1 provides the best MMSE performance, closely followed by delay 0; the
worst performance is obtained by delay 3. The initial equalizer coefficients are drawn
randomly from a normalized Gaussian distribution before processing each signal block.
The same initialization is used for all methods. A fixed step size µ = 0.025 is found to
prevent the divergence of the CMA. Following the guidelines given for the RLS-CMA
in [5], we use the typical forgetting factor λRLS = 0.99 and an inverse covariance matrix
initialized at the identity (δ = 1). The samples of the observed signal block are re-used
as many times as required. Iterations are stopped as soon as Eq. (15.28) is satisfied, with
η= 0.1µ= 0.0025. An upper bound of 1000 iterations is also set.

The evolution of the CM cost and the equalizer output MSE, averaged over 1000
independent signal blocks, are plotted in Fig. 15.6a–b. The normalized histogram of
equalization delays obtained by the three methods appears in Fig. 15.6c, while Table 15.3
summarizes their computational cost. The CMA and the RLS-CMA often achieve
the same suboptimal equalization delays. In contrast, the OS-CMA converges more
frequently near the optimal-delay MMSE equalizer setting, and requires around an order
of magnitude fewer iterations. Indeed, the CMA, the OS-CMA and the RLS-CMA
converge to one of the two best equalization delays (0 or 1) with a probability of
67.8%, 86.6% et 73.1%, respectively. The OS-CMA obtains the best performance with
an affordable complexity, which, thanks to its fast convergence, is always below that of
the classical fixed step-size CMA.

15.8.4 CP equalizers for a non-minimum phase channel

We evaluate now the performance of algebraic and iterative solutions for the blind CP
and semi-blind CP-MMSE criteria on the non-minimum phase channel of [25, section V],
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(a) (b)

(c)

FIGURE 15.6

Iterative CM equalizers. Performance of the classical CMA (µ= 0.025),
the OS-CMA and the RLS-CMA (λRLS = 0.99) for the SIMO system of
section 15.8.3 and a 4-tap equalizer with random Gaussian initialization.
(a) Evolution of CM cost function; (b) evolution of equalizer output MSE;
(c) normalized histogram of equalization delay. Results are averaged
over 1000 signal realizations.

Table 15.3 Average computational cost for convergence of the CM-based iterative equalizers
in the experiment of Figs 15.5–15.6

COST CMA OS-CMA RLS-CMA

OS-CMA-1 OS-CMA-2

Iterations 565 38 286

Total flops (×103) 1124.4 166.4 69.5 26.3

given by:

H3(z) = (−0.033+ 0.014 j )+ (0.085− 0.039 j )z−1− (0.232− 0.136 j )z−2

+(0.634− 0.445 j )z−3+ (0.070− 0.233 j )z−4

− (0.027+ 0.071 j )z−5− (0.023+ 0.012 j )z−6. (15.33)
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FIGURE 15.7

Blind CP equalization. The OS-CPA is
initialized with different ACPA solutions.
Channel H3(z), QPSK input (q = 4), Nd = 100
symbol periods, L= 5 (L0 = 3), 200 MC
iterations.

FIGURE 15.8

Semi-blind CP-MMSE equalization, in the
same conditions as Fig. 15.7, with Nt = 10
pilot symbols and λ= 0.5. The OS-SB-CPA is
initialized with different SB-ACPA solutions.

This 6th-order FIR channel can be perfectly equalized by an FIR filter with L0 = 3
coefficients, but we choose L = 5. From a data block of Nd = 100 symbols and
using several structuring procedures, the algebraic solutions to the blind CP criterion
(section 15.6) yield the dotted-line curves shown in Fig. 15.7. These algebraic solutions
are then employed to initialize the OS-CPA described in section 15.7.2, generating the
results displayed by the solid lines in Fig. 15.7. The gradient-descent iterations refine the
algebraic estimates, approaching the MMSE bound.

The performance of the semi-blind CP-MMSE methods are summarized in Fig. 15.8,
for the same scenario with Nt = 10 pilot symbols and λ = 0.5. Algebraic estimates are
first determined by combining the blind and supervised solutions as explained in section
15.6.3 (dotted lines), and used then to initialize the OS-SB-CPA of section 15.7.2 (solid
lines). MMSE performance bounds (dashed lines) are determined by computing the LS
solution (15.13) to the MMSE criterion. Two MMSE curves are obtained: using only the
pilot sequence, as in a conventional receiver, and using the whole data block (MMSE
bound); this bound is obviously unreachable in practice since the whole bandwidth
would be used for training.

The advantages of the semi-blind approach are remarkable. In the first place, the
performance of algebraic solutions are improved compared to the purely blind case.
In the second place, the OS-SB-CPA exhibits identical performances, regardless of
initialization, and nearly reaches the MMSE bound. The exploitation of “blind symbols”
in addition to the training sequence improves the conventional receiver and almost
attains the MMSE bound. Moreover, convergence speed is increased relative to the fully
blind case, specially for low SNR, as shown in Fig. 15.9.
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FIGURE 15.9

Average number of iterations for the three
initializations of the OS-CPA (blind) and
OS-SB-CPA (semi-blind) in the experiment of
Figs 15.7–15.8.

15.8.5 Blind CM and semi-blind CM-MMSE equalizers
A zero-mean unit-variance QPSK-modulated input excites the same non-minimum phase
channel H3(z) [Eq. (15.33)] of [25, section V], whose output is corrupted by complex
circular additive white Gaussian noise. An FIR filter of length L = 5 is used to equalize
the channel, aiming at the optimal-MMSE delay (τopt = 6 at 20-dB SNR). Bursts of Nd =
100 symbols are observed at the channel output, generating a total of N = 96 channel-
output vectors. We choose λ = 0.5 and µ = 10−3 for the fixed step-size algorithms.
Iterations are stopped when (15.28) is verified, with η = 0.1µ. Equalization quality is
measured in terms of SER, which is estimated by averaging over 500 independent bursts.

We first compare several fully blind criteria (Nt = 0). The algebraic solution of [25,
section II-B] is called “DK-top”, and corresponds to the structuring method described
in section 15.6.2.4 based over the first elements of the non-structured LS solution to the
CM criterion. Iterative solutions are obtained by the fixed step-size CMA (section 15.7.1)
with three different initializations: first-tap filter, center-tap filter and DK-top solution.
MMSE receiver and bound curves are also plotted for reference. Figure 15.10 shows that
the algebraic solution is only useful as an initial point for the iterative blind receiver,
whose performance depends strongly on the initialization used.

In the same scenario, the performance of the fixed step-size SB-CMA (section 15.7.1)
is summarized in Fig. 15.11. The algebraic SB-ACMA solution of [74] is also considered;
the semi-blind approach to the DK-top method (SB-DK-top) is enabled by the SVD-based
procedure described in section 15.6.3. Although the inclusion of training information
improves the DK-top method compared with the blind case (Fig. 15.10), the SB-
ACMA proves superior and outperforms the conventional receiver for sufficient SNR.
Nevertheless, the SB-ACMA can still be improved if used as initialization for the iterative
SB-CMA, whose performance becomes practically independent of initialization for a
low to moderate SNR. A performance flooring effect is observed for higher SNR. As
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FIGURE 15.10

Blind CM equalization. Channel H3(z), QPSK
input, Nd = 100 symbol periods, L= 5
(L0 = 3), 500 MC iterations. Solid lines: CMA
with fixed step size µ= 10−3 and different
initializations.

FIGURE 15.11

Semi-blind CM-MMSE equalization, under
the conditions of Fig. 15.10 and 10% of pilot
symbols. Solid lines: fixed step-size SB-CMA
with different initializations.

FIGURE 15.12

Semi-blind CM-MMSE equalization, under
the conditions of Figs 15.10–15.11. Solid
lines: OS-SB-CMA with different
initializations.

FIGURE 15.13

Average number of iterations for the iterative
equalizers in the experiments of
Figs 15.10--15.12.

highlighted by Fig. 15.13, the number of iterations required for convergence increases
relative to the blind scenario. This increase is probably due to the flattening of the CM
cost function when incorporating training data. A similar effect has been observed for
the CP criterion in section 15.8.2.

Figures 15.12–15.13 show that the performance of the OS-SB-CMA (section 15.7.2)
is virtually independent of initialization, and its iteration count is reduced by around
two orders of magnitude relative to the constant step-size techniques. Furthermore,
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(a)

(b)

FIGURE 15.14

CM equalization with a variable number of
pilot symbols in the transmitted burst, under
the conditions of Figs 15.10--15.12. Line
markers are as in such figures. (a) SER
performance. (b) Average number of iterations
for the iterative equalizers.

the performance flooring observed for the fixed step-size SB-CMA at high SNR now
disappears.

15.8.6 Influence of pilot-sequence length
Under the same previous conditions, Fig. 15.14 illustrates the performance of semi-
blind techniques as a function of the percentage of symbols in the transmitted block
used for training, computed as Nt/N × 100%, for a 10-dB SNR. The OS-CMA only
using the “blind symbols” is also tested for two different initializations. The SB-ACMA
equalizer only outperforms the conventional receiver for short pilot sequences, and
always benefits from gradient-descent iterations. The OS-SB-CMA slightly improves
the SB-CMA for short training and for all initializations (×: first tap; +: center tap;
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∆: SB-DK-top; �: SB-ACMA), while maintaining its reduced complexity over the
whole training-length range. For reasonable pilot-sequence sizes, semi-blind methods
are capable of attaining the conventional MMSE receiver performance while improving
spectral efficiency (decreasing the pilot-sequence length), thus increasing the effective
transmission rate. With the appropriate initialization, fully blind processing outperforms
the semi-blind methods for short pilot sequences, as if the use of too few training symbols
could somehow confuse the blind receiver; a similar effect is observed for sufficient
training, where “blind symbols” appear to divert the conventional receiver from its
satisfactory solution. Yet the performance of the blind OS-CMA in this scenario depends
strongly on initialization, although, as shown in sections 15.8.2–15.8.3, the optimal step-
size approach provides certain immunity to local extrema.

A very similar behavior of CP-based equalizers against the pilot-sequence length has
been reported in [92].

15.8.7 Influence of the relative weight between blind and supervised
criteria

The performance of the semi-blind CP-MMSE methods as a function of confidence
parameter λ are illustrated in Fig. 15.15, obtained in the same scenario as in section
15.8.4 with Nt = 10 pilot symbols. Equalization results are gradually improved as more
weight is laid on the known data. Performance then deteriorates as the blind part of the
criterion is neglected and the equalization is left to entirely depend on just a few training
symbols; hence the SER increase up to the conventional MMSE receiver level when λ
approaches 1. Consequently, this severe increase is not observed with longer training
windows. Over a wider range of λ (roughly, in the interval [0.3, 0.9]), the influence of
initialization on equalization quality and convergence speed of the OS-SB-CPA does not
seem to be significant and, for practically all λ ∈]0, 1[, the iterative semi-blind methods
outperform the conventional equalizer.

Figure 15.15(b) also shows that, for certain value of confidence parameter (λ ≈ 0.7),
the cost-function surface seems best adapted to the execution of the optimal step-size
algorithm, so that convergence is obtained in the minimum number of iterations. This
optimal value of λ will generally depend on the specific system conditions, the sample
size and the SNR.

15.8.8 Comparison between the CM and CP criteria
A final experiment makes an brief illustrative comparison between the CP and CM
criteria in semi-blind operation (10% training). A co-channel interferer with the same
modulation as the desired signal (QPSK) and a given signal-to-interference ratio (SIR) is
added at the output of channel H3(z). The respective top-structuring analytic solutions
are first obtained, and then used as initial points for the optimal-step size iterations.
Figure 15.16 show that, although the SB-ACPA solution is poorer than SB-ACMA’s
in this particular scenario, the OS-SB-CPA improves its CM counterpart with half the
number of iterations.
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(a)

(b)

FIGURE 15.15

Impact of confidence parameter λ on the
performance of semi-blind CP-MMSE
methods. Channel H3(z), QPSK input (q = 4),
Nd = 100 symbol periods, Nt = 10 pilot
symbols, L= 5 (L0 = 3), SNR= 10 dB, 500
MC runs. (a) SER performance. (b) Average
number of iterations for the two initializations
of the OS-SB-CPA.

(a)

(b)

FIGURE 15.16

Semi-blind equalization with the CP and CM
criteria. The analytic solutions are obtained
using the top structuring method. Channel
H3(z), QPSK input (q = 4), QPSK co-channel
interferer, Nd = 200 symbol periods, Nt = 20
pilot symbols, 100 MC runs. (a) SER
performance. (b) Average number of iterations
for the iterative equalizers.

15.9 SEMI-BLIND CHANNEL ESTIMATION
We conclude this chapter by discussing the indirect approach to channel equalization.
This approach consists of two stages: the channel is estimated in the first stage;
equalization is then performed in a second stage. Whereas the direct approach is usually
limited to linear equalizers as described in the preceding sections, the indirect approach
allows the exploitation nonlinear equalization techniques such as the Viterbi algorithm.

As explained throughout the chapter, the basic semi-blind approach refers to the
simultaneous exploitation of known pilot (or training) sequences and blind information.
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+
FIGURE 15.17

Received signal structure for a frequency-selective channel.

The blind information can arise from multichannel structures (SIMO, MIMO), possibly
obtained after oversampling (as in, e.g., CDMA, where the spreading factor can be
viewed as an oversampling factor), or from non-Gaussianity of the transmitted signals
(constant modulus, finite alphabet, etc.) The channel can be time-invariant or time-
varying, in which case it can be modeled with a Basis Expansion Model (BEM). Due
to various forms of memory (delay spread in the time domain, Doppler spread in the
frequency domain), the received signal components often contain a mixture of known
and unknown symbols. An example of a signal in the time domain passing through a
channel with memory is illustrated in Fig. 15.17 [cf. Eq. (15.1)]. Due to the channel
memory, some received signal samples generally contain pure training symbols, others
contain purely unknown data symbols and still others contain a mixture of both.

In this scenario, the optimal approach is to jointly estimate all unknown quantities
(symbols and channel) with an optimal criterion such as maximum likelihood, if
possible by incorporating also prior information (if available). Various forms of simpler
suboptimal approaches have been proposed in the literature. A class of suboptimal
approaches aim to optimize a weighted sum of a training-based and a blind channel
estimation criterion; see [16] for an extensive discussion of these techniques for the SIMO
case and [53] for the MIMO case.

With perfect Channel State Information at the Receiver (CSIR), no CSI at the
Transmitter (CSIT) and iid channel elements, the optimal input signal is a zero-mean
spatio-temporally white Gaussian noise. Any deviation from this (side information) will
lower the perfect CSIR channel capacity. However, there is usually no CSIR, so that any
such deviation may allow channel estimation, leading to an increase in actual channel
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capacity (see [100] for optimal input distributions in absence of CSIR). Possible forms of
side information are enumerated and briefly discussed below:

• Higher-order statistics of data symbols [4,8].
• Finite alphabet (FA) of unknown symbols (see also the algebraic methods presented

earlier in the chapter). Note that the use of FA symbols instead of Gaussian inputs
constitutes an introduction of side information and thus a reduction of full CSIR
channel capacity. The FA can be exploited through iterative channel estimation and
data detection; see, e.g., [20,50,67,75,101], or [91] with two-level Kalman filtering.
In [63], it is shown that when constraints on the input symbols such as those based
on the FA property only leave a discrete ambiguity, then the CRB (which is a local
bound) for channel estimation is the same as if the unknown symbols were known.
• Channel coding in unknown symbols, exploited, e.g., through turbo detection and

estimation. In [68], a channel estimation CRB is provided when data symbol chan-
nel coding is exploited, involving the minimum distance amplification introduced
by the channel code. As the SNR increases from low to high values, this CRB moves
from the case of the data symbols are unknown and Gaussian to the case of known
pilot symbols.
• Partial FA knowledge, such as constant modulus (e.g., the 8-PSK modulation used

in the EDGE standard) [37,51,64].
• Some training/pilot symbols, only enough to allow iterative joint data detec-

tion/channel estimation to converge.
• Symbol modulus variation pattern, which is a particular form of transmitter-

induced cyclostationarity. Some of the techniques proposed to exploit this prop-
erty lead to wide-sense cyclostationarity [79], without consistency in SNR. The
technique proposed in [47], though, is deterministic.
• Space-time coding redundancies through reduced rate linear precoding, introducing

subspaces in the transmitted signal covariance, e.g., Alamouti or other orthogonal
space-time coding schemes [6,51,56].
• Guard intervals in time or frequency, as in [66,88], or cyclic prefix structure.
• Symbol stream color. In [39], it is shown that colored inputs can be separated

if their spectra are linearly independent. Correlation can be introduced by linear
convolutive precoding, e.g., in the form of MIMO prefiltering. In [47], an example
of low rate precoding appears since the same symbol sequence gets distributed over
all transmit antennas; see [53] for a more detailed discussion.
• Known pulse shape, which can be exploited when the received signal is oversampled

with respect to the symbol rate (temporal oversampling).
• The spreading codes in CDMA. Direct sequence spectrum spreading (DS-CDMA)

is a special case in which the oversampling factor corresponds to the spreading
factor, a sample is called a chip, and a memoryless SIMO prefilter corresponds to an
instantaneous multiplication with the spreading code (which can be time-varying
in the case of long/aperiodic/pseudo-random codes or time-invariant as in the case
of short/periodic/deterministic codes). Of course, CDMA can be combined with
oversampling with respect to the chip rate and exploitation of a chip pulse shape.
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The use of different spreading codes for different inputs allows for fairly robust
blind source separation and channel estimation; see [29,30,38,51].
• Transmitter-induced non-zero mean, also known as superimposed training. Besides

the use of time multiplexed (TM) pilots as in the semi-blind techniques presented
in this chapter, a recent twist (which is actually not so recent) on the training
paradigm is the appearance of superimposed (SI, also called embedded) pilots. SI
pilots are actually classical in CDMA standards, which use a pilot signal, sometimes
combined with TM pilots. In [101], SI pilot based channel estimates are used to
initialize an iterative receiver. In [2], optimization of a mixture of TM and SI pilots
is considered. The continuous SI pilots form actually a pilot signal and their large
duration leads to quasi-orthogonality with the data. It is found that for large enough
and equivalent pilot power, both pilot forms lead to similar performance. Only
the channel estimation (CRB) is considered though as performance indicator. In
[85], the effect of both types of pilots on the throughput is considered and TM
pilots appear to be favored. Indeed, pilots not only allow channel estimation but
also influence the data detection. The presence of TM pilots leads to reduced ISI
in frequency-selective channels with time-domain transmission. Semi-blind channel
estimation and detection with SI pilots is considered in [54]. An important question
here is: is orthogonality of pilots and data desirable? The answer may depend on
how mixed information (pilot/data) is used and combined.
• Spatial multiplexing schemes that achieve the optimal rate-diversity trade-off typi-

cally do not introduce any blind information (other than that provided by Gaus-
sian white inputs) for the channel estimation. In [52], for instance, a previously
introduced linear prefiltering scheme was shown to attain this optimal trade-off.
Since the prefilter is a MIMO all-pass filter, it leaves the white vector input white.
However, perturbations of optimal trade-off achieving schemes can be derived that
introduce side information.

Hence, some questions that so far have only been very partially answered are: what is
the optimal amount of side information to maximize capacity, as more side information
reduces capacity with CSIR but reduces also channel estimation error and hence increases
capacity? More importantly, what is the optimal distribution of side information over
the various forms? Note that, strictly speaking, blind approaches are based on just
exploiting second-order information and/or subspaces. The exploitation of any form
of side information mentioned above should be called a semi-blind approach.

Some other research avenues include:

• Multiuser case. In this scenario, the number of unknowns per received sample
increases further. Whereas spatial multiplexing is the cooperative case of multi-
input, the multi-user case corresponds to the non-cooperative version. Differentia-
tion of users at the level of SOS can be obtained through coloring (e.g., CDMA) as
mentioned earlier. In [88], a semi-blind multiuser scenario is considered.
• Non-coherent approaches.
• Channel estimation for the transmitter. Questions that arise here involve not

only channel estimation but also its possible quantization and (digital or analog)
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retransmission. A key issue here also is the degree of reciprocity of the channel
or, e.g., its pathwise parameters (direction, delay, Doppler shift, power). Another
issue is the effect of sensor array design on channel estimation and reciprocity, e.g.,
beamspace (beam selection should be reciprocal).
• Description of channel variation in terms of user mobility.
• Bayesian (semi-)blind: from deterministic unknown channels to fading random

channels [72].

15.10 SUMMARY, CONCLUSIONS AND OUTLOOK
The present chapter has addressed the problem of channel equalization, which consists
in recovering the information emitted through a time-dispersive propagation medium.
Source separation and channel equalization can be considered as dual problems whose
goal is to unravel, respectively, spatial and temporal mixtures of the source(s). Yet the
particularities of digital communication systems allow the design of more specific source
recovery techniques, some of which have been presented in this chapter.

Our focus has been on SISO channel equalization. Several semi-blind criteria have
easily been defined by combining purely blind criteria based on the finite alphabet
of digital signals, such as the CM and CP principles, and the conventional training-
based MMSE equalizer. Under certain conditions (essentially, the existence of exact
ZF equalizers and input signals adapted to the blind part of the criteria), the global
minima of such semi-blind principles can be attained algebraically. These non-iterative
solutions are unaffected by the presence of local extrema on the cost-function surface.
The algebraic treatment of the CP criterion, resulting in the ACPA equalizer, is similar
to that of ACMA, but does not require special modifications to treat binary modulations.
Algebraically, the proposed subspace method provides a particular solution to the
challenging rank-1 tensor linear combination problem. In our numerical study, this
subspace approach proves more robust than other structuring methods, but the blind
algebraic solutions offer a low tolerance to noise, particularly for long equalizers. This
tolerance can be slightly improved by semi-blind techniques from just a few pilot
symbols. The key point limiting performance is probably the SVD-based rank-1 tensor
approximation employed to extract the equalizer vector from the estimated symmetric
tensor, as described in section 15.6.2.3 and 15.6.3. A refinement of this rank-1 tensor
approximation, such as that obtained by the power method [17,41], could alleviate this
limitation.

In general, algebraic solutions can only approximate a good equalization setting, and
iterative techniques are generally necessary to find the global minimum of the criterion;
an iterative method can also be used to refine an algebraic solution. An exact global
line search technique based on block iterations has been proposed, allowing an optimal
algebraic adaptation of the step size at each iteration; this adaptation only involves the
roots of a polynomial that can be solved by radicals. The optimal step-size iterative
algorithm offers a very fast convergence and, in semi-blind mode, yields equalization
results very close to the MMSE bound while increasing the useful transmission rate
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and the robustness to the equalizer vector initialization. These benefits have been
demonstrated by the numerical experiments presented in the last part of the chapter.

In summary, the impact of local minima and slow convergence typical of blind
equalizers can be limited with the incorporation of training sequences, giving rise to
semi-blind criteria. To further alleviate these drawbacks, the present chapter has endowed
semi-blind criteria with a number of additional strategies:

• judicious initialization with algebraic solutions;
• iterative updates operating on signal blocks (or bursts);
• one-dimensional global minimization (exact line search) with an optimal step size

computed algebraically.

These strategies are not exclusive of the equalization principles considered in this
chapter (CM, CP), but can also profit other criteria such as the KM [96] (see also
Chapter 6) or those of [34].

Avenues of further research could include the following aspects, which have been
left aside in our analysis: a theoretical study of the local extrema of the CP criterion;
the improvement of the SVD-based technique to recover the equalizer vector; the
robust automatic detection of the number of ZF solutions and the optimal equalization
delay [97]; the theoretical optimal choice of confidence parameter λ (e.g., based on an
asymptotic variance analysis); the evaluation and reduction of carrier-residual effects on
CP equalizers [11,12] (although the inclusion of pilot information may already play an
important role in their compensation); and an exhaustive comparison, both theoretical
and experimental, of other equalization principles with those presented in this chapter.
Other challenging open issues in the related topic of semi-blind channel estimation have
also been discussed in section 15.9.
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