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ABSTRACT
Second Life (SL) is a virtual world where people interact andso-
cialize through virtualavatars. Avatars behave similarly to their
human counterparts in real life and naturally define asocial net-
work. However, not only human-controlled avatars participate in
the social network. Automated avatars calledbots are common,
difficult to identify and, when malicious, can severely detract from
the user experience of SL. In this paper we study the SL social
network and the role of bots within it. Using traces of avatars in
a popular SL region, we analyze the social graph formed by ava-
tar interactions. We find that it resembles natural networksmore
than other online social networks, and that bots have a fundamental
impact on the SL social network. Finally, we propose a bot detec-
tion strategy based on the importance of the social connections of
avatars in the social graph.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques; H.5.1
[Multimedia Information Systems]: Artificial, augmented, and
virtual realities

General Terms
Measurement, Design

Keywords
Second Life, Social Networking, Bot Detection

1. INTRODUCTION
Second Life (SL) is avirtual world accessible by multiple par-

ticipants through the Internet [16]. With more than15 million resi-
dents, SL is one of the most popular virtual worlds. The virtual land
is composed ofregions that users access using human-controlled
characters calledavatars. Avatars live a parallel life in SL: they ex-
plore the virtual world, meet other users, communicate, play, trade,
etc.
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Researchers have shown that avatars tend to interact similarly
to human beings in real life [12][17]. They meet, spend time to-
gether and make friends. This behavior suggests that avatars con-
struct anonline social network, an Internet-based network that rep-
resents the social relationships existing among human beings. Pop-
ular examples of online social networks are the ones createdon so-
cial sites (e.g., Facebook [9] and Cyworld [7]), content sites (e.g.,
Flickr [10]), game sites (e.g., World of Warcraft [22]), etc.

Avatars can also be controlled via automated scripts, orbots. Bot
interactions can impact the virtual world in a variety of ways. Au-
tomated avatars can be useful for welcoming human avatars toa re-
gion, and measurement bots can benignly record world state.Some
bots can be offensive, however: they can spy on user behavioror,
as with the CopyBot, even clone avatar identities [20].

Since offensive bots can significantly detract from the userex-
perience, the SL provider disconnects avatars that have notmoved
after15 minutes. Not surprisingly, bots perform repetitive actions,
such as short walks, to circumvent this heuristic [17]. Furthermore,
users can also report directly to the SL provider when they suspect
the presence of bots or misbehaving avatars. The SL providerde-
cides whether or not to expel the reported avatar, but this procedure
is manual and can require several days. Detecting bots therefore
remains a compelling problem for virtual worlds like SL.

In this paper we study the social network formed by avatars in-
teracting in SL, and compare it with other social networks. We
then examine the impact bots have on the SL social graph, and,
using avatar relationships defined by the social graph, propose an
automated approach for identifying suspicious avatars as bots. We
use measurements of avatar behavior as a basis for constructing the
SL social network. We enhance acrawler developed in previous
work [17] to collect traces of avatar behavior in SL for longer time
periods. We crawl a very popular SL region for10 days, tracing the
behavior of3, 291 unique avatars.

Initially, we find that the complete SL social network is a small-
world network. Further, it is much more similar to natural net-
works [18][19] than popular online social networks [13][21]. The
creation of social relationships in SL requires anactiveinteraction
among avatars. Conversely, a social link between two users in on-
line social networks frequently represents only the acceptance of a
friendship request and does not require ongoing interaction.

Many features point to the presence of bots in the social network
and that these bots have a fundamental impact on its structure. Bots
interact with a very large number of avatars, but they construct very
fragile relationships. Indeed we find that, after removing suspected
bots from the SL social network, it is no longer a small-worldnet-
work. As a result, we conclude that analyses of user behaviorin SL
should distinguish between human and bot avatars.

Finally, inspired by the insight into bots provided by the social



graph analysis, we propose a bot detection strategy that identifies
avatars as likely bots based on the importance of their social con-
nections in the social graph. Applied to the trace, the strategy easily
detects the bot used by our own crawler and overall estimatesthat
4–7% of the avatars are suspected bots. This estimation requires
further confirmation, however, and defines our future work.

2. RELATED WORK
Despite its early success, only recently have measurement projects

characterized user and system dynamics in SL. La and Michiardi [12]
collect traces of avatar behavior in three SL regions for a few hours.
They use these traces to compare avatar to human behaviors. In-
terestingly, they show that the distribution of avatar contact times
measured in SL is very similar to the distribution of human con-
tact times measured in real-world experiments [4][14]. In previous
work, Varvello et al. [17] collect public data across the entire SL
virtual world. They show that only few regions are quite popular,
and nearly30% of the regions attract no visitors. Although we rely
on measurement methodologies similar to those used in [12][17],
our analysis of the SL social network extends and complements
these studies.

Online social networks have received comparatively more atten-
tion. Mislove et al. [13] study the structural properties ofcurrent
popular online social networks, e.g., Flickr [10], Orkut [15], etc.
They show that online social networks have structural properties
very different from natural networks (e.g., they exhibit a high level
of local clustering). Subsequently, Chun et al. [5] analyzeCy-
world [7], a large South Korean social networking service. They
compare thefriend relationships network— the network defined
by friendships among Cyworld users — with theactivity network
— the network defined by user activities. They show that the two
networks have a similar structure, suggesting that interactions be-
tween users in a social network tend to follow the declaration of
friend relationships. Recently, Wilson et al. [21] conducta simi-
lar study to the one in [5]. They focus on Facebook [9], currently
the most popular social networking service. In contrast with the
study conducted in [5], they show that theinteraction networkde-
rived from user activities in Facebook exhibits significantly lower
levels of the small-world properties shown in the Facebook social
network. We adopt methodology from these efforts to analyzethe
SL social network, which in contrast arises more naturally as a con-
sequence of human-based avatar interactions.

3. DATA AND METHODOLOGY
In this section we describe our methodology for constructing a

social graph among SL avatars based upon a trace of SL avatar
interactions.

3.1 Contact and Social Graph
We define contacts in SL based upon proximity in the virtual

world. An intuitive result in human communication is that “closer
together” means “more likely to converse” [8]. Recent work has
shown that avatars share behavior similar to human beings [12][17],
e.g., they gather in popular places to meet friends. Hence, we as-
sume that the distance between avatars plays an important role in
avatar communication.

We assume that two avatars are interacting, i.e., there exists a
contactbetween them, when their Euclidean distance is less than
an interaction rangeR. We recognize that this assumption may
identify contacts where avatars are not directly interacting (e.g., av-
atar “strangers” passing each other in a street), but it still intuitively
captures avatar contacts and the possibility of interaction. We de-

Region Japan Resort
Trace Length 10 days

Crawling Frequency 90 secs
Unique Avatars 3,291

Table 1: Traces Summary

fine contact timeas the time interval in which two avatars have an
Euclidean distance smaller thanR. Finally, we definesession time
as the continuous online time of an avatar.

We now introduce thecontact graphsimilar to that previously
described in [14]. The contact graphGt = (Vt, Et) is the collec-
tion of avatars connected to a SL region (Vt) as well as the edges
connecting the avatars (Et) at a timet. Gt is anunweightedgraph,
i.e., edges are not assigned any a-priori weight. An edge< i, j >t

connecting nodesi andj in V (Gt) equals0 when the Euclidean
distanced between the coordinates of avatarsi andj at timet is
greater thanR, whereas it equals1 whend < R. Gt is also an
undirectedgraph, i.e.,< i, j >t=< j, i >t for anyi andj.

Similar to the activity network studied in [5] and the interaction
network studied in [21], we now introduce thesocial graphas the
network of friendships that users construct with their behaviors.
Formally, the social graphG = (V, E) is the collection of avatars
visiting SL (V ) as well as the edges connecting these avatars (E).
G is aweightedanddirectedgraph, i.e., each edge< i, j > con-
necting two avatarsi and j in V (G) has two associated weights
wi,j andwj,i. We computewi,j andwj,i as the ratio of the sum of
all contact times between avatarsi andj and the sum of the session
times for i andj, respectively. Intuitively,wi,j is the fraction of
“virtual” time avatari spends being close toj. Therefore,wi,j and
wj,i captures the “importance” of the social connection between
avatarsi andj (acquaintances, friends or relatives).

3.2 Data Collection and Limitations
In order to construct an instance of the SL social graph, we col-

lect traces of avatar behavior with the crawler we developedin pre-
vious work [17]. The crawler consists of a modified SL client that
exploits standard avatar capabilities to monitor the virtual world.
For the specific task of monitoring avatar behaviors on a region,
the crawler extracts from a map of the region the high level coor-
dinates of the avatars, then it reaches each of these coordinates and
scans the surrounding area. All these operations require some time
to be accomplished, implying a “crawling frequency”.

In that work, the crawler only monitored avatars for3 days due
to IP blacklisting from the SL provider. Such a short time period,
however, is not sufficient to capture social relationships among av-
atars. To overcome this limitation, we exploit DHCP reassignment
in a private ADSL connection provided by a French ISP to enable
the crawler to use a range of IP addresses to connect to SL. We
changed the crawler to toggle its Internet connection by interacting
with the home gateway router. This procedure triggers the ISP to
assign a new public IP address to the connection, circumventing the
IP blacklisting mechanism adopted by the SL provider.

Ideally, we would want to capture the interactions of avatars
across all of the18, 000 regions comprising SL. However, mon-
itoring SL at this scale is not feasible using our current method-
ology (e.g., it requires public IP addresses linear with thenumber
of regions). Instead, as an initial study we focus the crawler on a
single, highly-popular region [17]. The social graph we analyze
therefore corresponds to the portion of the social graph originated
by the avatars just interacting in this region. Given that avatars ex-



Traces α (in) α (out) C
Cer

L
Ler

Flickr [13] 1.74 1.78 47,200 -
Orkut[13] 1.5 1.5 7,240 -

Facebook [21] 1.5 1.5 21,866 -
Film Actors [19][3] 3 3 2,925 1.22
Power grid [19][2] - - 16 1.50
C.elegans [19][11] 2.2 2.2 5.6 1.17

Second Life 2.2 2.2 70 1.1

Table 2: Comparison of the SL social network with several nat-
ural networks and online social networks.

hibit similar behaviors in different SL regions [12][17], studying
one popular region can still shed some lights on the entire SL.

We use the crawler on the popular “Japan Resort” region for10
days between July 22 and August 2, 2008, and we monitor3, 291
unique avatars. According to available SL statistics [16],these av-
atars account for about1% of the unique avatars logged in during
this time. Table 1 summarizes the main characteristics of the traces
collected.

The traces contain a large gap of about20 hours due to a major
region outage, and other minor gaps of a few minutes likely due to
server updates. These holes do not represent a loss of information
since no avatar activity was possible in the region.

To choose a value for the interaction rangeR, we compute the
minimum distance observed between any pair of avatars at each
crawling snapshot. We found that99% of the minimum distance
values are less than5 meters. Therefore, we setR to 5 meters.

4. SOCIAL GRAPH CHARACTERISTICS
In this section we analyze the social graph characteristicsof Sec-

ond Life avatars, compare them to measured characteristicsof other
social networks, and show that bots have a fundamental impact on
the SL social graph.

4.1 A “real” online social network
We first characterize the features of the SL social graph defined

by the traces of avatar contacts in the “Japan Resort” region. When
discussing these features, we also compare and contrast them with
the characteristics of both online social networks and natural net-
works. Table 2 summarizes the SL social graph features and how
they compare to the characteristics of other social networks as de-
termined by previous studies. We focus on the analysis of the“com-
plete” graphG, i.e., two nodesi andj in G are connected ifwi,j

and consequentlywj,i are non-zero.

4.1.1 Degree
The degreeof a nodev ∈ V (G) is the number of edges inci-

dent tov, and represents the number of unique avatars encountered
by avatarv during the crawl period. We start with a quantitative
analysis of the node degree distribution computed overG as de-
fined at the end of the crawl period. Although not shown due to
space limitations,90% of the values in the node degree distribu-
tion are between1–30. This range implies that avatars are either
very isolated, e.g., they explore the region without meeting any
other avatar, or they interact with a restricted set of avatars, e.g.,
they meet their friends. The highest percentiles of the nodedegree
distribution, however, approach300. Intuitively, avatars with such
high node degrees are either extremely social or controlledby au-
tomated scripts. A further analysis of the traces shows thatthese
avatars are the mostpersistentas well, i.e., they are consecutively
connected for about90% of the crawl duration. This persistence

suggests that their node degree represents the number of avatars
theymeet, rather than the number of avatars theyinteractwith. We
attribute this (un)social behavior to bots, and further analysis below
increasingly corroborates this conjecture.

Given that social networks are often characterized by a power
law distribution of their node degrees [13][18], we examinehow
well a power law fits the node degree distribution ofG. As in other
studies, we use the maximum likelihood method to calculate the
best power law coefficientα as well as its lower boundxmin, and
the Kolmogorow-Smirnow goodness-of-fit to evaluate the fit qual-
ity (D) [6].

Figure 1(a) plots the estimation ofα, xmin andD for the node
degree distribution computed onG every15 minutes for the du-
ration of the trace. During the first24 hours, the estimations of
α, xmin andD change rapidly. This phenomenon is due to the
fact that we incrementally construct the social graph usingthe in-
teractions that occur among avatars over time. Therefore, the ini-
tial hours simply represent a transient phase in the definition of the
social graph. Subsequently,α slowly decreases to a value of2.2
andD varies around0.05, indicating that the power law well ap-
proximates the node degree distribution. The estimation ofxmin

oscillates around a degree value of20–25, i.e., the power law fit
is verified for about25% of the avatars.1 For comparison, obser-
vations of most natural networks indicate a value ofα between2
and3 [2][3][11], whereas a value ofα smaller than2 is observed
in most online social networks [21][13].

Figure 1(a) shows two high peaks in the estimation of bothα

andxmin at t = 96 hrs andt = 108 hrs, respectively. These times
correspond with two short interruptions of the region service likely
due to a server update. At those times the tail of the node degree
distribution becomes more skewed, causing a shift of the power law
fit, i.e., higherxmin andα. This shift indicates that the avatars re-
sponsible for the very high values in the node degree distribution
are the most responsive in re-connecting to the region when the ser-
vice becomes available. The same phenomenon is even more visi-
ble att = 192 hrs when the SL service returns after an outage of20
hrs (Section 3.2). In this case, the node degree distribution is sig-
nificantly impacted andα andxmin return to the values measured
before the outage only after48 hrs. We conjecture that while real
users delay before returning to a region in the presence of server
failures, these high-degree nodes correspond to bots that reconnect
to the region as soon as the service is available using automated
probing.

4.1.2 Clustering Coefficient
Theclustering coefficientis often used to characterize the extent

to which nodes in social graphs form a small-world network. The
clustering coefficient for a nodev ∈ V (G) is the ratio of the num-
ber of edges between the nodes withinv’s neighborhood and the
total number of edges that could possibly exist between them[18].
Figure 1(b) shows a scatter plot of a node’s degree and its cluster-
ing coefficient for all nodes in the SL social graph at steady state
(i.e., the graph constructed at timet = 256 hrs). We observe no
clear relationship between a node’s degree and its clustering coeffi-
cient for nodes with a degree less than30 (about90% of the nodes
in G). Conversely, the clustering coefficient of nodes with a de-
gree greater than30 quickly decreases since the node degree value
grows so high. Looking at the neighborhoods of these nodes in
more detail reveals that, for99% of them, the median value of the
weight of their edges is smaller than0.1, i.e., they spend less than
1% of their virtual time in close proximity to the avatars they con-

1Note that [5][13] verify the power law fit for about10% of users.



(a) Power law analysis of the node de-
gree over time forα, xmin, D.

(b) Node degree (log scale) vs. cluster-
ing coefficient;t = 256 hrs.

(c) Percentiles of the betweenness cen-
trality distribution over time.

Figure 1: Second Life social graph analysis.

tact. This result suggests that avatars associated with nodes with
very high degree establish very fragile social relationships, again
suggesting that these avatars are likely bots.

4.1.3 Betweenness Centrality
Thebetweenness centralityof a node reflects its relative impor-

tance in a graph, e.g., the popularity of a person within a social net-
work. Formally, the betweenness centrality for a nodev in V (G) is
the number of times nodev occurs in a shortest path between any
two other nodes inV (G) divided by all existing shortest paths in
G [18]; theshortest path lengthfor a nodev in V (G) is the mini-
mum number of edges connectingv to all other nodes inV (G).

Figure 1(c) shows several percentiles of the distribution of the
betweenness centrality over time (the gaps correspond to SLser-
vice outages). Figure 1(c) shows that nearly90% of the nodes ap-
pear in less than1% of all shortest paths. Interestingly, this result
is similar to what Mtibaa et al. [14] observed in the social network
formed via a mobile social application. However, in the SL social
network we also observe that about5% of the nodes are very cen-
tral and intersect up to10% of all the existing shortest paths. These
very central nodes, though, also have high degrees and againmost
likely correspond to bots. This results indicates that botsmay have
a significant impact on the social network.

4.2 Impact of bots on the social network
In this section, we explore the impact of suspected bots on the

structure of the SL social network. We compare the structureof the
complete social network with embedded social networks formed by
filtering weak social connections among avatars. Since suspected
bots introduce many of these weak social connections, removing
them enables us to compare the SL social network with and with-
out bots. More formally, we analyze the set of graphsG

′

formed
by filtering fromG all edges with a weight smaller than a thresh-
old W . Then we compareG

′

with the Erdos-Renyi graph, i.e., a
purely random graph commonly used to identifysmall-worldgraph
properties [18]. In our analysis, we always consider the largest con-
nected component of the graph [18].

The high-level result of the following analysis is that the com-
plete SL social network can be classified as a small world-network.
However, after removing the edges suspected to be associated with
bots, the resulting network is no longer a small-world network.

4.2.1 Clustering Coefficient
We denote byC the average clustering coefficientcomputed

among all nodes inV (G). We compareC with the clustering coef-
ficientCer computed in a Erdos-Renyi graph with the same number
of nodes and edges asG [18]. We recall that C

Cer

>> 1 indicates
a possible small-world graph.

Figure 2(a) shows the evolution over time of the ratioC
Cer

as
a function of the thresholdW on edge weightswi,j between any
two nodesi andj. For a graph formed using a weight threshold
W , an edge only appears in the graph ifwi,j > W . We start by
focusing on the analysis of the complete graphG, i.e., the curve
obtained withW = 0% (all edges included). After the initial tran-
sient phase, the ratioC

Cer

slowly grows until reaching70. Interest-

ingly, the ratio C
Cer

measured for SL is several orders of magnitude
smaller than the values measured for several online social networks
(e.g., 21,866 in Facebook [21] and 47,200 in Flickr [13]), whereas it
is much closer to the ratio measured in many natural networks(e.g.,
16 in the electrical power grid of the western United States,and 5.6
in the neural network of the nematode worm C. elegans [1][19]).

We now increasingly remove edges corresponding to weak so-
cial connections. WithW = 1%, the ratio C

Cer

is reduced by1
3

when removing fromG all edges with weight smaller than1%, i.e.,
the presence of highly clustered portions of the graph are reduced
significantly. This change indicates that weak social connections
(mostly originated by bots) play an important role in the defini-
tion of the social graph structure. Interestingly, when increasing
the value ofW from 1% to 50% the curves approach the curve ob-
tained withW = 0%. This result indicates that the subgraphG

′

composed only using edges with a large edge weight (i.e., strong
social connections mostly associated to human-controlledavatars)
is again a possible small-world graph.

4.2.2 Shortest Path
We denote byL the characteristic path lengthfor a graphG,

i.e., the median of the means of the shortest path lengths connect-
ing each nodev ∈ V (G) to all other nodes [18]. We now com-
pare the characteristic path lengthL in G with the characteristic
path length measured in a Erdos-Renyi graph (namedLer) with
the same number of nodes and edges asG [18]. Again, analyses
of social networks compute the ratioL

Ler

since values close to one
indicate small-world networks.

Figure 2(b) shows the evolution over time ofL
Ler

for a range of



(a) C
Cer

evolution over time. (b) L
Ler

evolution over time. (c) CDF of the percentage of human-to-
bot (H2B) interactions.

Figure 2: Sensitivity of small-world graph metrics and human-to-bot interactions on social connection thresholdW .

values ofW . The curve for the complete graph withW =0 shows
that L

Ler

is nearly one. Together with the high clustering coeffi-
cient ofG measured above, these results indicate that the complete
SL social network is a small-world network [18]. However, for
W =1% the ratio L

Ler

assumes a small value. Most edges with a
small weight are associated with nodes with a very high degree —
bots — that are central in the social network. When we remove
these edges, the largest connected component of the graph isre-
duced, resulting in smaller characteristic path lengths. However,
increasing the value ofW to 10% — effectively filtering out most
of the edges due to bots — the ratioL

Ler

increases again. In other
words, although we have further reduced the number of edges,the
size of the largest connected component remains stable. This result
indicates that human-controlled avatars tend to share at least one
edge with a large weight.

5. SOCIAL-BASED BOT DETECTION
Second Life currently relies upon a simple idleness heuristic and

user reports to disconnect suspected bots from the system. Based
on our analysis of the SL social graph, we found a variety of fea-
tures of the graph that correlate with bot behavior. As a result, we
propose that SL can further rely upon characteristics of theSL so-
cial network to differentiate between human avatars and bots.

A social-based bot detection strategy could use the social graph
features directly. A provider may identify as bots all avatars with
a node degree larger than100 and a clustering coefficient smaller
than0.2 (Figure 1(b)) or a value of centrality larger than5% (Fig-
ure 1(c)). However, this approach requires tuning several indepen-
dent thresholds, computing the social metrics for all avatars, and a
centralized authority.

Instead, we propose a bot detection strategy that classifiesav-
atar interactions ashuman-to-humanand human-to-botbased on
the importance of their social connections in the social graph. Hu-
man avatars will have strong social connections as they interact in
a community, while bot avatars will have weak connections. Using
social connections naturally combines the specific graph features
into a single abstraction without having to set thresholds for each
feature independently. For simplicity, we consider the case of a sin-
gle server hosting a region. Moreover, we assume that the server
computes and maintains over time the social graph.

5.1 Description
We say that whenever two avatarsA andB meet (i.e., they enter

their respective interaction rangeR) the server “classifies” their in-
teraction. To do so, it searches for a path connecting nodesA and
B in the social graphG entirely composed of edges< i, j > that
have both weightswi,j andwj,i greater than a thresholdW , with
0 < W ≤ 1. We require both weights for all edges< i, j > in the
pathA-B to be larger thanW to capture the effect that both avatar
i andj “agree” in the importance of their social connection. If no
pathA-B exists, e.g.,B is a newcomer not yet known to the com-
munity, the server delays making a decision since it does nothave
enough information to classify the interaction. If at leastone path
exists and respects the weight condition, it labels the interactionA-
B ashuman-to-human. Otherwise, it labels the interactionA-B as
human-to-bot. At this time, the server does not know whetherA or
B is the bot, it simply suspects that one of the two avatars involved
in the interaction is computer-controlled.

The bot detection strategy as described so far generates a set of
classifications for the avatar interactions. Based on theseclassifica-
tions, we then suspect avatars to be bots if most of their interactions
are labeled as human-to-bot. Having detected suspicious bot ava-
tars, the SL provider can then decide what kind of policy to apply
to the bot avatars. For example, it can ignore useful and benign bots
while banning offensive bots (e.g., the CopyBot). To further reduce
false positives, SL can also use CAPTCHAs on suspected bots or
the “bot reports” collected from users for additional evidence about
bots considered offensive by the users community.

The server can lazily compute the volume of human-to-bot inter-
actions per avatar, e.g., during time periods with low load.More-
over, we anticipate classifying avatar interactions in a distributed
fashion by having avatars perform local computations and collect-
ing them at servers. Correlating classifications among neighbors
can guard against falsification.

5.2 How many bots are out there?
We now use the bot detection strategy to estimate the total num-

ber of bots observed in the 10 day traces. We implement a Matlab
simulation that takes as input the avatar traces (Section 3.2), com-
putes and maintains the social network (Section 3.1), and labels
the avatar interactions ashuman-to-humanor human-to-bot(Sec-
tion 5.1). In the simulations we varyW , the minimum level of
reciprocal acquaintances required among two avatars to trust their
social connection.

In Figure 2(c), we compute for each avatar the percentage of its
interactions with other avatars labeled as human-to-bot (H2B) and



plot the CDF across all avatars as a function ofW . When the per-
centage of interactions labeled as H2B is relatively low (≤ 20%),
we find that the results are sensitive to the minimum weightW re-
quired to trust a social connection. For example, the percentage of
avatars that have less than one percent of their interactions labeled
as H2B is equal to86% when W =1%, while it reduces to62%
for W =50%. This trend occurs because increasing the threshold
W increases the probability of generating false positives (labeling
some human-to-human interactions as H2B), and decreasingW in-
creases the probability of generating false negatives (labeling some
bot interactions as human-to-human).

Figure 2(c) shows, however, that the curves nearly overlap in
the right portion of the graph. When we consider avatars thathave
20–100% of their interactions labeled as H2B, the results relatively
are insensitive to the minimum social connection thresholdW . We
conjecture that these avatars are very likely bots. If so, then if we
set to30% the percentage of avatar interactions that need to be
labeled as H2B to trigger a bot detection, the bot detection strategy
indicates that4–7% of the avatars in SL are bots.

We do not yet have ground truth data to quantify the accuracy
of the detection strategy, and a comprehensive evaluation remains
future work. Anecdotally, though, we can apply the strategyto our
crawler by injecting its movement patterns into the avatar traces.
UsingW =3%, we observe that about90% of the crawler interac-
tions are labeled as H2B, suggesting that the strategy couldrely
upon high interaction thresholds to further reduce false positives.
Moreover, we find that most of the false positives are generated at
the beginning of the crawl, i.e., when the social network is not yet
well-defined (Section 4.1). For example, in the first six hours the
number of interactions between the crawler bot and the otherav-
atars that are labeled as H2B increases from10% to 90%. A bot
detection strategy could further take into account these transient
behaviors to improve accuracy.

6. CONCLUSIONS AND FUTURE WORK
This paper studies the Second Life social network and the role of

bots within it. We find that the SL social network is more similar to
natural networks than to popular online social networks. Wealso
find evidence of substantial bot activity, and that bot interactions
fundamentally impact the structure of the social network. We then
propose a bot detection strategy based upon avatar connections in
the social graph, and estimate a surprisingly large bot presence.
In future work, we plan to systematically evaluate the accuracy of
this bot detection strategy, and explore a design and deployment in
practice.
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