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ABSTRACT

Second Life (SL) is a virtual world where people interact aod
cialize through virtualavatars Avatars behave similarly to their
human counterparts in real life and naturally defingoaial net-
work. However, not only human-controlled avatars participate i
the social network. Automated avatars callsuts are common,
difficult to identify and, when malicious, can severely detrfrom

the user experience of SL. In this paper we study the SL social
network and the role of bots within it. Using traces of avatiar

a popular SL region, we analyze the social graph formed by ava
tar interactions. We find that it resembles natural netwonkse
than other online social networks, and that bots have a furdéal
impact on the SL social network. Finally, we propose a botclet
tion strategy based on the importance of the social coroectf
avatars in the social graph.

Categories and Subject Descriptors

C.4 [Performance of Systemp Measurement techniques; H.5.1
[Multimedia Information Systems]: Artificial, augmented, and
virtual realities

General Terms
Measurement, Design

Keywords

Second Life, Social Networking, Bot Detection

1. INTRODUCTION

Second Life (SL) is avirtual world accessible by multiple par-
ticipants through the Internet [16]. With more thehmillion resi-
dents, SL is one of the most popular virtual worlds. The tand
is composed ofegionsthat users access using human-controlled
characters calledvatars Avatars live a parallel life in SL: they ex-
plore the virtual world, meet other users, communicatey, ptade,
etc.
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Researchers have shown that avatars tend to interact gymila
to human beings in real life [12][17]. They meet, spend time t
gether and make friends. This behavior suggests that avedar
struct anonline social networkan Internet-based network that rep-
resents the social relationships existing among humargbefop-
ular examples of online social networks are the ones createt-
cial sites (e.g., Facebook [9] and Cyworld [7]), conter¢sie.g.,
Flickr [10]), game sites (e.g., World of Warcraft [22]), etc

Avatars can also be controlled via automated scriptbpts Bot
interactions can impact the virtual world in a variety of wayAu-
tomated avatars can be useful for welcoming human avatarssto
gion, and measurement bots can benignly record world satme
bots can be offensive, however: they can spy on user beharior
as with the CopyBot, even clone avatar identities [20].

Since offensive bots can significantly detract from the @ser
perience, the SL provider disconnects avatars that haveoeed
after 15 minutes. Not surprisingly, bots perform repetitive actipn
such as short walks, to circumvent this heuristic [17]. Remnore,
users can also report directly to the SL provider when thepect
the presence of bots or misbehaving avatars. The SL prodieler
cides whether or not to expel the reported avatar, but tlisgature
is manual and can require several days. Detecting botsftinere
remains a compelling problem for virtual worlds like SL.

In this paper we study the social network formed by avatars in
teracting in SL, and compare it with other social networkse W
then examine the impact bots have on the SL social graph, and,
using avatar relationships defined by the social graph,qgz®@n
automated approach for identifying suspicious avatarots bVe
use measurements of avatar behavior as a basis for coirsgrthe
SL social network. We enhancecaawler developed in previous
work [17] to collect traces of avatar behavior in SL for longjene
periods. We crawl a very popular SL region fi@r days, tracing the
behavior of3, 291 unique avatars.

Initially, we find that the complete SL social network is a dma
world network. Further, it is much more similar to naturat-ne
works [18][19] than popular online social networks [13][2The
creation of social relationships in SL requiresativeinteraction
among avatars. Conversely, a social link between two usesg-i
line social networks frequently represents only the acoem of a
friendship request and does not require ongoing intenactio

Many features point to the presence of bots in the social ortw
and that these bots have a fundamental impact on its steudots
interact with a very large number of avatars, but they costrery
fragile relationships. Indeed we find that, after removiagpected
bots from the SL social network, it is no longer a small-workt-
work. As a result, we conclude that analyses of user behavidi
should distinguish between human and bot avatars.

Finally, inspired by the insight into bots provided by theisb



graph analysis, we propose a bot detection strategy thatifids
avatars as likely bots based on the importance of their kogia
nections in the social graph. Applied to the trace, theatraeasily
detects the bot used by our own crawler and overall estinthgts
4-7% of the avatars are suspected bots. This estimation requires
further confirmation, however, and defines our future work.

2. RELATED WORK

Despite its early success, only recently have measuremaetfs
characterized user and system dynamics in SL. La and MaiHiE2]
collect traces of avatar behavior in three SL regions fomatfeurs.
They use these traces to compare avatar to human behavers. |
terestingly, they show that the distribution of avatar eshtimes
measured in SL is very similar to the distribution of humam-co
tact times measured in real-world experiments [4][14]. devpus
work, Varvello et al. [17] collect public data across theienSL
virtual world. They show that only few regions are quite pajpu
and nearly30% of the regions attract no visitors. Although we rely
on measurement methodologies similar to those used in1IR][
our analysis of the SL social network extends and complesnent
these studies.

Online social networks have received comparatively mamnat
tion. Mislove et al. [13] study the structural propertiescofrent
popular online social networks, e.g., Flickr [10], Orkub][letc.
They show that online social networks have structural piogse
very different from natural networks (e.g., they exhibitighlevel
of local clustering). Subsequently, Chun et al. [5] analZae
world [7], a large South Korean social networking servicéneyl
compare thdriend relationships network— the network defined
by friendships among Cyworld users — with thetivity network
— the network defined by user activities. They show that the tw
networks have a similar structure, suggesting that intenas be-
tween users in a social network tend to follow the declanatib
friend relationships. Recently, Wilson et al. [21] condacsimi-
lar study to the one in [5]. They focus on Facebook [9], cuiyen
the most popular social networking service. In contrashlite
study conducted in [5], they show that timeraction networlde-
rived from user activities in Facebook exhibits signifi¢amower
levels of the small-world properties shown in the Facebamtied
network. We adopt methodology from these efforts to anatiee
SL social network, which in contrast arises more naturalg aon-
sequence of human-based avatar interactions.

3. DATA AND METHODOLOGY

In this section we describe our methodology for constrgctn

Region Japan Resor
Trace Length 10 days
Crawling Frequency| 90 secs
Unique Avatars 3,291

Table 1: Traces Summary

fine contact timeas the time interval in which two avatars have an
Euclidean distance smaller thah Finally, we definesession time
as the continuous online time of an avatar.

We now introduce theontact graphsimilar to that previously
described in [14]. The contact gragh = (V4, E;) is the collec-
tion of avatars connected to a SL regidni ) as well as the edges
connecting the avatarg’) at a timet. G is anunweightedyraph,
i.e., edges are not assigned any a-priori weight. An eddej >
connecting nodes andj in V(G:) equalsO when the Euclidean
distanced between the coordinates of avatarand j at timet is
greater thanR, whereas it equals whend < R. G, is also an
undirectedgraph, i.e.< i, j >;=< j,i > for anyi andj.

Similar to the activity network studied in [5] and the intetian
network studied in [21], we now introduce tBecial graphas the
network of friendships that users construct with their éira.
Formally, the social graptiy = (V, E) is the collection of avatars
visiting SL (V') as well as the edges connecting these avafa)s (
G is aweightedanddirectedgraph, i.e., each edge i, > con-
necting two avatars andj in V(G) has two associated weights
w;,; andw; ;. \We computew; ; andw;,; as the ratio of the sum of
all contact times between avatamnd; and the sum of the session
times fori and j, respectively. Intuitivelyw; ; is the fraction of
“virtual” time avatari spends being close o Thereforew; ; and
wj,; captures the “importance” of the social connection between
avatarg andj (acquaintances, friends or relatives).

3.2 Data Collection and Limitations

In order to construct an instance of the SL social graph, v« co
lect traces of avatar behavior with the crawler we develapgule-
vious work [17]. The crawler consists of a modified SL clidmtt
exploits standard avatar capabilities to monitor the wirtworld.
For the specific task of monitoring avatar behaviors on aoregi
the crawler extracts from a map of the region the high leverco
dinates of the avatars, then it reaches each of these catediand
scans the surrounding area. All these operations requine sone
to be accomplished, implying a “crawling frequency”.

In that work, the crawler only monitored avatars fodays due

social graph among SL avatars based upon a trace of SL avataro IP blacklisting from the SL provider. Such a short timeipey

interactions.

3.1 Contact and Social Graph

We define contacts in SL based upon proximity in the virtual
world. An intuitive result in human communication is thatdser
together” means “more likely to converse” [8]. Recent wodsh
shown that avatars share behavior similar to human beir2jil [,
e.g., they gather in popular places to meet friends. Heneeasw
sume that the distance between avatars plays an imporieninro
avatar communication.

We assume that two avatars are interacting, i.e., therésexis
contactbetween them, when their Euclidean distance is less than
an interaction rangeR. \We recognize that this assumption may
identify contacts where avatars are not directly interage.g., av-
atar “strangers” passing each other in a street), butlifrstilitively
captures avatar contacts and the possibility of interactite de-

however, is not sufficient to capture social relationshipeag av-
atars. To overcome this limitation, we exploit DHCP reassignt

in a private ADSL connection provided by a French ISP to emabl
the crawler to use a range of IP addresses to connect to SL. We
changed the crawler to toggle its Internet connection kgratting

with the home gateway router. This procedure triggers tietts
assign a new public IP address to the connection, circurimgetite

IP blacklisting mechanism adopted by the SL provider.

Ideally, we would want to capture the interactions of aatar
across all of thel8, 000 regions comprising SL. However, mon-
itoring SL at this scale is not feasible using our currenthodt
ology (e.g., it requires public IP addresses linear withrthmber
of regions). Instead, as an initial study we focus the craatea
single, highly-popular region [17]. The social graph we lgpa
therefore corresponds to the portion of the social grapfirated
by the avatars just interacting in this region. Given thatars ex-



| Traces [a(in) [abu)] = | &
Flickr [13] 1.74 1.78 | 47,200 -
Orkut[13] 15 15 7,240 -
Facebook [21] 15 15 21,866 | -
Film Actors [19][3] 3 3 2,925 | 1.22
Power grid [19][2] - - 16 1.50
C.elegans [19][11] | 2.2 2.2 5.6 1.17
Second Life 2.2 2.2 70 11

Table 2: Comparison of the SL social network with several nat
ural networks and online social networks.

hibit similar behaviors in different SL regions [12][17]uslying
one popular region can still shed some lights on the entire SL

We use the crawler on the popular “Japan Resort” regior @or
days between July 22 and August 2, 2008, and we moBijt291
unique avatars. According to available SL statistics [1f§se av-
atars account for abouf% of the unique avatars logged in during
this time. Table 1 summarizes the main characteristicseofrétes
collected.

The traces contain a large gap of ab2dthours due to a major
region outage, and other minor gaps of a few minutes likeby tdu
server updates. These holes do not represent a loss of atiorm
since no avatar activity was possible in the region.

To choose a value for the interaction ranBewe compute the
minimum distance observed between any pair of avatars &t eac
crawling snapshot. We found the$% of the minimum distance
values are less thahmeters. Therefore, we s&tto 5 meters.

4. SOCIAL GRAPH CHARACTERISTICS

In this section we analyze the social graph characterisfi€gc-
ond Life avatars, compare them to measured charactensgtitber
social networks, and show that bots have a fundamental ingmac
the SL social graph.

4.1 A “real” online social network

We first characterize the features of the SL social graph eléfin
by the traces of avatar contacts in the “Japan Resort” regititen
discussing these features, we also compare and contrastitie
the characteristics of both online social networks and raatnet-
works. Table 2 summarizes the SL social graph features awd ho
they compare to the characteristics of other social netsvaskde-
termined by previous studies. We focus on the analysis ¢ttma-
plete” graphG, i.e., two nodes andj in G are connected ifv;, ;
and consequenthy; ; are non-zero.

4.1.1 Degree
The degreeof a nodev € V(G) is the number of edges inci-

suggests that their node degree represents the numbertafsava
theymeet rather than the number of avatars thetgractwith. We
attribute this (un)social behavior to bots, and furtherysia below
increasingly corroborates this conjecture.

Given that social networks are often characterized by a powe
law distribution of their node degrees [13][18], we examiav
well a power law fits the node degree distributiorGafAs in other
studies, we use the maximum likelihood method to calcullage t
best power law coefficient as well as its lower bound,,,;,, and
the Kolmogorow-Smirnow goodness-of-fit to evaluate the tilg
ity (D) [6].

Figure 1(a) plots the estimation of x..:» and D for the node
degree distribution computed ar every 15 minutes for the du-
ration of the trace. During the fir&4 hours, the estimations of
«, Tmin and D change rapidly. This phenomenon is due to the
fact that we incrementally construct the social graph usliregin-
teractions that occur among avatars over time. Therefbeeini-
tial hours simply represent a transient phase in the defindf the
social graph. Subsequently, slowly decreases to a value 22
and D varies around).05, indicating that the power law well ap-
proximates the node degree distribution. The estimation,of,
oscillates around a degree value29F25, i.e., the power law fit
is verified for abou25% of the avatars. For comparison, obser-
vations of most natural networks indicate a valuexdbetween2
and3 [2][3][11], whereas a value of smaller tharR is observed
in most online social networks [21][13].

Figure 1(a) shows two high peaks in the estimation of heth
andz.,i, att = 96 hrs andt = 108 hrs, respectively. These times
correspond with two short interruptions of the region se\ikely
due to a server update. At those times the tail of the nodesdegr
distribution becomes more skewed, causing a shift of thesptaw
fit, i.e., higherz,,.», anda. This shift indicates that the avatars re-
sponsible for the very high values in the node degree digtab
are the most responsive in re-connecting to the region wieegdr-
vice becomes available. The same phenomenon is even mére vis
ble att = 192 hrs when the SL service returns after an outaggof
hrs (Section 3.2). In this case, the node degree distribusicig-
nificantly impacted andr andzx ., return to the values measured
before the outage only aftédB hrs. We conjecture that while real
users delay before returning to a region in the presenceroeéise
failures, these high-degree nodes correspond to botsebanmect
to the region as soon as the service is available using ateédma
probing.

4.1.2 Clustering Coefficient

Theclustering coefficienis often used to characterize the extent
to which nodes in social graphs form a small-world networke T
clustering coefficient for a node € V' (G) is the ratio of the num-
ber of edges between the nodes withia neighborhood and the

dent tov, and represents the number of unique avatars encounteredotal number of edges that could possibly exist between {i&n

by avatarv during the crawl period. We start with a quantitative
analysis of the node degree distribution computed @veas de-
fined at the end of the crawl period. Although not shown due to
space limitations90% of the values in the node degree distribu-
tion are betweeri-30. This range implies that avatars are either
very isolated, e.g., they explore the region without megtmy
other avatar, or they interact with a restricted set of asata.g.,
they meet their friends. The highest percentiles of the mimigee
distribution, however, approad®0. Intuitively, avatars with such
high node degrees are either extremely social or contrdeau-
tomated scripts. A further analysis of the traces showsttieste
avatars are the mopersistentas well, i.e., they are consecutively
connected for abou0% of the crawl duration. This persistence

Figure 1(b) shows a scatter plot of a node’s degree and issectu

ing coefficient for all nodes in the SL social graph at steadyes
(i.e., the graph constructed at time= 256 hrs). We observe no
clear relationship between a node’s degree and its clogtedeffi-
cient for nodes with a degree less ttgn(about90% of the nodes

in G). Conversely, the clustering coefficient of nodes with a de-
gree greater thaB0 quickly decreases since the node degree value
grows so high. Looking at the neighborhoods of these nodes in
more detail reveals that, f®9% of them, the median value of the
weight of their edges is smaller thanl, i.e., they spend less than
1% of their virtual time in close proximity to the avatars theyne

!Note that [5][13] verify the power law fit for abot0% of users.
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(a) Power law analysis of the node de-
gree over time foty, Zmin, D.
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trality distribution over time.

Figure 1: Second Life social graph analysis.

tact. This result suggests that avatars associated witesnatith
very high degree establish very fragile social relatiopshagain
suggesting that these avatars are likely bots.

4.1.3 Betweenness Centrality

The betweenness centralitf a node reflects its relative impor-
tance in a graph, e.g., the popularity of a person within &soet-
work. Formally, the betweenness centrality for a node V (G) is
the number of times node occurs in a shortest path between any
two other nodes iV (G) divided by all existing shortest paths in
G [18]; the shortest path lengtfor a nodev in V(G) is the mini-
mum number of edges connectindo all other nodes iV (G).

Figure 1(c) shows several percentiles of the distributibthe
betweenness centrality over time (the gaps correspond teeBL
vice outages). Figure 1(c) shows that ne@ys of the nodes ap-
pear in less thain% of all shortest paths. Interestingly, this result
is similar to what Mtibaa et al. [14] observed in the sociaivark
formed via a mobile social application. However, in the Stiab
network we also observe that abai¥ of the nodes are very cen-
tral and intersect up tb0% of all the existing shortest paths. These
very central nodes, though, also have high degrees and engesin
likely correspond to bots. This results indicates that boay have
a significant impact on the social network.

4.2 Impact of bots on the social network

In this section, we explore the impact of suspected bots en th
structure of the SL social network. We compare the strucifitee
complete social network with embedded social networks &attvy
filtering weak social connections among avatars. Sinceestisg
bots introduce many of these weak social connections, rgmgov
them enables us to compare the SL social network with and with
out bots. More formally, we analyze the set of grap?‘isformed
by filtering from G all edges with a weight smaller than a thresh-
old W. Then we comparé}' with the Erdos-Renyi graph, i.e., a
purely random graph commonly used to idensifgall-worldgraph
properties [18]. In our analysis, we always consider thgdsatrcon-
nected component of the graph [18].

The high-level result of the following analysis is that thene
plete SL social network can be classified as a small worldoet
However, after removing the edges suspected to be assbuidte
bots, the resulting network is no longer a small-world netkwo

4.2.1 Clustering Coefficient

We denote byC' the average clustering coefficierdomputed
among all nodes i (G). We compare” with the clustering coef-
ficientC., computed in a Erdos-Renyi graph with the same number
of nodes and edges a5[18]. We recall that— >> 1 indicates
a possible small-world graph.

Figure 2(a) shows the evolution over time of the raé% as
a function of the thresholdl” on edge weightsu;, ; between any
two nodes:i andj. For a graph formed using a weight threshold
W, an edge only appears in the graphuif; > W. We start by
focusing on the analysis of the complete graghi.e., the curve
obtained withiV = 0% (all edges included). After the initial tran-
sient phase, the ratigﬂ slowly grows until reachin@0. Interest-

ingly, the ratlo— measured for SL is several orders of magnitude
smaller than the values measured for several online soefiaianks
(e.g., 21,866 in Facebook [21] and 47,200 in Flickr [13]) enédas it
is much closer to the ratio measured in many natural netwerlgs,
16 in the electrical power grid of the western United Stades, 5.6
in the neural network of the nematode worm C. elegans [1][19]
We now increasingly remove edges corresponding to weak so-
cial connections. WitV = 1%, the ratlo— is reduced byL
when removing frontz all edges with welght smaller thas, i.e.,
the presence of highly clustered portions of the graph aieom
significantly. This change indicates that weak social cotiors
(mostly originated by bots) play an important role in the wiefi
tion of the social graph structure. Interestingly, whernréasing
the value ofi¥” from 1% to 50% the curves approach the curve ob-
tained withW = 0%. This result indicates that the subgraﬁﬁ
composed only using edges with a large edge weight (i.@ngtr
social connections mostly associated to human-contreledars)
is again a possible small-world graph.

4.2.2 Shortest Path

We denote byL the characteristic path lengttior a graphG,
i.e., the median of the means of the shortest path lengthsecon
ing each noder € V(G) to all other nodes [18]. We now com-
pare the characteristic path lengthin G with the characteristic
path length measured in a Erdos-Renyi graph (naigd with
the same number of nodes and edge&:g448]. Again, analyses
of social networks compute the ratjg— since values close to one
indicate small-world networks. o

Figure 2(b) shows the evolution over timeg@; for a range of
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Figure 2: Sensitivity of small-world graph metrics and human-to-bot interactions on social connection threshold?'.

values oflW. The curve for the complete graph with =0 shows
that ;= is nearly one. Together with the high clustering coeffi-

their respective interaction rand® the server “classifies” their in-
teraction. To do so, it searches for a path connecting nddasd

cient of G measured above, these results indicate that the completeB in the social graplt: entirely composed of edges 7, j > that

SL social network is a small-world network [18]. Howevery fo
W=1% the ratioLLw assumes a small value. Most edges with a
small weight are associated with nodes with a very high aegre
bots — that are central in the social network. When we remove
these edges, the largest connected component of the graph is
duced, resulting in smaller characteristic path lengthewéVer,
increasing the value diV to 10% — effectively filtering out most

of the edges due to bots — the ratié— increases again. In other
words, although we have further reduced the number of edges,
size of the largest connected component remains stable r&@sult
indicates that human-controlled avatars tend to shareaat tme
edge with a large weight.

5. SOCIAL-BASED BOT DETECTION

Second Life currently relies upon a simple idleness haarstd
user reports to disconnect suspected bots from the systasedB
on our analysis of the SL social graph, we found a variety af fe
tures of the graph that correlate with bot behavior. As altese
propose that SL can further rely upon characteristics oStheo-
cial network to differentiate between human avatars ans. bot

A social-based bot detection strategy could use the so@phg
features directly. A provider may identify as bots all avataith
a node degree larger than0 and a clustering coefficient smaller
than0.2 (Figure 1(b)) or a value of centrality larger that (Fig-
ure 1(c)). However, this approach requires tuning sevacd®pen-
dent thresholds, computing the social metrics for all agatand a
centralized authority.

Instead, we propose a bot detection strategy that classifies
atar interactions ahuman-to-humarand human-to-botbased on
the importance of their social connections in the socigblgraiu-
man avatars will have strong social connections as theyacitén
a community, while bot avatars will have weak connectionsing
social connections naturally combines the specific graptufes
into a single abstraction without having to set threshotisefich
feature independently. For simplicity, we consider theeazsa sin-
gle server hosting a region. Moreover, we assume that tiverser
computes and maintains over time the social graph.

5.1 Description

We say that whenever two avatatsand B meet (i.e., they enter

have both weightsv; ; andw;,; greater than a threshold’, with

0 < W < 1. We require both weights for all edgesi, j > in the
path A-B to be larger tha?” to capture the effect that both avatar
1 andj “agree” in the importance of their social connection. If no
path A-B exists, e.g.B is a newcomer not yet known to the com-
munity, the server delays making a decision since it doe$fawee
enough information to classify the interaction. If at leasé path
exists and respects the weight condition, it labels the-atéon A-

B ashuman-to-humanOtherwise, it labels the interactiofr B as
human-to-batAt this time, the server does not know whethtor

B is the bot, it simply suspects that one of the two avatardwedb
in the interaction is computer-controlled.

The bot detection strategy as described so far generatéof se
classifications for the avatar interactions. Based on tblessifica-
tions, we then suspect avatars to be bots if most of theirdot®ns
are labeled as human-to-bot. Having detected suspicioiaviae
tars, the SL provider can then decide what kind of policy tplap
to the bot avatars. For example, it can ignore useful andyberots
while banning offensive bots (e.g., the CopyBot). To furttezluce
false positives, SL can also use CAPTCHASs on suspected bots o
the “bot reports” collected from users for additional evide about
bots considered offensive by the users community.

The server can lazily compute the volume of human-to-betrint
actions per avatar, e.g., during time periods with low lokftbre-
over, we anticipate classifying avatar interactions in striiuted
fashion by having avatars perform local computations arieécte
ing them at servers. Correlating classifications amonghteics
can guard against falsification.

5.2 How many bots are out there?

We now use the bot detection strategy to estimate the totat nu
ber of bots observed in the 10 day traces. We implement a Matla
simulation that takes as input the avatar traces (Sectin Gm-
putes and maintains the social network (Section 3.1), abelda
the avatar interactions dsiman-to-humarmr human-to-bot(Sec-
tion 5.1). In the simulations we varyy/, the minimum level of
reciprocal acquaintances required among two avatars sottrair
social connection.

In Figure 2(c), we compute for each avatar the percentages of i
interactions with other avatars labeled as human-to-baBj+and



plot the CDF across all avatars as a functioriiof When the per-
centage of interactions labeled as H2B is relatively lew20%),
we find that the results are sensitive to the minimum weighte-
quired to trust a social connection. For example, the péagenof
avatars that have less than one percent of their interactadreled
as H2B is equal t&6% when W=1%, while it reduces ta®2%

for W=50%. This trend occurs because increasing the threshold

W increases the probability of generating false positivabgling
some human-to-human interactions as H2B), and decre&Bing
creases the probability of generating false negativegljlzdpsome
bot interactions as human-to-human).

Figure 2(c) shows, however, that the curves nearly overap i
the right portion of the graph. When we consider avatarstha¢
20-100% of their interactions labeled as H2B, the results relagivel
are insensitive to the minimum social connection threshldwe
conjecture that these avatars are very likely bots. If sen ithwe

set t030% the percentage of avatar interactions that need to be

labeled as H2B to trigger a bot detection, the bot detecti@tegy
indicates thatt—7% of the avatars in SL are bots.

We do not yet have ground truth data to quantify the accuracy

of the detection strategy, and a comprehensive evaluatiorins
future work. Anecdotally, though, we can apply the stratieggur
crawler by injecting its movement patterns into the avatacds.
Using W=3%, we observe that abodt% of the crawler interac-
tions are labeled as H2B, suggesting that the strategy aelyd
upon high interaction thresholds to further reduce falsatpes.
Moreover, we find that most of the false positives are gerdrat
the beginning of the crawl, i.e., when the social networkasyet
well-defined (Section 4.1). For example, in the first six Isotire
number of interactions between the crawler bot and the athrer
atars that are labeled as H2B increases fi®% to 90%. A bot
detection strategy could further take into account theamstent
behaviors to improve accuracy.

6. CONCLUSIONS AND FUTURE WORK

This paper studies the Second Life social network and tteeafol
bots within it. We find that the SL social network is more samnilo
natural networks than to popular online social networks. alge
find evidence of substantial bot activity, and that bot iattions
fundamentally impact the structure of the social networle tén
propose a bot detection strategy based upon avatar coomedti
the social graph, and estimate a surprisingly large botemes
In future work, we plan to systematically evaluate the aacyrof
this bot detection strategy, and explore a design and de@oyin
practice.
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