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Abstract— Blind audio source separation (BASS) arises in a the source separation problem using a variational bayesian
number of applications in speech and music processing such framework. In section VIl we present some results and finally
as speech enhancement, speaker diarization, automated ncis we conclude.
transcription etc. Generally, BASS methods consider mulghan-
nel signal capture. The single microphone case is the most
difficult underdetermined case, but it often arises in practce.

In the approach considered here, the main source identifiallity We consider the problem of estimating’ Gaussian
comes from exploiting the presumed quasi-periodic nature © g, rcas from a single mixture. We use the short+long term

sources via long-term autoregressive (AR) modeling. Indek . . - .
musical note signals are quasi-periodic and so is voiced sgen, autoregressive (AR) voice production model [4]:

which constitutes the most energetic part of speech signalg/e K
furthermore exploit (e.g. speaker or instrument related) pior
ploit (e.9. Sp ) & ytzzxk,t—i‘vu 1)
k=1

Il. SIGNAL MODEL

information in the spectral envelope of the source signalsia
short-term AR modeling, to also help unravel spectral portbns
where source harmonics overlap, and to provide a continuous
treatment when sources (e.g. speech) temporarily lose thei Tkt = Zak,nﬂik,t—n + frts Srt =bkfrt—r t ekt -
periodic nature. The novel processing considered here uses n=1

windowed signal frames and alternates between frequency an H is th d mixt f sianal< is th b
time domain processing for optimized computational complgity ere,y: IS the measured mixture of signats, IS the number

and approximation error. We consider Variational Bayesian ~Of sourcesz;. v; is an additive white Gaussian noise of
techniques for joint source extraction and estimation of treir ~ variancec? and is assumed to be uncorrelated with the
AR parameters, the simplified versions of which correspondd sourcesey ; is the excitation signal of sourde also assumed

Pk

EM or SAGE algorithms. : N to be Gaussian and white with varianeg. For each source
Index Terms— Variational Bayes, Expectation Maximization, is th iod (its fracti | ¢ be i | ted b
Blind Source Separation, Speech Processing, Autoregregsi Lk Tk _'S eper!o _(' S frac Ionq part can e_'mP emented by

process, Linear Prediction linear interpolation if the samplinf frequency is high egai,
by, its long-term prediction coefficient and the short-term
I. INTRODUCTION prediction coefficientscoefficient, of ordey,, are a .; f

j[s the short-term prediction error. If we introduce the $hor

The need for Blind Audio Source Separation (BASS - ;
erm and long-term prediction error transfer functions

arises with various real-world signals, including speeoh e

hancement, speaker diarization, automated music trgascri Pk
tion etc.. Generally, BASS methods consider multichannel Ae(z) = arnz ™", Bp(z) =1-bz™ (2
signal capture and has been dealt with extensively in the n=0

Iiteraturg. In the over determingd case of BSS_ the_sourwth a0 = 1, then we can rewrite the various signals as
separation can be performed satisfactorily, especialtygan

environment, for example by using Independent Componentfx,: = Ak(q) Tk.t, ext = Br(q) fr.t = Br(q) Ak(q) Tr
Analysis (ICA) [1], [2] or Computational Auditory Scene oy . 1
Analysis (CASA) [3]. ICA assumes that there are at least adhere qWe I:h;rllleali glthirgE[)Lee csi:elﬁglsoperatoq. Tht =
many observation mixtures as there are independent sourcés’ " 9

For underdetermined BSS (UBSS), the problem is ill-defined get = Br(@) 2z, k=1,..., K. (3)

and its solution requires some additional assumptions.

This paper is organized as follow. In section Il we present In the approach considered here, identifiability comes es-
the model of joint speech production. In section Il wesentially from exploiting the presumed quasi-periodicinat
discuss the introduction of windows. Then, in sections IVQf sources via long-term AR modeling introduced above.
V and VI we explain the methodology and the algorithm fodndeed, musical note signals are quasi-periodic and so is

voiced speech, which constitutes the most energetic part of
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I1l. WINDOWING FOR FRAME-BASED PROCESSING Time Window: 64 ms, Overlap 50% Time Window: 64 ms, Overlap 75%

The signals considered are by nature non-stationa ! !
we can consider the parameters constant during a 08 08
time, we can process the signal in frames (time segm: 0.6 06
over which the signal can be considered stationary, w 04 04
corresponds to time-invariant filtering. Many of the sic
processing operations (e.g. linear time-invariant fittgranc 0-2 0-2
filter computation) could be largely simplified by pass o o008 o1 0 oos 01
to the frequency domain. However, transforming a fram Time (s) Time (s)
signal to the frequency domain directly via the DFT (F Hann window w(t) Spectrum of w(t) and w (1)
leads to approximations due to the periodic extension @ 1 ; 20
frame assumption inherent in the DFT. 08 \\ 1
A. Windowing Methodology 0.6 / g °
The introduction of a window allows to reduce the 0.4 N -10
proximation error. Consider e.g. the stack&dsamples it 0.2 S —we |\ —20
a frame of the prediction error signal (vectors and mat AN Sl Vi ) -30 A .
are denoted by bold letters) % 200 400 -0.02 -0.01 0 001 0.02
Time (samples) Normalized Frequency
£ =Ta, xk (4) Fig. 1. Perfect reconstruction windowing.

whereT 4, is the N x (N+py—1) banded Toeplitz matrix

corresponding to the prediction error filtet;, (¢) (to ease

th tati hall the time ind f the ﬁee the top figures in Fig. 1 for the cases of relative ovefflap o
fhe notation we shall suppress the time index of the FaM&y ),y = 501, 759% (both the individual windows and
0 transtorm a titering matrix €asily, It Should be CIrClaN y,q;- om are shown for a finite set of windows). Note that

T . . . o C(.Ime could consider extensions to non-PR windows, in which
approximation of a Toeplitz matrix by a circulant matrix iSihe superposition of windowed signal frames could be fol-
only acceptable when the matrix dimension is much Iarg% 00 )

I

! i S wed by a zero-forcing rescaling withy (3. w—in
j[htandthe filter Ienglth._To "’."dd'” the_approxmatlon, WeTsha r (multi-window) MMSE versions thereof. The PR window
introduce an analysis window = [uow; ... wN-_1]", ot will be used in the simulations in this paper is a Hann
with associated diagonal weighting matW = diag{w}. (or raised cosine) window [5]

The windowed prediction errowf;, requiresWT 4, . Now,
i i i 2 1 t
assume the window decays to zero at its edges and varies suf; _ 1 [1  cos (277—)] Ct=01.. .. N-1. 8
ficiently slowly, then the following approximations become N
valid:
WTy, =~ WA, =~ AW (5) B. Frequency Domain Window Design

When applying theéV x N DFT matrixF to the windowed

whereA is a N x N square circulant matrix, corresponding . .
signals in (6), we get

to circulant convolution wittd (¢). We shall similarly intro-
duce the_ circulanBy, though th_e approximations con;idered FWe;, = (FALF ) (FBF ') (FWF!) Fx,
above will be rougher for the filteBx(q) (or B, *(q)) since . o _
long-term prediction has larger delay spread than sham-te Where we get diagonal frequency domain filtering matrices
prediction. Note that just likedy.(q)Bi(¢) = Bi(q)Ar(q), Ak = FA,F~! etc. The main non-diagonal matrix will be
also A;B;, = B,Aj. Then we get the following signal the covariance matrix oFWe;, which is proportional to
relations W, = FW?F~! (e, being white). For the case of the

Wer — AxB; Wxy — Ay Way — By W Har_1|j window, both.the window and a zoom on the main

We. — B, W W, — A, W (6) antldlagonal_ofthe cwc_ulaﬁ_ng appea_rlnthg bpttom halqu

8k k WXk, Wi B WX Fig. 1. The time domain window design criteria of decaying

Just like the original data signg}. will be cut into a series of edges and smooth behavior translate in the frequency domain
windowed frames, a processed signal (e.g. extracted Sourte decaying spectral smear and high sidelobe attenuation.
will be reconstructed by superposing its reconstructed wirlndeed, in order to keep a low computational complexity
dowed frame segments. Since the window needs to decagproach, the window spectrum will be approximated by
towards its edges, consecutive frames need to overlap. Latly its main lobe. This leads to an approximation error
M be the hop size (time jump) from one frame to the nexthat derives from the sidelobe attenuation level. The tesyl

then a perfect reconstruction (PR) windaw requires processing will no longer involve pure diagonal matrices,
o but banded matrices. As the FFT points in the bottom right
Z we_ivg = 1, Vn (7) figure indicate, for the case of a Hann winddw], can be

=0 approximated by a symmetric banded circulant matrix with 5



diagonals, with (elementwise) approximation error atstad V. VARIATIONAL BAYESIAN BSS

by at least 30dB. The overall set of parameters contains the following sub-
sets (source, short term and Iong term parameters):
0 = [07 0 A" (10)
IV. VARIATIONAL BAYESIAN TECHNIQUES
0 = [ar prxx]” (11)
ol tional . - ay = lag1-apg,]” (12)
A recent tutorial on Variational Bayesian (VB) estimation ok = [br e M ] (13)

technigues can be found in [6], see also [7]. It provides an
approximate technique to determine the posterior proiyabil where\, = 1/0% and), = 1/0?2 are the inverse variances or
density function (pdf) of the quantities to be estimated.d.e precisions. The prior probability distributions for therieais
denote the vector of all quantities to be estimated, incgdi parameters are chosen as follows. Ygte any of the groups
parameters and possibly signals (e.g. the "hidden vasable{xx, k = 1,..., K}, ax, ¢r \ Ax. Then for any such subset
in EM terminology) andY denotes the measurements. Inof parameterg) and for the),, A,, the priors are chosen as
many problems, the joint posterior pgdf6|Y’) can be com-

plicated to determine. Consider now a partitiondoihto K p(¥) = N(my, C"/") (14)
subgroups of quantities that will get estimated per subgrou p(Av) = Exponential(my,) (15)
0 ={0c, k=1,...,K}. The idea of VB is to approximate p(Ax) = Exponential(my,) . (16)

p(AY) by a product formg(0]Y) = [, ¢(6x]Y) where
the ¢(6,]Y) in general will differ from the true marginal
pdfs p(0;|Y). The ¢(6;]Y) are determlned by minimizing
the Kullback-Leibler distance betweelF[k 1 q(0,|Y) and
p(0]Y). This leads to the following implicit relations

With this choice of prior distributions, the posterior dilsti-
tions obtained by VB will be of the same nature (Gaussian
or Exponential). However, in this paper we shall consider a
further simplification.

VI. ALGORITHM

mq(0c]Y) = Eyg, vy Inp(Y,0.05) k=1,...,K (9)  We shall simplify the VB approach by splitting the over-
all parameters) into two groups: the source$xy, k =
., K} on the one hand, and all AR and noise parameters
where ¢ is 6 minus 6y, henced = {0y,0}. In practice, on the other hand. Whereas the first group shall be treated as
(9) needs to be solved iteratively by consecutively swegpirrandom, the second group shall be treated as deterministic
throughk = 1,..., K, at all times using forg(fx|Y") the (negligible variability, delta function posterior digitition).
latest version available. This iterative process can b&sho The resulting iterative algorithm leads to an EM-style algo
to converge monotonically. Typically, whar(Y'|¢) and the rithm consisting of two steps, the estimation of the sources
prior p(¢) are exponential pdfs (typically Gaussian), then onge-Step) and the parameters (M-Step). First an estimate of
can see from (9) thag(0x|Y’) will also be an exponential the sources; is obtained from the noisy observations,
pdf. Note that Variational Bayesian techniques can also hgith a fixed interval Wiener filter (instead of a Kalman filter
applied in the presence of deterministic unknowps There  as in [8]). Second, the noises variance, the short and long-
are two ways to think about deterministic unknowns: term AR parameters are estimated based on the estimated

(i) as truly deterministic, with priop(fp) = 0(6p — 6%) source correlations.

where 69, is the unknown true value dip; in other A. Estimating the Sources

_words,0p ~ N(0%, Ro,,) where Ry, = 01. We shall estimate the sources jointly, hence consider
(i) as random with no prior information, hendg, ~ x = [xT-- Xk] lterative estimation of the separate
N (0%, Rop,) where Ry, = oo I, sources will only lead to a polynomial expansion style

In case (i), VB becomes EM [6], in which case during thdterative solving of the Wiener estimation equation for

iterations the deterministic parameters are simply suhted 'S would slow down convergence, but also reduce compu-
by their current estimate. tational complexity. It would only potentially improve ger-

Case (ii) is closer to the VB spirit. If = {0, 05} where Mance if some non-Gaussianity is introduced and exploited.

fs are the stochastic parameters, then it suffices to replaceCONsider now also the following notation: .
p(Y,6) in (9) by p(Y,0s|0p) = p(Y]6) p(0s). In this case W = P W = Ix@W. L = [Iy...Ix] = 1@ 1y,
also for the deterministic parameters not only their curref> = ®i=1 Ar= blockdiag A, ..., Ak},

ks - )
estimates (posterior means) are accounted for but alsp thet = ©k=1 Bj= blockdiag By, ..., Bk},
estimation error. = S Aely = A@ Iy, A = diag{hi,..., Ak},

= Wx, A=W 'AW '=A® W2 and
To summarize, EM is a special case of VB, with 2 subsets _ [—TX _T]T_ @

e
of parameters (stochastic and deterministic). Note théten ! K
With this notation, the signal model can be written as
VB context the difference between EM and SAGE algorithm 9
is the splitting of the subsets. Wy =1Ix + Wv, ABx' = We. (17)

~
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with circulant A, Bx. We get the Gaussian short-term and long-term parameters before returningéo th
“2In ply,x|0\ x) = updating of the source statistics. We get for soutce

Av(w}’*l X’)TW_Q W 1 X ) +x [BTATAIAB Xl -2 Eq(x/k) In p(Xk|ak, cpk) .
_ ' Tc_l =c—Nln)Xg + A\ Eq(x/k.)xlk BzAzW_QAk kalk
=c+ (x' —mx )" O (X' —myxr) . —c¢— NIn A, + M\ tr {W2A; ByR,BTAT}

(18) 23)

Averaging this over the parametet§ x now simply means ,nere
evaluating at the latest estimates of these parameters sin

T
they are considered deterministic in the simplification. We Ry, = By X'kX), = mx’kmz'k + Cxy (24)
get from (18), after introducing the auxiliary quantities  \vhich are obtained from (20). After optimizing tke., by,
C — BTATAAB T , one can find by minimizing (23)
—  blockdiag A\yBL ATW—2A, By}, Ap = N/tr{W ™A ByRyBy A} (25)
- (19)  while thea,, are obtained by minimizin
_ 1 Yw2 _1qT k y g
D= AWt o tr {W~2A, (B,R,BT)A”} (26)
= W2 X 5By ATWIALTTB
Y * for fixed by, 7, and thebg, 7 themselves are obtained by
we get minimizing
Cx = (NWI"TW2I+0)! tr {W—2B,, (A R,AT)BT} (27)
= Cc'-c "D IC! (20)  for fixed ay, (in a full VB approach, this quadratic form, e.g.
my = C-ITD Wy in a;, would have to be identified with the exponent of a

Gaussian pdf in order to find both mean and covariance).
To implement this in the frequency domain, consider th@t this point, one might remark that the limited degree of
dlagonalAk = FA,F~! etc. The only non-diagonal matrix nonstationarity of the signals leads to slow variation af th
is W, = FWZ2F~! which, due to careful window design, source statistics in time. Hence, in all this the instantaise
can be approximated by a banded matrix as discussed early, for a given frame may be advantageously replaced by an
As a result,C~! andD are equally banded matrices Nowexponentially weighted average of tRg, of the past frames.
consider the LDU factorization The time constant of the exponential weighting factor may
1 1 be adjusted according to the degree of nonstationarityGhwhi
FDF ' =F | —W?+ ) —B,"A;'"W?A; "B, | F~' may be inferred by focusing mainly on the time variation of
Av w M the long-term AR model parameters.
Alternatively, at this point one may consider pushing back
the window into the source statistics by considering theé cos
function

1 1o 1% i % —Hs
= —Wy+ Y —B'A'WLA FB Y = LDLY (21)
Ao — A

where the unit diagonal lower trianguldr is banded. The

steps for computingny in the frequency domain are now: tr{A, By(W 'R, W 1)BIAT} (28)
ey =FWy where for the mean, the unwindowd® ~!'m,,, may be
o solveu fromLu =y by backsubstitution advantageously replaced by the reconstructed multiframe
« solvez from LHi = D~'u by backsubstitution source signal, still with the resulting sample correlasion
o« My, = - F71 B 1A 1W2A HB H 37 each exponentially weighted into the past. For the source esti-
time mult|ply|ng a vector W|th a matrix and ending with mation error covariance paWw —C,,, W1, if not ignored
IDFT and scaling. completely, may be approximated by the expressmn without

In practice all operations with the Discrete Fourier Transf ~Window:
(DFT_) matrix F are done by _using the Fast Fourigr Trrimsform Cx, =Cp ' — C];l()%vfzv + Zfil ch-lopt
algorithm (FFT). AsB;, = diag{b;} andA; = diag{ax}, with Cy = \ BT AT A, By,

we can write _ _ _ _ _
in which all matrices are circulant, hence the computation

(29)

R v v Y 11 11 5
B, 'A'W,A, "B " = T T T OWe. (22) is straightforward in the frequency domain. The values for
k& br by the AR parameters to be used in the computatio6'gf are
B. Updating the AR parameters those that were used for the computatiomof/, .

Finally, the estimation of the overall noise variance can be

Given the Gaussian posterior of the sourggeshe esti- ) e
Rbtalned similarly as

mation of the AR parameters of the different sources is i
principle coupled {x is not block diagonal) but we shall 1 i”y — W lImy |2 + itr (W2IC 17} (30)
decouple their estimation. The estimation of short-terd an Av N o N TR

long-term AR parameters for a given source is coupled alsahere the same multi-frame averaging and approximations
Many updating schedules are possible, e.qg. iterating keatweare applicable.
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Fig. 2.  Waveform of the mixture, sources and estimated ssurc Fig. 3. Spectrogram of the mixture, sources and estimatactes.
C. Initalization and Tracking VII. RESULTS

When moving from one frame to the next, the AR and For testing the algorithm we have worked with real speech
noise parameters from the previous frame can be used data (the sources), the mixing and noise adding are done
initialization for the current frame. For the cold start, orartificially. The sources consist of two speech recordinfgs o
when a new source appears or reappears after a silence, ties, a male and a female English speaker. The analysis
algorithm needs initialization, mainly for the long-ternRA window length is64 ms with an overlap of50%. The
parameters. For this any multipitch estimation algoritran ¢ (cold) initialization of the parametets,, b, and )\ is done
be used. on the original sources (yielding the "correct” values).eTh



algorithm is stopped when the variation between two corwe vary the (input)S/NR. The (output) noise is determined
secutive iterations is lower tha®—2 or when the algorithm by subtracting the estimated sources from the noisy mixture
reaches20 iterations. Fig 2 and 3 show the results of thegland contains at least the input noise). The OU@MR is
decomposition for the separation, with aiVR of 20dB.  defined bySNR.,; = 10 logm( ZZH?;(Ht)Z*kZ:&kg)l(‘t)W)' If

The estimated parameters are close to the correct ongss algorithm works well, the outpﬁt SNR ?néreases up to

measured on the original sources with a chosen order fgfe input SNR. This is observed in the results obtained as
the short term coefficients. Note that the signals containgown in Fig 5.

silence segments, where we cannot build on the estimated

parameters of the previous frame, we need to re-initiali SNR estimation
them. 30
Fig 4 shows a zoom on a frame. One can see the autom
appearance of a windowed version of the extracted sourt 20+ i
In this particular frame the two pitch periods are vel
different, which faciliates the separation. 10- |
ad
Zz O 1
Windowed Mixture Waveform v
_107 4
1 -20 :
_3 L L L L
=20 -10 0 10 20 30
] SNR
w Fig. 5. SNR estimation for a mixture of 2 sources
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Time (s)
1% source Waveform VIIl. CONCLUSIONS
0.6 T T T . .
Original In this paper we have proposed a VB-EM type algorithm
0al Extracted 1 for blind source separation. The long term correlationvesio

identifiability of the sources which, in the case of unvoiced
1 speech segments, is maintained by the short term AR model.
We have in particular introduced a more rigorous use of fre-
quency domain processing via the introduction of carefully
1 designed windows. The results for BASS are encouraging.
Further extensions could include the determination of the

045 o0l 002 003 004 005 006 number of sources. Also, multipitch estimation is required

Time (s) at initialization and at any reappearance of non-statpnar

oo sources.

source Waveform
0.5
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