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Abstract—Digital fountain codes have emerged as a low-
complexity alternative to Reed-Solomon codes for erasure cor-
rection. The applications of these codes are relevant especially
in the field of wireless video, where low encoding and decoding
complexity is crucial.

In this paper we introduce a new class of digital fountain codes
based on a sliding-window approach applied to Raptor codes.
These codes have several properties useful for video applications,
and provide better performance than classical digital fountains.
Then, we propose an application of sliding-window Raptor codes
to wireless video broadcasting using scalable video coding. The
rates of the base and enhancement layers, as well as the number
of coded packets generated for each layer, are optimized so as to
yield the best possible expected quality at the receiver side, and
providing unequal loss protection to the different layers according
to their importance. The proposed system has been validated in
a UMTS broadcast scenario, showing that it improves the end-
to-end quality, and is robust towards fluctuations in the packet
loss rate.

Index Terms—Application layer FEC codes, digital fountain
codes, scalable video coding, H.264/SVC, MBMS video broad-
casting.

I. INTRODUCTION

Multimedia streaming applications represent an emerging
phenomenon. In a near future, users of the Internet are ex-
pected to be multimedia content producers, by publishing digi-
tal pictures, videos, home surveillance data; content mediators,
by storing/forwarding streaming contents; content consumers
of digital television, video on demand, mobile broadcasting
and alike. Users will be interfaced to several content delivery
networks: broadcasting (DVB-T, DVB-S/S2, DVB-C), bidirec-
tional (xDSL, WiMAX), mobile (3G/4G, GERAN, UTRAN,
DVB-H) and P2P logical overlays. Seamless transition from
one network to another will be required. Finally, users will

P. Cataldi is with Mobile Communications Department of Eurecom Insti-
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access services using terminals with different capabilities in
terms of computational power and screen resolution.

Such a complex scenario imposes several technological
challenges. Scaling to a very large number of users may lead
to scarcity in the aggregated bandwidth, and requires powerful
multimedia compression tools. Several causes of unreliability,
e.g. fading and shadowing on wireless links, congestion in
the access segment or in the IP core network, churn induced
instability in P2P overlays, demand for robust and error re-
silient encoding methods. The heterogeneity of user terminals
requires clever strategies to avoid the simultaneous delivery of
multiple versions of the same content.

In this context, scalable video coding (SVC) represents an
innovative tool. The recent Annex G of H.264/AVC stan-
dard, known as H.264/SVC [1], provides layered tempo-
ral/spatial/quality scalability and any combination thereof. It
yields significant gain with respect to transcoding or simul-
casting of the individual layers, and limited compression
inefficiency with respect to H.264/AVC.

Let us consider the situation where all coded video packets
are subject to the same loss probability, and retransmission
is unfeasible due to delay constraints or network flooding
problems (such as in broadcast or multicast applications). In
this situation, it is important that all the received packets can
be exploited at the application layer. This is not the case of
a layered source such as SVC, where the loss of base layer
packets prevents one from exploiting the subsequent ones. A
possible way to cope with this problem is using differentiated
application-layer Forward Error Correction (FEC) codes, so
as to guarantee the reception of the base layer with high
probability. This provides graceful degradation, while keep-
ing the overall coding redundancy limited; this principle is
known as unequal loss protection (ULP). Popular algorithms
reported in literature make use of Reed-Solomon (RS) codes
to implement ULP. In [2] different RS codes are allocated
to data segments of different importance. The code rates are
obtained by means of an optimization procedure, aiming at
maximizing the expected peak signal-to-noise ratio (PSNR) at
the receiver side, given the packet loss rate and the source rate-
distortion (RD) characteristics. An alternative algorithm has
been proposed in [3], which implements a suboptimal yet more
efficient optimization procedure. Differentiated RS codes have
been applied to H.264 data partitions [4], and to H.264 slices
exploiting their different impact on the data reconstruction [5].
Applications to SVC are reported in [6], [7], [8].
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RS codes have the drawback of high co-decoding com-
plexity. The complexity is highly dependent on the encoding
parameters and the packet loss rates [9]. In particular, the
decoding speed necessary to sustain IPTV applications can
be achieved only with the help of dedicated hardware imple-
mentation. Therefore, other classes of erasure codes have been
recently proposed. Such codes trade co-decoding complexity
with a certain degree of suboptimality, expressed in terms of
an amount of extra symbols to be received in order to assure
proper decoding.

Digital fountain (DF) codes exhibit the property that, letting
K the length of the source block, the number of coded symbols
N is not fixed a priori. Thus, they are also known as rateless
codes. The first practical DF codes are the so-called Luby-
transform (LT) codes [10]. Although they exhibit excellent
efficiency, the co-decoding cost of LT codes is still too high
to be afforded in practical applications. Raptor codes [11]
exhibit linear co-decoding time while still keeping low coding
overhead. Raptor codes have been included in the DVB-
H standard for ITPV applications [12], and standardized by
3GPP (Third Generation Partnership Project) in the context of
multimedia broadcast multicast services (MBMS) [13].

DF codes have been employed in the context of video
broadcasting or media streaming in several papers. Most of
them address equal loss protection (ELP). For example, in
[14] a protocol for asynchronous video multicast is proposed,
employing Tornado codes [15] and LT codes. In [16] a protocol
for live unicast video streaming based on rateless codes is
introduced. Similar ideas are described in [17], where the
asymptotic behaviour of an asynchronous media streaming
system based on DF codes is investigated. In [18] Raptor codes
are used for streaming of stereoscopic video. Even though,
in their basic realization, DF codes are unable to provide
ULP, some recent work attempts to design DF codes that
feature ULP. In [19] an algorithm is proposed to implement
scalable data multicast to different user groups, assuming that
the data are ordered according to their importance. Embedded
windows of increasing length are defined and used with
different probabilities, so that the most important symbols are
included in a high percentage of parity checks, thus providing
ULP. The same principle is also reported in [20], where an
expanding window of source symbols is defined, so that the
most important source symbols are included in the innermost
window and can be decoded with higher probability.

In [21] the principle of Dependency-aware (DA)-UEP is
proposed, where the existing data dependencies among I, P
and B video frames are exploited to achieve differentiated
protection, and different erasure protection codes are allocated
to according to their impact on the reconstruction quality. This
principle is applied in [22], where a practical scheme using
DA-UEP is proposed. An application of Raptor codes to SVC
is reported in [23], where the redundancy symbols of a given
layer l are calculated including source symbols of all layers
on which l depends, so achieving across-layer protection.

It is worth noticing that the performance of random codes
such as DF codes is asymptotically optimal for large data
blocks. On the other hand, large block sizes can seldom
be afforded at the application layer and especially in video

applications. Moreover, large data blocks usually imply a
significant latency, in that it is necessary to receive a larger
number of coded symbols to ensure the decoding of a data
block. If a receiver is unable to collect enough coded symbols
within the maximum tolerable latency, the data block will
not be decoded. In real time applications, or when TV-like
experience is required (including fast channel change and tune-
in), latency must be kept limited, and this implies using shorter
data blocks. A common and sensible approach is to separately
encode each group of pictures (GOP), i.e. group of successive
frames that represents an independent coding unit.

A possible solution to this issue is the sliding-window
approach, introduced in [24] for LT codes, where coding is
performed not on disjoint data blocks, but instead on a sliding
window of source symbols. This amounts to virtually enlarging
the block size.

In this paper we build on [24] and provide a twofold
contribution. First, we extend the concept of sliding-window
to Raptor codes, so as to provide an encoding tool able to yield
good performance with low coding overhead and limited co-
decoding complexity. A performance analysis of the proposed
sliding-window Raptor code in standalone mode is provided.
Second, we show how it is possible to exploit the sliding-
window Raptor code to provide ULP in the context of digital
broadcasting of H.264/SVC video. ULP is addressed not in the
code design such as e.g. in [20], but rather at the system level,
as different digital fountains are employed for the different
layers. We provide a framework for performance optimization
of the broadcasting system, which selects the source encoding
rates of the various layers, as well as the number of coded
packets for each layer, so as to maximize a metric of expected
quality at the receiver side.

This paper is organized as follows. In Sect. II sliding-
window Raptor codes are introduced, and their performance
is investigated. In Sect. III the novel coding tool is applied to
broadcasting of H.264/SVC video using MBMS over a UMTS
mobile networks. The optimization of the SVC and DF code
rate allocation is addressed in Sect. III-C, and validation of
the proposed application is provided in Sect. IV. Finally, in
Sect. V conclusions are drawn.

II. SLIDING-WINDOW RAPTOR CODES

A. Background: DF codes

DF codes are random, sparse-graph codes developed for
erasure channels. DF codes are also universal, because the
coding and decoding efficiency is not affected by the cardi-
nality of the source symbols. Let K be the length of the source
block to be encoded. Then, the block can be decoded if at least
N = (1+ε)K coded symbols are received, with ε representing
the coding overhead. A key property of DF codes is that the
number of coded symbols generated from K source symbols
is not predetermined, but can be chosen arbitrarily. This is the
reason why these codes are also called rateless codes.

LT codes represent the first practical implementation of
the DF concept. Each coded symbol is obtained from a
bitwise exclusive-OR of a uniformly random selection of d
source symbols, where the degree d is specified by a suitable
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statistical distribution. A good design of the degree distribution
is crucial for the code performance. The Robust Soliton
Distribution (RSD) µ(·), defined in [10], is characterized
by two parameters: c, a suitable positive constant [10], and
δ, representing the decoding failure probability when N =
(1 + ε)K coded symbols are received. By decreasing δ, the
average degree of the coded symbols increases and so does the
complexity. It can be shown that LT codes are asymptotically
optimal, i.e. ε → 0 when K → ∞ [10]. Nevertheless, LT
codes exhibit more-than-linear encoding/decoding complexity.

Raptor codes [11] represent an evolution of LT codes.
They exhibit lower complexity and at the same time excellent
performance. Raptor codes encompass a pre-coding stage
(usually a high rate low-density parity-check code - LDPC),
concatenated with an inner LT code, working on symbols
obtained by properly grouping l bits at a time. The coding
overhead of Raptor codes is lower bounded by the overhead
of the pre-code, and does not vanish asymptotically as in the
case of LT codes. The decoding algorithm is composed of
two steps. The inner LT decoder returns a hard bit-reliability
vector. This latter is processed by the outer LDPC decoder,
using the belief propagation algorithm [25]. This allows one
to loosen the constraints on the LT code degree distribution,
as the pre-code is able to recover the source symbols possibly
not retrieved by LT decoding.

Notwithstanding their considerable performance and
promising applications in multimedia, DF codes also exhibit
some weaknesses. Because of their random nature, DF codes
achieve near-optimal performance with large data blocks [10],
[11]. Unfortunately, for short blocks, a random approach can
be inefficient in terms of overhead required to successfully
decode the original source.

B. The sliding-window principle

The concept of Sliding-Window Digital Fountain (SW-DF)
was first proposed in [24] for LT codes. The main idea is to
apply the DF code not on disjoint blocks of K source symbols,
but instead on a sliding window of length K. The presence
of memory between adjacent blocks allows to virtually extend
the block length, as is shown later in this section.

The traditional (fixed window - FW) coding approach,
depicted in Fig. 1(a), can be compared to SW-DF reported
in Fig. 1(b). Each block of K source symbols is processed by
a DF code, generating a proper number N of coded symbols.
After the current block has been coded, the window is shifted
S symbols forward. Then, the DF code processes the new
block of K input symbols, S of which are new entries, whereas
K − S are overlapped with the previous window.

For the sake of simplicity, let us assume that K is a multiple
of S. In this way each source symbol enters No = K/S
successive windows. In other words, if K is kept constant,
as the window shift S is decreased, the source symbols enter
more and more successive windows. We can define a virtual
block length as Kv = 2K − S symbols, i.e. the length of the
symbol sub-stream where a given source symbol enters the
encoding process. Let us clarify this concept with an example.
Let us assume K = 6 and S = 3 and focus on a given source

(a) Traditional (FW) encoding scheme

(b) Sliding-Window scheme

Fig. 1. Comparison between fixed window and sliding window schemes.

TABLE I
MAIN PARAMETERS OF SW-DF

Block length (symbols) K
Window shift (symbols) S
No. of windows a symbol belongs to No = K/S
Virtual block length (symbols) Kv = 2K − S
Encoded symbols per block (FW) N = (1 + ε)K
Encoded symbols per block (SW-DF) Nw = (1 + ε) ·K2/(2K − S)

symbol, e.g. symbol 13. Windows 1 to 6 span the following
source symbols: (1−5), (4−8), (7−11), (10−14), (13−17).
Symbol 13 is contained in K/S = 2 windows, i.e. 4 and 5.
Hence, the interval in which symbol 13 can be picked up
to form a coded symbol is (10-18), and the virtual block
length is Kv = 2K − S = 9 symbols. We can notice that,
by increasing the overlapping between adjacent windows, Kv

increases tending to the limit value 2K.
Let N = (1 + ε)K be the number of coded symbols

output per each source block of length K in the FW scheme.
If SW-DF is run with the same N , it will output a larger
overall number of symbols, as it processes a larger number
of length-K blocks due to the overlapping. In order to make
SW-DF generate the same coded symbol rate as the FW
scheme, a number of symbols per window smaller than N
should be generated. In particular, the same number of coded
symbols generated by FW for each block of length K, must
be generated by SW-DF for each block of length Kv . Hence,
the number of symbols generated by SW-DF for each window
of length K is

Nw = N ·K/Kv = (1 + ε) ·K2/(2K − S) (1)

It is worth noticing that, if S = K (i.e., no overlap), SW-DF
reduces to the FW case. Moreover, number of blocks tending
to infinity, the number of symbols generated becomes Nw =
(1+ ε) ·S. The main parameters that characterize SW-DF are
summarized in Tab. I.

This principle has been applied to LT codes in [24] (SW-LT
codes). The design of SW-LT codes is very similar to that of
traditional LT codes, the main difference lying in the degree
distribution, which takes into account the virtual data block
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TABLE II
LDPC GENERATOR POLYNOMIALS.

εLDPC λ(x) ρ(x)
1.01% 0.247354x2 + 0.194184x3 + 0.225899x6+ x400

0.0340546x7 + 0.101625x15 + 0.196883x16

extension. In fact, as a source data block has an actual span
of Kv symbols as far as the generation of parity checks is
concerned, it is appropriate to consider a degree distribution
over a block length Kv . Although the degree distribution is
designed for block length Kv , the symbols are picked only
within the current window of size K. Hence, the computed
degree distribution has to be re-scaled to have a maximum
degree K. Details and performance of such codes can be found
in [24].

C. Implementation of Sliding-Window Raptor Codes

As discussed in Sect. II-A, Raptor codes are the concatena-
tion of a high performance binary block code, such as LDPC,
and a weakened LT code. Hence, a sliding-window Raptor
code (SW-Raptor) may be obtained replacing the LT code with
the SW-LT scheme. However, some specific features of Raptor
codes make this generalization not trivial.

Differently from LT codes, the degree distribution for Rap-
tor codes does not depend on the source symbol block length
[11]. Thus, in this situation it is not useful to modify the inner
LT code degree distribution taking into account the virtual
block length Kv . Instead, in this paper we propose a sliding-
window approach that affects the precoding stage of Raptor
codes. We impose that the block length of the pre-code be
equal to the window shift S. The source is first encoded with
a block code that spans S symbols. Then, the coded bits are
grouped in l-bit symbols and input to SW-LT with degree
distribution as in [11].

The SW-Raptor decoder performs the same operations in
reverse order. The received symbols within each window
of length K are LT-decoded. Due to the loosened degree
distribution, not all symbols will be decoded. The external
decoder is then used to recover from the residual erasures.

Such a decoding process can be implemented in different
ways. The simplest approach, which has been followed in this
paper, is to decode each data block using the SW-LT decoder,
and then run the LDPC block decoder on those blocks whose
symbols are not any longer used in subsequent parity check
equations. It should be noted that, since the SW approach
virtually enlarges the size of the block, the latency (i.e., the
delay that the decoding process introduces in terms of source
symbols) has to be at least Kv , as opposes to K symbols for
the traditional scheme.

D. Performance of Sliding-Window Raptor Codes

In our simulations, we considered 4 · 105 samples of a
memoryless binary source X with P0 = P (X = 0) = 0.5.
The source was encoded using a SW-Raptor with LDPC pre-
code with fixed overhead εLDPC and generator polynomials
shown in Tab. II.

TABLE III
LDPC BLOCK SIZES.

K S N0 LDPC block
5000 5000 1 (4949, 5000)

2500 2 (2474, 2500)
10000 10000 1 (9899, 10000)

5000 2 (4949, 5000)
2500 4 (2474, 2500)

40000 40000 1 (39599, 40000)
20000 2 (19799, 20000)
10000 4 (9899, 10000)
5000 8 (4949, 5000)
2500 16 (2474, 2500)

The performance results are expressed in terms of the un-
decoded symbol rate (USR), i.e. the percentage of undecoded
symbols after Raptor decoding, and failed simulation rate
(FSR), i.e. the number of simulations where the decoding
process has not been successfully accomplished. Both metrics
are expressed as a function of the encoding overhead ε in the
range [0, 10%]. Co-decoding complexity figures are provided
as well. We present results for different block sizes, i.e. K =
5000, 10000 and 40000 bits, and different window shifts S.
In particular, we have considered No = K/S = 1, 2, 4, 8, 16.
The case No = 1 corresponds to the FW-Raptor code with
the same LDPC and LT parameters. We recall that the LDPC
block length is set equal to S in all simulations, as shown in
Tab. III. The decoder is considered to have unlimited memory
capability. All simulations have been performed on an Intel
Pentium IV workstation at 3 GHz, running Linux Ubuntu with
kernel version 2.6.15.
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Fig. 2. Performance of SW-Raptor; K = 5000.

Fig. 2 shows USR and FSR versus ε in the case K = 5000,
and No = 1, 2. We recall that No = 1 (triangle marker) refers
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to FW-Raptor coding. It can be noticed that SW-Raptor code
significantly outperforms FW coding in terms of USR. For
example, for ε = 5%, SW-Raptor yields USR that is three
orders of magnitude lower than FW. A significant performance
improvement of SW-Raptor can be appreciated also in terms
of the FSR (Fig. 2(b)).

In order to appreciate the SW-Raptor co-decoding com-
plexity, Fig. 2(c) and Fig. 2(d) report the average encoding
and decoding times per source symbol as functions of ε. It
can be noticed that SW-Raptor exhibits a linear encoding
complexity, with a negligible increase with respect to FW.
The evaluation of the average decoding times only includes
successful simulations; this is the reason why the FW curve
is not plotted in the low ε region. We can observe that the
decoding process of SW-Raptor is slower than FW. In fact,
SW-Raptor computational complexity is dominated by the
cost of keeping into account symbols, and the corresponding
equations, which were only partially reduced during past
windows. This amounts to managing a larger memory than
the FW algorithm to store the undecoded symbols equations.
Since the location of degree-one equations is not linear with
the memory size, the decoding process turns out to be highly
non linear, as well. In this paper all the undecoded symbols
are stored in the extra memory so as to yield the best decoding
performance, maximizing the probability to recover symbols
from past windows. Nevertheless, one could decide to limit the
amount of such memory, making the decoding process faster
at the expenses of the decoding performance.
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Fig. 3. Performance of SW-Raptor; K = 10000.

In Fig. 3 we present results for K = 10000 and different
window shifts, i.e. No = 1, 2, 4. Again, it can be appreciated
that SW-Raptor increases the reliability of the code when
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Fig. 4. Performance of SW-Raptor; K = 40000.

few excess symbols have been received, yielding significantly
lower USR (Fig. 3(a)) and FSR (Fig. 3(b)) at parity of
overhead ε. We can also appreciate that the performance of
SW-Raptor with No = 2 and 4 are quite similar. This is due
to the fact that in the first case we have S = 5000, whereas
in the second case we have S = 2500. While increasing
No improves the inner LT decoding, a reduced value of
S impairs the external LDPC decoding performance. In the
presented simulations the two effects compensate each other,
thus yielding approximatively the same overall performance.
In particular, we can observe that when ε is small, the effect
of the SW approach is dominant. However, when the number
of encoded symbols is higher, the size of the LDPC block
constraints the decoding performance.

The average co-decoding times are reported in Fig. 3(c)
and 3(d) respectively. The encoding time, although being
linear, increases with No. This is due to the fact that more
windows are generated, while the total number of coded sym-
bols remains fixed. Similarly, the complexity of the decoding
process increases with No. Again, the complexity is mainly
due to the memory management of the symbols belonging to
the previous windows.

Fig. 4 reports performance results for SW-Raptor, K =
40000 and No = 1, 2, 4, 8, 16. In terms of the USR (Fig. 4(a))
and for redundancy values below 6%, SW-Raptor outperforms
FW for any considered window shift. In this region, the
performance is little dependent on the actual No value. On the
other hand, for higher values of ε, FW tends to outperform SW-
Raptor. This can be explained noticing that the performance
of both FW and SW-Raptor is dependent on the LDPC pre-
code block length. In fact, the larger is this parameter, the



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

0.02 0.04 0.06 0.08 0.1
10

−4

10
−3

10
−2

10
−1

10
0

ε

U
S

R

 

 

N
o
 = 1

N
o
 = 2

N
o
 = 4

N
o
 = 8

N
o
 = 16

Fig. 5. Undecoded symbol rate after LT decoding; K = 40000.

more effective is the correction capability of the LDPC pre-
code. When K is high, this effect is particularly relevant, as
FW can exploit a very powerful pre-code with respect to SW-
Raptor. However, this potential benefit is traded against the
virtual block enlargement yielded by SW-Raptor, which turns
out to be more effective in the low coding redundancy region.
For the same reason, it is worth noticing that, among all the
overlap strategies, the one that allows the longest pre-code
block (i.e., No = 2) is to be preferred. Similar considerations
can be drawn from Fig. 4(b) in terms of FSR.

The average co-decoding times for K = 40000 are pre-
sented in Fig. 4(c) and 4(d) respectively. Again, we can
appreciate the fact that the encoding times are linear, and
the complexity increases with No. The decoding times are
approximatively linear for reasonable values of ε.

Finally, we analyze the impact of the LT code degree
distribution on the overall SW code performance. Fig. 5
reports the percentage of undecoded symbols after the LT
decoding stage versus ε, for K = 40000 and several values of
No. As discussed in Sect. II-C, the design of SW-Raptor codes
does not modify the LT degree distribution. However, we can
notice that the SW scheme still achieves better performance
than FW, and this improvement can be already appreciated
for very low values of the overhead. This reveals that the
overlapping strategy improves the performance independently
of the adopted degree distribution. From the same figure we
can also notice that it is not necessary to use a large overlap
to significantly decrease the rate of non decoded symbols.

III. AN APPLICATION OF SW-RAPTOR TO SCALABLE
VIDEO STREAMING

A. Streaming Model

In this section we propose an application of SW-Raptor
codes to H.264/SVC video broadcasting. In order to profitably
exploit the scalability provided by H.264/SVC, the different
video layers are streamed via separate digital fountains, op-
timized in terms of the expected video quality offered to the
end users. This scenario can be considered as an extension
of the MBMS broadcasting service, which can be offered via
the UMTS mobile network. Whereas the exploitation of SW-
Raptor within MBMS would require to modify the erasure
code adopted in the standard, the optimization strategy used
to allocate the DF code rates can be employed within MBMS.

In the following it is assumed that the video server knows
the number and the capabilities of the clients requiring service,
so that it can classify them by their features (e.g. screen res-
olution, video quality). This information is usually exchanged
between server and client when the multimedia session is set
up. Let us consider a video source, encoded using H.264/SVC,
and consisting of layers Lj , j = 0, . . . ,M with L0 being the
base layer. We define the i-th client class Ci, i = 0, . . . ,M ,
as the set of clients that subscribe video layers from L0

to Li. The least demanding class C0 is associated to the
base layer L0, whereas class CM demands for the maximum
screen resolution by subscribing to all layers. Following [26],
[27], we assume that the coded symbols are packetized using
the RTP/UDP/IP protocol stack. Using the real-time transport
control protocol (RTCP), it is possible to collect statistics
about each RTP data flow. These can be processed by the
server to estimate the expected packet loss rate PLR. In turn,
this can be used to optimize the transmission.

We propose using SW-Raptor codes to achieve reliable
transmission and ULP. To this end, and for each GOP, layers
are encoded independently of each other using a SW-Raptor
code with proper N . The coded symbols of a given layer are
then grouped into packets of the same size. The objective is
to maximize the expected PSNR at the receiver side, i.e. the
average quality experienced by users of all classes for a given
packet loss rate, while satisfying the application constraints. In
particular, our goal is to identify the optimal trade off between
the rate devoted to source coding and the redundancy devoted
to SW-Raptor encoding of each layer, expressed in terms of
the number of coded packets per layer per GOP.

At the decoder side, if the users of the i-th class are not able
to correctly receive all the subscribed i layers, they can still
resort to lower layers. These latter, being more protected, can
be decoded with higher probability, providing graceful quality
degradation. It has to be noted that, although the encoding
is done independently for each layer, the optimization of en-
coding parameters is global across all layers. This allows one
to perform ULP by assigning the proper degree of protection
to each layer based on their relative importance. In fact, as
the base layer reception is necessary to all user classes, it is
clearly privileged in terms of protection.

B. Problem statement
We assume that the server is constrained to transmit no

more than T packets per GOP, and that each packet contains
L symbols from a single layer j so as to make the probabilities
of decoding layers independent of each other. No prioritization
among packets is considered, and they are subject to indepen-
dent losses with probability PLR, which is assumed to be
known.

The first variable of the optimization problem is the rate
devoted to each layer by the SVC encoder. This is related to
the quantization parameters (QP) assigned to the layers. We
express this variable as S = {S0, S1, . . . , SM}, where Sj is
the number of source data packets generated per GOP for layer
j, j = 0, · · · ,M .

The second variable to be set is the number of extra packets
generated by the DF encoders for the reliable transmission of



IEEE TRANSACTIONS ON IMAGE PROCESSING 7

each layer. To this end, let us define N = {N0, N1, · · · , NM},
with Nj , j = 0, · · · ,M , being the number of coded packets
generated for the j-th layer. These values should satisfy the
constraint

∑M
j=0 Nj = T .

The next step is to define a quality metric as a function of
variables S and N, and the packet loss rate PLR. We adopt
PSNR as a measure of the end-to-end system performance.
When H.264/SVC is used, there are several possible PSNR
values involved, related to the number of properly decoded
enhancement layers. Let us define PSNRj

i as the average
PSNR experienced by users of class Ci when receiving layers
up to Lj . It is worth noticing that, in case a user class is not
able to receive all the subscribed layers, but, for example, it has
to resort to a lower screen resolution, the decoded video will be
properly upsampled in order to match the required resolution
level. Hence, the PSNR will be evaluated between the original
signal and this upsampled version. This is the reason why the
dependency on the user class index is necessary. Moreover,
PSNR−1

i refers to the case that class-i users are not able to
receive even the base layer, so the reconstruction is devoted
to error concealment only.

The expected PSNR experienced by users of class Ci can
be evaluated as:

PSNRi =

i∑
n=1




(1− Pn)

n−1∏

j=0

Pj


PSNRn−1

i




+




i∏

j=0

Pj


PSNRi

i + (1− P0)PSNR−1
i (2)

where Pj is the probability of correctly decoding the j-th
layer. It is worth noticing that both Pj and PSNRj

i are
dependent on S and N. Eq. (2) contains three terms; the
first one corresponds to the expected PSNR contribution when
decoding fewer layers than subscribed. In particular, the term
(1− Pn)

∏n−1
j=0 Pj represents the probability of losing layer

n while correctly receiving all the underlaying layers, and
the summation term accounts for all the possible events of
receiving a resolution layer lower than the requested one. The
second term corresponds to the ideal case that the subscribed
resolution is correctly received, i.e. exactly i layers are de-
coded. Finally, the last term models the event that not even
the base layer is received, and error concealment has to be
performed. This latter case is important because, even though
in SVC it is often assumed that the base layer is always
received correctly, this is not necessarily the case; therefore,
error propagation due to the loss of the base layer should be
taken into account.

At this point, we can define the expected end-to-end PSNR
over a GOP as

PSNR =

M∑

i=0

gi · PSNRi (3)

where gi is the percentage of clients belonging to the i–th
user class. The goal of our optimization procedure is then to
maximize this end-to-end video quality metric by finding the
rate allocation of the video layers (i.e. S) and the amount of
coded packets generated per each layer (N) that maximize

(3) subject to the application constraints. In this paper, such
constraint are taken as 1) the total bandwidth allocated to
coded video packets must not exceed the available bandwidth,
and 2) the base layer PSNR must exceed a minimum threshold
to provide adequate quality. The general optimization problem
can be cast as follows:
For each GOP
Find PSNRopt = MaxS,NPSNR
subject to the constraints on total rate and base layer quality.

The proposed optimization strategy clearly leads to ULP. In
fact, the most important layers (e.g. the base layer) should be
protected more as, if their decoding process fails, this impacts
on the decoding of all subsequent layers. As more important
layers yield a larger contribution to PSNR, the optimization
algorithm will allocate a larger number of packets to them.

It is worth noticing that in [28] an algorithm is proposed for
joint optimization of the coding modes of SVC layers. In fact,
in the original joint scalable video model (JSVM) software no
joint optimization is performed, but instead the coding modes
of each layer are locally optimized, starting from the lowest
one and using user-specified QP values. The algorithm in [28]
uses a weighted function to achieve several trade-off among
the coding options. For example, it allows one to select a
coding mode for the base layer that is not the best choice
for the base layer itself, but achieves a significant gain in the
enhancement layer coding. However, this approach is different
from that addressed in this paper. Here, in fact, we regard the
video encoder as a black box that can model any scalable
video encoder, so we mainly focus on the trade-off between
source and DF rate allocation. Moreover, as discussed, we
want to privilege the base layer reception. Hence, our situation
amounts to setting the weighting factor in [28] to 0, i.e. to
the classical JSVM scheme, which yields highly efficient base
layer coding.

C. Optimization Algorithm

Let us focus on the objective function in (3) and (2),
and work out an expression for the several terms involved,
emphasizing the dependency on the variables S and N.

Let us assume that exactly r packets out of T are received;
the probability of this event is

P (r) =

(
T

r

)
PLRT−r(1− PLR)r (4)

Given the set of received packets, the decoder attempts to
recover the original information for each layer. The probability
Pj of decoding layer j, j = 0, · · · ,M depends on the actual
number of received packets related to layer j, and on the
erasure correction capabilities of the DF code employed for
that layer. So, for instance, layer j will be discarded if it
will not be possible for a non-systematic code to decode at
least (1 + ε)Sj packets. Let Nj and nj be respectively the
number of transmitted and received packets for layer j, and
N = {Nj}, j = 0, . . . ,M and n = {nj}, j = 0, . . . ,M , with
r =

∑M
j=0 nj . We can write that
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P (j|r,n,S,N) = P (nj ≥ (1 + ε)Sj |r,S,N)

and at this point the probability of decoding layer j can be
evaluated as:

Pj = P (j|r,n,S,N)P (n|r,N)P (r)

In this paper we have used the experimental curves reported
in Sect. II-D to derive P (nj ≥ (1 + ε)Sj |r,S,N) = 1 −
FSR((nj−Sj)/Sj), where FSR(ε) is estimated by simulation.

The probability of receiving packet distribution n from the
transmitted set N, for each layer L0, L1, . . . , LM , can be
written as

P (n|r,N) =

∏M
j=0

(
Nj

nj

)
(
T
r

) (5)

Once the values of Pj are defined, the values of PSNRj
i

can be evaluated as a function of S, i.e. of the rate allocation
performed by the SVC encoder.

Putting all the elements together, we can finally work out
an expression for the objective function PSNR versus S and
N. In principle, we should evaluate this function trying all
possible combinations of SVC rate allocations S (related to the
QP parameter for each layer) and DF code allocation, subject
to the application constraints, and select the configuration
that maximizes the objective function. In Sect. IV we present
results obtained with a full search approach, which is a viable
solution as we have used a single resolution enhancement
layer. In presence of a larger set of quality, resolution and
temporal layers one should develop a more sophisticated
optimization procedure.

IV. PERFORMANCE EVALUATION

We have simulated the transmission of H.264/AVC video
over a UMTS link, assuming that 256 kbps are available at
the application layer. All the generated packets have the same
size. As the performance is expected to vary with packet size,
we have considered several values of this parameter, ranging
from 64 to 1024 bytes. Each packet contains coded symbols
belonging to a single layer. All packets are subject to the same
average loss rate, and the packet loss process is modeled via
a binomial distribution.

Each GOP of each layer is separately encoded using a SW-
Raptor code with LDPC pre-code as in Sect. III, using binary
symbols, window size K = 10000 symbols, No = 1 (FW)
and No = 2 (SW-Raptor). We did not perform simulations
for larger overlaps because, as noted in Sect. II-D, the perfor-
mance of SW-Raptor codes does not significantly improve by
increasing the overlap.

We present results for three video sequences, namely Coast-
guard, Foreman and News, with CIF resolution, frame rate 30
fps and GOP size of 16 frames. We consider two different
client classes. Class C0 can access video in QCIF resolution,
whereas class C1 can handle CIF resolution. The H.264/SVC
encoder implements two levels of spatial scalability, with a
QCIF base layer L0 and a CIF enhancement layer L1. Clients
of the C0 class will only subscribe the H.264/SVC base layer,

whereas C1 clients will subscribe both L0 and L1 to achieve
the full screen resolution video.

A simple error concealment strategy is adopted. When the
base layer L0 of one GOP has not been received, we copy the
last decoded frame of the previous GOP and use it to replace
the missing base layer, until a new GOP is received.

In order to reduce the optimization parameters space, a
set of constraints on the SVC layers allocation have been
imposed. In particular, we imposed PSNR0

0 ≥ 30 dB, i.e.
we fixed a minimum acceptable quality for the base layer
at QCIF resolution, and PSNR1

1 > PSNR0
1, i.e. decoding

of layer L1 must improve the image quality with respect
to the up-sampling from QCIF to CIF. The optimization
amounts to seeking the QPs of the base and enhancement layer
(QP0, QP1) that maximize PSNR in (3), given the previous
constraints and the allowed transmission rate.

A. Results for video optimization

In this section we present simulation results and, in partic-
ular, we analyze the impact on the expected end-to-end PSNR
of 5 system parameters, i.e. QP0, QP1, the packet payload
size L, the average channel conditions PLR and the ratio g1
of clients belonging to class C1.

Tab. IV, V, VI show some optimization results for the
three video sequences, assuming PLR = 0.05 and g1 = 0.4.
Each table includes the number of packets needed to transmit
uncoded video (S0 and S1), the number of coded packets for
each layer (N0 and N1), the corresponding overheads per layer
εj = (Nj − Sj)/Sj and the achieved PSNRopt using SW
as a function of QP0 and QP1. The optimal configuration
in terms of QP0, QP1, N0 and N1 is the one yielding the
largest PSNRopt. The optimal value of PSNRopt is shown
in boldface.

For comparison, in all the tables we report also the opti-
mization results when using the classical FW approach with
the same parameters as SW. In particular, we report in brackets
the packet allocation of the FW scheme only when it is
different from the SW one, and the achieved PSNRopt.
From Tab. IV, V, and VI, we can observe that the optimal
packet allocation for SW and FW is almost the same, but
the PSNRopt achieved by FW is larger. From the previous
Tables one can notice the interplay among the optimization
parameters: increasing QP0 one reduces S0 and leaves more
room to the enhancement layer S1. The optimal rate devoted
to error correction, i.e. N0, N1, is then driven by the proposed
optimization metric and depends on PLR and g1. Finally,
from Table VI we note that only in the case of the Coastguard
sequence the rate budget of 256 Kbps is not enough to
guarantee a minimum PSNR of 30 dB. Clearly, this is due
to the reduced compression efficiency yielded by SVC on that
particular video sequence.

Tab. VII shows the dependency of the optimization process
on the packet payload size for the Foreman sequence. We
consider robust compression of the RTP/UDP/IP header as
in [26], [29], [30]. We can notice that PSNRopt has a
maximum, indicating that there is an optimal packet size for
the transmission. This result can be explained as follows.
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TABLE IV
VIDEO OPTIMIZATION AS A FUNCTION OF QP FOR SW-RAPTOR CODES; T = 66, PLR = 0.05, L = 256 BYTES, g1 = 0.40, News SEQUENCE.

QP0 QP1 S0 N0 ε0 S1 N1 ε1 PNSRopt (FW) PNSRopt (SW)
25 42 (44) 49 58 (60) 0.184 (0.224) 7 (5) 8 (6) 0.143 (0.200) 36.06 36.37
26 40 (41) 45 54 (55) 0.200 (0.222) 10 (8) 12 (11) 0.200 (0.375) 36.15 36.38
27 38 (39) 40 48 (50) 0.200 (0.250) 16 (12) 18 (16) 0.125 (0.333) 35.72 36.18
28 38 36 45 0.250 16 21 0.312 35.88 35.93
29 37 33 41 0.242 20 25 0.250 35.60 35.64
30 36 29 36 0.241 25 30 0.200 35.06 35.24
31 36 27 34 0.259 26 32 0.231 34.76 34.82

TABLE V
VIDEO OPTIMIZATION AS A FUNCTION OF QP FOR SW-RAPTOR CODES; T = 66, PLR = 0.05, L = 256 BYTES, g1 = 0.40, Foreman SEQUENCE.

QP0 QP1 S0 N0 ε0 S1 N1 ε1 PNSRopt (FW) PNSRopt (SW)
29 48 (49) 53 62 0.170 4 4 0.000 31.84 32.76
30 42 (43) 46 56 (57) 0.217 (0.239) 8 (7) 10 (9) 0.250 (0.286) 32.88 33.04
31 40 (41) 41 51 (52) 0.244 (0.268) 13 (10) 15 (14) 0.154 (0.400) 32.66 32.81
32 39 36 45 0.250 17 21 0.235 32.51 32.55
33 38 (39) 31 38 (42) 0.226 (0.355) 24 (18) 28 (24) 0.167 (0.333) 31.88 32.13

TABLE VI
VIDEO OPTIMIZATION AS A FUNCTION OF QP FOR SW-RAPTOR CODES; T = 66, PLR = 0.05, L = 256 BYTES, g1 = 0.40, Coastguard SEQUENCE.

QP0 QP1 S0 N0 ε0 S1 N1 ε1 PNSRopt (FW) PNSRopt (SW)
32 42 42 51 0.214 13 15 0.154 30.13 30.25
33 41 34 43 0.265 19 23 0.211 29.87 29.90
34 41 29 39 0.345 20 27 0.350 29.52 29.52
35 40 24 31 0.292 29 35 0.207 29.20 29.24

TABLE VII
VIDEO OPTIMIZATION AS A FUNCTION OF L FOR SW-RAPTOR CODES; T = 66, PLR = 0.05, BYTES, g1 = 0.40, Foreman SEQUENCE.

L QP0 QP1 S0 N0 ε0 S1 N1 ε1 PNSRopt (FW) PNSRopt (SW)
1024 30 (31) 49 (43) 12 (11) 15 (14) 0.250 (0.273) 1 (2) 1 (2) 0.000 32.10 32.48
512 30 44 (45) 23 29 (30) 0.261 (0.304) 3 4 (3) 0.333 (0.000) 32.63 32.83
256 30 42 (43) 46 56 (57) 0.217 (0.239) 8 (7) 10 (9) 0.250 (0.286) 32.75 32.91
128 30 41 (42) 92 110 (112) 0.196 (0.217) 20 (16) 23 (21) 0.150 (0.312) 32.75 32.90
64 30 41 184 220 0.196 39 46 0.179 32.68 32.70

On one hand, when the packet is large, the overhead of the
packet header is negligible; however, because of the small
number of packets, the allocation algorithm has little room
for optimization, and the resulting video quality is not high.
By reducing the payload size it is possible to fine-tune the
system parameters by better distributing protection between
the two layers. After a certain payload size, the packet header
overhead tends to dominate the performance, using a lot of
the available bandwidth. The optimal packet length L, in this
case, is 256 bytes.

In Tab. VIII the optimized parameters are reported as a
function of PLR for the News sequence. As can be expected,
when the network conditions get worse, more protection is
needed. Moreover, in order to yield smooth video quality,
more encoded packets will be devoted to the protection of
the base layer, at the expenses of the enhancement layer. As a
consequence, the optimal QP1 tends to increase, so decreasing
the best achievable quality. However, the PSNR impairment for
PLR ranging from 0.01 to 0.3 is only about 3 dB, showing
that the proposed system is effective at providing graceful
quality degradation under harsh transmission conditions.

Finally, in Tab. IX the optimized parameters are reported as
a function of the percentage g1 of clients belonging to class
C1.

B. Performance evaluation at the client side

In realistic network applications, even if the average packet
loss rate is known, the actual loss rate between the server and
a given client can be different. In this section we validate
the impact of a mismatch in the packet loss rate on the
proposed optimization procedure. In particular, we perform the
optimization using a given value of PLR, but we assume that a
receiver experiences an actual packet loss rate PLRl 6= PLR.

For each video sequence, we consider one of the optimal
configurations worked out in the previous section, and analyze
the performance at the receiver side as a function of PLRl.
We show the results for classes C0 and C1, using both SW
and FW-Raptor codes. We assume PLR = 0.05, L = 256
bytes and g1 = 0.40.

In Fig. 6 and 7 we show the impact of PLRl on the
optimized system for the Coastguard sequence. In particular,
Fig. 6 shows the performance related to clients belonging to
class C1, while Fig. 7 depicts the performance for class C0.
Lines with square markers in Fig. 6(a) represent the probability
of correctly decoding both layers. Lines with triangle markers
refer to the probability of decoding the base layer only; the
resulting quality will be lower because the video will be
upsampled to meet the requirements of the C1 class. Finally,
lines with circle markers show the probability not to even
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TABLE VIII
VIDEO OPTIMIZATION AS A FUNCTION OF PLR FOR SW-RAPTOR CODES; T = 66, L = 256 BYTES, g1 = 0.40, News SEQUENCE.

PLR QP0 QP1 S0 N0 ε0 S1 N1 ε1 PNSRopt (FW) PNSRopt (SW)
0.01 25 40 (41) 49 55 (56) 0.122 (0.143) 10 (8) 11 (10) 0.100 (0.250) 36.68 36.93
0.05 26 40 (41) 45 54 (55) 0.200 (0.222) 10 (8) 12 (11) 0.200 (0.375) 36.15 36.38
0.10 26 (27) 42 (41) 45 (40) 58 (54) 0.289 (0.350) 7 (9) 8 (12) 0.143 (0.333) 35.62 35.90
0.15 27 42 (43) 40 56 (57) 0.400 (0.425) 7 (6) 10 (9) 0.429 (0.500) 35.22 35.43
0.20 28 42 (43) 36 55 (57) 0.528 (0.583) 7 (6) 11 (9) 0.571 (0.500) 34.58 34.91
0.25 28 (29) 44 (43) 36 (33) 59 (56) 0.639 (0.697) 5 (6) 7 (10) 0.400 (0.667) 33.98 34.41
0.30 28 (29) 49 (50) 36 (33) 63 0.750 (0.909) 3 3 0.000 33.63 34.14

TABLE IX
VIDEO OPTIMIZATION AS A FUNCTION OF g1 FOR SW-RAPTOR CODES; T = 66, PLR = 0.05, L = 256 BYTES, News SEQUENCE.

g1 QP0 QP1 S0 N0 ε0 S1 N1 ε1 PNSRopt (FW) PNSRopt (SW)
0.10 25 44 49 60 0.224 5 6 0.200 39.32 39.38
0.30 25 43 (44) 49 59 (60) 0.204 (0.224) 6 (5) 7 (6) 0.167 (0.200) 37.20 37.36
0.50 26 (27) 40 (39) 45 (40) 53 (50) 0.178 (0.250) 10 (12) 13 (16) 0.300 (0.333) 35.32 35.55
0.70 29 37 33 41 0.242 20 25 0.250 34.26 34.31
0.90 30 (32) 36 29 (24) 36 (32) 0.241 (0.333) 25 (27) 30 (34) 0.200 (0.259) 33.37 33.65
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Fig. 6. Performance analysis at the client side for the Coastguard se-
quence. 6(a): probability that the video be decoded at a given quality by
clients belonging to C1. 6(b): expected PSNR as a function of PLRl.

decode the base layer, i.e. the system failure probability. The
expected PSNR is plotted as a function of PLRl in Fig. 6(b).
In both figures, solid lines refer to SW-Raptor coding, whereas
dotted lines refer to FW. In the two cases, and for this video
sequence, the optimization process yields the same coded
packet allocation. This means that the comparison between
the two systems is actually a comparison between the FW
and SW strategies.

We can notice that, when PLRl is less than PLR, the ex-
pected PSNR is high but limited to the target quality level that
has been selected considering the average network conditions.
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Fig. 7. Performance analysis at the client side for the Coastguard se-
quence. 7(a): probability of video decoding for C0 clients. 7(b): expected
PSNR as a function of PLRl.

On the other hand, when the link conditions are worse than
PLR, the SVC approach provides graceful degradation (Fig.
6(b)). Moreover, the system using SW-Raptor outperforms
the FW-Raptor code in terms of decoding probability. For
example, when PLRl = 2PLR = 0.1, SW-Raptor yields a
probability of successfully decoding the enhancement layer of
about 0.74. In the same conditions, FW only achieves 0.49.
In general, Fig. 6(b) reveals that SW-Raptor yields superior
expected PSNR than FW. Since this figure represents the
average quality of all clients belonging to C1, the difference
between SW and FW Raptor codes is small. However, it must
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be pointed that the video resolution for a single client can be
either high (both layers decoded) or low (only the base layer
decoded).

In Fig. 7 the system performance is reported for clients
belonging to C0. Although part of the bit-rate is devoted to
encoding a layer that is not useful to such clients, also this
class of users achieves good visual quality and robustness.
Indeed, even for PLRl = 0.10, the probability of correct
decoding exceeds 91%. Also in this case, the SW-Raptor
scheme outperforms FW (81%).
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Fig. 8. Performance analysis at the client side for the News sequence. 8(a):
probability that the video be decoded at a given quality by clients belonging
to C1. 8(b): expected PSNR as a function of PLRl.

In Fig. 8 and Fig. 9 the same analysis on the impact
of a mismatched PLRl is shown in the case of the News
sequence. In this case the optimization reported in Tab. IV
leads to different SVC layers and packet allocations for SW
and FW codes, respectively. In particular, using SW the
optimal allocation yields the same QP0 but a lower value for
QP1, i.e. more source packets are allocated to L1. This extra
rate, coupled with the improved error correction performance
given by SW codes, explains the gain in terms of the average
decoded quality showed in Fig. 8(b) (the achievable PSNR is
31.81 dB using SW and 31.39 dB using FW).

In Fig. 9 we can appreciate the performance in terms of
decoding probability and PSNR for the users in the class C0.
In this case the source/channel coding allocation is the same
for both SW and FW codes and the gain of the SW approach
is due to the better error correction capability.

Finally, the effectiveness of our approach is confirmed in
Fig. 10, where we compared the performance of using FW or
SW, given the same packet allocation on the News sequence.
In particular, the optimal allocation for FW has been used also
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Fig. 9. Performance analysis at the client side for the News sequence. 9(a):
probability of video decoding for C0 clients. 9(b): expected PSNR as a
function of PLRl.

in the SW case to show the improvement yielded by the coding
strategy.

We can conclude that SW-Raptor codes always provide
a performance improvement with respect to the classical,
fixed window approach. Moreover, the proposed algorithm for
optimal encoding and coded packet rate allocation achieves
satisfactory video protection even when the link conditions
unexpectedly worsen.

V. CONCLUSION

In this paper we proposed a new class of DF codes, called
SW-Raptor codes, which allow one to virtually enlarge the
source block length by overlapping different data windows.
We provided simulation results related to the standalone per-
formance of SW-Raptor codes, showing that they outperform
state-of-the-art DF codes, yielding very small overhead.

Then, we proposed SW-Raptor codes for unequal loss
protection of scalable video, in the context of MBMS digital
broadcasting over UMTS mobile networks. We defined an
optimization procedure to select the rates to be allocated to
the various layers and the number of coded packets per layer,
so as to optimize an expected end-to-end quality metric. As
the number of encoded packets is different for each layer, the
scheme provides ULP and graceful quality degradation. The
experimental results show that the proposed encoding scheme
achieves very low decoding failure probability, also when the
actual packet loss rate is different from the nominal value.
Moreover, SW-Raptor codes outperform the equivalent scheme
employing classical Raptor codes.
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Fig. 10. Performance analysis at the client side for the News sequence.
Fig. 10(a): probability that the video be decoded at a given quality by clients
belonging to C1. 10(b): expected PSNR as a function of PLRl. In this
analysis, the system using SW adopts the packet allocation corresponding to
the greatest PSNRopt(FW ).

Future research study will focus on the development
of sliding-window systematic raptor codes, extending those
adopted in the MBMS standard, and on the identification of
practical and efficient optimization strategies in the presence
of several enhancement layers.
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