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ABSTRACT
Acoustic echo cancellers are generally based on the assumption of a
linear echo path between the transducers. However the small loud-
speakers that are commonly used in todays terminals can introduce
nonlinear distortions that reduce the performance of echo cancella-
tion. In order to evaluate the degradation in performance, this paper
assesses the behaviour of ve linear echo cancellers in the presence
of nonlinearities and presents the rst thorough comparison of their
robustness. Even if the performance of all the echo cancellers de-
grades as expected, some algorithms are shown to be more robust
than others: fast converging algorithms and block signal processing
are more perturbed in nonlinear environments.

Index Terms— echo cancellation, nonlinear distortion, AEC,
LMS, NLMS, TDLMS, APA, FBLMS, Volterra model.

1. INTRODUCTION

This paper addresses the well known problem of acoustic echo.
Typically, the round-trip delay of mobile and IP networks exceeds
200 ms. Any acoustic feedback between the loudspeaker and the mi-
crophone of a terminal can be particularly disturbing for the far-end
user who can be disturbed by hearing his/her own delayed voice.
Consequently many different approaches to Acoustic Echo Cancel-
lation (AEC) have been proposed over recent years. Common to
much of this work is the assumed linearity of electronic components
and the acoustic echo path between the loudspeaker and micro-
phone. Under such conditions AEC algorithms generally perform
well. However, the miniaturization of transducers and enclosures
introduces nonlinear distortions which are known to degrade the
performance of linear AEC algorithms [1, 2]. Researchers have thus
sought to develop effective solutions to nonlinear AEC.

One common solution to nonlinear AEC is based on Volterra l-
ters [1, 3, 4]. Volterra solutions lead to improved nonlinear echo can-
cellation but tend to come at the expense of higher complexity, slow
convergence and often lead to sub-optimal, local minima MSE solu-
tions [5]. An alternative approach involves the use of linear adaptive
lters followed by a post lter to attenuate residual nonlinear echo.
These solutions tend to be less complex than Volterra-based solu-
tions but rely more heavily upon ef cient linear AEC in the presence
of nonlinearities [6, 7].

Both approaches thus rely to some extent on effective linear
AEC performance in the presence of nonlinearities. It is though,
perhaps surprisingly, dif cult to nd a thorough comparison of the
robustness of linear AEC algorithms to nonlinear distortion (one no-
table exception being [8]) and thus herein lie the contributions of
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this paper. We present an assessment of ve popular, standard lin-
ear AEC algorithms under the presence of arti cially generated but
realistic nonlinear distortions. Contrary to the ndings of [8] our
work shows that advanced AEC algorithms such as the Af ne Pro-
jection Algorithm (APA) do indeed outperform the more conven-
tional approaches in linear environments but attain only compara-
ble performance in highly nonlinear environments. We also show
that in the presence of nonlinearities block processing algorithms
are more affected. In addition we present new experimental work
which assesses the performance of each algorithm under varying
degrees of nonlinear distortion and highlight conditions where the
more conventional algorithms might nonetheless be of bene t. The
work should be of particular relevance to further work in nonlinear
AEC in guiding the choice of linear lter used with post lters and
the adaptation of the linear component of Volterra lters.

The remainder of the paper is organised as follows. A general
system/echo model is introduced in Section 2 before the ve stan-
dard linear AEC algorithms are brie y described. In Section 3 we
introduce the nonlinear model which was used to synthesize non-
linear distortions for our experimental work which is presented in
Section 4. Finally our conclusions are presented in Section 5.

2. ACOUSTIC ECHO CANCELLATION

In this section we introduce a typical system/echo model and a gen-
eral framework for AEC with adaptive ltering. Also described are
the ve approaches to AEC that are investigated in this paper.

2.1. System/echo model

A general system/echo model, which was used for all experiments
reported in this paper, is illustrated in Figure 1. The terminal receives
a downlink (or loudspeaker) signal, 𝑥(𝑛), from a far-end speaker,
and transmits an uplink (or microphone) signal 𝑦(𝑛). In addition to
near-end speech 𝑠(𝑛) and noise 𝑛(𝑛) the uplink signal potentially
includes an additional echo component 𝑑(𝑛), a result of the acousti-
cal coupling between the loudspeaker and the microphone.

The acoustical coupling is generally modelled with a linear con-
volution, 𝑑(𝑛) = 𝑥(𝑛) ∗ ℎ𝑜𝑝𝑡(𝑛), where ℎ𝑜𝑝𝑡(𝑛) is the impulse re-
sponse which characterises the acoustical coupling. AEC may thus
be implemented by estimating ℎ𝑜𝑝𝑡(𝑛) with a lter ℎ(𝑛) in order to
estimate the coupled echo signal 𝑑(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛). The echo is
attenuated simply by subtracting 𝑑(𝑛) from the uplink signal. Since
the acoustical coupling is time varying ℎ(𝑛) is usually an adaptive
lter. Near-end speech disturbs the adaptive lter and so ℎ(𝑛) is
usually updated in echo-only periods, i.e. 𝑠(𝑛) = 0. In this work it
is also supposed that the background noise is negligable, i.e. where
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Fig. 1. System/echo model illustrating the acoustical coupling be-
tween the loudspeaker and microphone and a general approach to
adaptive AEC.

𝑛(𝑛) = 0. Under such conditions 𝑦(𝑛) = 𝑑(𝑛) and thus the re-
sulting error signal, 𝑒(𝑛) is the difference between the echo signal
and its estimate, i.e. 𝑒(𝑛) = 𝑑(𝑛)− 𝑑(𝑛). The error 𝑒(𝑛) is used to
update the lter ℎ(𝑛) whose goal is to drive 𝑒(𝑛) to zero.

Since the linear lter can thus in uence nonlinear ltering per-
formance, it is of interest to study the robustness of the linear l-
ter to nonlinearities. This is even more important to post ltering
approaches, given the inherent dependency between a conventional
linear adaptive lter, used to attenuate the linear echo, and the post-
lter, which is used to attenuate residual (nonlinear) echo. In this
paper we present some new experimental work which assesses the
performance of ve different, standard algorithms, each of which is
described below.

2.2. Linear adaptive lter algorithms

The adaptive lters considered in this paper are updated according
to a general adaptation recursion given by:

h(𝑛+ 1) = h(𝑛) + Δh(𝑛), (1)

where h(𝑛) is the vector of lter taps at time 𝑛, and whereΔh(𝑛) is
the gradient used to update the lter. It is different for each algorithm
and should ensure that h converges to h𝑜𝑝𝑡 after suf cient iterations.
In the following we identify the ve commonly used adaptive AEC
lters that are investigated in this paper. Only the barest of details
are given as full details can be found in the open literature [9].
Least Mean Square (LMS): The LMS lter updateΔh(𝑛) is equal
to 𝜇x(𝑛)𝑒(𝑛), where 𝜇 is a scalar or step size which aims to control
the rate of adaptation (and hence convergence/divergence), x(n) =
[𝑥(𝑛), 𝑥(𝑛− 1), ..., 𝑥(𝑛− 𝐿+ 1)]𝑇 is the input vector of the lter
and 𝐿 is the lter length (256 for all algorithms used here).
Normalized-LMS (NLMS): The NLMS algorithm uses a normal-
ized step size 𝜇. Here the updateΔh(𝑛) is equal to 𝜇

∥x(𝑛)∥2
x(𝑛)𝑒(𝑛).

Transform Domain-LMS (TDLMS): We use a Discrete Co-
sine Transform-LMS (DCTLMS), with an update Δh(𝑛) equal
to 𝜇x̄(𝑛)𝑒(𝑛), where x̄(𝑛) = x(𝑛)T. T is the Discrete Cosine
Transform (DCT) matrix.
Af ne Projection Algorithm (APA): The update Δh(𝑛) is here
given by 𝜇X(𝑛)[X𝑇 (𝑛)X(𝑛)+𝜖𝐼𝑁 ]−1e(𝑛)whereX(𝑛) = [x(𝑛)x(𝑛−
1)...x(𝑛 − 𝑁 + 1)], an 𝐿 × 𝑁 matrix. 𝐿 is the length of the lter,
𝑁 is the order of the APA, 𝐼𝑁 is the identity matrix and e(𝑛) is now
a vector. In this paper we use only 𝑁 = 2 (APA2) (higher order
APA lters were investigated with similar results to those presented
in this article).

Frequency Block-LMS (FBLMS): FBLMS is an implementation
of a block-by-block LMS using fast convolution. In the time domain
the update Δh(𝑛) is given by 𝜇

∑𝑚=𝐵−1
𝑚=0 𝑒(𝑛𝐵 +𝑚)x(𝑛𝐵 +𝑚)

where 𝑛 is now a block index,𝑚 is the block sample index and 𝐵 is
the block length. We use 𝐵 = 256.

3. NONLINEAR MODEL

It is the objective of this paper to report the rst thorough assess-
ment of standard linear AEC robustness to nonlinearities. Since this
requires comparisons of performance both with and without non-
linearities under otherwise identical conditions it is necessary that
nonlinear distortions be generated arti cially. It is these aspects of
the test setup which are described here. All other aspects of the test
setup are described in Section 4.

In general nonlinearities are introduced by the uplink and down-
link ampli ers, by the loudspeaker, the microphone, resonance from
the mobile terminal housing and the acoustic echo path. However,
since the loudspeaker signal is usually of high level, especially in
handsfree mode, it is commonly assumed that nonlinearities from
the downlink ampli er and loudspeaker dominate and that, conse-
quently, all other sources are negligible [3, 10]. Under this assump-
tion the acoustic path may then be considered as linear.

As in [3, 5] both downlink nonlinearities may be adequately
modelled using a Volterra model [3]. As in the work of [10] the full
Volterra model of ampli er and loudspeaker nonlinearities may be
approximated by a cascade of memoryless saturation characteristics.
We take into account only the second and third order nonlinearities
as they are generally assumed to be the most dominant components
[2, 3]. As in [7, 8] for all experimental work reported here nonlin-
earities are generated according to:

𝑥𝑛𝑙(𝑛) = 𝑥(𝑛) + 𝛼𝑥
2(𝑛) + 𝛽𝑥

3(𝑛), (2)

where 𝑥𝑛𝑙(𝑛) is the nonlinear output of the loudspeaker. 𝛼 and 𝛽 are
the respectively second and third order weighting components and
lie in the range of (𝛼, 𝛽) = [0, 1]. It is worth mentionning that the
couple (𝛼, 𝛽) = (0, 0) corresponds to the linear case. This range of
parameters was deemed to be representative of realistic nonlinear-
ities measured through laboratory tests of several popular, current
mobile phones. It also agrees with those in the general literature,
e.g. [11]. The loudspeaker signal 𝑥𝑛𝑙(𝑛) is then convolved with an
impulse response ℎ𝑜𝑝𝑡(𝑛) to simulate the linear echo path between
the loudspeaker and the microphone.

4. EXPERIMENTALWORK

Each algorithm is assessed in terms of Echo Return Loss Enhance-
ment (ERLE), i.e. the reduction in energy (in dB) of 𝑑(𝑛) achieved
by echo reduction. It is also assessed in terms of convergence time
which we de ne as the time needed for the ERLE to reach 95% of
its maximum.

In order to illustrate our experimental setup we describe here
one particular experiment extracted from a larger setup described
below. A 10 second long speech signal is concatenated 6 times to
produce test signal 𝑥(𝑛) of suf cient duration to ensure the con-
vergence of each algorithm. 𝑥(𝑛) is used to synthesize downlink
ampli er and loudspeaker nonlinearities according to Equation 2.
Since we assume a linear echo path the nonlinear signals 𝑥𝑛𝑙(𝑛) are
subsequently convolved with a 256-tap lter ℎ𝑜𝑝𝑡, to simulate the
microphone signal 𝑑(𝑛). Each of the ve AEC algorithms are then
applied to 𝑑(𝑛) according to the general scheme of Figure 1, using
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Fig. 2. ERLE test results to compare the performance in linear and
nonlinear environments.

𝑥(𝑛) as the reference signal. The typical set-up described here is
extracted from a larger test setup, using different impulse responses
ℎ𝑜𝑝𝑡 (measured experimentally using a mobile terminal in an of ce
room) and different input signals (4 speakers, 2 languages). The
larger test set-up leads to identical conclusions as presented below.

The behavior of all algorithms is dependent on the step size
𝜇. We have chosen suitable values of 𝜇 for each algorithm based
on thorough empirical optimization in order to achieve maximum
ERLE after convergence, leading to 𝜇 = 1 for APA and NLMS,
𝜇 = 0.5 for FBLMS and 𝜇 = 0.15 for LMS. Additional exper-
iments (not reported here) show that for different values of 𝜇, the
in uence of nonlinear distortion is similar to the effects described
here. We have also checked that the in uence of 𝜇 on the perfor-
mance of the AEC is similar in linear and nonlinear environments.

4.1. Echo Return Loss Enhancement (ERLE)

Figures 2(a) and 2(b) show the difference between the ERLE (verti-
cal axis) in a linear environment (𝛼, 𝛽) = (0, 0) and in a nonlinear
environment (𝛼, 𝛽) ∕= (0, 0) after convergence for each of the ve
different algorithms. We de ne the ERLE value after convergence as
the mean of the ERLE on the 6𝑡ℎ period of our test sequence. Fig-
ure 2(a) (resp. Figure 2(b)) illustrates the in uence on the ERLE for
different values of 𝛼 (horizontal axis) when 𝛽 = 0 (resp. 𝛽 when
𝛼 = 0). Results where both 𝛽 ∕= 0 and 𝛼 ∕= 0 are similar to pro les
depicted in these two gures, An idea of performance for such test
cases can be accordingly extrapolated from these two curves.

The general trend of these curves shows that the difference
in ERLE of all the algorithms increases when the nonlinearity in-
creases. Also evident is the greater in uence of the second order
weighting factor 𝛼 than the third order factor 𝛽. This can be ex-
plained easily considering the model of Equation 2: for a given
normalized 𝑥(𝑛) (∥𝑥(𝑛)∥ ≤ 1), 𝑥2(𝑛) > 𝑥3(𝑛) so that the second
order 𝛼 has a stronger in uence than the third order 𝛽.

Generally, for small values of 𝛼 and 𝛽 the ERLE difference is
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Fig. 3. Convergence time decreasing in presence of nonlinearities

close to zero, indicating a low degradation in echo cancellation per-
formance due to small nonlinearities. For the LMS, when 𝛼 ≤ 10−3

and 𝛽 ≤ 10−2 and for NLMS and TDLMS when 𝛼 ≤ 10−4 and
𝛽 ≤ 10−3, the ERLE is almost unaffected by the nonlinearities.
This is shown by the atness of the curves in these ranges. The most
affected echo cancellers are the APA and FBLMS, where the differ-
ence in ERLE decreases even for small values of 𝛼 and 𝛽.

To better illustrate the behavior of the ERLE over time, Figure 2
(c) gives the ERLE for the APA2, NLMS and FBLMS for different
values of 𝛽 (𝛼 = 0). Similar curves are obtained by considering
different values of 𝛼. TDLMS gives almost identical behavior to the
NLMS and so its pro le is not presented. These curves show clearly
how nonlinearities reduce the maximum ERLE reached by each al-
gorithm. As already mentioned the FBLMS is the most affected and
its ERLE is lower than that of NLMS when 𝛽 > 10−3. Even if the
APA lter is disturbed signi cantly by nonlinearities, it still reaches
a better ERLE than other algorithms after convergence. From these
experiments, a rst conclusion is that the faster an algorithm con-
verges the more it is affected by nonlinearities. The APA, for in-
stance, is known to convergence quickly compared to the NLMS but
its performance drastically decreases when nonlinearities increase.

FBLMS, however, is severely affected even though it does not
converge quickly in linear environments. This behavior is explained
by the block-by-block processing nature of FBLMS. According to
Equation 2, small input signals 𝑥(𝑛) lead to small nonlinearities. As
a result, even for high values of 𝛼 and 𝛽, a sample-based algorithm
will be, for certain periods of low 𝑥(𝑛), equivalent to a linear envi-
ronment and thus, during such periods, it will be relatively less dis-
turbed by nonlinearities. Considering block-based processing such
as FBLMS, a whole frame of low level 𝑥(𝑛) is needed to have the
same effect. As a result, block-based algorithms are more disturbed
by the same level of nonlinear distortion.

4.2. Convergence Time

Figures 3(a) and 3(b) show the in uence of the nonlinear weight-
ing factor on the convergence time. These results clearly show that
in nonlinear environments all the algorithms converge faster than in
linear environments. Such unexpected results are explained by the
fact that the algorithms converge in practice to a lower ERLE level;
this ERLE level is in fact reached faster simply because it is lower.
Looking, for instance, at the pro le for LMS, its convergence time
decreases from 45s to less that 5s for 𝛼 varying between 0 and 1, but
at the same time the ERLE achieved by LMS collapses by 30 dB. It
is nevertheless an important result that echo cancellers operating in
nonlinear environments provide less echo reduction but their maxi-
mum level of echo reduction is reached relatively quickly. Accord-
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Fig. 4. System distance over time (𝛼 = 0, 𝛽)

ingly, fast converging algorithms such as APA can be of less interest
in nonlinear environments as the argument to use such algorithms
due to their reduced convergence time may no longer hold.

4.3. Estimation of Linear Echo Path

Plotted in Figures 4(a) and 4(b) is the evolution of the system dis-
tance

∣
∣
∣
ℎ𝑜𝑝𝑡−ℎ(𝑛)

ℎ𝑜𝑝𝑡

∣
∣
∣, over time in dB. We present here the results with

only APA2 and NLMS. The system distance allows us to judge the
accuracy of the AEC in estimating the linear component of the echo
signal. We can rst observe that APA2 results in better estimation in
the presence of low level nonlinearities, but less accurate estimation
when nonlinearities increase. The NLMS shows slower convergence
than APA2 but its estimate is closer to the linear case until the level of
nonlinearities exceeds 𝛽 = 10−1. This shows that the estimation of
the linear component of the echo is more robust when using NLMS
in highly nonlinear environments. The behavior of the NLMS is
similar to that of TDLMS and LMS (results not shown here). The
FBLMS system distance is also more affected as was the case for the
ERLE. One could easily assume that the linear echo canceller aims
at estimating the linear component of 𝑑(𝑛), but this assumption is
not supported by these results. Indeed the system distance increases
when the nonlinearities increases. This means that, in practice, echo
cancellers do not converge to a reliable estimate of the linear com-
ponent of the echo path ℎ𝑜𝑝𝑡. This is of particular interest as many
algorithms assume that a nonlinear system can be accurately mod-
elled by a cascade of a linear echo canceller and post cancellation of
the residual nonlinear echo [6]. Even in [3] a poor estimation of the
linear component of the echo will in uence the performance of the
whole system.

5. CONCLUSIONS

This paper reports an assessment of linear AEC performance in
nonlinear environments modelled by a Volterra approximation. We
compare the performance of ve common standard algorithms. Ex-
perimental results show that APA achieves similar performance to

NLMS in highly nonlinear environments. The FBLMS performance
collapses even for relatively small nonlinearities. We also show that,
in presence of nonlinearities, the linear component of the echo is not
well estimated by conventional approaches to AEC. This leads us to
question the common application of linear AEC to cancel the linear
component in nonlinear environments.

Thus the experimental results reported here show that perfor-
mance varies greatly across the different algorithms investigated.
The study highlights the need for further work to con rm these re-
sults on a wider array of AEC approaches to con rm the interpreta-
tion proposed in this article, i.e. the low robustness of fast converging
algorithms and block-based processing facing nonlinearities. More
generally, assessing the performance of linear AEC is an important
step to provide effective nonlinear AEC systems. Such an investi-
gation has, perhaps surprisingly, not been published previously and
thus this article sheds new light on the robustness of linear echo can-
cellers to nonlinear distortion.

6. REFERENCES

[1] A. Stenger, L. Trautmann, and R. Rabenstein, “Nonlinear
acoustic echo cancellation with 2nd order adaptive volterra l-
ters,” ICASSP, vol. 2, pp. 877 – 880, Mar 1999.

[2] A.N. Birkett and R.A. Goubran, “Limitations of handsfree
acoustic echo cancellers due to nonlinear loudspeaker distor-
tion and enclosure vibration effects,” IEEE ASSP Workshop,
pp. 103 – 106, Oct 1995.

[3] A. Guerin, G. Faucon, and R. Le Bouquin-Jeannes, “Nonlin-
ear acoustic echo cancellation based on volterra lters,” IEEE
Trans. on Speech and Audio Proc., vol. 11, pp. 672 – 683, Nov
2003.

[4] D. Zhou, V. DeBrunner, Y. Zhai, andM. Yeary, “Ef cient adap-
tive nonlinear echo cancellation, using sub-band implementa-
tion of the adaptive volterra lter,” ICASSP, vol. 5, 2006.

[5] A. Fermo, A. Carini, and G.L. Sicuranza, “Nonlinear acoustic
echo cancellation using adaptive orthogonalized power lters-
analysis of different low complexity nonlinear lters for acous-
tic echo cancellation,” IWISPA, pp. 261–266, June 2000.

[6] O. Hoshuyama and A. Sugiyama, “An acoustic echo suppres-
sor based on a frequency-domain model of highly nonlinear
residual echo,” ICASSP, vol. 5, May 2006.

[7] K. Shi, X. Ma, and G. T. Zhou, “A residual echo suppres-
sion technique for systems with nonlinear acoustic echo paths,”
ICASSP, pp. 257 – 260, Apr 2008.

[8] R. Niemisto and T. Makela, “On performance of linear adap-
tive ltering algorithms in acoustic echo control in presence of
distorting loudspeakers,” IWAENC, pp. 79–82, Sept 2003.

[9] S. Haykin, Adaptive Filter Theory 4𝑡ℎ Ed, Prentice Hall, 2001.
[10] F. Kuech, A. Mitnacht, and W. Kellermann, “Nonlinear acous-

tic echo cancellation using adaptive orthogonalized power l-
ters,” ICASSP, vol. 3, pp. 105–108, Mar 2005.

[11] W. Frank, “An ef cient approximation to the quadratic volterra
lter and its application in real-time loudspeaker linearization,”
Signal Processing, vol. 45, pp. 97–113, Jul 1995.

316


