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Abstract—Enterprise networks have a complexity that some-
times rival the one of the larger Internet. Still, enterprise traffic
has received little attention so far from the research community.
Most studies rely on port numbers to identify applications.

In this work, we introduce a method to build statistical
classifiers to detect specific intranet applications.

We exemplify the approach with traces collected within the
Eurecom network. We demonstrate that our statistical classifiers
are able to classify the majority of the flows in our traces. For
the cases when the traffic on a specific port cannot be fully
identified with our application/protocol decoder, e.g., encrypted
traffic, we demonstrate that our approach can be used to test
the homogeneity of the traffic, i.e., that the corresponding flows
share a common statistical signature that differs from the one of
the rest of the traffic.

I. I NTRODUCTION

Accurate identification of network traffic according to ap-
plication type is a key concern for most companies, including
ISPs. To overcome the limitations of the early solutions based
on port numbers, deep packets inspection tools and several
statistical classification techniques were proposed [7], [1], [6],
[8], [11], [2]. These techniques were heavily tested on Internet
traffic.

However, to the best of our knowledge, no work has tackled
the problem of enterprise traffic1 classification. Indeed, nearly
all enterprise traffic studies in the literature rely on port
numbers to identify applications inside enterprise networks
[15].

In this work, we propose an approach to build statisti-
cal classifiers (one per application of interest – see Section
III-C) for intranet traffic that do not require port numbers
to accurately identify specific intranet technique. We relyon
a supervised machine learning approach (logistic regression)
to build those classifiers. As such, we need to train the
classifiers on proper training sets, which are packet traces
for which the ground truth, i.e., the application generating
the flows in the data set, is known. However, to the best of
our knowledge no publicly available deep packet inspection
tool embeds signatures for intranet traffic. Commercial tools
rather focus on traffic at the boundary of enterprise network,
i.e, mostly Internet traffic. Though there is a number of
applications that might be used in both types of environment,
there are applications and protocols specific to intranets,
e.g., NFS or NetBios. In this work, we turn tshark into
a DPI tool by leveraging its ability to decode over 1000

1By enterprise traffic, we specifically mean the traffic exchanged between
hosts and servers within the boundary of the enterprise network, which can
extend over the Internet with the use of virtual private networks to connect
branches together or to a data center. Note that we use the terms intranet
traffic and enterprise traffic interchangeably in this work.

protocols/applications (http://www.wireshark.org/docs/dfref/).
We use tshark, whenever it was possible (when an appropriate
decoder was available), to select flows on popular ports that
indeed correspond to the applications that should flow on these
ports, e.g., LDAP flows on port 389. This allows us to build
training sets for our statistical classifier.

We exemplify our approach on two one-hour long traces
collected inside the Eurecom’s network, that aggregate the
traffic between all the servers, grouped in a specific VLAN,
and end user’s machines.

We obtain the following results:

• The use of the protocol/application decoding capacity
of tshark allows us to validate that traffic behind the
vast majority of the most popular ports in our traces
corresponds to the legacy applications behind those ports.

• Our statistical classifiers feature high accuracy and preci-
sion for most of the ports for which tshark could provide
the ground truth.

• For the cases where tshark was not able to decode the
protocol, e.g., Eurecom’s antivirus application or when it
could only provide partial information, e.g., that traffic
behind port 636 (LDAPS) was flowing over SSL, we
show that our classifier can still be used to test the
homogeneity of the corresponding traffic. Homogeneity
means that all the flows on the port under study share
similar statistical behavior, which significantly differs
from the other flows in the data set and suggests that they
have been generated by the same application. Knowledge
of the actual server behind an IP address further validates
the effectiveness of our classifiers.

• We used as classification features an extension of the
technique proposed in [1] that considers the size and
direction of the first few packets of a connection as a
signature of traffic. This technique is considered as a
state of the art technique for classifying Internet traffic
and, given our results, it seems that approach, originally
proposed for Internet application also works for enterprise
applications.

II. PROBLEM STATEMENT

A flow is defined as a sequence of packets with the same
source IP address, destination IP address, source port, and
destination port. Our approach, is to build a specific classifier
per application. LetA be such an application and letY be a
random variable that takes value one if the flow is generated
by applicationA and0 otherwise. LetX be the n-dimensional
random variable corresponding to the flow features. To each
flow a vector x consisting of then measured features is



associated. Consider a flow with the following features vector
x = (x1, x2, · · · , xn). We want to estimate the probability that
this flow is generated by applicationA or not. Formally, we
can state this as:

p(Y = 1|X = x) = P (x, β), (1)

wherep(Y = 1|X = x) is the conditional probability that
the flow with featuresx = (x1, x2, · · · , xn) is generated by
applicationA and P is a function ofx parametrized by the
weights vectorβ = (β0, β1, · · · , βn).

We cast this problem as a logistic regression problem.
Logistic regression is designed for dichotomous variables, i.e.,
to model the relation between a binary variable (true vs. false)
and a set of covariates. The use of logistic regression modeling
has proliferated during the past decade. From its original use in
epidemiological research, the method is now commonly used
in many fields including but not nearly limited to biomedical
research [16], business and finance [14], criminology [17] and
linguistics [10].

III. L EARNING CLASSIFIER USINGLOGISTIC REGRESSION

A. Logistic regression model

Within the Logistic regression framework, one assumes a
specific function P:

P (x, β) =
e
β0+

∑

n

j=1
βixi

1 + e
β0+

∑

n

j=1
βixi

, (2)

From the above equation, we can derive a linear function
between the odds of having application A and the features
vectorx, called the logit model:

log

(

P (x, β)

1 − P (x, β)

)

= β0 + β1x1 + · · · + βnxn, (3)

Unlike the usual linear regression model, there is no random
disturbance term in the equation for the logit model. That does
not mean that the model is deterministic because there is still
room for randomness in the probabilistic relationship between
P (x, β) and applicationA.

To implement any logistic regression model, one needs to
choose theβ0, . . . , βn values based on a given training set,
i.e., a set of flows for which we know whether they have
been generated by A or not. We discuss this issue in the next
section.

B. Parameter estimation

Assigning the parameters to the logit model boils down to
estimating the weights vectorβ, which is usually done using
maximum likelihood estimation.

Consider a training data set ofN flows characterized by
the features vectorsX = (X1,X2, · · · ,Xn), where Xi =
(xi

1, x
i
2, · · · , x

i
n) is the features of flowi, and let the vector

Y = (y1, y2, · · · , yn) be such thatyi = 1 if flow i is generated
by application A and yi = 0 otherwise. The likelihood
function is given by a standard formula (see [4]):

P (X,β) =

N
∏

j=1

p(Y = yj |Xj) (4)

=

N
∏

j=1

(p(Y = 1|Xj)
yj (1 − p(Y = 1|Xj))

1−yj

As the values ofp are small, it is common to maximize
the log-likelihoodL(X,β) = log P (X,β) instead (see [4]),
to avoid rounding errors,

L(X,β) =
N

∑

j=1

[yj log(p(Y = 1|Xj)) + (1 − yj)log(1 − p(Y = 1|Xj))]

(5)
By substituting the value ofp(Y = 1|Xj) by its value

defined in Equation (2) we get the log-likelihood for the
logistic regression:

L(X,β) =
N

∑

i=1

[

yiβ
T Xi − log(1 + eβT Xi)

]

(6)

In the logistic regression model, we wish to findβ that max-
imizes Equation (6). Unfortunately, this can not be achieved
analytically. In this work, we compute it numerically using
the Newton-raphson algorithm [4]. The Newton-Raphson al-
gorithm has been shown to converge remarkably quickly [5].
In this work, it takes less than one second to output an estimate
of β.

C. Classification process

Logistic regression falls into the class of supervised machine
learning techniques[13]; thus it consists of two main steps. A
training step and a classification step.

Training step consist of building a classifier for each appli-
cation of interst. Consider, for example, the application IMAP.
Using Newton-raphson algorithm we estimate a vectorβA that
maximize the probability of being IMAP for all IMAP flows
and minimize this probability for all non-IMAP flows.

The classification step is done as follows: a given feature
vectorx = (x1, · · · , xp) is classified as generated by applica-
tion A if P (x, βA) is larger than a thresholdth. A usual choice
of the threshold isth = 0.5 [5], [4]. By using Equation (3),
this boils down to deciding that the new flowx is generated
by applicationA if β0 +

∑n

i=1
x1βi > 0.

The choice ofth = 0.5 is very conservative, as the logistic
regression has a strong discrimination power. For example,
when considering the IMAP application in the result section,
more than 90% of non-IMAP flows have a probability to be
IMAP flow less than 0.01, and more than 90% of IMAP flows
have a probability of being a IMAP larger than 0.95.

We find the logistic regression technique very convenient as
it allows to add a new classifier for each new application we
want to analyze. In addition, the computation complexity of
logistic regression in the classification phase is very low,as it
is linear with the input features.
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Fig. 1. Architecture of the network

IV. EXPERIMENT SETTING

A. Data sets

We tested the validity of our classification technique on
traffic from our own network. Fig. 1 presents a high level
view of our network. This networking infrastructure, which
consists of around 800 workstations equipped with a variety
of operating systems. The network is organized into several
VLANs (servers, staff, DMZ, . . . ) connected via a Cisco multi-
layer switch. We collected two traces (on October, 28. 2009)
of one hour long (one in the morning, between 10 and 11 am
and one in the afternoon, between 3 and 4pm) of all traffic
flowing between the servers and the end users machines within
the Eurecom network. We restrict our attention to TCP flows
as they represent more than 97% of flows in each trace, and
they carry over 99% of the bytes.

B. Flow Features

Most studies on traffic classification rely on statistics com-
puted once all the packets of a flow have been observed, e.g.,
duration, number of packets, mean packet size, or inter-arrival
time [13]. This clearly prevents any online classification.In
contrast, we evaluate the feasibility of application identifica-
tion in the early stage of a connection. A few works have
tackled this challenge. In particular, [1] showed that the size
and direction of thek first data packets of each connection,
wherek is typically in the range of 4 to 5 packets, lead to
a good overall classification performance. In this paper we
usek = 4. We enrich this set with a push flag indicator that
indicates whether a data packet has its PUSH flag set or not.
Thus, for each data packet we have 3 parameters; direction of
the packets (1 for up and 0 for down), PUSH flag indicator (1
if the flag is present and 0 if not) an the size of the packet.
We end up having a mix of quantitative (size of data packet)
and qualitative (direction, push flag) features. The ability of
logistic regression to handle both types of parameters was the
main reason that lead us to use it in this paper.

As we are using as features information derived from the
first 4 data packets, we de facto exclude all flows with less
than 4 data packets as well as the ones for which we did not
observe the initial three way handshake. This leave us 59% of
the flows that are carrying 99.77% of the bytes in our traces.

C. Performance Metrics

We use the accuracy and precision metrics to assess the
quality of our statistical classifier. They are built upon the
notion of True Positives (TPs), True Negatives (TNs), False
Positives (FPs) and False Negatives (FNs). These notions are
defined with respect to a specific class. Let us consider such
a specific class, say the IMAP class. TPs (resp. FNs) are the
fraction of IMAP flows that are labeled (resp. not labeled)
as IMAP by the statistical classifier. FPs (resp. TNs) are the
fraction of flows not labeled as IMAP by the ground truth tool
that are labeled (resp. not labeled) as IMAP by the statistical
classifier.

We use the following metrics to assess the performance of
the classification method:

• Accuracy , a.k.a Recall: Accuracy corresponds to the
fraction of flows of a specific class correctly classified. It
is the ratio of True Positivesto the sum of True Positives
and False Negatives for this class. For example, an
accuracy of 50% for the IMAP class means that only half
of the IMAP flows are labeled similarly by the statistical
classifier.

• Precision : For a given class, it is the ratio of True
Positives to the sum of True Positives and False Positives.
Precision relates to the purity of a class. For example,
a precision of 100% for the IMAP given class means
that the statistical classifier has put in this class only
IMAP flows. This result is satisfactory only if all IMAP
flows are actually in this class, which is measured by the
accuracy. From a general point of view, a classifier works
well if it offers both high accuracy and precision for all
classes.

V. EVALUATION

We use a supervised classification technique to classify
traffic. To avoid a classification error coming from a bad
estimation of the statistical model, we limit ourselves to build
classifiers for ports hit by more than 250 flows. Using this
rule, we end up with 10 ports, whose complete list, along
with the legacy application using this port is: 25 (SMTP),
389 (IMAP), 445 (NetBios), 443 (HTTPS), 636 (LDAPS),
993 (IMAPS), 1025 (DCE/RPC), 2799 (unknown application2)
and 9920 (Antivirus) It might sound puzzling at first that the
Antivirus port falls into our definition of intranet traffic,but
in practice, the internal hosts connect to an internal server
to obtain viral database updates that this server regularly
downloads from the servers of the Antivirus company using
the Internet connection.

As can be seen from Table I, those 10 ports account for more
than 80% of the flows in our traces but they represent only a
moderate fraction of bytes, respectively 18 and 56.6%. Most
of the bytes are indeed carried on port 2049, the legacy NFS
port, as we use NFS v3 at Eurecom that can flow over TCP.
The third column of Table I indicates that if we add traffic on

2Port 2799 is used between two internal servers connected to the multilayer
switch and running database applications



TABLE I
TRAFFIC BEHIND THE 10 MOST POPULAR PORTS

trace % flows % bytes % bytes with 2049 # flows on 2049
Morning 82% 18% 85.6% 138

Afternoon 80% 56.7% 96% 170

port 2049 to the traffic over the 10 most popular port, we end
up observing over 85% of the bytes in each trace. However,
the number of flows on port 2049 is too low (fourth column
of Table I) to permit a reasonable statistical analysis and we
leave for future work an in depth study of this port.

We proceeded as follows to analyze the two traces. We first
use the protocol/application decoding capabilities of tshark to
decode the traffic flowing on the ports we focus on. For each
port number, we next build a stistical model on one trace and
test it on the second trace. Note that we use the whole traffic
(not only the traffic targeting the 10 selected port numbers)in
our training data set and test data set. We present results only
for the case when training on the morning trace and testing on
the afternoon trace, as the reverse case offers highly similar
results.

TABLE II
OVERALL TRAFFIC CLASSIFICATION SCORES

Port number accuracy (%) precision (%)
25 (SMTP) 95 97.2
143(IMAP) 99.6 99.5

445(NetBios) 91.5 98.7
443(https) 97.5 100

389(LDAP) 91.4 92
636(LDAPS) 95 92.4
993(IMAPS) 99.2 100

1025(DCE/RPC) 75.5.8 93.4
2799 100 100

9920 (Antivirus) 94.3 97.1

A. Ground Truth Establishment

While collecting the traces, we set the snapshot length to 96
bytes, which means that we capture up to 42 bytes of payload
(as Ethernet+IP+TCP headers without option sum to 54 bytes).
For a given port, we first demultiplexed all the connections
targeting this port. We next applied the corresponding tshark
decoder and parse the summary file of tshark to check if at
least one data segment has been correctly decoded3. If this is
the case, we consider that this connection corresponds to this
application. For the case of IMAPS and LDAPS, we instructed
tshark to look for SSL traffic. Also, for port 445, we looked
for NetBios and for port 1025 for DCE/RPC. For ports 2799
and 9920, we have no decoder that we can use. We will see in
the next section that we can still use our statistical classifier
to test the homogeneity of the traffic behind this port.

Applying the above strategy, we find that close to 100%
of the connections targeting the ports we consider indeed

3Note that tshark is not a fully automatic deep packet inspection tool, as its
default behavior is to try to decode the legacy application(s) behind a specific
port. However, forcing tshark to test all its 1000 decoders to each packet in
a trace is highly expensive from a computational viewpoint.

correspond to the legacy application flowing behind the cor-
responding port.

B. Classification results

In this section, we first discuss overall results for all internal
traffic from and to users machines and also from and to the
DMZ4 (DMZ servers only to internal servers). We next focus
on DMZ traffic only.

1) Overall Results: Table II presents the classification
scores – accuracy and precision – obtained for each port.
We observe very high accuracy and precision for all ports
for which tshark could help in building proper training sets.
The only exception is port number 1025 corresponding to
Microsoft applications using DCE/RPC. While it shows a high
precision, its accuracy is low (74.5%). A high precision means
that all flow labeled as 1025 are indeed of DCE/RPC type,
while a low accuracy means that the classifier is not able to
dig up all the flows targeting this particular port number. Itis
likely that several Microsoft applications communicationare
using this same port, hence, generating a mixed profile.

For the case of encrypted traffic where tshark was only
able to confirm that the traffic flows over SSL, i.e., HTTPS,
IMAPS and LDAPS, our classifiers enable to prove that the
corresponding traffics are homogeneous, i.e., leave a statistical
fingerprint that highly differs from the one of the rest of traffic.
As it was possible to verify that the flows indeed targeted the
correct servers (HTTPS server, etc.) in the Eurecom network,
this further validates the effectiveness of our classifiersfor
encrypted traffic.

For the case of ports 2799 and 9920, we have no ground
truth at our disposal. We can however still apply the same
strategy: using the whole traffic behind this port in the first
trace and test it on the second trace. The fact that all traffic
in the second trace that targeted those ports indeed passed
the classification test (high accuracy) and only this traffic
(high precision) is a clear indication that the traffic behind
those ports is highly homogeneous. Indeed, according to our
classifier these flows share the same statistical characteristics
in both traces.

2) DMZ: In our network, only four applications are sup-
posed to send data from the DMZ to the internal servers,
namely SMTP, IMAP, IMAPS and LDAPS. We trained classi-
fiers for the four corresponding port numbers to see how they
behave in this low diversity network. Table III presents the
classification scores for each port. These figures show that in
this particular case, the logistic regression fully captures the
statistical behavior of each application and is able to detect
all the traffic. This result suggest to use logistic regression for
anomaly detection, i.e., to detect if a flow that does not pass
the test is either malicious or malformed (application error).

VI. RELATED WORK

Several studies have recently been performed on corporate
networks. For a much more complete survey, see [15].

4DMZ (demilitarized zone) is a sub-network that contains and exposes
an organization’s external services to a larger untrusted network, usually the
Internet http://en.wikipedia.org/wiki/DMZ(computing).



TABLE III
CLASSIFICATION SCORES FORDMZ TRAFFIC

Port number accuracy (%) precision (%)
25 (SMTP) 100 100
143(IMAP) 100 100

636(LDAPS) 100 100
993(IMAPS) 100 100

In [9], the authors presented a first work of its kind focusing
on the traffic of large enterprise network. They contrast pure
intranet traffic to traffic to and from the Internet in terms
of volumes and applications and report on some specific
phenomena like the existence of failures to establish specific
connections internally. They leveraged their knowledge of
protocol semantics (and thus go beyond port numbers) to
check if failures are widespread among local hosts (it turns
out to be the case) or not. However, they did not try to identify
the root causes behind those observations.

In [3], the authors look at the health of a typical enterprise
network using a metric based on the fraction of useful flows
generated by end hosts. Flows considered non-useful are those
that explicitly fail or else do not elicit a response from the
intended destination. Examining traces collected from 350
mobile hosts at Intel Research, they find that about 34% of the
flows are not useful. While high, this figure is not alarming
as it does not translate necessarily into users experiencing
performance issues.

In [12], the authors tackle the problem of role classification
of hosts within enterprise networks. Role classification consists
in grouping hosts into related roles so as to obtain a logical
view of the network in terms of who is using which resources.
Based on communication graphs, the authors proposed to
algorithms to uncover logical groups based on roles. For
instance, sales hosts as well as and managers of engineers
were clustered differently from the other engineers as they
were using distinct types of applications hosted by different
servers.

VII. C ONCLUSION AND FUTURE WORK

In enterprise networks, there is an ever-increasing volume
and variety of traffic. In this paper, we propose an approach to
build statistical classifiers for intranet traffic. Our starting point
is the common belief that applications do not hide themselves
in intranets and use legacy ports. We used a well-known
protocol/application decoder to validate that this actually holds
for our network. We thus obtain a ground truth basis on top of
which we can build statistical classifiers to detect key intranet
applications that can be used a priori in any enterprise network
(note that it does not port number nor payload information).
Our approach works both for unencrypted and encrypted
traffic. For the cases where it was possible to verify with the
protocol/application decoder the application behind a port, we
show that a classifier can be built to test the homogeneity of
the traffic behind this port.

We consider a number of future extensions to this work.
First, further experiments in our network and also on traffic

from different networks should be carried out to test the robust-
ness of the method and build classifiers for more applications
(e.g., NFS). Second, we considered so far TCP traffic only,
however, there can be a significant portion of traffic in intranets
that flow over UDP and we intend to extend the approach to
handle such traffic.
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