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Abstract

In this paper we study the capacity of some channels whose conditional output probability

distribution depends on a state process independent of the channel input and where channel state

information (CSI) signals are available both at the transmitter (CSIT) and at the receiver (CSIR).

When the channel state and the CSI signals are jointly i.i.d., the channel reduces to a case studied

by Shannon. In this case, we show that when the CSIT is a deterministic function of the CSIR,

optimal coding is particularly simple. When the state process has memory, we provide a general

capacity formula and we give some more restrictive conditions under which the capacity has still

a simple single-letter characterization, allowing simple optimal coding. Finally, we turn to the

AWGN channel with fading and we provide a generalization of some results about capacity with

CSI for this channel. In particular, we show that variable-rate coding (or multiplexing of several

codebooks) is not needed to achieve capacity and, even when the CSIT is not perfect, the capacity

achieving power allocation is of the water�lling type.

Keywords: Channel capacity, channel state information, fading channels, power allocation.

1 Introduction

Channels whose output conditional probability depends on a time-varying state have been widely

studied. Depending on the assumptions on the channel state and on the availability of channel state
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information (CSI) at the transmitter (CSIT) and at the receiver (CSIR), a whole range of problems

rises, each related to some physical situation of interest. A partial list includes channels with CSIT

only [1, 2, 3], the Gilbert-Elliot channel [4, 5] and, more in general, the �nite-state Markov channels

without CSI [6], a number of compound channels studied in [7], the block-interference channel of [8]

and various forms of arbitrary-varying channel [9, 10, 11].

More recently, driven by the growing interest in mobile wireless communications, numerous works

have been devoted to assessing the information theoretic limits of Gaussian fading channels, which

can be modeled as the continuous counterpart of the discrete channels mentioned above (see for

example [12, 13, 14, 15, 16, 17, 18, 19]). Also, some recent works have been devoted to the more

realistic case of non-perfect CSI [20, 21, 22].

The receiver may have some CSI from the insertion of training symbols in the transmitted signal.

Moreover, it can wait until the end of transmission before decoding, so that it has CSI over the whole

received sequence. For the CSI at the transmitter, we distinguish between channels where CSIT

is causal from channels where CSIT is non-causal. In the case of causal CSIT, �rst introduced by

Shannon [1], the transmitter at time n knows only the CSI signal from time 1 to n. In the case of non-

causal CSIT, introduced by Gelfand and Pinsker [10], the transmitter knows in advance the realization

of the state sequence from the start to the end of transmission. Clearly, both the information theoretic

problems and the practical applications related with these two classes of channels are rather di�erent.

Causal CSIT is more suited to situations where the channel state is measured sequentially. For

example, in a fading channel where measures of the instantaneous channel attenuation are obtained at

the receiver and sent back to the transmitter via a feedback link, as in power control schemes currently

implemented in some cellular standards [23]. Non-causal CSIT is more suited to situations where the

transmitter can sound the channel beforehand over the whole transmission span, as in the case of the

storage of encoded information in a computer memory with defective cells [24, 25].

In this paper we deal with channels with causal CSIT. In Section 2 we consider the case of i.i.d.

states studied by Salehi [20] and we show that the channel reduces to Shannon's channel [1]. We show

that when the CSIT is a deterministic function of the CSIR, optimal codes can be constructed directly

over the input alphabet, while in general, coding over an expanded alphabet is required (a related

result in the case of a discrete additive channel can be found in [26]). In Section 3 we consider the case

of states with memory. In the case of no CSIR, the capacity was determined by Jelinek [2, 3] for two

classes of channels: the �nite-state Markov indecomposable and the strongly indecomposable channels.

The general case with arbitrary memory has been recently treated in [27]. Unfortunately, the capacity
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formulas in [2, 3, 27] do not provide much intuition on practical good coding schemes. Nevertheless,

under some more restrictive conditions, a single-letter characterization of channel capacity is still

valid, so that codes constructed directly over the input alphabet are still optimal. In Section 4 we

turn to the AWGN channel with fading and we provide a generalization of some results about capacity

with CSI for this channel. As a by-product of this analysis, we show that: i) variable-rate coding (or

multiplexing of several codebooks) is not needed to achieve capacity; ii) the capacity achieving power

allocation is of the water�lling type, even with non-perfect CSIT; iii) constant power allocation is

optimal for the case of no CSIT and perfect CSIR, even in the case of non-i.i.d. fading (as mentioned

explicitly in [13]). Finally, in Section 5 we provide some numerical examples of the fading AWGN

channel with non-perfect CSIT.

Notation conventions are as follows: random variables are denoted by upper case letters (e.g., A);

a lower case letter a is used to denote a particular value of A; the short-hand notation A
N
M indicates a

sequence of random variables (AM ; : : : ; AN ) and a
N
M denotes a particular value of AN

M ; fAng denotes
a generic sequence of random variables AN

M , for any arbitrary M and N .

2 Channel model and results for i.i.d. channel states

Consider the channel of Fig. 1, with discrete input Xn 2 X , output Yn 2 Y and state Sn 2 S,
characterized by a family of conditional output probability distributions fp(yjx; s) : s 2 Sg such that

p(yN1 jxN1 ; sN1 ) =
NY
n=1

p(ynjxn; sn) (1)

The transmitter and the receiver are provided with the CSIT signal Un 2 U and with the CSIR signal

Vn 2 V, respectively. After conditioning on Xn and on Sn, Yn is statistically independent of Um; Vm

(for all m) and of Sm;Xm (for all m 6= n). Moreover, Sn; Un and Vn are independent of the past

channel inputs (i.e., this model does not take into account intersymbol interference channels [28]). We

say that the CSIT (resp. the CSIR) is perfect if Un (resp. Vn) is equal to Sn, and that it is absent if

Un (resp. Vn) is statistically independent of Sn.

Encoding and decoding. A block code of length N for the channel of Fig. 1 is de�ned by a

sequence of N encoding functions fn : W � Un ! X , for n = 1; : : : ; N , such that xn = fn(w; u
n
1 ),

where w ranges over the set of possible source messages W and un1 is the realization of the CSIT up to

time n. The decoding function is � : YN�VN !W, such that the decoded message is bw = �(yN1 ; v
N
1 ).
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Channel capacity. In the case where fSng is an i.i.d. sequence, X , Y and S are �nite alphabets, the

CSIT is perfect and the CSIR is absent, the capacity of the above channel was obtained by Shannon [1]

and it is given by

C = max
q(t)

I(T ;Y ) (2)

where T 2 X jSj is a random vector of length jSj with elements in X and probability distribution

q(t). A code for this channel is a set of jWj sequences of length N of vectors t 2 X jSj. For a given

source message w 2 W, the code word t
N
1 (w) is selected. At each time n, the channel input is given

by xn = tn(w; sn), where tn(w; s) denotes the s-th element of the vector tn(w). A code word t
N
1 (w)

de�nes a sequence of N functions S ! X . Then, this encoding rule is a particular case of the general

encoding rule given above. The remarkable fact is that, in this case, this is enough to achieve capacity.

A generalization of Shannon's result has been provided by Salehi [20] in the case where f(Sn; Un; Vn)g
is an i.i.d. sequence over S�U�V, with joint distribution !(s; u; v). In this case, the channel capacity

is given by

C = max
q(t)

I(T ;Y jV ) (3)

where T 2 X jUj is a random vector of length jUj with elements in X and q(t) is the probability

distribution of T . The above result is proved directly in [20], but next simple argument shows that it

follows again from Shannon's result, so that no proof is actually needed.

We can consider the CSIR Vn as an additional channel output. Then, the channel of Fig. 1 is

equivalent to the channel of Fig. 2, with state Un, output (Yn; Vn) and conditional output probability

p
0(y; vjx; u) =

X
s

Pr(y; vjx; u; s) Pr(sjx; u)

=
X
s

p(yjx; s)!(s; u; v)=p(u) (4)

where p(u) =
P

s;v !(s; u; v). The channel of Fig. 2 is clearly of the type studied by Shannon, with

perfect CSIT and no CSIR. Its capacity is given by maxq(t) I(T ;Y; V ), but since Vn is independent on

Tn we have I(T ;V ) = 0, so that (3) follows immediately.

Optimal codes for the channel of Fig. 1 are constructed over an extended input alphabet X jUj,

or equivalently, are codes de�ned over the alphabet of functions U ! X , designated sometimes as

strategy letters [20]. This might pose some conceptual and practical problems for code construction,

especially for large (in�nite in the limit) jUj. Nevertheless, optimal codes can be constructed directly

over the input alphabet X in the following special case:
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Proposition 1. Let Un = g(Vn), where g(�) is a deterministic function V ! U . Then, the channel
capacity is given by

C =
X
u

p(u) max
q(xju)

I(X;Y jV; u) (5)

Proof. In order to prove (5) it is su�cient to show that

max
q(t)

I(T ;Y jV ) �
X
u

p(u) max
q(xju)

I(X;Y jV; u) (6)

Since the RHS of (6) corresponds to one possible assignment of the probability of Tn (namely, where

the u-th component of Tn is distributed independently of the other components according to q(xju)),
(5) follows.

In order to show (6), we write

I(T ;Y jV ) =
X
u;v

Pr(u; v)I(T ;Y jv)

=
X
u;v

Pr(u; v)I(T ;Y jv; g(v))

=
X
u

p(u)
X
v

Pr(vju)I(T ;Y jv; u)
a�

X
u

p(u) max
q(xju)

X
v

Pr(vju)I(X;Y jv; u)

=
X
u

p(u) max
q(xju)

I(X;Y jV; u) (7)

where (a) follows from the fact that xn = tn(un), so that if Un = un is given, any probability

distribution of Tn induces a probability distribution of Xn. 2

Comment. It is easy to show that the capacity of Proposition 1 can be achieved by a multiplexed

multiple codebook scheme [17, 22]. For each value u 2 U , a codebook of length p(u)N and rate

slightly less than I(X;Y jV; u) is generated i.i.d. according to the probability distribution q(xju). For
the message w, a set of jUj code words is selected, one for each codebook. At time n, if Un = u

the transmitter sends the �rst not yet transmitted symbol of the u-th code word. Then, the code

words are multiplexed according to the CSIT sequence UN
1 . If g(�) is deterministic, the receiver can

demultiplex the received sequence before decoding since it can perfectly recover UN
1 from V

N
1 . After

demultiplexing, the jUj code words are independently decoded.

If Sn ! Vn ! Un is a Markov chain but Un is a random function of Vn, the derivation above is no

longer valid and the general coding technique based on vectors t 2 X jUj must be considered. Intuitively,

we see that if g(�) is not deterministic, the decoder is not able to demultiplex correctly the received

sequence and the multiplexed multiple codebook scheme cannot be applied in a straightforward way.
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The case where Un is a deterministic function of Vn has an interesting practical application.

Namely, it describes a situation where the CSIT is obtained via an error-free low-rate feedback channel

from the receiver to the transmitter. 1 For example, Vn might be an accurate measure of the channel

state obtained from the received signal. Then, the receiver instructs the transmitter by sending a

command Un = g(Vn), where g(�) is some quantization function in order to reduce the rate of the

feedback link.

A very interesting related problem is to maximize the capacity (5) under a constraint on the entropy

of the feedback signal, namely, under H(U) � Rf , where Rf is the rate of the feedback link. We leave

this problem for future investigation, and in Example 1 of Section 5 we show that by restricting g(�)
to belong to some particular class of functions, the maximum capacity may not correspond to the

maximum of H(U).

3 States with memory

In general, the state, CSIT and CSIR processes fSng; fUng; fVng are de�ned by a sequence of �nite-

dimensional joint distributions


 =
n
!
(N)(sN1 ; u

N
1 ; v

N
1 )
o1
N=1

with the only requirement that (Sn; Un; Vn) is independent of the past channel inputs X
n�1
1 .

The case of states with memory encompasses also information-unstable channels. Then it should

be treated in the general framework of [29]. By following again Shannon's approach, we can consider

a new channel without CSIT, whose n-th input symbol is the random vector Tn 2 X jUjn and n-th

output symbol is the pair (Yn; Vn). A code for this channel is a set

n
t
N
1 (w) = (t1(w); : : : ; tN (w)) : w 2 W; tn(w) 2 X jUjn

o
of jWj code words, each formed by concatenating N vectors over X such that the n-th vector of each

code word has length jUjn. For a given source message w 2 W, the code word t
N
1 (w) is selected. At

each time n, the channel input is given by xn = tn(w; u
n
1 ), i.e., by the un1 -th component of the vector

tn(w).
2

1Low-rate feedback links are already implemented in many standards for cellular wireless systems [23].
2There is an obvious one-to-one correspondence between sequences un1 2 U

n and the integers from 1 to jUjn. Then,

with a slight abuse of terminology, we indicate as the un1 -th component of the vector tn 2 X
jUj

n

the component whose

index is the integer corresponding to un1 .
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Clearly, the original channel and the new channel are completely equivalent both in terms of capac-

ity and in terms of optimal encoding and decoding schemes. Since fSng; fUng; fVng are independent
of fTng, the N -th order channel transition probability of the new channel is immediately obtained as

P (yN1 ; v
N
1 jtN1 ) =

X
sN
1
;uN

1

"
NY
n=1

p(ynjxn = tn(u
n
1 ); sn)

#
!
(N)(sN1 ; u

N
1 ; v

N
1 ) (8)

An input process for the new channel is de�ned by a sequence of �nite-dimensional distributions

T =
n
�
(N)(tN1 )

o1
N=1

Let Y;V denote the sequence of �nite-dimensional output distributions induced by T and by the

channel transition probability. The inf-information rate I(T;Y;V) is de�ned as the lim-inf in proba-

bility [29] for N !1 of the normalized information density

iN (T
N
1 ;Y N

1 ; V
N
1 ) =

1

N
log

P (Y N
1 ; V

N
1 jTN

1 )

Pr(Y N
1 ; V N

1 )

Then, from the general capacity formula given of [29], we can write:

C = sup
T

I(T;Y;V) (9)

By summing P (yN1 ; v
N
1 jtN1 ) over all yN1 2 YN , we notice that the output V N

1 does not depend on the

input TN
1 . Therefore, we can also write [27]

C = sup
T

I(T;YjV) (10)

where I(T;YjV) is the lim-inf in probability of the normalized conditional information density

iN (T
N
1 ;Y N

1 jV N
1 ) =

1

N
log

Pr(Y N
1 jTN

1 ; V
N
1 )

Pr(Y N
1 jV N

1 )
(11)

The above formula does not tell much in terms of practical coding and decoding schemes. However,

by adding some constraints on the state and CSI signals, a simple single-letter capacity formula can

still be found:

Proposition 2. Assume: i) perfect CSIR (Vn = Sn); ii) deterministic CSIT (i.e., Un = gn(S
n
1 )

with gn : Sn ! U deterministic); iii) that Pr(SnjUn
1 ) = Pr(SnjUn); iv) that fSng and fUng are jointly

stationary and ergodic. Then

C =
X
u

p(u) max
q(xju)

I(X;Y jS; u) (12)
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where p(u) is the �rst-order distribution of Un.

Proof. The achievability of (12) is easily established by appropriately choosing the input process T.

For all N , we consider product input distributions

�
(N)(tN1 ) =

NY
n=1

�
(N)
n (tn) (13)

Moreover, we choose �
(N)
n (tn) such that its un1 -th marginal, given by

Pr(Tn(u
n
1 ) = x) =

X
tn2X

jUjn

tn(u
n

1
)=x

�
(N)
n (tn) (14)

depends only on un and is independent of n and of un�1
1 , i.e., Pr(Tn(u

n
1 ) = x) = q(xjun), where q(�j�)

does not depend on n.

Under the hypotheses of perfect CSIR and deterministic CSIT, we have

Pr(yN1 jtN1 ; sN1 ) =
NY
n=1

p(ynjxn = tn(u
n
1 ); sn)

Moreover, for the product input distributions de�ned by (13) and (14), we have that also the condi-

tional output distribution has a product form,

Pr(yN1 jsN1 ) =
X
tN
1

NY
n=1

p(ynjxn = tn(u
n
1 ); sn)�

(N)
n (tn)

=
NY
n=1

X
tn

p(ynjxn = tn(u
n
1 ); sn)�

(N)
n (tn)

=
NY
n=1

X
xn

p(ynjxn; sn)q(xnjun) (15)

Then, the normalized information density (11) is given by

iN (T
N
1 ;Y N

1 jV N
1 ) =

1

N

NX
n=1

log
p(YnjXn; Sn)

Pr(YnjSn) (16)

and, because of the joint ergodicity of fSng and fUng, the above sample mean converges in probability,

as N !1, to the expectation

I(X;Y jS;U) = E

�
log

p(Y jX;S)
Pr(Y jS)

�
where (X;Y; S; U) � p(yjx; s)q(xju) Pr(s; u). By choosing q(xju) such that, for all u 2 U , it maximizes

I(X;Y jS; u) = E

�
log

p(Y jX;S)
Pr(Y jS)

����U = u

�
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we obtain that (12) is achievable.

For the converse, from Fano's inequality [28] we can write

H(W jcW ) � Pe log jW j+ h(Pe) = N�N (17)

where W and cW are the transmitted and the decoded messages and where Pe = Pr(W 6= cW ). The

decoder with perfect CSI is a mapping � : (Y N
1 ; S

N
1 ) 7! cW , then we have

H(W jcW ) = H(W j�(Y N
1 ; S

N
1 ))

� H(W jY N
1 ; S

N
1 )

= H(W jSN
1 )� I(W ;Y N

1 jSN
1 )

= NR� I(W ;Y N
1 jSN

1 ) (18)

By combining (17) and (18) we obtain

R � 1

N
I(W ;Y N

1 jSN
1 ) + �N (19)

where �N ! 0 as N !1. Then we have

I(W ;Y N
1 jSN

1 ) =
NX
n=1

I(W ;YnjY n�1
1 ; S

N
1 )

=
NX
n=1

H(YnjY n�1
1 ; S

N
1 )�H(YnjY n�1

1 ; S
N
1 ;W )

a�
NX
n=1

H(YnjSn; Un
1 )�H(YnjY n�1

1 ; S
N
1 ; U

n
1 ;W; Tn)

b�
NX
n=1

H(YnjSn; Un
1 )�H(YnjSn; Un

1 ; Xn = Tn(U
n
1 ))

=
NX
n=1

I(Xn;YnjSn; Un
1 ) (20)

where (a) follows from the deterministic CSIT assumption and (b) follows from the fact that, for given

U
n
1 = u

n
1 , any probability distribution of Tn induces a probability distribution q(xnjun1 ) of Xn.

Now, we let Un = U
n�1
1 and write

I(Xn;YnjSn; Un
1 ) = I(Xn;YnjSn; Un;Un)

=
X

un;sn;un

Pr(snjun;un) Pr(unjun)p(un)I(Xn;Ynjsn; un;un)
a
=

X
un;sn

p(un) Pr(snjun)
X
un

Pr(unjun)I(Xn;Ynjsn; un;un)
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b�
X
un;sn

p(un) Pr(snjun)I(Xn;Ynjsn; un)

=
X
un

p(un)I(Xn;YnjSn; un) (21)

where (a) follows from hypothesis (iii) and (b) follows from the concavity of mutual information with

respect to the input distribution, and where Xn denotes an input distributed according to q(xnjun),
de�ned by

q(xnjun) =
X
un

q(xnjun;un) Pr(unjun)

Since Un is stationary and ergodic, the last line of (21) does not depend on n.

The mutual information in the last line of (21) can be maximized by choosing, for each un 2 U , the
input distribution q(xju) maximizing I(X;Y jS; u). Then, by using (21) and (20) in (19), we obtain

the converse as desired. 2

Comment. The above proposition has some interesting particular cases. With perfect transmitter

and receiver CSI (i.e., Un = gn(S
n
1 ) = Sn), the capacity is given by

C =
X
s

p(s) max
q(xjs)

I(X;Y js)

which is the same expression given in [7] for a compound channel with memoryless state. Then, as

it is well-known, perfect CSI makes the cases of i.i.d. states and of states with memory equivalent. 3

Also, with perfect CSI, interleaving does not incur any loss of optimality. If Un is a d-step delayed

version of Sn, namely,

Un = gn(S
n
1 ) =

8><>: 0 for 1 � n � d

Sn�d for n � d+ 1

and fSng is Markov, we �nd the result of [22]. Given the similarity of (5) and (12), it is immediate to

show that a multiplexed multiple codebook scheme can achieve (12) (see the achievability part of [22]).

Finally, under mild regularity conditions which guarantee the convergence of the �nite alphabet result

when the alphabet cardinality is taken to in�nity, another interesting case is when Sn is a Gaussian

process and Un = gn(S
n�d
1 ) is its Minimum Mean-Square Error (MMSE) estimate, based on the past

measurements S
n�d
1 . In this case we can write Sn = Un + En, where the prediction error En is

orthogonal to all functions of Sn�d
1 . Then, Sn is in fact independent of Un�1

1 given Un, as required by

Proposition 2.

3This conclusion does not hold if a constraint on the transmission delay is taken into account. In this case, the

so called delay-limited capacity [30, 31, 32] and/or the information outage probability [13] should be considered, since

ergodicity or, more in general, information stability cannot be used.
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4 AWGN channel with fading

In this section we consider the case of a real scalar AWGN channel with fading given by

Yn =
p
SnXn + Zn (22)

where Sn 2 R+ is assumed to be stationary and ergodic and Zn � N (0; 1) i.i.d.. The CSIT Un is a

noisy estimate of Sn. We assume that Sn is independent of Un�1
1 given Un and that the receiver has

perfect knowledge of the conditional received average signal-to-noise ratio (SNR)

Vn = E

"
jE[YnjXn; Sn]j2
var(YnjXn; Sn)

�����Sn; Un
1

#
= SnE[jXnj2jUn

1 ] (23)

for all n (notice that, in general, the conditional second-order moment of the input E[jXnj2jUn
1 ] depends

on n because of the CSIT sequence Un
1 ). As before, fSng and fUng are assumed jointly asymptotically

ergodic and stationary. An average input power constraint E[jXnj2] � P is imposed. 4

This channel is a particular case of the model of Fig. 1 (provided that, under mild regularity

conditions, it can be extended to the case of continuous alphabets), where the dependence of the

CSIR signal Vn on Sn and on U
n
1 is explicitly given by (23). This model applies for example to the

case of time-division duplex (TDD) [23], with frequency non-selective block-fading [13, 14], assumed

to be constant over each TDMA slot. The transmitter estimates the fading state on the current slot

from the measurements in the previous slots of a pilot signal inserted in the reverse link. Then, the

CSIT is a sequence of predicted fading states. The receiver measures the received SNR over the current

frame directly from the received signal. It is reasonable to assume that the CSIR quality is very good

(almost perfect), since no prediction is needed.

In general, Un is not known explicitly by the receiver. Then, error-free demultiplexing of the

received sequence as required by the multiplexed multiple codebook scheme of [17] is not possible.

Also, since Un is not in general a deterministic function of Vn, Propositions 1 and 2 cannot be extended

directly to this case. Nevertheless, we have the following:

Proposition 3. The AWGN channel with fading described by (22), with state Sn, CSIT Un and

CSIR Vn = SnE[jXnj2jUn
1 ], with the assumption that Pr(SnjUn

1 ) = Pr(SnjUn) and subject to the input

4The results for this real model can be immediately translated into results for the circularly-symmetric complex model

with average energy per complex input symbol Es and one-sided noise power spectral density N0 by letting P = Es=N0

and by doubling the information rates (expressed in nat per complex symbol). The input power constraint should be

regarded as an average transmit SNR constraint.
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power constraint E[jXnj2] � P, has capacity given by

C = max



E

�
1

2
log(1 + S
(U))

�
(24)

where expectation is with respect to the �rst-order joint distribution of Sn and Un, and the maximization

is over the power allocation functions 
 : U ! R+ such that E[
(U)] � P.

Proof. We cannot use the multiplexed multiple codebook scheme since the decoder does not know

Un exactly. In order to show achievability, we construct a new channel and we show that it has at

least the same capacity of the original one. The new channel is again a real scalar AWGN channel

with fading Vn 2 R+, input Tn and output Yn =
p
VnTn + Zn, with Zn � N (0; 1). The fading is

de�ned by Vn = Sn
(Un) where 
(�) is a given time-invariant deterministic function U ! R+, such

that E[
(Un)] � P. The new channel has no CSIT, perfect CSIR (i.e., Vn is known to the receiver),

and input power constraint E[jTnj2] = 1.

For this channel, we consider a conventional (i.e., constant-rate and constant-power) encoder,

with codebook of rate R generated with i.i.d. components according a distribution q(t) such that

E[Tn] = 0 and E[jTnj2] = 1. By letting q(t) = N (0; 1) and by conditioning on V
N
1 , we have that

Y
N
1 is Gaussian with conditionally independent components Yn � N (0; 1 + Vn). The corresponding

normalized conditional information density is given by

1

N
iN (T

N
1 ;Y N

1 jV N
1 ) =

1

N

NX
n=1

1

2

"
log(1 + Vn)� jZnj2 + jYnj2

1 + Vn

#
(25)

Both fVng and fYng are stationary and ergodic, because of the joint stationarity and ergodicity of

fSng and fUng and since 
(�) is time-invariant and fTng is i.i.d.. Then, the above sample mean

converges in probability, as N !1, to the expectation

E

�
1

2
log(1 + V )

�
(notice that E[jZnj2] = E[jYnj2=(1 + Vn)] = 1). By substituting V = S
(U) and by maximizing over

all functions 
(�) such that E[
(U)] � P, we get that (24) is achievable.
For the converse, we go back to the original channel. From Fano's inequality, by recalling that the

decoder with CSI Vn is a mapping � : (Y N
1 ; V

N
1 ) 7! cW and by repeating the steps in (18), we obtain

R � 1

N
I(W ;Y N

1 jV N
1 ) + �N (26)

where �N ! 0 as N !1. Then we have

I(W ;Y N
1 jV N

1 ) =
NX
n=1

I(W ;YnjV N
1 ; Y

n�1
1 )
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=
NX
n=1

h(YnjV N
1 ; Y

n�1
1 )� h(YnjV N

1 ; Y
n�1
1 ;W )

�
NX
n=1

h(YnjVn)� h(YnjV N
1 ; Y

n�1
1 ;W;Xn; Sn)

=
NX
n=1

h(YnjVn)� h(YnjXn; Sn)

a�
NX
n=1

E

�
1

2
log(1 + Vn)

�
(27)

where (a) follows from the fact that h(YnjXn; Sn) = h(Zn) =
1
2
log 2e� and that h(YnjVn) � E[1

2
log(2e�(1+

Vn))]. The above upper bound to mutual information is achieved if XN
1 is a sequence with zero-mean

Gaussian components Xn, statistically independent conditionally on U
N
1 . Since a Gaussian distribu-

tion is determined only by its mean and covariance, and the mean is �xed to zero, without loss of

generality we can write

Xn =
q
gn(U

n
1 )Tn

where Tn is i.i.d. � N (0; 1). Then, we need only to prove that under the assumption that Sn is

independent of Un�1
1 given Un,

1

N

NX
n=1

E

�
1

2
log(1 + Sngn(U

n
1 ))

�
is maximized by gn(U

n
1 ) = 
(Un), a time invariant function of Un only. We have

E

�
1

2
log(1 + Sngn(U

n
1 ))

�
= E

�
E

�
1

2
log(1 + Sngn(U

n
1 ))

����Sn; Un

��
� E

�
1

2
log(1 + E[Sngn(U

n
1 )jSn; Un])

�
= E

�
1

2
log(1 + SnE[gn(U

n
1 )jSn; Un])

�
= E

�
1

2
log(1 + SnE[gn(U

n
1 )jUn])

�
= E

�
1

2
log(1 + Sn
n(Un))

�
(28)

where we have used Jensen's inequality, the fact that Pr(Un�1
1 jSn; Un) = Pr(Un�1

1 jUn) and we have

de�ned 
n(Un) = E[gn(U
n
1 )jUn]. Now, since fSng and fUng are jointly ergodic and stationary, they

have a stationary �rst-order joint distribution p(s; u). By using the upper bound (28) into (27) we get

1

N
I(W ;Y N

1 jV N
1 ) � 1

N

NX
n=1

E

�
1

2
log(1 + S
n(U))

�

� E

"
1

2
log

 
1 + S

1

N

NX
n=1


n(U)

!#
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= E

�
1

2
log (1 + S
(U))

�
(29)

where we have de�ned 
(U) = 1
N

PN
n=1 
n(U). The above bound is achieved for every �nite N by

choosing 
n(�) to be independent of n. Finally, by using (29) in (26) and letting N !1 we get

R � E

�
1

2
log(1 + S
(U))

�
where the RHS can be maximized over all the power allocation functions 
(�) such that E[
(U)] � P.
2

Comment. The above proof applies immediately to the cases of no CSIT and of perfect CSIT. In

the �rst case (Sn statistically independent of Un), by using again Jensen's inequality it is immediate

to show that the constant function 
(Un) = P is the capacity achieving power allocation, as argued

in [13]. In the case of perfect CSIT (Sn = Un) we obtain the result of [17] (see Section 4.1). In [17],

achievability is proved by using the multiplexed multiple codebook scheme, assuming that the CSIR

is Vn = Sn. Our result shows that this scheme (or, more in general, variable-rate variable-power

schemes [33]) is not needed in order to achieve capacity. On the contrary, a simple conventional (i.e.,

constant-rate constant-power) Gaussian codebook is su�cient, provided that the code symbols are

dynamically scaled by the appropriate power allocation function before transmission. We refer to this

scheme as single codebook with dynamic power allocation. From a practical implementation point of

view, we argue that the single codebook scheme with dynamic power allocation might be a simpler

way to achieve the same capacity, without requiring multiple code books and variable-rate coding.

Moreover, this scheme achieves capacity also in the case of non-perfect CSIT, under the conditions

of Proposition 3, while the multiplexed multiple codebook scheme is inherently hard to implement,

because the receiver is not able to demultiplex exactly the received sequence.

Results along this line are shown in [31, 32] and in the multiuser case in [34, 30, 35]. Neverthe-

less, for �nite-complexity and limited decoding delay a combination of dynamic power allocation and

variable coding schemes may be very e�ective, as demonstrated in [33].

4.1 Optimal power allocation

For simplicity we assume U discrete and p(u) > 0 for all u 2 U . The generalization to U continuous

is rather straightforward and it is based on standard continuity arguments.

It is immediate to see that the optimal power allocation function 
(u) must satisfy the power

constraint with equality. Then, from the Lagrange multipliers and the Kuhn-Tucker conditions [28]
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we get that 
(u) is the solution of (24) if and only ifZ
1

0

s

1 + s
(u)
p(sju) ds � � (30)

for all u 2 U , with equality for all u such that 
(u) > 0, where � is a given positive constant whose

value is �xed in order to satisfy the power constraint with equality. Let fu(
) denote the LHS of (30)

as a function of 
 � 0, parameterized by u. For given u, fu(
) is a positive decreasing function of 


with maximum value s(u) = E[SjU = u], attained at 
 = 0. For each u, s(u) is assumed to be �nite

since it is physically reasonable to assume that an in�nite conditional average channel gain occurs

only with zero probability (the assumption p(u) > 0 rules out this case). Then, the solution 
(u) is

found in general as


(u) =

8><>: f
�1
u (�) if 0 < � < s(u)

0 if � � s(u)
(31)

The actual value of � is determined by solving
P

u p(u)
(u) = P. In practical computations we can pa-

rameterize both the average transmitted power P and the solution 
(u) in terms of � 2 [0;maxu s(u)].

Since f�1
u (�) is decreasing in �, P is also a decreasing function of �. For a given � (i.e., for a given

P), positive power is allocated only to the values u 2 U such that s(u) > �. In this sense, the optimal

power allocation 
(u) has a water�lling nature, similar to the optimal power allocation in the case

of perfect CSIT, found in [17]. It is immediate to see that 
(u) in (31) coincides with the power

allocation given in [17] in the case p(sju) = �(s� u), i.e., for perfect CSIT. In this case we have


perf:(u) =

�
1

�
� 1

u

�
+

where [�]+ denotes the positive part.

5 Examples

In this section we consider some examples of AWGN channel with fading. Under the assumptions

of the previous section, the determination of the channel capacity reduces to the computation of the

solution (31) of the constrained maximization problem given by Proposition 3.

Example 1. Assume Sn i.i.d. uniformly distributed on [0; A] and let Un be the 1-bit quantization

feedback information

Un =

8><>: 0 if Sn < a

1 if Sn � a
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where 0 � a � A is a suitable quantization threshold. Moreover, assume that the receiver knows

exactly the received SNR Vn = SnE[jXnj2jUn
1 ], so that Proposition 3 applies. From (30) we �nd

f0(
) =
1

a

�
a


(0)
� log(1 + a
(0))


(0)2

�
f1(
) =

1

A� a

�
A� a


(1)
� log(1 +A
(1)) � log(1 + a
(1))


(1)2

�
(32)

Fig. 3 shows f0(
) and f1(
) for a = 1 and A = 2. For 0 � � < a=2 both 
(0) and 
(1) are positive.

For a=2 � � < (A + a)=2 only 
(1) is positive and 
(0) is zero. The value of � is obtained by

solving the constraint equation a
(0)=A + (A � a)
(1)=A = P. If a = 0, the �rst inequality becomes

irrelevant, while if a = A, the second inequality has always a positive solution, but the probability of

transmitting with power 
(1) is zero, so that the value of 
(1) is irrelevant. Both these two extreme

cases correspond to the constant power transmission case, where in the former 
(1) = P and in the

latter 
(0) = P. This agrees with the fact that for both a = 0 and a = A, the CSIT does not provide

any information. Fig. 4 shows 
(0) and 
(1) vs. P in the case a = 1 and A = 2.

The resulting average capacity can be written as

Ccsi(P) =
1

2A

�
log(1 + a
(0))


(0)
+ a(log(1 + a
(0)) � log(1 + a
(1))+

+
log(1 +A
(1)) � log(1 + a
(1))


(1)
+A log(1 +A
(1)) �A

�
This can be compared with the capacity in the case of no CSIT (constant power)

Cconst(P) = 1

2A

�
log(1 +AP)

P +A log(1 +AP) �A

�
and with the capacity with perfect CSIT (i.e., when Un = Sn). This is obtained from the general

solution of [17] as

Cperf(P) = 1

2
(log(A=�0) + �0=A� 1)

where �0 is the solution of the constraint equation, that it this case can be written as

1

A

�
A� �0

�0
� log

A

�0

�
= P

Finally, the capacity of an AWGN channel without fading and with the same average channel gain and

transmitted power is given by Cawgn(P) = 1
2
log(1+AP=2). Fig. 5 shows capacity vs. P for Example 1,

with A = 2 and a = 1. For this fading statistics the 1-bit CSIT provides almost optimal performance,

in fact Ccsi and Cperf are very close. In general, CSIT provides a performance improvement over

constant power transmission only in the low-SNR region (i.e., for low rates). In this example, for
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R = 0:1 bit/symbol the gain over constant power transmission is about 1.7 dB while for higher rates

it disappears.

Fig. 6 shows capacity versus the quantization threshold a, for di�erent SNRs and A = 2. It is

clearly visible that for low SNR the optimal threshold is close to A and for high SNR the optimal

threshold moves closer to 0. This has a nice intuitive explanation: for low SNR, the transmitter

cannot waste power, so that it must know when the channel is good to transmit. Then, the optimal

threshold should be large, in order to reveal when the channel is \exceptionally" good. For large

SNR, the transmitter has a lot of power and can compensate for poor channel gains, so that the

threshold should be small, in order to reveal when the channel is \exceptionally" bad and needs to be

compensated for. In general, both for high and for low SNR, the capacity is maximized for H(U) < 1

bit. Then, this example shows that by constraining g(�) to be in a particular class of functions, the

solution to the capacity maximization problem under an entropy constraint for U may not be reached

when the constraint is satis�ed with equality, in general.

Example 2. Consider a Low-Earth-Orbit Satellite system and a mobile terminal in urban environ-

ment. Due to the terminal motion, the line-of-sight (LOS) path between the terminal and the satellite

may be either present or blocked. A simpli�ed channel state model is a process Sn which can be

either constant (LOS present) or exponentially distributed (LOS blocked) [36], so that the channel

is AWGN or Rayleigh, respectively. Assume that Vn = SnE[jXnj2jUn
1 ] is known to the receiver and

that Sn = jUn + (1� Un)Gnj2, where Un is an ergodic process that takes on values 0 or 1 with given

�rst-order probability p(u) and Gn is a complex white Gaussian process with i.i.d. real and imaginary

parts � N (0; A2
=2). Clearly, Sn is independent of Un�1

1 given Un, so that Proposition 3 applies.

Before entering the details of the calculation, we would like to point out that this case models the

realistic scenario where the receiver has a very accurate (perfect) CSI while the transmitter knows

only the statistics of the channel (AWGN or Rayleigh), which vary slowly due to the terminal motion,

but ignores the actual value of the channel gain. Since the channel statistics changing rate is usually

much slower than the signaling rate, a low rate feedback link that instructs the transmitter about the

channel statistics can be implemented.

The conditional pdf p(sju) is given by p(sj1) = �(s� 1) and p(sj0) = exp(�s=A)=A. The solution
of (30) in this case yields


(1) =

�
1

�
� 1

�
+
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and 
(0) solution of
1


(0)
� e

1=(A
(0))

A
(0)2
Ei(1; 1=(A
(0))) = �

for � < A and 
(0) = 0 for �(0) � A, where Ei(n; x) =
R
1

1 t
�n
e
�xt

dt [37]. The capacity is given by

Ccsi(P) = p(1)
1

2
log(1 + 
(1)) + p(0)

1

2
e
1=(A
(0))

Ei(1; 1=(A
(0)))

For comparison, the capacity with constant power transmission is

Cconst(P) = p(1)
1

2
log(1 + P) + p(0)

1

2
e
1=(AP)

Ei(1; 1=(AP))

the capacity with perfect CSIT is

Cperf(P) =

8><>: p(1)1
2
log(1=�0) + p(0)1

2
Ei(1; �0=A) if �0 � 1

p(0)1
2
Ei(1; �0=A) if �0 > 1

where �0 is the solution of the constraint equation

p(1)

�
1

�0
� 1

�
+

+ p(0)

 
e
��0=A

�0
� 1

A
Ei(1; �0=A)

!
= P

and the capacity of an AWGN with the same average channel gain and the same transmitted average

power is

Cawgn(P) = 1

2
log(1 + (p(1) +Ap(0))P)

Fig. 7 and 8 show capacity vs. P for Example 2, in the case A = 0:1 with p(0) = 0:5 and p(0) = 0:9,

respectively. The average channel gain is 0:55 in the �rst and 0:19 is the second case. For this channel

model, the knowledge of the channel statistics at the transmitter provides large performance gains for

low SNR. In the case of p(0) = 0:5, the gain with respect to constant power transmission is 2:5 dB

at R = 0:1 and 1:9 dB at R = 0:5 bit/symbol. In the case of p(0) = 0:9, the gain with respect to

constant power transmission is 5 dB at R = 0:1 and about 2:0 dB at R = 0:5 bit/symbol.

The intuition behind this result is that higher average rates are achievable if the transmitter sends

high-rate and high-power \bursts" when the channel is \good" (LOS present), and basically turns

transmission o� when the channel is \bad" (LOS absent). This e�ect is more visible in the low-

SNR region, since in this case power must be used more e�ciently. This result may be appealing

in a TDMA network for data transmission, where mobile terminals are likely to experience di�erent

channel conditions. In this setting, as shown in [35] in the case of perfect CSIT, a protocol that

allocates resources according to the users' channel condition may provide substantial improvements

in terms of total bandwidth e�ciency.
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Example 3. Consider a TDD system. Let the channel complex amplitude gain �n be a stationary

ergodic complex Gaussian process with independent real and imaginary parts � N (0; 1=2) and assume

that the channel gain estimator at the transmitter, �n, is the output of a MMSE linear prediction

�lter, whose input is the sequence of past noisy measurements of �n. Then, �n is independent of �n�1
1

given �n and Proposition 3 applies. We let Sn = j�nj2 (exponentially distributed with mean 1) and

we let Un = j�nj2. Let � denote the estimation Mean-Square Error. Then, it is straightforward to

show that the joint pdf of Sn and Un is given by (see also [38, Appendix A])

p(s; u) =
1

�(1� �)
I0

 
2
p
su

�

!
exp

�
�s
�
� u

�(1� �)

�
Eq. (30) in this case becomes

1


(u)

"
1� e

�u=�

�
I
 

(u);

2
p
u

�
;
1

�

!#
� �

where I(a; b; c) is de�ned as

I(a; b; c) =
Z
1

0

1

1 + ax
I0(b

p
x)e�cx dx (33)

The conditional average capacity given Un is given byZ
1

0

1

2
log(1 + s
(u))

1

�
I0

 
2
p
su

�

!
exp

�
�s
�
� u

�

�
ds (34)

Both these integrals are evaluated in Appendix A. The numerical calculation of Ccsi(P) has been carried
out by discretizing the variable u, by solving for 
(u) for each discrete value u and by averaging the

resulting conditional average capacities over all u's. Since the channel is Rayleigh with average gain

1, the capacity with constant power transmission is given by [12] Cconst(P) = 1
2
e
1=P

Ei(1; 1=P). The

capacity with perfect CSIT is Cperf(P) = 1
2
Ei(1; �0) where �0 is the solution of

1

�0
e
��0 �Ei(1; �0) = P

and the capacity of the AWGN channel with the same average gain and transmitted average power is

Cawgn(P) = 1
2
log(1 + P).

Fig 9 shows capacity vs. P for Example 3 for estimation errors � = 0:1; 0:3; 0:5; 0:7 and 0:9. As

expected, Ccsi(P) converges to Cperf(P) as �! 0 and to Cconst(P) as �! 1. In fact, � = 1 corresponds

to the case where Un = j�nj2 = 0, i.e., no CSIT. The gain with respect to constant power transmission

at rate R = 0:1 is 2.0 dB for � = 0:3 and 2:5 dB for � = 0:1.

By relaxing the assumption that Sn is independent of Un�1
1 given Un, we get that the rate given by

Proposition 3 is still achievable, even if it might not be the channel capacity (in fact, the achievability
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in the proof of Proposition 3 does not make use of the above assumption). Then, calculations like the

example above allow simple comparisons of CSI estimation techniques in terms of achievable mutual

information versus estimation mean-square error.

6 Conclusions

In this paper we investigated the capacity of some time-varying channels with transmitter and receiver

CSI. Conditions for simple optimal coding have been derived in the case of i.i.d. states and states

with memory. A number of known results have been obtained as particular cases of this analysis.

For the AWGN channel with fading, we found a general simple expression for capacity under some

assumptions on the receiver and transmitter CSI. This holds also in the case of states with memory

and yields as special cases the results of [17] (for perfect CSI), of [22] (for delayed perfect CSI) and

the optimality of constant power transmission [13] (for no transmitter CSI and perfect receiver CSI).

Some more intuition on optimal coding strategies for the AWGN fading channel have been given. In

particular, we showed that variable-rate variable-power coding schemes are not needed to achieve the

capacity of this channel, and a simple single codebook scheme with dynamic power allocation may

be a more viable solution. Finally, a number of examples have been provided for the AWGN fading

channel. These examples show that even with non-perfect CSI, the optimal power allocation is still

of the water�lling type. Hopefully, this can be extended to the more interesting case of a multiuser

channel where time and bandwidth is allocated dynamically to the users in order to maximize their

rate sum, as done in [35, 34, 30] in the case of perfect transmitter CSI.

A Evaluation of some de�nite integrals.

We want to evaluate I(a; b; c) de�ned by (33). By using the power series representation of I0(z) and

the de�nite integral [37, 3.383.10, pag. 319], we can rewrite (33) as

I(a; c; b) = 1

a

1X
k=0

1

k!

 
b
2

4a

!k

e
c=a�

�
�k; c

a

�
where �(�; x) =

R
1

x t
��1

e
�t
dt is the incomplete Gamma function. Then, we use the identity

�(�k; x) = x
�k
Ei(k + 1; x) (k positive integer)

and the recursion formula [37, pag. xxxiii]

Ei(k; x) =
1

k � 1

�
e
�x � xEi(k � 1; x)

�
k > 1
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to obtain

I(a; b; c) =
1

a
e
c=a

J0

�
bp
a

�
Ei

�
1;
c

a

�
+

+
1

a

1X
k=0

1

k!

 
�b2
4a

!k kX
i=1

(i� 1)!

��a
c

�i
The in�nite sum above does not seem to be amenable to a closed form formulation and it can be

evaluated by truncation.

The evaluation of integral (34) is carried out in a similar way. First, we use integration by parts

and we rewrite (34) as
1

2

Z
1

0

a

1 + ax
Q

�
bp
2c
;

p
2cx

�
dx

where Q(�; �) is the Marcum Q-function [38, Appendix A] and where we let a = 
(u), b = 2
p
u=� and

c = 1=�. Then, we use the expansion of the Q-function given by [38, Appendix A]

Q(�; �) = e
�(�2+�2)=2

1X
k=0

�
�

�

�k
Ik(��)

and we apply the same technique used before to all the terms of the summation. The �nal result is

1

2
e
�b2=4c

1X
k=0

��c
a

�k8<:ec=a
 
2
p
a

b

!k

Jk

�
bp
a

�
Ei

�
1;
c

a

�
+

1X
`=0

1

`!(k + `)!

 
�b2
4a

!` k+X̀
i=1

(i� 1)!

��a
c

�i9=;
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Figure 1: Block diagram of the channel with time-varying state, CSIT and CSIR.
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Figure 2: Block diagram of the equivalent channel with CSIT only and output (Yn; Vn).
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Footnotes

Note 1 Low-rate feedback links are already implemented in many standards for cellular wireless sys-

tems [23].

Note 2 There is an obvious one-to-one correspondence between sequences un1 2 Un and the integers from

1 to jUjn. Then, with a slight abuse of terminology, we indicate as the un1 -th component of the

vector tn 2 X jUjn the component whose index is the integer corresponding to un1 .

Note 3 This conclusion does not hold if a constraint on the transmission delay is taken into account.

In this case, the so called delay-limited capacity [30, 31, 32] and/or the information outage

probability [13] should be considered, since ergodicity or, more in general, information stability

cannot be used.

Note 4 The results for this real model can be immediately translated into results for the circularly-

symmetric complex model with average energy per complex input symbol Es and one-sided

noise power spectral density N0 by letting P = Es=N0 and by doubling the information rates

(expressed in nat per complex symbol). The input power constraint should be regarded as an

average transmit SNR constraint.


