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Abstract—The attractiveness of OFDM decreases with the ris-
ing of inter-carrier interference in quickly time-varying channels.
Classical OFDM low-complex detection is impaired and more
elaborated techniques are required to mitigate the need for full
matrix equalization. We present here a fresh approach to this
subject, introducing novel fast-converging iterative techniques
based on preconditioning. Moreover, we interpret windowing
under a new perspective in association with the Basis Expansion
Modeling of the time-varying channel. We discuss the complexity
of the proposed methods, showing that they are still linear to the
OFDM block size. We conclude by illustrating their competitive
performance by means of numerical simulations.

Index Terms—OFDM, Inter-Carrier Interference, Iterative
Interference Cancelling, Basis Expansion Modeling

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM),
adopted by numerous existing wireless telecommunication
standards, allows for flexible bandwidth allocation and low-
complexity transmitter and receiver architectures. However the
performance of classical OFDM low complexity receivers is
severely impacted by fast time-varying propagation channels
causing the rising of inter-carrier interference (ICI).

Those circumstances occur in the presence of high Doppler
spread relative to the OFDM symbol rate due to the mobile re-
ceiver velocity. In practice, the increased ICI prevents classical
OFDM receiver schemes from reliably detecting the desired
signal. Hence, more advanced receiver equalization techniques
are required to mitigate the effect of the ICI.

Optimal linear ICI equalization techniques generally involve
complex full channel matrix inversion. In existing OFDM
telecommunication systems, the typical size of the required
Discrete Fourier Transform renders such a full channel matrix
inversion operation prohibitively complex for practical imple-
mentation. Hence, several approaches have been adressed to
reduce the complexity while maintaining acceptable perfor-
mance. To this end, the use of time-domain windowing of the
OFDM received signal has been shown to limit the significant
span of the ICI, generating banded channel transfer matrices.
In addition, iterative equalization and detection techniques

have been proposed to further reduce the complexity of the
receiver operating in the frequency-domain, see e.g. [1], [2]
and references therein, or in the time-domain as in [3], [4].

We introduce here an alternative and original framework
for iterative ICI cancellation. Our analysis of the detection
performance, the convergence speed, and the complexity pro-
vide guidelines to derive novel fast-converging iterative ICI
cancellation algorithms. We show that proper preconditioning
exploiting the inherent structure of the OFDM signal and the
ICI yields to nearly optimal detection performance with very
fast-converging and affordable complexity iterative algorithms.

II. SIGNAL AND SYSTEM MODEL

We consider the transmission over a time-varying,
frequency-selective fading channel with continuous-time im-
pulse response h(t, τ) =

∑
m αm(t)ψ(τ − τm) assumed

to obey the wide sense stationary uncorrelated scattering
(WSS-US) model [5], where ψ(τ) represents the equivalent
transmit-receive front-end low-pass filter, τm represents the
p-th path delay, αm(t) is the time-varying complex channel
coefficient associated with the m-th path of the propagation
channel respectively. We shall refer to h[k, l] as the corre-
sponding low-pass sampled discrete-time impulse response,
and assume h[k, l] to be well-approximated by a finite-impulse
response model with a maximum delay spread of L samples.
Then we assume a classical OFDM system with cyclic-
prefix (CP) of duration Ncp ≥ L to avoid inter-symbol-
interference. By letting N denote the number of sub-carriers
the OFDM symbol duration is given by Nblock = N + Ncp.
The frequency-domain k-th OFDM transmit symbol s[k] =
[s[kN ] . . . s[kN −N + 1]]T, where (·)T denotes transpose,
comprising the encoded symbols s[i] at the output of channel
encoding, interleaving and mapping onto a finite-symbol con-
stellation S assumed i.i.d. with unit energy, is modulated by
an N×N discrete-Fourier transform unitary matrix F so as to
obtain x[k] = F Hs[k] where (·)H denotes Hermitian operator.

For the sake of the notational simplicity and without loss
of generality, we shall drop the time index k in the sequel.



Without accounting for the CP, the received OFDM symbol
block can be written as

r = HF Hs + z (1)

where H represents the N×N time domain channel convolu-
tion matrix, and z represents a circularly symmetric complex
additive white Gaussian noise such that z ∼ NC(0, σ2

zI).
Since in general L� N the channel matrix Hwill tend to

be sparse and banded. When the channel is time invariant
within an OFDM symbol, His circulant and therefore the
frequency-domain channel matrix, FHF H, is diagonal.

This characteristic is widely exploited to perform one-tap
frequency-domain equalization.

In case of time-varying channel though, H is no longer cir-
culant and results in a full frequency-domain channel matrix.
Thus the classical OFDM equalization approach is highly sub-
optimal and more complex equalization is required (see [1],
[2] and references therein).

A. Channel BEM Representation

The channel convolution matrix can be reformulated as

H =
L−1∑
l=0

Ql diag {hl} (2)

where hl = h[k, l] = [h[kN, l] . . . h[kN −N + 1, l]]T

comprises the l-th channel tap time-varying values and Ql

denotes the corresponding N ×N circulant delay matrix with
ones in the l-th lower diagonal and zeros elsewhere, i.e. with
elements [Ql]ij = 1 if j = (i − l)mod N and zero otherwise.
The vector corresponding to the time-varying evolution of the
l-th channel tap can be expressed according to the BEM as
follows

hl = Bvl =
P−1∑
p=0

vl,pbp (3)

where the N × P matrix B = [b0 b1 . . . bP−1] denotes the
deterministic basis spanned by the P complex vectors bp for
p = 0, . . . P − 1, and vl = [vl,0 . . . vl,P−1]T the stochastic
coefficients describing the l-th channel tap behavior for the
given OFDM block on the P basis functions.

Then, by plugging (2) in (3)

H =
L−1∑
l=0

(
P−1∑
p=0

vl,pdiag {bp}

)
Ql

=
P−1∑
p=0

diag {bp}
L−1∑
l=0

vl,pQl

(4)

By defining Bp = diag {bp} and summing over the L channel
taps, it results

H =
P−1∑
p=0

BpF
HDpF (5)

Then the received signal r of (1) can be expressed according to
the channel BEM as r =

∑P−1
p=0 BpF

HDps+z.
∑L−1

l=0 vl,pQl

being a circulant matrix then Dp = F
∑L−1

l=0 vl,pQlF
H is a

diagonal matrix.
We can conclude that channel BEM shows to be very useful

as the operation of convolution by the time-varying channel
can be efficiently implemented with O (N log2N) operations.

III. LINEAR EQUALIZATION

In this section we briefly recall (Linear) Minimum-Mean-
Square-Error (L-MMSE), Zero Forcing (ZF), and Matched
Filter (MF) equalization.

Letting H = HF H, we have for the estimated OFDM
transmitted sequence

ŝMMSE =
(
HHH + σ2

zI
)−1

HHr (6)

ŝZF =
(
HHH

)−1

HHr (7)

ŝMF = HHr (8)

with the MMSE, ZF, and MF linear equalization respectively.
In the assumption of perfect knowledge of the channel and

of its second order statistics, the MMSE and ZF estimates (6)
and (7) entail the inversion of a full matrix in general requiring
complexity orders of O

(
N3
)

or O
(
N2
)

order when classical
techniques are used, such as Gauss-Jordan elimination or
Cholesky decomposition (exploiting the Hermitian nature of
HHH) respectively [6]. Instead, iterative techniques can be
adopted to avoid a full matrix inversion thus reducing the
receiver equalization complexity as detailed in the following.

IV. ITERATIVE ICI CANCELLATION

A wide range of iterative techniques have been proposed
in the literature to solve linear systems of equation, see e.g.
[7]. For a given technique the overall complexity depends on
the number of operations per iteration stage times the number
of iterations necessary to achieve the estimation accuracy
required for the target sequence detection performance. In
view of these considerations the speed of convergence is a
primary aspect driving the design of an iterative equalization
algorithm. Considering a generic linear system of equations of
the form

Ax = b (9)

where the vector x is the sequence to be estimated, b is
the observation vector, and the matrix A is the input-output
transfer matrix, which we assume to be full-rank with di-
mension N × N in the scope of our treatment, then for any
iterative estimation method, the convergence of the sequence
estimates x̂(k) → x is governed by the spectral properties
of the matrix A. A commonly used metric for those spectral
properties is the condition-number (CN) κ(A) = ‖A‖ ‖A−1‖
The closer κ (A) is to 1, the faster a given iterative algorithm
will converge. In particular, the equalization problems (6) and
(7) can be expressed in the form of (9)(

HHH + σ2
zI
)

ŝMMSE = HHr (10)(
HHH

)
ŝZF = HHr (11)



In light of the above, the convergence of an iterative
approach to the solution of both problems will depend on
κ(HHH) = κ(H)2 in the high SNR (σ2

z → 0) regimes.
In the case of the OFDM system under analysis the matrix
H is in general full-rank. Then the ZF problem (11) can be
equivalently expressed as follows

HsZF = r (12)

whose CN is κ(H), and since κ(H) ≤ κ(HHH), an iterative
algorithm applied to (12) will generally converge faster than
if applied to (10) and (11).

Iterative techniques can greatly take advantage from ap-
propriate preconditioning to reduce the CN and to allow
faster convergence. The iterative methods is then applied an
equivalent preconditioned linear system derived from (9) into
PAx = Pb with P being the preconditioning matrix and
such that κ (A) ≥ κ (PA) ≥ 1 with PA = 1 if P−1 = A.

Many preconditioning techniques exist [7]. Among those,
a simple, straightforward method is the Jacobi precondi-
tioning where P is chosen to be diagonal and such that
diag

{
P−1

}
= diag {A} if [A]ii 6= 0 for i = 1, . . . , N .

The Jacobi preconditioning suggests that the preconditioning
operation consists in approximately solving the problem of
inverting matrix A and transform the original problem into a
better conditioned one.

A. Preconditioned Iterative ZF Equalization

In light of the above, in [3] a relevant approach to
the ZF iterative ICI cancellation problem is proposed. The
described method consists of a diagonally pre-conditioned
ZF iterative algorithm. The pre-conditioner is made of a
diagonal matrix whose elements are exactly the diagonal
matrix of the inverse of the frequency-domain channel ma-

trix diag {P } = diag
{(

FHF H
)−1

}
and the weighting

coefficients are computed as wk = (−1)k ( K
k+1

)
with K

being the total number of iterations. Notice that the stage
H is realized using channel BEM as of equation (5) and a
polynomial-basis functions. Interestingly, the complexity of
this approach is linear to the OFDM block size N . The
performance of the ZF diagonal pre-conditioned iterative ICI
cancellation method [3] can be improved in several respects.
First the diagonal pre-conditioning although low-complexity
yields to an increased CN with respect to κ(H). Secondly
it is inherently sub-optimal with respect to the MMSE since
attempting to approximate the global ZF solution.

In the following, we address faster converging iterative
ICI techniques approaching the MMSE optimal detection
performance for a comparable complexity.

B. BEM-MMSE Preconditioned Iterative ICI Cancellation

In this section, we approximate the global MMSE optimal
solution iterative techniques combining different forms of
local MMSE pre-conditioning and combining based on BEM
structure. As for the method presented in section IV-A, the

channel BEM allows us to derive here expressions for an
improved pre-conditioner yet with affordable complexity.

Indeed, the channel BEM can be exploited at the receiver
side and interpreted as a multiple windowing of the received
signal where the windowing functions correspond to the con-
jugate of the basis Bp. Let the output of each windowing-
branch vector be defined as the projection of the received
signal onto the p-th basis function yp = FBH

p r, then the
expanded observation vector of the received signal is obtained
by stacking each windowing-branch vector in a PN×1 vector
as

y =
[

B0F
HB1F

H · · ·BP−1F
H
]H

r = Ur (13)

Given the BEM representation of equation (5), we estimate
the symbol s[n] at sub-carrier n by adopting local MMSE
Finite-Impulse-Response (FIR) filter fn across tones for all
the basis output. Exploiting the particular structure of ICI in
the channel BEM representation, one can limit the complexity
of a full per-tone equalization across all sub-carriers, by
properly selecting a subset of the elements of vector y as
ȳn = Sny with Sn being a LFIR × PN selection matrix
obtained by extracting LFIR rows of the identity matrix IPN

optimally exploiting the structure of U for a given LFIR and
sub-carrier n, ŝ[n] = fT

nȳn

Therefore, the per-tone MMSE filter coefficients are com-
puted such that fT

n = E {s[n]ȳH
n}R

−1
ȳnȳn

where Rȳnȳn
=

E {ȳnȳH
n} which gives

fT
n = 1nHHUHST

n

[
SnU

(
HHH + σ2

zI
)

UHST
n

]−1

(14)

with 1n being the 1×N vector containing 1 in n-th position
and 0 elsewhere. It is noteworthy mentioning that the above
expression stems from the multiplication of a 1×LFIR vector
E {s(n)ȳH

n} and LFIR×LFIR inverse matrix of Rȳnȳn
which

varies across sub-carriers.
By applynig local MMSE filtering, we are able to reduce

the computational requirements to O
(
L3

FIR

)
at the expense

of an increased number of iterations depending on the target
performance.

All the filters coefficients can be stacked in a sparse filter
matrix

G =
[

ST
0 f0 ST

1 f1 · · ·ST
N−1fN−1

]T
(15)

The matrix resulting from the product of GU can there-
fore be seen a improved BEM-MMSE pre-conditioner of H.
Moreover, the complexity associated to the filtering operation
is proportional to P (N +N log2N).

Indeed, this approach achieves considerably better precondi-
tioning than the one previously presented relying on diagonal
preconditioning.

This novel approach can be directly plugged into the method
described in section IV-A to give the polynomial iterative re-
ceiver depicted in figure 1 whose performance are considerably
improved, as shown in the simulation results of section V, but
yet of affordable complexity as the original method.
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Fig. 1. BEM-MMSE preconditioned iterative receiver

C. BEM-MMSE Parallel Interference Cancelation

The channel BEM representation can be effectively ex-
ploited to perform time-domain PIC detection. By setting
Hp = BpF

HDp and H =
∑P−1

k=0 Hk = HFH, let H0̄ =
H−H0 represent the time-varying part of the channel matrix
assuming an orthogonal-polynomial basis, the coefficients of
the PIC filtering matrix Ġ are computed according to a
modified formula assuming perfect cancellation of the ICI:

Ġ = HH
0

[
U0

(
H0HH

0 + σ2
zI
)]−1

where Ġ is a diagonal
matrix. Figure 2 shows the block diagram of the PIC receiver
using hard-decisions as non-linear decision criterion.

r +
+

-
BH

0 F Ġ

DEC

ŝPIC

DP−1FHBP−1

D1FHB1

+

.........

Fig. 2. Time-domain PIC iterative decoder

V. SIMULATION RESULTS

We compare the methods proposed in this paper by means
of Monte Carlo simulations assuming a cyclic prefixed OFDM
setup with N = 128 sub-carriers, a multi-path channel with
L = 4 with uniform power delay profile and Jake’s Doppler
spectrum [5] with normalized Doppler frequency of 0.1 with
respect to the sub-carrier spacing. We assume an orthogonal-
polynomial BEM channel with P = 2 sufficient enough
to approximate the time-varying channel. The performance
are measured in terms of bit-error-rate of uncoded QPSK
modulated transmitted sequences. The SNR is defined as the
ratio 1/σ2

z . The methods presented in the paper are evaluated
for BEM-MMSE preconditioning filtering lengths of LFIR = 3
and LFIR = 5 for a number of iterations K = 3. For all
simulation results presented in figures 3–4, the Preconditioned
ZF Iterative (P-ZF) of [3] is drastically improved by the use of
BEM-MMSE preconditioning (P-BEM) and the PIC iterative
receiver provides a good trade-off in terms of performance and
complexity.
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Fig. 3. Performance of iterative methods with 3 iterations, LFIR = 5
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Fig. 4. Performance of iterative methods with 3 iterations, LFIR = 3
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