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Abstract

This paper presents our work on online data backup systems in which users store their backup data in
data centers and/or on peers. We analyze the system performance of various data placement schemes and
evaluate the choices of implemented transfer scheduling techniques with different user resource profiles.

Keywords: peer-assisted, peer-to-peer, backup, system design

1 Introduction

1.1 Understanding On-line Backup Systems

Our work aims to study peer-assisted online backup service solutions that offer safe storage of personal data
for Internet subscribers. Already existing backup solutions are numerous, e.g., on-site, online to data center,
online to cloud backup. We suggest a hybrid approach that is different from existing schemes: we start
from an online data center scheme and we build a peer-assisted system in order to offload the data center
(i.e., storage & bandwidth burden) using idle peer resources (storage & bandwidth of peers) with the goal
of decreasing costs of bandwidth and storage. This is achieved by “outsourcing” backup data on peers for
storage, thereby minimizing data center costs while sustaining the quality of the backup service.

1.2 Our goal — Primary and secondary objectives

We study the impact of different centralized data-placement algorithms in the following three possible ap-
proaches for online backup, with the focus on the placement per se.

• data center-based (DC) online backup;

• peer-assisted (PA) online backup: partition of backup data load between data center and peers;

• peer-to-peer (PP) online backup.

To attain our goal, we perform numerical simulations since complex issues can easily be taken into account
with a simulator while a simple theoretical model (e.g. calculation of the available aggregate space on peers)
cannot consider the effects of interrupted data transfers (e.g. when peers go offline), upload bandwidth
constraints, etc. We show in our simulations that in many cases either upload bandwidth or storage is the
bottleneck, while the simple existing models only consider peer availability as the limiting factor in a PP
backup system. Note, however, that if a peer’s bandwidth is limited, the data it can backup is limited even
if it provides unlimited disk space for others and conversely, if disk space is limited, high bandwidth does not
give any remedies.

Our secondary objective is, once we see the different data placements’ performances (along with other
crucial system design choices, e.g., data transfer scheduling), we design distributed peer selection algorithms
accordingly in order to realize the system that offers the best trade-off on quality of service and costs. Without
jumping into the details, the following peer selection algorithms will be studied:

• random peer selection (offers a DHT-like [1] solution);

• clustering (selective) peer selection based on peer average availabilities ([5]).

The reason for clustering is that it inherently embraces an incentive mechanism and effectively copes with
real-life online patterns of the users.

1.3 Our assumptions

Here we state our assumptions, that give reasonable considerations about peer resources. We build our
analysis on these assumptions.

• Excess storage and bandwidth capacity of peers is free (i.e., if the resource is not used it is lost),
moreover storing backup on remote peers is not billed for the user.
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• Over-provisioned data center possesses unlimited storage capacity and bandwidth (i.e., the bottleneck
is always the peers’ uplink/downlink).

• Long-term storage on data center costs more than the data center’s bandwidth utilization (based on the
pricing of Amazon S3 [4], uploading and downloading data once costs roughly two months of storage).

• There is no correlation among a peer’s characteristics (that are supposed to be fixed in time): online
behavior, link capacity, storage capacity are a peer’s resources and their amounts are independent one
of another, and the storage requirement is its demand which is independent of all of its resources.

• Each peer keeps a copy of its own backup locally (without redundancy), therefore the backup data is
available except in the case of disk failure, when all the local data is lost.

• We target the design of a backup system, therefore downloading data from data center or remote peers
is only required when the locally stored copy is lost: downloading backed up data happens only for
restoring purposes.

• Peers maintain their own data, i.e., they reconstruct all their backed up data in the system in case of a
remote peer’s death or disk failure. Note, that peers are able to re-generate encoded backup if one or
more of their remote peers lose(s) data without downloading the backup to restore before encoding.

1.4 Metrics of evaluation

We investigate the following metrics closely, in order to quantify the performance of various system design
choices. We show the results of our simulations in the following metric perspectives:

• Time-to-backup (TTB): the time spent from the start of uploading a peer’s data to the completion time
of uploading sufficient amount of data in order to achieve the targeted quality of backup (the target
quality level is defined later)

• Time-to-restore (TTR): after a peer has backed up sufficient amount of data, it is the time required to
restore locally its whole original data starting at a given point in time

• Monetary costs [$]: 1

– Storage cost of data center per peer2

– Traffic cost of data center per peer3

• Peer and network provider costs:

– Storage and bandwidth load on peers (due to backup, restore, repair)

– Aggregate traffic cost of network provider (due to backup, restore, repair) 4

2 Related work

Existing work does not solve the problem we are targeting for several reasons: on one hand storage systems
are more often envisaged than backup systems, therefore data availability requirement receives particular
importance and cannot be always fulfilled [6]; on the other hand in related works about P2P solutions the
focus is on data redundancy schemes and data repair techniques, while little work has been done on hybrid

1In DC, users spend e.g., 100$, but if they obtain the same service quality exploiting surplus storage and bandwidth on peers
which is free, PA only costs e.g., 40$. Thus, cost saving is equivalent with evaluating how much data the whole system can store
on the decentralized part.

2The costs are calculated based on the pricing of Amazon S3 [4]: 1-month storage and downloading 1 GB data costs 0.15$.
3Bandwidth cost is a direct function of the “load” on the data center.
4Maintenance: in clustered systems internal churn occurs (i.e., re-establishing the clusters of peers) which is triggered by

change in peers’ availabilities. However, imposed incentives probably do not cause varying behavior for peers, but rather a
different choice of behavior to start with.
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approaches to mitigate the shortcomings of P2P systems: to the best of our knowledge, no prior work tackles
peer-assisted online backup systems.

Furthermore, while peer selection in related works is dictated by well-known data indexing-retrieval tech-
niques (e.g., DHT, locality-based), hence random peer selection; our scheme is based on shared resources.
Since scheduling, redundancy coding rates and repair techniques are not orthogonal to our focus on peer
selection, we provide discussion on those aspects as well. The following topics however fall outside the scope
of our work, and are based on state-of-the-art techniques:

• Peer monitoring: heartbeat based, central server collects measurements;

• Data encoding: we use basic erasure coding techniques.

3 Important components of a backup system

Here we discuss in details the main contribution of our work on the design of a PA or PP system. These
systems require careful control of quality of service, and the system scale, the peer heterogeneity in their
service demand, resources and contribution must be taken into account. The problems that we focus on and
for which we suggest different techniques are:

• data placement;

• data structure;

• data transfer scheduling;

• data repair.

3.1 The data-placement problem

Data placement problem is about deciding where a peer will store parts of its backup data. Note, that
this is a non-trivial operation that deals with the decision to store data on: servers only (DC), servers and
peers (PA), peers only (PP). Additionally, whenever remote peers are selected, we explore different cases of
selection criteria, symmetric and asymmetric data exchange options.

Outsourcing as much storage load as possible to peers from data center has the advantages of cost reduction
in terms of storage and bandwidth of the central component, exploiting excess resource capacities at the peers
(distributed bandwidth consumption, storage space, online uptime availability). Storing on remote peers also
improves “reliability”, since private backup data are not in the hands of a single company that may go out
from business. Our analysis on data placement answers the questions about the data amount that can fit in
a PA system on the data center and on the peers respectively, and about the impact of data placement on
this amount. Results are shown for different parameters and scenarios later in the paper.

In many well known P2P applications (e.g., file sharing), resources are scattered irregularly between peers
and there is need for creating an indexing/search infrastructure (e.g., a DHT) to efficiently locate the data.
Furthermore, most existing P2P backup/storage solutions spread data randomly between the peers in the
network, and mimic this solution in order to become able to recover the data location. We take a different
path: we recognize the possibility of choosing where to store data. We can exploit this degree of freedom
to optimize data placement of our system with respect to resources (i.e., bandwidth, storage). Therefore we
investigate if a stratified system performs better than any other approach to peer selection, and we show the
advantages and limitations of a stratified system on the spectrum of different peer contributions. Moreover,
we study the outcome difference between symmetry or asymmetry in peer selection (symmetric contribution:
a peer stores data on a remote peer, the latter also stores the same amount of data on the first peer) and
we arrive at the conclusion that answering this question requires knowledge about the system scale and the
heterogeneity of peers consisting the system.

Three different techniques of data placement are analyzed (assuming centralized control):

1. All data stored centrally (DC). The data center bears all storage and the implied traffic burden, more-
over the cost of online availability. The backup data transferred to the data center should not be
redundant coded to save on traffic cost.
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2. Part of data stored centrally and part of data stored on peers (PA). This case describes a system where
the data center outsources as much storage load to peers as possible in order to offload the data center,
while guaranteeing the service level requirements (e.g. TTR). Thus, peers “assist” to the data center.
In terms of traffic, this scheme has the advantage of “caching” a part of the backup data at peers [2],
from where retrieving data is free. Central storing capacity is mandatory

(a) if the overall storing capacity at peers is not sufficient to store the data with the necessary redun-
dancy for every user;

(b) if there is not enough available peer present in the system that is suitable to store data.

If these constraints cease to exist due to additional peer storage capacity or late arrival respectively,
storage relations can be built between peers (that store data on the server) by re-transferring backup
data among peers to offload the data center in storage and traffic. If the peers’ storage capacities do
not cause limit, the load on peers might be distributed

(a) uniformly: peers store the same amount from the overall backup data, therefore peers contributing
more uptime and larger bandwidth will suffer.

(b) inversely proportionally to their uptime contribution: this mitigates the oppressing effects of the
previous design: peers can trade their uptime resources for storage space and traffic.

3. All data stored on peers (PP). The data center is fully offloaded, on the other hand, the network provider
experiences higher traffic cost due to the additional data redundancy, which becomes necessary when
storing solely on unreliable peers. If the aforementioned constraints exist, for some peers the quality of
service might not be acceptable.

3.1.1 Data placement on peers - The Tracker

In PA and PP systems, each peer constructs its neighborhood by querying a tracker to select and collect
remote peers for storage starting from its first appearance. At startup, a peer contacts the tracker5 and asks
for a peer set of fixed size. The tracker can reply with

• a randomly selected subset of peers (randomized peer selection);

– DHT-like or unstructured network

– Pros: Easy to implement, easy to distribute, load balancing

– Cons: load balancing, does not tackle heterogeneity

• a randomly selected subset of peers with the same peer average availability parameter (clustered peer
selection).

– Clustered with respect to availability: store only on peers that have similar availability and suf-
ficient bandwidth characteristics since data availability is directly defined by the availability of
peers storing it. Stratification of peers leads to less storage and traffic burden on highly available
peers, thus creates incentives.

– Clusters are defined by boolean criteria, i.e., either a node belongs to a cluster or not. If the size of
a cluster is too small to store data, all the excess data is stored in the data center. Data placement
is essentially randomized peer selection within the peer’s cluster.

– Pros: tackles heterogeneity, incentive

– Cons: measuring/calculating peer availability, internal churn, granularity of the clusters’ peer
characteristics (clustering within a cluster may exclude peers from storage relations)

5In the simulation a global array mimics the tracker. This does not impact the outcome of the simulation: if a suitable peer
is present in the system, it gets chosen.
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The tracker does not check whether the returned peers are online at the request time; those peers can be
contacted that are online when the selecting peer is, and still have sufficient unallocated storage capacity
to back up a part of the selecting peer’s data. In case the number of peers provided by the tracker is not
sufficient to store all data fragments, and/or if not enough of the known peers are available, a peer can request
another fixed number of peers. The backup operation on peers temporarily fails if there are not enough peer
in the system or not enough peers correspond to the selection criteria.

Imposing symmetric (bilateral) storage relation is an option. Note, that the maintenance operation (i.e.,
restoring lost fragments due to disk crash or peer death) may require the peer set to be re-constructed.

3.1.2 Storing on data center

The data placement problem in PA systems consists of the decision about when and how much data will be
stored on the data center. We study the possible alternatives listed below:

• Opportunistic: data is transferred to data center with excess upload capacity, and it is continuously
deleted as the amount of data that is successfully stored on peers is growing in the meantime;

• Pessimistic: the necessary amount of data is uploaded to data center with full upload capacity in order
to be able to restore backup, then uploads start toward remote peers, and centrally stored data is
continuously deleted as the amount of data that is successfully stored on peers is growing.

3.2 The data structure problem

The data structure problem tackles data fractioning and applied redundancy rate when delegating storage
responsibility to peers. We show that the number of peers and the quality of peer resources and contributions
highly affect the quality of service (TTR) that can be improved by choosing well-suited data structure. In
related work, creating data redundancy usually performed by data replication or erasure coding [7], and
determining redundancy rate is based on a calculation by supposing that data parts are stored on different
remote peers with homogeneous average availability and independent online appearances, and setting the
target prompt data availability usually to 0.99− 0.9999 [3]. We decide to apply erasure coding in our system
design in order to mitigate issues caused by unavailability of storing peers, with the goal of ensuring that, in
a given percentage of the cases, the backup can be restored within a given timeframe with realistic settings,
in which the up/download bandwidths do not allow for “instant” data recovery. As an indicative measure, we
relate the prompt data availability, i.e., being able to restore all data promptly assuming infinite bandwidth,
as an extreme to our realistic goal, which is to reach relatively low TTR values, our major measure of quality
of service.

A backup object is the first level entity of a two-level data structure in erasure coding schemes, and its
application’s goal is to mitigate the problem of low number of peers while dividing a peer’s whole backup data
into small-sized fragments (the second level entity) would require many of them. Introducing backup objects
allows to have small fragment size without requiring enormous number of peers, because two fragments of the
same backup object cannot be stored on a given remote peer as a violation of the redundancy scheme (based
on independent storage peers). The disadvantage of having large fragments is that when a remote peer goes
offline before completing the upload of a fragment (which happens with higher probability if the fragment
is larger), the uploading peer has to either wait for the remote peer to come back online or consider the
uploaded amount to be wasted. Nevertheless, if some of a peer’s fragments are uploaded to the same remote
peer, the availability of the whole backup will be dependent on the availability of backup objects. That
is, introducing backup objects is beneficial only if the availability of separate backup objects is the target
metric: fragment transfers are finished earlier, and individual backup object’s availability can be enhanced.
Our objective, however, is to assure the availability of the whole backup data of a peer, therefore there is
no point in organizing it into different backup objects. In fact, introducing backup objects is analogous to
having different users (that cannot store their fragments on each other) instead of one user, each having one
backup object, sharing bandwidth and storage capacity.

Data that is backed up on the data center does not need redundancy, therefore the data center will never
store more fragments for a given peer, than the necessary number of fragments to restore the peer’s backup
and no derivative of data stored on the data center needs to be stored on peers as well. On the other hand,

6



the part of data stored on peers must be redundant with a redundancy rate tuned to the quality of peers. A
peer needs to decide about how much part it wants to put on the data center and on peers prior to uploading
the data, since the redundant coding rate cannot be increased to generate additional redundant fragments on
the fly (they would not be compatible with the already existing fragments).6 Our solution is the following:
each peer makes a pessimistic estimate by constructing many redundant fragments, and uploads as many
as possible to peers, and the necessary number of fragments to the data center (in PA systems) in order to
always have sufficient online fragments. At the end of the process the peer deletes the remaining fragments
(it may always drop fragments without violating the redundancy scheme): we adjust the number of each
peer’s fragments stored on the data center to the number of its fragments that have been successfully stored
on the peer set, fragments on the data center are deleted if the remaining less fragments and the fragments
on the peer set altogether guarantee the aimed theoretical data prompt availability.

The coding rate is chosen among the following options:

• based on system’s average peer availability (when peer selection is random);

• based on the peer’s own availability (when peer selection is selective).

3.3 The upload scheduling problem

The scheduling problem raises the question of how to organize data upload toward peers (in PA and PP
systems). In additional, in PA systems the upload capacity must be shared between uploads to data center
and to remote peers. We study multiple options:

• Upload bandwidth is focused to a single remote peer (the rationale is that the objective of a peer
is to finalize the upload of a complete fragment as soon as possible) or multiple upload connections
are allowed at a time (as in BitTorrent, the peers assign the set of remote peers they transfer data
to/from within a given timeframe and the size of these sets is limited by the maximal parallel number
of up/download connections). If multiple connections are allowed, we adapt the maximal number of
parallel connections in function of the peer bandwidth: it is given by the default values multiplied by
ratio of the peer’s bandwidth and the average bandwidth of peers. This policy helps to avoid bandwidth
underutilization at high bandwidth peers due to low limit on parallel connections.

• The scheduling strategy prioritizes upload toward remote peer(s) to which the un-transfered data parts
are the least (completing fragment transfers greedily) or toward peer(s) with the highest availability.

• The scheduling strategy prioritizes upload toward remote peer(s) and transferring data to data center
is performed only with excess upload capacity or when its not possible to upload toward peers (in order
to limit central costs) or uploading to data center has priority (in order to achieve safe backup as soon
as possible).

The pseudo-code of the scheduling algorithm with aforementioned design options is showed in Alg. 3.3.
The notations are the following:

• n: number of maximal parallel uploads to peers;

• e: fragment transfer completion percentage;

• a: peer availability;

• s ∈ {e, a}: priority to largest transferred parts (e) or to high availability peers (a);

• d: priority to upload to data center, boolean;

• p: peer id;

• f : fragment id;

6The necessary redundancy rate is based on the number of peers with excess capacity, the storage capacity and the availability
of peers in count. If the redundancy rate needs to be altered due to unforeseen poor peer availability, storage capacity, and/or
decreased number of available peers, the coding must be re-done, since it cannot be modified during the data transfer process.
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• U : set of fragments not associated with any peer;

• P : set of partially uploaded fragments, represented as a list of (p, a, f, e) quadruples, sorted by decreas-
ing completion percentage (and peer availability if s == a);

• D: set of fragments uploaded to data center, represented by fragment ids f ; k: number of fragments
that are necessary to restore backup;

• J : set of jobs currently running represented as (p, f) doubles, interrupted jobs (if the peer or the remote
peer p goes offline) must be eliminated from J .

3.4 The data maintenance problem

In PA and PP systems data stored on peers might get lost. The problem formalizes the questions of how and
when data repairs should be carried out. Our approach dictates that repair must be performed by the data
owner: a peer is notified by the tracker whether one or more remote peer holding data has crashed. If a peer
loses a fragment on a crashed peer, it re-generates the fragment and uploads it to the same peer. If a storing
peer, having been offline during a predetermined period of time called as “grace period”, is supposed to be
definitely dead, the fragments it stored are uploaded to new peers or to the data center. If the “drop option”
is set, peers and the data center will drop the dead peers’ backup after the grace period. The grace period
and the redundancy rate must be well-combined in order to be able to react fast to data loss, but without
many unnecessary actions triggered by false positives.

In case of “disk crash”, the crashed peer’s utmost priority is to retrieve sufficient number of fragments
efficiently. The peers storing fragments on the crashed peer will upload their newly re-generated fragments
when the crashed peer initiates the action; TTR values shown later prove that storing peers do not need to
wait long before re-uploading their data.

The default objective is to maximize the probability of being able to retrieve backup data. In order to
achieve this, our implemented policy is to use as much bandwidth as the crashed peer can from its remote
peers, and then saturate its downlink with downloads from the data center. This is motivated by the fact that
peers’ upload is the bottleneck, and it is at the peers where backup data may be easily lost, furthermore on
the data center the backup is considered safe. Among the online peers, the peer choses to download its own
fragments from those that have already uploaded the largest parts. Once the necessary number of fragments
are downloaded, thus its own backup can be restored, the peer will re-download its peers’ fragments that it
stored and lost.

4 Simulation-based evaluation

We built a discrete Matlab simulator in order to numerically evaluate the system choices listed in Section 3.
The simulation is synchronous and organized into rounds, where 1 round represents 5 minutes. Total number
of rounds is 28000, thus representing more than 3 months duration. The default number of peers is 870,
however in order to measure how performance varies with system scale, we perform simulations with 435, 100
and 10 peers.

4.1 System design parameters

While the goal of our work is to perform comparing evaluation of three peer selection schemes, we emphasize
the importance of the right choice of data structure and transfer scheduling schemes, that are closely related
to data placement. As default setting, the number of original fragments per peer’s backup data is 32, therefore
with 10 GB backup data the fragment size is 320 MB. We also investigate the effects of generating large and
small fragments: with a number of fragments of 8, 128, 512, the fragment size is 1280, 80, 20 MB respectively.
Note however, that the maximal number of fragments is limited by the possible peer set size, therefore in
our settings the fragment size has a lower bound which makes the discrete simulation valid.7 We compute

7BitTorrent uses 256 kB sized fragments which are orders of magnitude smaller than what is implemented in our simulation;
one might consider backup data growing as a stream and performing erasure coding of reasonably-sized “data pieces” when a
peer creates e.g., 1 MB backup data, then “stream” the encoded pieces to peers in order to append them to the fragments.
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Algorithm 1 Scheduling data fragment upload

1: function updateJobs(n, s, d)
2: while U ∪ P 6= 0 do

3: update J
4: if d == true then

5: while ‖D‖ < k do

6: f = pop(U ∪ P )
7: if f /∈ D then

8: upload (data center, f)

9: d = false
10: else

11: ∀f ∈ P s. t. f ’s transfer has finished: P = P \ f
12: ∀f ∈ P s. t. timeout on f ’s transfer has expired: P = P \ f, U = U ∪ f
13: if ‖J‖ < n then

14: upload nextJob(U , P )

15: if ‖D‖ is not sufficient then ⊲ Not enough fragments are stored on peers yet
16: f = pop(U ∪ P )
17: if f /∈ D then

18: upload (data center, f)

19: else

20: if ‖D‖ is more than sufficient with fragmetns stored on peers then

21: f = pop(D)
22: D = D \ f

23: function nextJob(U , P ) ⊲ Returns: a (storer id, fragment id) pair.
24: for all (p, a, f, e) ∈ P do

25: if p is available for data transfer & p /∈ J then ⊲ Try to resume a partial fragment transfer at
first

26: J = J ∪ (p, f)
27: return (p, f)

28: if U 6= ∅ && p = get_storer() 6= null then ⊲ No peer with partial data online
29: f = pop(U)
30: U = U \ f, P = P ∪ f
31: J = J ∪ (p, f)
32: return (p, f)

33: return null

34: function getStorer( ) ⊲ Returns: the identifier of a storer peer
35: for all peer p in the system (or in the same cluster) do

36: if p is available for data transfer and not storing local data then

37: return p

38: return null
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Figure 1: The effects of various fragment sizes

the redundancy rate in order to provide 0.99 prompt data availability if fragments are stored on peers with
independent online appearances (Fig. 1). This is considered as a heuristic rule of thumb inspired by related
work (data redundancy rate is determined in [3] in function of average peer availability and targeting a
system-wide data prompt availability).

At the beginning of each round the peers assign the set of remote peers they will transfer data to/from
within the round. After establishing data transfer “channels”, the actual amount of data transferred between
peers is determined by the bandwidth characteristics of the two parties, and the bandwidth division among
the parallel connections (the number of uploads and downloads of each peer): the minimum of the respective
values of two peers having a transfer channel yields the throughput. Transferring data to/from the data
center is performed as a possible additional upload/download thread with saturating one’s uplink/downlink.

Each peer may initiate transfers in each round to any actually online peer (up to the parallel connection
limit), but does not consider possible additional uploads if one upload is finished within a round. To ensure
that the discrete round length and the lack of bandwidth re-allocation within a single round after the end of
a fragment transfer does not introduce distortions, we closely observe the time and system average of unused
bandwidth fraction of peers in rounds when their maximal number of parallel up/download connections is
attained, and at least one fragment transfer is finished, and they still have unfinished fragment transfers not
being active in the given round, although the affected remote peer is online.

4.2 Peer parameters

The generation of synthetic traces in order to model peer dynamics is done as follows. We model peer
behavior with a Markov-chain approach with peers having three states: online, offline and crashed. Three
parameters, i.e., the rates of connection, disconnection and disk failure, determine the behavior of the chain.
Peers’ online and offline session lengths are represented in rounds, and the number of rounds within an
online/offline session follows geometric distribution (“discrete exponential distribution”), generated in the
following manner. For each peer random values are drawn for consecutive online and offline sessions from
an exponential distribution, parametrized by the average availability of a peer’s real-life trace sample from
an instant messaging application, and then rounded to discrete values of rounds (Fig. 2). The average
peer availabilities under 0.25 are filtered out from the traces, and all the remaining values are rounded to
multiples of 0.1. Since we assume one connection/disconnection cycle per day, the average offline session
length parameter equals to (24 hrs - the average online session length). Peers are launched being offline.
Peers are assumed to never leave the system (during the simulation), and disk lifetimes are randomly drawn
from exponential distributions with E(lifetime) = 90 days, but we assume no crash until at least the number
of original fragments have been uploaded.

The up/down link capacities are also trace-based: the uplink capacity values are randomly drawn from a
real-life sample distribution (Fig. 2), and we assume for downlink capacities to be 4 times larger than uplinks
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Figure 2: Number of online peers, distribution of peer availabilities and uplink capacities

(capped by 100 Mbps).
In order to assign a demand to each simulated peer (i.e., how much data it wants to backup), we set up

storage requirement models: distribution of the storage requirements is homogeneous (every user has 10 GB
backup data) or truncated power-law (with skewness parameters 0.5, 1, 2). Similarly, local storage capacity
(i.e., how much data a peer can hold) models are given by multiple distributions of the storage capacities:
homogeneous (every user has 50GB capacity) or truncated power-law (with skewness parameters 0.5, 1, 2).

4.3 Data placement scheme results — Role of the data center

Here we present intuitive expectations and obtained results about the three main data placement schemes
with respect to our metrics in the system. Note, that while the following results are reached by default settings
(i.e., random peer selection, data redundancy based on system average peer availability, 32 original fragments,
greedy fragment completing uploads to peers, only one upload at a time, no timeout on transfers), we explore
the parameter space later in more depth. Furthermore we evaluate the two data placement techniques in
PA systems: one that gives priority to uploads toward the data center (uploading toward remote peers is
started only after having completed the transfer of sufficient fragments to the data center in order to have
a full backup) in order to yield the shortest TTB possible; and the other extrema that performs upload to
data center only with excess bandwidth (when remote peers are offline and/or online remote peers have poor
connectivity).

• DC: no data management and traffic scheduling are needed; all original fragments are stored on the
server; fast backup, fast recovery: only the data owner’s availability and up/download bandwidth set
constraints.

• PA: data placement and traffic scheduling are important in order to find well-suited balance between
fast backup and central costs; data transfers toward peers may take long due to poor peer availability
and connectivity; peers that are rarely found online receive less storage load, however the load on peers
becomes balanced in case of saturating total capacity; storing on data center mitigates the issue of long
backup operations; data load on the data center grows rapidly due to the slow transfers toward peers,
then decreases as more fragments are stored on remote peers.

• PP: feasible only if the peers’ resource contributions can support the safe storage of the total backup
demand; constructing small fragments mitigates the problem of limited storage capacity (because lower
redundancy rate results in the same prompt data availability); constructing large fragments mitigates
the problem of limited sized system set.

We make the differences more visible by comparing the main metrics of the three different schemes in
Fig. 3 that shows plots of TTB, central costs and TTR in the systems.

• TTB: the number of rounds that elapse from the start of the peer’s first fragment’s upload until the
completion of uploading sufficient number of fragments (which is k, the number of original fragments

11



of the backup data, in DC; m fragments on the data center and n fragments on peers, altogether
yielding the targeted theoretical prompt data availability with their respective availabilities in PA;
rk fragments, r being the calculated redundancy rate, in PP. Intuitively the TTB relation in different
systems is DC ≤ PA ≤ PP since uploading redundant backup data is limited by the overlapping online
times of peers in PP, while in PA systems uploading to data center is only constrained by the peer’s
availability and uplink capacity (pessimistic PA’s TTB is equal to DC’s). For visualizing purposes the
TTB is set to the simulation length for those peers that never reach the sufficient number of completely
uploaded fragments due to frequent crashes of remote peers (in PP). We show the distribution of
durations until the number of original fragments are uploaded completely. After this phase peers build
redundancy in PA and PP cases. Then, after reaching the TTB (when the target data redundancy is
obtained), further fragment transfers toward remote peers are carried out only with cost-minimizing
purpose: storing more fragments on peers for free, and deleting fragments from the data center in
exchange cuts a peer’s cost that is paid for the backup service at the data center.

• Costs of central storage are measured in GBs of data placed on the data center, and as the fraction of
the overall backup load. Recall, that long-term storage costs are larger than bandwidth costs, therefore
traffic of data center, i.e., upload/download network traffic measured in Mbps, is directly presented by
the central storage. The intuitive relation of storage costs is DC ≥ PA ≥ PP (PA costs depend on
data placement “scheduling” decisions8; the shortened TTB in pessimistic PA comes with the price of
a transitional increased load on the data center.

• TTR, intuitively DC ≤ PA ≤ PP , is increasing by putting more and more load on peers. In DC,
one can pinpoint a small number of peers that have extremely low TTR: these retrieving peers have
very large downlink capacities, and since they remain online specifically for the retrieval duration, this
latter is very short. The limited upload bandwidth, and the short online periods of the storing peers
hinder fast data retrieval. Note, that TTR values are highly similar in the PA and PP, because in PA
backup data amount increases on storing peers with time and approaches to PP. The relatively short
TTR assures that definitive data loss happens only with negligible probability after at least the number
of original fragments have been uploaded. We plot however the number of definitive losses that would
happen if we let peers crash before having uploaded the number of original fragments.

4.4 Specific insights to different system designs

4.4.1 Peer selection

In order to support our claim on the reason of differences among TTB and TTR results, we show the
negative correlation between the TTB (and TTR) and peer availability in Fig 4. Boxplots are presented in
DC, opportunistic PA and PP systems for every availability group of peers; on each box, the central mark is
the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually. TTB values are shorter for higher
available peers: the trend is more visible in PA than in DC, even more apparent in PP, especially without
crashes. The reason for this phenomenon is that highly available peers are online more often, therefore capable
of uploading their own backup faster. Another direct consequence of high availability is rather burdensome:
since these peers are found online more often, the storage load uploaded to them is also higher than on peers
with lower availability.

Motivated by the unfairness of storage load (and traffic) in a system with heterogeneous peer availabilities,
we analyze in Fig. 5 the impact of clustered vs. random data placement on peers in PA and PP. In clustered
data placement, selecting peers is performed based on their availability (selected peers belong to the same
availability category as the data owner) and applying a redundancy rate [3] based on this availability in order
to reach 0.99 prompt data availability supposing their online appearances to be independent. The applied
data redundancy rates are presented in Table 1; peers that belong to the cluster of availability 1 apply the
same redundancy as the cluster members of 0.9, considering the transitional outages due to peer crashes.

In general, selective data placement systems’ low availability peers apply high data redundancy rate,
resulting in huge amount of redundant data. The large amount of data, combined with the short overlapping

8The fraction of data stored on servers may be limited by a budget-threshold.
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(b) Storage cost in DC and PA
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Figure 3: TTB, storage cost and TTR in the data placement schemes with default settings
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Figure 4: TTB and storage burden on peers at the end of the simulation, grouped by the availability of peers,
in DC, PA opportunistic and PP systems from left to right

availability 0.3 0.4 0.5 0.6 0.7 0.8 0.9
redundancy rate 4.8709 3.5529 2.7573 2.2217 1.8328 1.5323 1.2833
number of peers 554 108 66 36 28 22 56

Table 1: Redundancy rates applied with different peer availabilities and the number of peers in the clusters
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(b) Storage cost in PA
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Figure 5: TTB and storage cost in random and selective PA, PP systems

online periods (since both data owner and storer are low availability peers), makes TTB very long. Therefore,
in backup systems applying selective data placement policy, the presence of the data center is crucial for peers
having low availability in order to make the backup service viable. In PA the TTB is lower with random
scheme except for a small fraction of peers, the high available ones. In PP, due to frequent crashes and the
limited number of peers in the clusters, many peers cannot complete the backup operation.

The storage load of the data center greatly increases at the beginning in opportunistic PA, then it
significantly decreases as more fragments are stored on remote peers. The un-outsourced storage amount
depends on the clusters’ size (beside the peers’ storage capacity): in the random peer selection case the
system’s size does not cause such strict constraints as the cluster sizes in the selective scheme. We call the
difference between the two schemes’ data center storage the price of fairness. The great majority of peers
succeed to upload almost all (more than 90%) of their redundant data in PP, and more peers have rather
small success of storing all of their fragments in the selective case. This is again due to the limited number
of peers within their clusters.

Regarding TTR, highly available peers obviously benefit from the selective scheme by being able to retrieve
from their peers most of the time although constrained by the upload capacity of the few storing remote peers,
on the other hand low availability peers fight short overlap durations with placing many redundant fragments
on many peers, therefore widening their choice of download sources. In this sense, storing on selected peers
with heterogeneous redundancy rates, the scheme adapts well to heterogeneous peers and yields good TTR
results despite poor peer availability. All data placement schemes show similar performance both in PA and
in PP to what have been presented earlier: the TTR does not seem to be affected by the impossibility of
storing the whole redundant data on peers at this applied redundancy rate.

4.4.2 Fragment size

The effects of constructing smaller fragments in opportunistic PA are plotted in Fig. 6. Generally having
small fragments the aggregate redundant data amount is less if erasure coding is applied to reach the same
prompt data redundancy (see in Fig. 1), but more redundant fragments require larger peer set, which implies
that in limited setting some data cannot be stored on peers (instead stored on the data center in PA). In
PA, the smaller the fragments are, the shorter TTR and TTB values are yielded. Observing the centrally
stored data amount, this is partly due to the fact that the peer set is limited, therefore larger data load is
backed up in the data center when small, but many fragments are generated. However, as seen in the random
peer selection case where the number of eligible peers does not raise strict constraints, in terms of central
storage costs it is beneficial to set the fragment size to the minimal possible value that is allowed by the
potential peer set size, since the amount of centrally stored data can be higher if fewer, but larger fragments
are stored on the data center. Choosing a well-adapted fragment size balances the trade-off between TTB
and central storage costs in function of the number of peers: uploading small fragments requires waiting to
resume interrupted transfers less frequently, therefore the sufficient number of fragments can be uploaded
sooner, if the peer set size allows it.
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(b) Storage cost in PA random
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(d) TTB in PA symmetric selective
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(e) Storage cost in PA symmetric selec-
tive
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Figure 6: Various fragment sizes in random and selective PA systems

4.4.3 Transfer scheduling

In PA and PP systems the upload scheduling plays important role because the future online appearances
of remote peers are not precisely predictable and therefore fragment uploads toward them need deliberate
strategy in order to complete the transfers as soon as possible. First, we change the maximum parallel upload
connection number (from 1 to 4 and 8, the latter being adaptively increased if the peer’s uplink capacity
significantly exceeds the system average); second, we modify the “greedy” priority among peers in favor for
highly available peers; third, we set 7-day and 3-day timeouts on fragment transfers. We show the TTB
results in opportunistic PA systems with random and selective peer selection.

As observable, the best performance is yielded when allowing for only 1 upload instead of 4 or 8 parallel
uploads, furthermore, the “greedy” scheduling strategy seems to provide slightly shorter TTB than the peer
availability-based priority. Interrupting fragment uploads after various, finite timeouts drives TTB results
to higher levels in both random and selective PA systems (e.g., imposing 3-day timeout on transfer makes
backuping impossible for many peers, because uploading to data center is not prioritized). The conclusion,
therefore, is to focus uplink capacity as much as possible on completing fragment transfers, and never waste
bandwidth with aborting transfers.

4.5 Specific insights to different peer parameter inputs

4.5.1 System scale

In Fig. 8 we show that the simulation’s system size was reasonably chosen. We verify the scalability of the
system by performing simulations with only the half of the peers, then with 100 and 10 peers in opportunistic
PA random system case. As the system size grows, the central storage can be more and more outsourced
and dispersed on peers. TTB and TTR values are already nearly the same when the number of peers is
435 and 870: the peer-to-peer part of the system is scalable and the data center’s storage and bandwidth
capacities are (assumed to be) limitless. The difference in TTB and TTR values seen in case of 10 peers is
due to the very low number of peers, thus relatively more load on the data center. As the sub-linear growth
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Figure 7: Various traffic scheduling techniques

of the performance metrics show, the larger the system, the better it works. We also plot the average and
standard deviation (as confidential interval) of the data center storage in time, and the TTB and TTR values
for peers.

4.5.2 Effects of disk crashes

In Fig. 9 we show measured TTR results in DC, PA and PP. Note, that disk lifetimes are randomly drawn
from an exponential distribution with E(lifetime) = 90days; higher data loss rate would cause more intensive
traffic on peers and on the data center, moreover higher rates than the data repair rate would lead to the loss
of some data definitively. Increasing the rate of data loss to levels that would create such problems in high
numbers seems to be unrealistic, given that with the current setting we assume 3 months for expected disk
lifetime. Obviously, considering lower expected duration for peer membership, and allowing peer departures
from the system would affect the data loss rate negatively.

Provided that actual data loss rate takes place, we can measure the TTR values for those peers that
have successfully uploaded the necessary amount of data to restore backup before they crash. Based on
the plotted results, the TTR values are similar in all cases, irrespectively of the peer’s availability. Central
bandwidth costs due to repairs in case of disk crashes are higher if the data center’s storage load is greater,
i.e., in opportunistic selective PA, pessimistic PA and DC cases respectively. Since maintenance between
peers “only” costs bandwidth which is considered to be free, storing less data on the data center results in
savings on monetary cost of traffic as well.

4.5.3 Effects of high and low peer resources

In this section we discuss the consequences of high and low uptime, and low storage capacity contributions
of peers. We show results in a “set-top-box” case, where peers attain almost 100% online availability since
the backup application is assumed to be installed on their set-top-boxes that are continously connected in
order to provide telephone service. On the other hand we investigate the case where only less than 0.15
average availabiities are filtered out from the default traces. For the scenario of low shared storage capacity,
we suppose 10 GB of storage space instead of 50 GB at each peer.

In Fig. 10 one can observe that having outstanding or slightly less available peers than the default setting,
the system’s performance (especially TTB) changes significantly. Low peer availability (peers with 0.2 average
availability are also present) causes higher TTB for many peers, and also increases the data center’s load.
Similarly to peer availability, peers’ storage capacities highly influence the performance: when the setting
assumes only 10 GB of shared storage capacity at each peer, the TTR is shorter, because the storage capacity
provides only a slight fraction of the required capacity in order to safely store the fragments, therefore the
limited peer storage capacities force peers to store on data center, hence low TTB, TTR and high data center
load.

In addition to the inquiry of limited peer storage capacities, here we also consider scenarios of skewed
storage demands and capacities: instead of 10 GB demand (resp. 50 GB storage), peers’ demands (resp.
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Figure 8: System scalability
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Figure 10: TTB, TTR and storage in PA random with various quality peer profiles

capacities) are randomly drawn from a truncated power-law distribution with skewness parameters 0.5, 1, 2
and with cutoff parameter 0.1. The storage demands (resp. capacities) are normalized so that the aggregate
storage demand (resp. capacity) is equal to the standard setting with 10 GB storage demand (resp. 50
GB storage capacity) at each peer. Differences in Fig. 11 are visible in TTB and TTR values with skewed
demands: demand skewness worsens the TTB and TTR for a small set of peers (for those that have high
demand). With differently skewed capacities, both TTB and TTR remain similar: peers that store on large
capacity peers along with a lot of other peers are not constrained by the storing peer’s downlink capacity,
moreover crashes are not supposed to happen in bulk therefore large storage peers’ uplinks do not impose
constraints on retrieving from them.

5 Conclusions

We presented a broad investigation on peer-assisted online backup systems where backup data is partly placed
on peers. We studied different schemes for data placement and multiple system design choices in terms of
data structure and traffic scheduling. We have observed systems’ performances for various user profiles, and
proposed advantageous design choices. The main conclusions are the following:

• central backup service (on data center) provides the best performance in terms of backup and retrieve
time but for relatively high price;

• peer assisted systems lower the storage and traffic costs, however the savings can be significant (in
extremes, resulting in purely peer-to-peer system) only if peers share relatively large amounts of online
availability, storage and bandwidth resources and they are sufficiently numerously present in the system,
otherwise the lower costs come with intolerable loss of performance;

• applying sufficient data redundancy, the data restore duration is not significantly affected with data
placement on peers, however the backup operation duration is inevitably longer in this case;

• in order to mitigate the long backup operation duration toward peers we suggest the following solutions:

– backup to data center first (implies costs, but peak is lower than total backup, due to the out-
sourcing of fast uploaders);

– apply as low redundancy rate as possible without risking definitive data loss (not necessarily based
on prompt data availability);

– construct fragments as small-sized as possible in regard to the (required and the available number
of remote peers (retrieve can performed with full downlink capacity);

– impose a low cap on the number of parallel uploads;

– interrupt transfers only after long timeouts;

– complete a fragment’s upload greedily.
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(b) TTB with skewed demands
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(c) TTR with skewed demands
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(e) TTB with skewed capacities
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Figure 11: TTB and TTR in PA random with different peer storage demand and capacity distributions

• availability-based peer selection policy yields

– lower time to backup for highly, higher time to backup for less available peers;

– lower average retrieval time than random placement (increased redundancy rate enhances the
chance for low availability peers to find storing remote peers online during their uptime);

– a means to avoid free-riding;

but peers must be present in the necessary number within the clusters. Availability requirement must
be extended with storage and bandwidth requirements on peers, and clustering within clusters must be
prevented.
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