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Abstract—In this paper1, we will provide a straightforward
classification of some spectrum sensing strategies derived at Eu-
recom attempting to show the diversity and advantages of these
spectrum sensing techniques. Specifically, two low complexity
blind sensing algorithms were developed to detect spectrum holes
in the primary user’s bands: the distribution analysis detector
(DAD) and the algebraic detector (AD), which are compared with
the energy detector (ED) as reference algorithm. For performance
evaluation we have chosen to thoroughly investigate the DVB-
T primary user system. Simulation results show that the two
proposed detectors offer high performances and detect primary
users presence even at very low SNR with comparable complexity
to ED.

Index Terms—Cognitive radio, blind sensing, energy detector,
distribution analysis detector, algebraic detector, low complexity.

I. INTRODUCTION

As cognitive radio (CR) is based on the principle of exploit-
ing any part of the radio spectrum not in use, whether licensed
or not, it is crucial to sense the spectrum and find holes that
can be exploited for a shorter or longer period of time [1].
For signal transmission which requires real time and small
delay, this may become difficult depending on the intensity of
exploitation of the spectrum [2]. For non-realtime applications
the potential is great.

Spectrum sensing techniques are based on primary user
modulation type, power and frequency. Primary users that
use frequency hopping or spread spectrum signaling, where
the power of the primary user signal is distributed over a
wider frequency even though the actual information bandwidth
is much narrower, are difficult to detect. Primary users can
claim their frequency bands anytime while CR is operating
at that band. In order to prevent interference to and from
primary licence owners, a CR should be able to identify the
presence of primary users as quickly as possible and should
vacate the band immediately. Hence, sensing methods should
be able to identify the presence of primary users within a
certain duration. This requirement possesses a limit on the
performance of sensing algorithms and creates a challenge
for CRs. Some other challenges that need to be considered
while designing effective spectrum sensing algorithms include

1The work reported herein was partially supported by the European projects
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implementation complexity, presence of multiple secondary
users, coherence times, multipath and shadowing, cooperation,
competition, robustness, heterogeneous propagation losses,
and power consumption [3].

There are several spectrum sensing techniques that were
proposed for CR [3]. A few completely blind sensing methods
that do not consider any prior knowledge about the transmitted
signal have been derived in the literature, but all of them suffer
from the noise uncertainty and fading channel variations. One
of the most popular is the energy detector (ED) [4]. Despite
its easy implementation and low complexity, the ED does not
perform well at a low signal-to-noise-ratio (SNR) and cannot
differentiate between noise and signals. Moreover, this kind of
detector is inconvenient when the level of noise is completely
unknown. Two other blind techniques were proposed at EU-
RECOM. The first technique analyzes the distribution of the
primary user received signal to sense vacant frequency sub-
bands over the spectrum band. Specifically, the distribution
analysis detector (DAD) exploits model selection tools like the
Akaike information criterion (AIC) to detect vacant holes in
the spectrum band [5] [6]. For that, we assume that the noise
of the radio spectrum band can still be adequately modeled
using a Gaussian distribution. We then compute and analyze
Akaike weights in order to decide if the distribution of the
received signal fits the noise distribution or not. The second
detector called algebraic detector (AD) exploits the change
point detection [7]. Indeed, the detection of a used sub-band
corresponds to the presence of a ”spike-like” in the signal’s
spectrum which is represented with an N order local piecewise
model. The two proposed detectors, in addition to their low
complexity compared to the ED, offer high performances even
at low SNR regime.

This paper presents part of the experimental results obtained
during the European research project SENDORA (SEnsor Net-
work for Dynamic and cOgnitive Radio Access) [8]. Among
the objectives of the SENDORA project is the design of new
robust spectrum sensing algorithms, whose detection power
will be enhanced by processing data from several sources in
order to perform distributed detection of the primary licensed
users [8]. In this paper, we present part of some results
obtained during this project, which deals with opportunistic
spectrum sensing management. Specifically, we develop a
common framework for the comparison of three low com-
plexity blind sensing algorithms.



The paper is organized as follows. After the presentation
of the common framework study in Section II, the spectrum
sensing techniques are discussed in Section III. In Section IV,
the performance evaluation and advantages are described, and
a comparison of the three detectors is given. Finally, Section V
concludes the paper.

II. FRAMEWORK STUDY

In this section, we describe the system model that will be
used throughout this paper. For the radio channel measurement
we have chosen to thoroughly investigate the DVB-T primary
user system. In this system, the transmitted signal is convolved
with a multi-path channel and a Gaussian noise is added. The
received signal at time n, denoted by xn, can be modeled as:

xn = Ansn + en (1)

where An being the transmission channel gain, sn is the trans-
mit signal sent from the primary user and en is a stationary,
Gaussian noise with zero mean. The goal of spectrum sensing
is to decide between the following two hypotheses:

xn =
{
en H0

Ansn + en H1
(2)

We decide a spectrum band to be unoccupied if it contains
only noise, as defined in H0; on the other hand, once there
exist primary user signals besides noise in a specific band, as
defined in H1, we say the band is occupied. Let PF be the
probability of false alarm given by:

PF = P (H1 | H0) = P (xn is present | H0) (3)

that is the probability of the spectrum detector having detected
a signal under hypothesis H0, and PD the probability of
detection expressed as:

PD = 1− PM = 1− P (H0 | H1)
= 1− P (xn is absent | H1) (4)

the probability of the detector having detected a signal under
hypothesis H1, where PM indicates the probability of missed
detection.

We develop in this paper a common framework to make
a comparison of three blind sensing algorithms. In order to
decide on the nature of the received signal, we calculate a
threshold for each detector. The decision threshold is deter-
mined using the required probability of false alarm PFA given
by (3). The threshold Th for a given false alarm probability
is determined by solving the equation:

PFA = P (T (xn) > Th|H0) (5)

where T (xn) denotes the test static for the given detector. Note
that, for each detector we compute a particular threshold Th
that tests the decision statistic based on a fixed false alarm
probability value.

III. SPECTRUM SENSING TECHNIQUES

A. Energy Detector (ED)

The ED is the most common method for spectrum sensing
because of its non-coherency and low complexity. The energy
detector measures the received energy during a finite time
interval and compares it to a predetermined threshold. That
is, the test statistic of the energy detector is:

M∑
m=1

|xm|2 (6)

where M is the number of samples of the received signal xm.
The computed energy is compared to a threshold value, that
depends on the false alarm probability given by equation (5),
to make a decision about the presence/absence of a primary
user signal.

Conventional ED can be simply implemented like spectrum
analyzer. It is universal in the sense that it does not require
any knowledge about the signal to be detected. On the other
hand, for the same reason it does not exploit any potentially
available knowledge about the signal.

B. Distribution Analysis Detector (DAD)

The main idea of the blind DAD is to decide if the distri-
bution of the observed signal xk fits the candidate model. Let
K be the number of independent observations x1, x2, ..., xK .
It is assumed that the samples of the received signal xk
are distributed according to an original probability density
function f , called the operating model. The operating model
is usually unknown, since only a finite number of observations
is available. Therefore, an approximate probability model (i.e.
candidate model) must be specified using the observed data,
in order to estimate the operating model. The candidate model
is denoted as gθ, where the subscript θ indicates the U -
dimensional parameter vector, which in turn specifies the
probability density function. Akaike’s proposal was to select
the model which gives the minimum AIC [10] [11], defined
by:

AIC = −2
K∑
k=1

log gθ̂(xk) + 2U (7)

The parameter vector θ for each family should be estimated
using the minimum discrepancy estimator θ̂, which minimizes
the empirical discrepancy.

The sensing technique selects the distribution that best fits
the data. In fact, we consider that the norm of the Gaussian
noise can be modeled using a Rayleigh distribution and the
presence of a signal can be modeled using a Rice distribution.
From the received signal, we estimate the parameters θ̂ for
the Rayleigh and Rice distribution. Then, we compute the AIC
for both distributions according to (7). The probability density
function for the Rayleigh distribution is given by:

gRayleigh(x | σ) =
x

σ2
exp

(
−x2

2σ2

)
(8)



which leads to a log-likelihood function:

LRayleigh(σ) =
M∑
i=1

log xi −M log σ2 − 1
2σ2

M∑
i=1

x2
i (9)

where the parameter θ = (σ) and M is the number of
observation samples. The MLE of the parameter σ is given
by:

σ̂2 =
1

2M

M∑
i=1

x2
i (10)

The probability density function for the Rice distribution is
given by:

gRice(x | v, σ) =
x

σ2
exp

(
−(x2 + v2)

2σ2

)
I0

(xv
σ2

)
(11)

where I0
(
xv
σ2

)
is the modified Bessel function of the first kind

with order zero. The approximated probability density function
leads to the following log-likelihood function:

LRice(v, σ) = log
(∏p

i=1 xi
σ2p

exp

(
−
∑p
i=1

(
x2
i + v2

)
2σ2

)

×
p∏
i=1

I0

(xiv
σ2

))
(12)

Parameters v and σ are a solution of the following set of
equations [12]: v − 1

p

∑p
i=1 xi

I1( xivσ2 )
I0( xivσ2 ) = 0

2σ2 + v2 − 1
p

∑p
i=1 x

2
i = 0

(13)

where I1
(
xiv
σ2

)
= −I0

(
xiv
σ2

)
+ σ2

2xv I0
(
xiv
σ2

)
is the modified

Bessel function with order one.
In order to show the comparison results between the distri-

butions in a clearly manner, we introduce the Akaike weights
WRice and WRayleigh derived from the AIC values [9]. Akaike
weights for Rice can be expressed as:

WRice =
exp

(
− 1

2ΦRice
)

exp
(
− 1

2ΦRice
)

+ exp
(
− 1

2ΦRayleigh
) (14)

where

ΦRice = AICRice −min (AICRice,AICRayleigh) (15)

Similarly, we can express Akaike weights for Rayleigh.
AICRice and AICRayleigh are computed using equation (7)
taking gθ̂ = gRice and U = 2 for a Rice distribution and
gθ̂ = gRayleigh and U = 1 for a Rayleigh distribution. The
test statistic of the DAD detector is given by:{

WRice −WRayleigh < Th noise
WRice −WRayleigh > Th signal (16)

According to the system requirement on PFA, we calcu-
late a proper threshold Th through simulations. If WRice −
WRayleigh > Th, we declare that the primary user is present,
otherwise, we declare the primary user is absent.

C. Algebraic Detector (AD)
The AD is a new approach based on the advances lead in

the fields of differential algebra and operational calculus. In
this method, the primary user’s presence is rather casted as a
change point detection in its transmission spectrum [7]. In this
approach, the mathematical representation of the amplitude
spectrum of the received signal Xn in frequency domain
is assumed to be a piecewise N th order polynomial signal
expressed as follows:

Xn =
K∑
k=1

χk[nk−1, nk]pk(n− nk−1) + En (17)

where χk[nk−1, nk] is the characteristic function, pk(n) is
an N th order polynomials and En is the additive corrupting
noise. K is the number of subsection, and n is the normalized
frequency. For simulation results, M/K = 1000.

Let Sn be the clean version of the received signal given by:

Sn =
K∑
k=1

χk[nk−1, nk]pk(n− nk−1) (18)

And let b be a frequency bandwidth such that in each interval
Ib = [nk−1, nk] = [ν, ν + b], ν ≥ 0 one and only one change
point occurs. Denoting Sν(n) = Sn+ν , n ∈ [0, b] for the
restriction of the signal in the interval Ib and redefine the
change point relatively to Ib say nν given by:{

nν = 0 if Sν is continuous
0 < nν ≤ b otherwise (19)

The primary user presence on a sensed sub-band is equiv-
alent to finding 0 < nν ≤ b in this band. The AD gives the
opportunity to build a whole family of detectors for spectrum
sensing, depending on a given model order N . Depending on
this model order, we can show that the performance of the AD
increases as the order N increases.

The proposed algorithm is implemented as a filter bank
composed of N filters mounted in a parallel way. The impulse
response of each filter is:

hk+1,n =

{
(nl(b−n)N+k)(k)

(l−1)! 0 < n < b

0 otherwise
(20)

where k ∈ [0..N−1] and l is chosen such that l > 2×N . The
proposed expression of hk+1,n was determined by modeling
the spectrum by a piecewise regular signal in the frequency
domain and casting the problem of spectrum sensing as a
change point detection in the primary user transmission [7].
Finally, in each stage of the filter bank, we solve the following
equation:

ϕk+1 =
M/K∑
m=0

Wkhk+1,mXm (21)

where Wm are the weights for numeric integration defined by:

Wk = 0.5 for k = 0,M
Wk = 1 otherwise (22)



In order to infer whether the primary user is present in its
sub-band, a decision function is computed as follows:

Df =
N−1∏
k=0

|ϕk+1| (23)

The decision is made by computing the threshold Th to the
decision function over the sensed sub-band. The threshold Th
is set through simulations.

IV. PERFORMANCE EVALUATION

The complexity of a sensing detector is a major concern
in spectrum sensing. Using the implementation steps of the
three detectors, we will study the complexity required for
each detector to derive their sensing algorithm. As the ED
is well known for its simplicity, the comparison is made
with reference to it. The complexity of the algorithms is
measured through the number of complex multiplications that
the algorithms has to perform for the calculation of the
test statistics. We summarize the number of multiplications
required for each technique in Table I. Note that M refers
to the number of samples of the received signal xn and N
is the model order of the AD. From these results, we find
that the two proposed detectors have the same complexity for
N = 2, with over 2 times the complexity as compared to the
ED. While the ED and the AD have the same complexity for
N = 1.

Sensing technique Complexity
Energy detector M
Distribution analysis detector 2M
Algebraic detector NM

TABLE I
COMPLEXITY COMPARISON OF THE THREE SENSING TECHNIQUES: ENERGY

DETECTOR (ED), DISTRIBUTION ANALYSIS DETECTOR (DAD) AND ALGEBRAIC

DETECTOR (AD)

For simulation results, the choice of the DVB-T primary
user system is justified by the fact that most of the pri-
mary user systems utilize the OFDM modulation format.
This choice is done in the context of the European research
project SENDORA [13]. The channel models implemented
are AWGN, Rician and Rayleigh channels. The latter two
correspond to the two different types of propagation that
have to be handled in practice, namely line-of-sight (LOS)
and Non-line-of-sight (NLOS). Slow fading is simulated by
adding log-normal shadowing. The simulation scenarios are
generated by using different combinations of parameters given
in Table II. The evaluation framework for all simulations has
been implemented in Matlab.

Fig. 1 depicts the detection comparison of three detectors.
This figure shows the probability of detection versus SNR
ranging between −15 dB and −2 dB at a constant false alarm
rate (PFA = 0.05). We used here a DVB-T primary user
system with Rician channel. Threshold values are computed
according to the common framework and depend only on the
PFA value. From the simulation results, we show that the
DAD detector and the AD detector for N = 3 outperform the

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel models Rayleigh/Rician (K=1)
Maximum Doppler shift 100Hz
Frequency-flat Single path
Sensing time 1.25ms
Location variability 10dB

TABLE II
THE TRANSMITTED DVB-T PRIMARY USER SIGNAL PARAMETERS

ED under the same SNR condition. For the AD detector, we
remark that the detection rate goes higher as the polynomial
order gets higher. We find also that the proposed detectors
generally work well under low SNR condition, while it is
not the case of ED detector due to the fact that it does not
differentiate between primary user data and noise.
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Fig. 1. Probability of detection vs. SNR for the three detectors: energy
detector (ED), distribution analysis detector (DAD) and algebraic detector
(AD) with PFA = 0.05 and N = (1, 3) for a DVB-T primary user system
with Rician channel.

V. CONCLUSION

In this paper, we presented a performance comparison of
three low complexity blind sensing techniques using a com-
mon simulation framework. We focuss on the performance of
local sensing algorithms. We considered for simulation results
a realistic network setting using a DVB-T primary user system.
From this comparison, we show that the distribution analysis
detector and the algebraic detector offer high performances
and could also be used to make the estimation safer and faster.
Specifically, primary users are detected even at very low SNR
with a comparable complexity to ED.
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