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Abstract

Recently, several statistical techniques using flow features have been proposed
to address the problem of traffic classification. These methods achieve in general
high recognition rates of the dominant applications and more random results for
less popular ones. This stems from the selection process of the flow features, used
as inputs of the statistical algorithm, which is biased toward those dominant appli-
cations. As a consequence, existing methods are difficult to adapt to the changing
needs of network administrators that might want to quickly identify dominant ap-
plications like p2p or HTTP based applications or to zoom on specific less popular
(in terms of bytes or flows) applications on a given site, which could be HTTP
streaming or BitTorrent for instance. We propose a new approach, aimed to address
the above mentioned issues, based on logistic regression. Our technique incor-
porates the following features: i) Automatic selection of distinct, per-application
features set that best separates it from the rest of the traffic ii) Real time implemen-
tation as it needs only to inspect the first few packets of a flow to classify it, (iii)
Low computation cost as logistic regression is implemented by comparing a linear
combination of a flow features with a fixed threshold value, (iv) Ability to handle
application types that former methods failed to classify. We validate the method
using two recent data sets collected on two ADSL platforms of a large ISP.
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1 Introduction

Application identification is of major interest for networks operators, especially
Internet Service Providers and enterprise network administrators. Motivations be-
hind this need are many fold: (i) enforcement of internal or national rules, e.g.,
banning p2p traffic from an Intranet, (ii) better understanding of actual and emerg-
ing applications (iii) assessment of the impact of those applications on peering
agreements and/or the return on investment if some p4p initiative was taken [29]
or (iv) possibility to offer additional services based on application, e.g., QoS pro-
tection of multimedia transfers.

However mapping flows to applications is not straightforward and has attracted
a lot of attention from the research community. Indeed, Internet traffic is the prod-
uct of a complex multi factor system involving a range of networks, hosts and
seemingly uncountable variety of applications. Its complexity is continually in-
creasing as developers keep producing new applications and inventing new usages
of the old ones.

Many different methods have been proposed to solve the traffic classification
problem. In the early Internet, traffic classification relied on the transport layer
identifiers. However, the advent of new protocols like p2p, and the increase of ap-
plications tunneled through HTTP make port-based classification significantly mis-
leading. Many studies have confirmed the failure of port-based classification [9].
This triggered the emergence of deep packet inspection (DPI) solutions that iden-
tify the application layer protocol by searching for signatures in the payload. The
increasing use of encryption and obfuscation of packet content, the need of constant
updates of application signatures and governments regulations, might however un-
dermine the ability to inspect packets content.

Recently, several solutions based on statistical classification techniques and
per flow features to probabilistically map flows to applications have been proposed
[14, 3, 13, 16, 6, 4, 22]. These approaches generally consist of a first phase where
flow features are selected based on some intrinsic characteristics like (the lack of)
correlation and a second phase where flows are clustered according to the selected
features. In general, the overall performance of the proposed statistical classifiers
are satisfactory when considering all flows and applications in a given dataset. The
latter means that the dominant applications, typically Web transfers and some p2p
applications like eDonkey, are well classified but other applications that represent
a small fractions of transfers, like streaming, might not be correctly identified by
the statistical classifier. The reason behind those varying performance might lay
in the feature selection process that tends to pick features that are representative
of the dominant applications in the considered dataset. More generally, we identi-
fied a number of challenges for traffic classification that current approaches fail to
correctly address:

• A feature selection strategy that selects for each specific (family of) applica-
tion(s) a distinct set of features that best discriminates it from the rest of the
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traffic.

• The ability to zoom in and out in the traffic as the focus might be on a family
of applications like all applications using the HTTP protocol, or on specific
applications like HTTP streaming or HTTP Chat.

• Resilience to the problem of data over-fitting observed in cross-site studies
[21] whereby the statistical classifier capture so-called local information, like
port numbers of p2p applications used by local users, that are detrimental
when the classifier is applied on a site different from the one where it was
trained.

• A classification method with a low computation cost that is further able to
work in real time, i.e., after the observation of the first few packets of a
connection.

In this paper, we propose to cast any traffic classification question as a logistic
regression problem (Section 3). Using this approach, we develop a method that
responds to the above challenges.

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 provides formal statements of the problems we address, the back-
ground on logistic regression, and the classification process. Section 4 explains
how we obtained and processed the data for our validation experiments, and Sec-
tion 5 provides the results from our experimentation with real traffic. Section 6
summarizes the work and indicates future avenues of research.

2 Related work

Many different methods have been introduced to classify traffic. Traditional
approaches relied on port numbers. However, early works [10, 15] quantita-
tively demonstrated the decrease of accuracy of conventional classification meth-
ods based on port numbers. It triggered the emergence of deep packet inspection
(DPI) solutions that identify the application based on signatures found in packet
payloads or connection patterns [24, 23]. The increasing use of encryption and
obfuscation of packet content, the need of constant updates of application signa-
tures and governments regulations, might however undermine the ability to inspect
packets content.

To address these problems, recent studies have relied on statistical classification
techniques to probabilistically map flows and applications [14, 3, 2, 13, 16, 18, 6,
4]. Hereafter, we cite a representative sample of traffic classification research. For
a much more complete survey, see the work by Nguyen et al. [25].

Moore et al. in [16] presented an approach based on a naive Bayes classifier to
to solve the classification problem of TCP traffic. They used a correlation-based fil-
tering algorithm to select the 10 most relevant flow-behaviour features. The result-
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ing accuracy, between 93% and 96%, demonstrated the the discriminative power
of a combination of flow features and machine learning algorithms.

Bernaille et al. presented in [3] an approach for early identification of applica-
tions using start-of-flow information. The authors used the size and direction of the
first 4 data packets and port numbers in each flow as features on which they trained
K-means, Gaussian mixture model and spectral clustering respectively. Resulting
clusters were used together with labeling heuristics to design classifiers. Their re-
sults have shown that information from the first packets of a TCP connection are
sufficient to classify applications with an accuracy over 90%. The authors further
specialized their work to the identification of encrypted traffic in [2].

Karagiannis et al. [11] studied traffic behavior by analyzing interactions be-
tween hosts, protocol usage and per-flow features. Their techniques were able to
classify 80%-90% of the traffic with a 95% accuracy. In their recent work [12], they
applied those techniques to profile the users activities, and to analyze the dynamics
of host behaviours.

Pietrzyk et al. [21] investigated the use of statistical classification algorithms
for operational usage. They point out that data over-fitting is a main weakness of
statistical classifiers. Indeed, even if a classifier is very accurate on one site, the
resulting model cannot be applied directly to other locations. This problem stems
from the statistical classifier learning site specific information.

Nechay et al [17] presented tow approaches based on Neyman-Person clas-
sification and Learning Satisfiability framework, that allow to set class-specific
performance guarantees. Their experiments indicate that these techniques almost
achieve the specified constraints, at the expense of a very slight reduction in over-
all accuracy. However they used a 3G dataset that contains mainly web traffic and
mails.

There exists also a lot of works focusing on specific applications. For example,
Mellia et al. [4] showed an interesting approach specifically intended to identify
Skype traffic by recognizing specific characteristics of Skype. A number of papers
have been published focusing on the identification of p2p traffic [10, 9, 5].

In most of the above mentioned studies, the authors collected a large number
of flow statistics and selected a subset of them that maximizes the overall accuracy.
This raises a number of problems:

• These methods choose the parameters that are the most relevant to the most
popular application in the dataset, which is in general Web traffic. It seems
more reasonable to choose for each application a subset of features that max-
imizes its detection accuracy.

• The majority of datasets originate from the academic world. They thus lack
the diversity of end users Internet traffic.

• None of these techniques is able to handle qualitative parameters. An ex-
ample of qualitative parameters is the port numbers. Although it has been
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used as quantitative parameter in previous works [13] due to its strong pre-
dictive power, it must be used with caution as, e.g., for p2p application, the
statistical classifier will learn the port numbers of the local users [21]. Us-
ing the port number as a qualitative parameter, e.g. , “Is the port number a
well-known port number?” allows to retain the good property of this feature
while avoiding its drawbacks, as we will see later.

3 Learning classifier using Logistic regression

The use of logistic regression modeling has exploded during the past decade.
From its original use in epidemiological research, the method is now commonly
used in many fields including but not nearly limited to biomedical research [27],
business and finance [26], criminology [28], health policy [27] and linguistics [20].
Logistic regression is designed for dichotomous variables, i.e., to model the rela-
tion between a binary variable (true vs. false) and a set of covariates.

In this work we use logistic regression to classify flows of a given application
against the rest of the flows. In the remaining of this section, we introduce the
logistic regression model. We show how to estimate its parameters for a given ap-
plication, how to validate the model and finally, how the model selects the relevant
features for the classification of a specific application.

3.1 Problem statements

The problem of traffic classification consists in associating a class to a network
flow, given the information or features that can be extracted from this flow. A flow
is defined as a sequence of packets with the same source IP address, destination IP
address, source port, and destination port. Let X be the n-dimensional random vari-
able corresponding to the flow features. To each flow a vector x consisting of the
n the measured features is associated. Each flow is generated by an application y
corresponding to a random variable Y that takes values in the set {1, 2, · · · , c+1},
where c is the number of applications. This defines c + 1 classes; each application
defines a class and the (c + 1)th class is the default class that contain flows that
cannot be associated with any application. The problem of statistical classification
is to associate a given flow x with an application y. Logistic regression is a way
of defining the relation between x and y. While using logistic regression, we will
consider only one application (we call it A) at a time, i.e. Y = 1 if the flow is
generated by the application of interest and 0 otherwise.

3.2 Logistic regression model

Consider a flow with the following features vector x = (x1, x2, · · · , xn). We
wish to have a probability of whether this flow is generated by application A or
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not. Formally, we can state this as1

p(Y = 1|X = x) = P (x, β), (1)

where p(Y = 1|X = x) is the conditional probability that the flow with fea-
tures x = (x1, x2, · · · , xn) is generated by the application A and P is a function
of x parametrized by the weights vector β = (β0, β1, · · · , βn). Since the function
P represents a probability, it must take value between 0 and 1. Within the Logistic
regression framework, one assumes a specific function P:

P (x, β) =
eβ0+

Pn
j=1 βixi

1 + eβ0+
Pn

j=1 βixi
, (2)

From the above equation, we can derive a linear function between the odds of
having application A and the features vector x, called the logit model:

log
(

P (x, β)
1− P (x, β)

)
= β0 + β1x1 + · · ·+ βnxn, (3)

Unlike the usual linear regression model, there is no random disturbance term
in the equation for the logit model. That does not mean that the model is deter-
ministic because there is still room for randomness in the probabilistic relationship
between P (x, β) and the application A.

To implement any logistic regression model, one needs to choose the
β1, . . . , βn values based on a given training set, i.e., a set of flows for which we
know whether they have been generated by A or not. We discuss this issue in the
next section.

3.3 Parameter estimation

Assigning the parameters to the logit model boils down to estimating the
weights vector β, which is usually done using maximum likelihood estimation.

Consider a training data set of N flows characterized by the features vectors
X = (X1, X2, · · · , Xn), where Xi = (xi

1, x
i
2, · · · , xi

n) is the features of flow i,
and let the vector Y = (y1, y2, · · · , yn) be such that yi = 1 if flow i is generated
by the application A and yi = 0 otherwise. The likelihood function is given by a
standard formula [7]

P (X, β) =
N∏

j=1

p(Y = yj |Xj) (4)

=
N∏

j=1

(p(Y = 1|Xj)yj (1− p(Y = 1|Xj))1−yj

1Please note that, for the sake of clarity, we avoided indexing of many variables with the appli-
cation A. However we would like to point out the fact that the following procedure is done for each
application of interest. In particular, it leads to β vectors that are application dependent.
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As the values of p are small, it is common to maximize the log-likelihood
L(X, β) = log P (X, β) instead [7], to avoid rounding errors,

L(X, β) =
N∑

j=1

[yjlog(p(Y = 1|Xj)) + (1− yj)log(1− p(Y = 1|Xj))] (5)

By substituting the value of p(Y = 1|Xj) by its value defined in Equation (2)
we get the log-likelihood for the logistic regression:

L(X, β) =
N∑

i=1

[
yiβ

T Xi − log(1 + eβT Xi)
]

(6)

In the logistic regression model, we wish to find β that maximizes Equation (6).
Unfortunately, this can not be achieved analytically. In this work, we compute it
numerically using the Newton-raphson algorithm [7]. This algorithm requires two
main components: the first derivative of the loglikelihood and the Hessien matrix,
i.e., the second derivative matrix with respect to β.

From Equation (6) we can derive the first derivative

∂L(X,β)
∂β

=
N∑

i=1

Xi(yi − p(xi, β)) (7)

We now derive the Hessien matrix

∂2L(β)
∂β∂βT

= −
N∑

i=1

XiX
T
i p(xi, β)(1− p(xi, β)) (8)

The pseudo code of Newton-Raphson algorithm is depicted in Algorithm 1.
We start with a first guess of β, then we use the first derivative and the Hessien
matrix to update β. Using the new β we compute the new loglikelihood. This is
repeated until there is no further change of β. The Newton-Raphson algorithm has
been shown to converge remarkably quickly [8]. In this work, it takes less than one
second to output an estimate of β.

3.4 Overall goodness of fit of the model

The above estimation procedure leads to a set of
βi, 1 ≤ i ≤ N values optimized according to a given strategy, namely maximum
likelihood estimation. It might however be that the set of input features is not
an appropriate one, which leads to statistically non significant βi values. In this
section, we introduce a procedure to test the overall significance of the model.
Formally, we want to statistically test if the βi values that have been evaluated are
not equal to zero.
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Algorithm 1 Newton-Raphson algorithm
1: initialize β
2: while ‖βnew − βold‖ > thr1 and abs(Lnew − Lold) > thr2) do
3: Calculate g = ∂L/∂β
4: Calculate H = ∂2L/∂β2

5: Set βold = βnew

6: Calculate βnew = βold −H−1g
7: Set Lold = Lnew

8: Calculate Lnew

9: end while
10: Calculate variance matrix V̂

In practice, several different measures exist for determining the significance,
or goodness of fit, of a logistic regression model. These measures include the G
statistic [7], Pearson statistic [7], and Hosmer-Lemeshow statistic [7]. In a theo-
retical sense, all three measures are equivalent. To be more precise, as the number
of rows in the predictor matrix goes to infinity, all three measures converge to the
same estimate of model significance.

In this work, we use the G statistic, which is defined as the deviance of the
intercept-only model from the whole model:

G = −2 log
likelihood without the variables

likelihood with the variables
. (9)

Under the hypothesis of all βj = 0, the G statistic follows a chi-squared distri-
bution χ2

n−1 with n− 1 degrees of freedom, where n is the number of parameters
in the model [8]. To test the significance of our model, we use classical statistical
test [19]. First we decide the null hypothesis : βj = 0 for j = 1, ...n. Then we
compute the p-value pv:

pv = p(χ2
n−1 > G). (10)

For a given significance level α, we reject the null hypothesis if α > pv. Failing
to reject the null hypothesis means that the features are not suitable for a good
classification of the application of interest. Thus, we have a quick way to judge the
quality of our classifier.

3.5 Selection of relevant features

At first sight, it might seem that a model (set of input features and βi values)
is good if it fits the observed data very well, i.e. it can accurately classify the
flows in the training set. By including a sufficiently large number of features in our
model, we can, in theory, make the fit as close as we wish. However, simplicity,
represented by the minimum number of parameters, is a desirable feature of any
model. We thus would like to include as little features as possible to perform
the classification. Reducing the number of input features can be done through
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the formulation and testing of a statistical hypothesis to determine whether the
corresponding variables in the model are “significantly” related to the outcome
variable Y . In other words, for each feature j, we test the hypothesis that the
corresponding weight βj is equal to zero. If we can’t reject this hypothesis, this
means that this parameter is not relevant to classify this application and, thus, can
be removed from the model [8].

In this work, we use the Wald test [8] that tests, individually, for each βj the
null hypothesis that β̂j = 0. The Wald statistic W (j) is obtained by comparing the
maximum likelihood estimate of each parameter β̂j to an estimate of its standard
deviation V̂ (β̂j).

W (j) =
β̂j

V̂ (β̂j)
(11)

The standard deviation V̂ (β̂j) of βj is given by the jth diagonal element of the
variance matrix given by Equation (12) [7], that is computed as the last iteration of
the Newton-Raphson algorithm (Alg. 1).

V̂ =
{
−∂2L(β)

∂β∂βT

}−1

(12)

Under the null hypothesis that βj = 0, W (j) follows a standard student t-
distribution with n− 1 degree of freedom tn−1.

For a given significance level α, for each βj we compute the p-value pvj =
p(tn−1 > W (j)), and we reject the hypothesis of βj = 0 if α > pvj . Otherwise,
if we fail to reject the hypothesis of βj = 0, we exclude the corresponding feature
from our model. By doing so, we keep a minimum number of features relevant to
the application under study.

3.6 Classification process

Logistic regression falls into supervised type of machine learning [25], thus it
consists of two main steps:

3.6.1 Training

Algorithm 2 describes the learning process for a given application A. First, we
estimate β using Newton-raphson algorithm using all the features. Then we test
the hypothesis β = 0 using the G-statistic introduced in Section 3.4. If the test is
rejected, we proceed by selecting the relevant parameters using the student test as
explained in section 3.5. Then, we estimate the new β using only the set of selected
features.

A crucial aspect of using logistic regression is the choice of an α (see section
3.4) level to judge the model and the importance of features. Bendel et al [1] have
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Set Date Start Dur Size [GB] Flows [M] TCP [%] TCP Bytes [%] Local users Distant IPs
MS-I 2008-02-04 14:45 1h 26 0.99 63 90.0 1380 73.4 K
R-III 2008-02-04 14:45 1h 36 1,3 54 91.9 2100 295 K

Table 1: Traces summary

shown that the choice of α smaller than 0.01 is too stringent, often excluding im-
portant variables from the model. In this work, we use α = 0.01, and we will show
in section 5.4 that it enables to reduce the number of features for each application
without decreasing the classification scores.

Algorithm 2 Parameters estimation and features selection
1: Estimate β
2: Test of model significance,
3: If the hypothesis β = 0 is rejected
4: Select the relevant features for the application
5: Estimate the new β

3.6.2 Classification

A given feature vector x = (x1, · · · , xp), is classified as generated by appli-
cation A if P (x, β) is larger than a threshold th. The usual choice in statistic is
th = 0.5 [8, 7]. By using Equation (3), this boils down to deciding the new flow x
is generated by the application A if

∑n
i=1 x1βi > 0.

The choice of th = 0.5 is very conservative, as the logistic regression has a
strong discrimination power. For example, Figure 2 shows the cumulative distribu-
tion functions of the probability p(y = p2p|x) for P2P and non-P2P flows in one
of the trace used in Section 5. A choice of th corresponds to a vertical line at value
th on the x-axis. Figure 2 shows that the classification in p2p/non-p2p is almost
unaffected by the exact th value. Indeed, more than 80% of non-p2p flows have
a probability to be p2p flow less than 0.01, and more than 90% of p2p flows have
a probability of being a p2p larger than 0.95. This is even more pronouced in the
case of HTTP flows (Figure 1) where 99% of non-HTTP flows have a probability
of being HTTP flows less than 0.005, and more than 90% of HTTP flows have a
probability larger than 0.99. These figures show clearly that the choice of a larger
threshold would change only slightly the classification results.

4 Experiment setting

In this section, we present our dataset, how we establish the reference point
(ground truth) that is used as benchmark for our statistical classifier, the definition
of our traffic classes and the traffic breakdown.
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Figure 1: CDFs of the probability of being a HTTP flows for HTTP flows and Non
HTTP flows. Training and test data are from R-III trace (see table 3)
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Figure 2: CDFs of the probability of being a P2P flows for P2P flows and Non
HTTP flows. Training and test datasets are from R-III trace (see table 3)

4.1 Datasets

Our dataset consists of two recent packet traces collected at two different ADSL
Points of Presence (PoPs) in France from the same ISP. Both traces were collected
at the same time using passive probes located behind a Broadband Access Server
(BAS), which routes traffic to and from the digital subscriber line access multiplex-
ers (DSLAM) to the Internet. Captures were performed without any sampling or
loss. Traces contains one hour of full bidirectional traffic, with similar number of
active users. More details are provided in table 1.
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4.2 Application breakdown

In order to benchmark the performance of any classification method, a dataset
with pre-labeled classes of traffic is needed. We term such a dataset our reference
point. Establishing a correct reference point is fundamental when evaluating traf-
fic classification mechanisms to provide trust-worthy results. As a human-labeled
dataset is almost impossible to have, we rely on DPI tools. In [22], We have com-
pared an internal tool of Orange, that we term Orange DPI Tool or ODT for short,
to Tstat [24], whose latest version features DPI functions. ODT and Tstat v2 of-
fer similar performance and outperform signature based tools used in the literature
[13, 6]. More details about the reference point issue can be found in [22].

To label applications in our dataset, we rely on ODT. ODT is constantly under
development and is in use on several PoPs of Orange in France. It can detect several
types of applications, including encrypted ones.

Traffic classes used in this work are summarized in Table 2. Breakdown of
traffic is presented in Tables 3 and 4. Traffic proportions are very different in both
locations even though both traces were collected in the same country and at the
same time. Web and eDonkey are the dominant classes in terms of flows while in
terms of bytes, these are Web, eDonkey and HTTP streaming, the latter reflecting
the popularity of streaming service providers like YouTube. While HTTP traffic is
broken into many classes, it is important to note that the most important ones for
HTTP applications in our datasets are Web browsing, HTTP-streaming and HTTP
chat. We will term those three categories as HTTP in Section 5, neglecting the
minority of HTTP flows in the mail and games classes.

4.3 Flow Definition

We restrict our attention to TCP flows as they carry the vast majority of the
bytes in both traces. We are still left with the issue of defining the set of flows to
be analyzed. Restriction is imposed by the classification method itself as we are
using as features information derived from the first 4 data packets. We de facto
exclude all flows with less than 4 data packets as well as the ones for which we
did not observe the initial three way handshake. This typically leaves around 70%
of volume for the analysis. Details about the impact of the flow definition on the
amount of data excluded for each application class can be found in [21].

5 Evaluation

5.1 Flow Features

Most studies on traffic classification rely on statistics computed once all the
packets of a flow have been observed, e.g., duration, number of packets, mean
packet size, or inter-arrival time [25]. This clearly prevents any online classifica-
tion. In contrast, we evaluate the feasibility of application identification in the early
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Class Application/protocol
WEB HTTP and HTTPs browsing
HTTP-STR HTTP Streaming
EDONKEY eDonkey, eMule obfuscated
BITTORRENT Bittorrent
GNUTELLA Gnutella
CHAT MSN, IRC, Jabber

Yahoo Msn, HTTP Chat
MAIL SMTP, POP3, IMAP, IMAPs

POP3s, HTTP Mail
FTP Ftp-data, Ftp control
GAMES NFS3, Blizzard Battlenet, Quake II/III

Counter Strike, HTTP Games
STREAMING Ms. Media Server, Real Player

iTunes, Quick Time
OTHERS NBS, Ms-ds, Epmap, Attacks
UNKNOWN -

Table 2: Application classes

stage of a connection. A few works have tackled this challenge. In particular, [3]
and [14] showed that statistical features extracted from the first k packets of each
connection, where k is typically in the range of 4 to 5 packets, lead to a good over-
all classification performance. We however uncovered in [21] some weaknesses of
those approaches related to the ability to detect some key applications like HTTP
streaming, which is gaining in popularity and a data overfitting issue when one
wants to apply a classifier on a trace collected on a location different from the one
it was trained on. The latter situation could typically be the one of an ISP that trains
the classifier on its major PoP, where DPI tools are available, before deploying it
on its other PoPs. We will show in this section that logistic regression is able to
overcome those weaknesses.

The choice of flow level features turns out to be a major task in traffic classifi-
cation. As explained before, state of the art approaches often rely on a preliminary
feature selection phase, e.g. the correlation based filter technique in [13, 16]. Such
method outputs a single set of features which is the same for all applications. In
contrast, logistic regression picks for each application of interest distinct features
that best separates it from the rest of the traffic.

As we want to evaluate the ability of logistic regression to perform traffic clas-
sification on the fly, we selected an initial set of features that can be computed by
the observation of the beginning of the flow: size and direction of the first 4 data
packets, presence of push flags and port numbers. Out of this set, logistic regres-
sion picks the most relevant features for each application. Size and direction of the
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first data packets have been shown to lead to good classification results in [3]. We
enrich this set with a push flag indicator that indicates whether a data packet has its
PUSH flag set or not.

We thus end up having a mix of quantitative and qualitative features. While lo-
gistic regression can handle both types of parameters, it is recommended to trans-
form quantitative parameters into qualitative ones [8]. We proceeded as follows:

• Size of data packets: we classify each data packet as small or not small
packet. We used a fixed threshold, derived from empirical distributions of
packet sizes, of 200 bytes for all applications and all traces.

• Port numbers: the quantization technique used depends on the applica-
tion of interest. For applications using the HTTP protocol, we assign the
port variable to 1 if the source or destination port number belongs to the set
80, 8080, 443 and 0 otherwise. For P2P applications, we assign the port vari-
able to 1 if both the source and destination ports are above 1024. Note that
other quantization strategies are possible. For instance, for p2p applications,
one could have used legacy port numbers of considered p2p applications. It
turned out however that the quantization technique we use, which makes no
use of such a priori information, offers satisfactory results.

Table 3: Traffic breakdown RIII. For flows ≥ 4 data packets
Flows Size

Number % MB %
WEB 160802 49.16 5519.56 24.61

HTTP-STR 4282 1.31 2654.14 11.84
EDONKEY 119057 36.40 8295.35 36.99

BITTORRENT 8789 2.69 1529.69 6.83
GNUTELLA 4718 1.44 1093.83 4.89

CHAT 4365 1.33 46.66 0.22
MAIL 4206 1.29 244.47 1.10

STREAMING 679 0.21 451.09 2.02
FTP 437 0.13 156.06 0.71

GAMES 182 0.06 3.87 0.02
OTHERS 835 0.26 12.54 0.07

UNKNOWN 18501 5.66 2248.00 10.03

5.2 Performance metrics

We present results in terms of True Positives (TPs) and True Negatives (TNs)
ratios. These notions are defined with respect to a specific class. Let us consider
such a specific class, say the HTTP streaming class. TPs are the fraction of HTTP
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Table 4: Traffic breakdown MSI. For flows ≥ 4 data packets
Flows Size

Number % MB %
WEB 319009 78.91 8368.85 52.41

HTTP-STR 6901 1.71 2777.43 18.72
EDONKEY 23212 5.75 1106.59 9.06

BITTORRENT 2313 0.57 649.81 4.15
GNUTELLA 223 0.06 104.19 0.66

CHAT 7539 1.87 86.87 0.55
MAIL 18406 4.56 856.33 5.46

STREAMING 207 0.05 372.43 2.39
FTP 1129 0.28 470.52 3

GAMES 183 0.05 1.68 0.02
OTHERS 8803 2.19 196.23 1.25

UNKNOWN 13535 3.36 275.96 1.76

streaming flows that are labeled as such by the statistical classifier, i.e., logistic
regression. TNs are the fraction of flows not labeled as HTTP streaming by our
DPI tool that are also not labeled as HTTP streaming by logistic regression. For an
ideal classifier, TPs and TNs should be equal to 100%.

5.3 Overall Performance

For both traces we have, the logistic regression achieve overall TPs and TNs
ratios over 98% and 97% respectively (when training set and testing set are from
the same trace). These results are similar to the results obtained by most statistical
classifier, see [25]. This is because dominant applications like web or edonkey are
well classified in all cases.

In the next sections, we will focus on two sets of applications: (i) applications
that use the HTTP protocol like Web browsing, HTTP streaming (e.g., YouTube)
and HTTP chat and (ii) p2p applications. In each case, we will evaluate the ability
of logistic regression to either detect the whole family, e.g. all HTTP applications
or specific members like HTTP streaming. Please note that in each experiment,
including cross site case, we use only 5% of flows for training and the remaining
for testing.

5.4 HTTP driven applications

In this section we focus on the HTTP applications found in our datasets,
namely: Web browsing, HTTP streaming and HTTP chat.

In Table 5, we present on the right column (’before selection’), TPs and TNs
ratios for all HTTP applications taken together and each type of HTTP application
in isolation for MS-I trace. We observe very high TPs and TNs for the ’All HTTP’
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and ’Browsing’ cases and high values for ’HTTP streaming’. The latter result
is a noticeable one as, to the best of our knowledge, no statistical classification
technique has been able so far to isolate HTTP streaming traffic only – see for
instance [21] where the features selected in [3] and [14] are used on dataset MS-1
and lead to poor TNs results.

The left column of Table 5 shows results of logistic regression where only
features corresponding to statistically significant β values are considered. We do
observe no significant changes before and after the selection procedure. This re-
veals that logistic regression indeed gives no significance to the parameters that
have no discriminative power for the considered applications or set of applications.
Thus, we can safely the non relevant features without accuracy degradation which
reduces the computational cost of the classification.

The list of selected features is presented in Table 7. We observe that the set
of features kept for HTTP applications is (almost) the intersection of the ones kept
for each individual HTTP applications. Indeed, logistic regression selects, for a
given application, the features that maximize the difference between the flows of
this application and the rest of the flows in the datasets. When focusing on HTTP
streaming, it might thus use most of the specific features used for detecting all
HTTP applications and add a few additional ones (e.g., the push variable for the
third data packet here) to further differentiate those flows from other flows. Con-
versely, when logistic regression has to handle all HTTP applications, it keeps
only features that allow to distinguish those flows from the non HTTP flows in the
dataset, thus getting rid of features that might be important to specifically detect
HTTP chat or HTTP streaming for instance.

Table 5: The percentage of true positives (TP) and true negatives (TN) of HTTP
flows using all the features (before selection) and only the features selected by the
algorithm

after selection before selection
TP TN TP TN

All HTTP 99% 99% 98% 99%
Web 98% 97% 98% 97%

HTTP streaming 83% 84% 83% 84%
HTTP Chat 94% 98% 94% 98%

5.5 P2P Application

In this section, we focus on the p2p applications observed in our datasets. As
for the HTTP case, we obtain similar results for all applications for our two traces.
In Table 6, we present results for the MS-I trace. Logistic regression achieves
very good performance in all cases. The lowest value is the TPs ratio of Gnutella.
However, even in this case, we limit the risk of misclassifying a flow as Gnutella
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as the TNs ratio is very high. The only risk is to miss a small fraction of actual
Gnutella transfers.

Table 6: The percentage of true positives (TP) and true negatives (TN) of P2P
flows using all the features (before selection) and only the features selected by the
algorithm

After selection Before selection
TP TN TP TN

All P2P 96% 95% 96% 95%
eDonkey 97% 96% 97% 95%

BitTorrent 88% 96% 88%% 96%
Gnutella 83% 98% 83% 98%

Table 7: The set of selected features for each application
1st packet 2nd packet 3rd packet 4th packet port number

direction push size direction push size direction push size direction push size
All HTTP X X X X X X X

Web X X X X X X X
HTTP streaming X X X X X X X X

All P2P X X X X X X X X X X X X
eDonkey X X X X X X X X X X X

BitTorrent X X X X X X X X X X
Gnutella X X X X X X

5.6 Cross-site Evaluation

We performed a cross-site evaluation where, for each case (application or set
of application), we train the classifier, using the selected features given in table 7,
on one trace, e.g., MS-I and apply it on the other trace, e.g., R-III. Such a vali-
dation is important for practical usage of any classifier as it verifies whether the
statistical model we build is representative of application and does not incorporate
site dependent data.

We present the corresponding results in Table 8. We observe good performance
in all cases. 2. While this result was to be expected in the case of HTTP applica-
tions, it constitutes a major achievement in the case of p2p applications as it was
demonstrated in [21] that a data overfitting issue could occur with p2p applications.
The latter stems from the fact that the classifier learns ports used by p2p applica-
tions of local users, which then fool the classifier when the set of local users is
changed. We attribute the good performance observed here with logistic regres-
sion to the quantization technique used for the port number that gets rid of specific

2The only exception is Gnutella when training is done on MS-I and testing on R-III. This is
because we have only 223 Gnutella flows in trace MS-I in contrast to 4718 in the other trace and with
only 223 flows, we apparently miss part of the diversity of this class. Note that when training and
testing is done in the other direction, the TP ratio reaches 84%, as now we have a higher diversity in
the training set
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port values but simply check if the two ports correspond to well-known ports or
not.

To further investigate this hypothesis, we applied again logistic regression for
each trace and for the cross site test using the initial port number rather than its
quantized version. As expected, we observed slightly worse performance on a
trace basis and significant performance decrease in the cross site case. A sticking
example is the one of Gnutella whose TPs ratio decreases from 83% to 70% on R-
III trace when no discretization is applied and from 84% to 42% when the logistic
regression algorithm is trained on R-III and applied to MS-I.

As a conclusion, the ability of logistic regression to handle qualitative and not
only quantitative values as well as per application feature selection enables us to
minimize the risk of data over-fitting in cross site studies that were observed in
previous work.

Table 8: The percentage of true positives (TP) and true negatives (TN) in cross case
: training on 5% of flows from MS-I dataset (resp. R-III) and test on all the flows
from R-III (resp. MS-I) dataset.

R-III to MS-I MS-I to R-III
TP TN TP TN

All HTTP 98% 99% 99% 99%
Web browsing 95% 91% 98.5% 96%

HTTP Streaming 80% 81% 90% 82%
HTTP Chat 75% 98% 75% 98%

All P2P 94% 91% 90% 95%
eDonkey 97% 95% 94% 96%

BitTorrent 89% 96% 88% 96%
Gnutella 84% 98% 22% 99.7%

6 Conclusion and Future Work

In this paper, we have proposed a novel on-line classification algorithm based
on the logistic regression model. It is a flexible classification framework that over-
comes important weaknesses of state of the art methods proposed so far. We have
validated the performance of the proposed methods using ADSL traffic traces ob-
tained from a French ISP. This method incorporates the following new features:

• It automatically selects the best possible subset of distinct features relevant
to each (family of) application(s).

• It can be used for application based or protocol based classification. For
instance, it can classify all P2P file-sharing at once, or focus on one of them
only, e.g., eDonkey.
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• It can handle both quantitative and qualitative features, while current ap-
proaches are able to handle quantitative features only. This is important as
some features might be more useful when considered as qualitative rather
than quantitative information. For instance, the port numbers are more use-
ful when considered as qualitative indicators.

• Due to its ability to handle qualitative and not only quantitative features, it
can be made resilient to the data over-fitting problem encountered in cross-
site studies: it can be trained on data collected on one location and used for
traffic data from other sites. This turns out to be a very useful feature for
companies or ISPs managing several sites.

• It has a constant and low computational cost as logistic regression boils down
to comparing a linear combination of the flow features with a fixed threshold
to take its classification decision.

• It can work in real-time as it needs to consider features extracted from the
first four data packets of a transfer only to take an accurate classification
decision.

We consider a number of future extensions to this work. So far we consid-
ered TCP traffic only, however with the growing trend of UDP traffic, we would
like to generalize the method to handle UDP traffic as well. We also intend to ad-
dress issue of temporal stability of the classifier,i.e., determining what is a correct
retraining strategy.
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