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Abstract—We consider the problem of joint MIMO precoding
across multiple distant cooperating transmitters. The transmit-
ters are assumed to be sharing user data and aim at serving a
group of users in a distributed MIMO broadcast-like fashion.
Among application scenarios, we find the so-called network
MIMO setup. The novelty of our setup resides in the fact
that each of the transmitters obtains imperfect and importantly,
different, estimates of the same global multi-user channel. Despite
not sharing the same vision over the CSIT, the transmitters seek
to jointly act in a consistent manner in designing the precoders.
This problem in facts falls in the class of so-called Team Decision
Theory problems. We present some solutions to the problem of
beamforming design in this case and illustrate the benefits in
practical network scenarios.

I. INTRODUCTION

A major issue in several types of wireless networks is
that of interference created to each other by several distant
transmitters operating on the same frequency band. In the
downlink cellular network example, full reuse of the spectrum
across neighboring base stations triggers unacceptable levels
of interference in the cell edge area. Recently, a solution
to this problem has been proposed in the form of joint
MIMO precoding across the distant transmitters, which should
cooperatively serve the set of mobile users (so-called network
MIMO, dealt with in [1], [2] for example). This situation is
illustrated in Fig. 1.

In the downlink scenario, implementation of network
MIMO requires both data and channel state information (CSI)
to be shared by the transmitters, or to be fed back to some
central processor which designs the transmission and informs
the base stations of which precoding solutions shall be used.
Data and CSI sharing comes, however, at a cost of delay,
feedback and backhaul resources. One way to reduce the
delays or have a more efficient use of the backhaul is to
reduce how much CSI needs to be shared. Thus, assuming
that the user data is conveniently routed to all concerned
transmitters, but assuming the transmitters obtain local CSIT
only, we obtain a MIMO channel with a novel CSIT model
where the different transmit antennas do not have the same
vision of the downlink channel. To the best of our knowledge
this problem has not yet been investigated, despite its strong
relevance in practical situations: in fact, previous work on
multi-transmitter MIMO precoding assumes that either perfect

[1], [2] or limited CSIT [6] is available and shared among all
transmitters. Two instances of such a new distributed CSIT
situation are described below.

In the first instance of a feedback model, we consider that
the different receivers broadcast the CSI estimates (which they
have obtained over the downlink) over the air, and each trans-
mitter attempts to decode the said information independently
(see the framework proposed in [7]). Thus, depending on the
distance between a receiver and each base station, a given base
station may decode successfully the totality or part of the CSI
feedback CSI. In another instance of partially shared CSIT, a
station may decode completely the CSI feedback of a subset of
users, and forward subquantized versions of it to neighboring
bases. Note that both approaches lead to i) a reduction in CSI
exchange, and ii) result in different representations of the same
channel at the different transmitters.

Interestingly, the different transmitters must conciliate their
views in order to design a consistent set of precoding vectors
that will maximize a performance metric at the user side,
despite possible differences in their estimated CSIT. This prob-
lem can be categorized as a so-called ”team-decision problem”
or a decentralized statistical decision making problem [8], [9].
More generally, in such problems, i) each decision maker
(here, transmitter) has different but correlated information
about the underlying uncertainty in the channel state, and ii)
the transmitters need to act in a coordinated manner in order
to realize the common payoff (which could be for example,
the average sum rate). Such a scheme offers the possibility for
reduction in communication requirements, at the expense of
performance reduction [11], yet is expected to perform better
than a framework where the decision makers simply ignore
the differences in their view of the channel state.

Specifically, in this paper, our contributions are as follows:

• We propose a new distributed CSIT framework.
• We investigate the best transmit strategy (here beamform-

ing) to be adopted by the transmitters in this framework.
• We study via Monte Carlo simulations the performance

gap to a scenario that would have centralized CSIT.

The paper is organized as follows. We start by introducing the
system model in section II. Section III provides a Bayesian
formulation of the problem considered, and details it for the



2 × 2 case. Section IV illustrates the performance of our
solution.

A. Notation

In what follows we use CN (0, a) to denote a complex
circularly symmetric Gaussian random variable of 0 mean
and variance a. Moreover, fX (X) represents the joint prob-
ability distribution of the elements of matrix X, whereas
fX|X̂

(
X|X̂

)
represents the joint probability distribution of

the elements of X conditioned on those of X̂.

II. SYSTEM MODEL

Consider a set of N distant transmitters communicating
with M receivers. In the downlink cellular network setup, the
transmitters represent the base stations, whereas the receivers
are the mobile stations. In what follows, we assume the
transmitters have Nt ≥ 1 antennas each, whereas the receivers
have a single antenna each.
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Fig. 1. Cooperative MIMO channel with imperfect CSIT sharing setup, with
N base stations, M mobile stations.

Let hji denote the Nt-dimensional complex row vector cor-
responding to the channel between transmitter i and receiver j
and let hj be defined as hj

4
= [hj1 . . . hjN ] ∈ CMNt×1, i.e.

let it correspond to receiver j’s whole channel. User channels
are assumed to be independent, but in general not identically
distributed. This is to cope with the fact that some users may
be closer than others to certain transmitters.

The signal received at mobile station j is given by:

yj = hjx + nj , (1)

where x ∈ CNNt×1 is the concatenated transmit signal sent
by all transmitters and nj ∼ CN (0, σ2) is the independent
complex circularly symmetric AWGN noise at that receiver.

Multi-transmitter cooperative processing in the form of
joint linear precoding with per-transmitter power constraints
is adopted. Thus, x can be expressed as:

x = Ws, (2)

where s ∈ CM×1 is the vector of transmit symbols, its
entries are assumed to be independent and CN (0, 1). The
precoding matrix W = [w1 . . .wM ] ∈ CNNt×M , where
wj = [wj,1; . . . ; wj,N ] is the beamforming vector corre-
sponding to user j’s symbol, wj,i ∈ CNt×1 corresponding to
Transmitter i’s precoding. Defining Vi as [w1,i . . . wM,i],
i.e. as the precoding matrix used at transmitter i, W may be
alternatively written as  V1

. . .
VN

 . (3)

The per-transmitter power constraint is given by:

‖Vi‖2F ≤ P, ∀i = 1, . . . , N. (4)

A. Full message sharing

As implied by the above formulation, the transmit symbols
in s are known at all transmitters. This corresponds for
instance to a situation where backhaul links pre-exist which are
destined to routing the message (symbol) information of each
user to the multiple base stations. Such a setup is envisioned in
LTE Advanced under the name of COMP. However, as stated
in the introduction, the CSI is not fully shared, and the design
of the precoding will need to take this into consideration. The
problem of partial sharing of the user messages is also relevant
and was addressed recently in [3], [4], [5] for example. This
problem is however beyond the scope of this paper. Details of
the distributed CSI knowledge now follow.

B. Distributed CSIT

Previous work on multi-transmitter MIMO precoding as-
sumes that either i) perfect CSIT is shared and available at
all transmitters [1], [2] or ii) limited CSIT is available, yet
common to all transmitters e.g. [6]. Here we argue that a more
general and realistic setup is one where the CSI feedback is
designed in such a way that different transmitters end up with
different representations of the channel: for instance it is likely
that users which are relatively closer to some transmitters will
be able to convey more precise information about their channel
state to these. The benefit of such a scheme is a reduction
in signaling with respect to the scheme where all transmitters
must achieve the same state of CSI knowledge, hence a greater
scalability of multi-transmitter MIMO cooperation.

The distributed CSI model is shown in Figure 2, where
transmitter i’s knowledge of hj is represented by its quantized
version ĥ(i)

j .
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Fig. 2. Distributed CSI model: each CSI vector is seen through a different
quantization filter at each base station. The quantization codebooks are
designed to be hierarchical to offer additional structure.

1) Hierarchical CSI structure: To provide help in solving
the problem, we propose that the true channel corresponding to
user j, hj , be quantized using a hierarchical codebook, such
that different transmitters know the channel up to different
levels of said codebook. Each base station knows, in addition:
• Each user’s channel statistics,
• The hierarchical codebook for each user,
• the hierarchy in their knowledge; this is detailed below.
Thus, for each hj , we define a degrees of accuracy mapping

Lj : {1, . . . , N} 7→ {1, lj,max}, (5)

which maps each of the transmitters to the number of bits
it can decode from the feedback information sent by user
j, j = 1, . . . ,M , in other words to its level of knowledge
in user j’s hierarchical codebook; lj,max corresponds to the
most accurate level (the hierarchical codebook has 2lj,max

codewords). Thus transmitter i is assumed to decode vector hj

up to level Lj(i) of quantization accuracy yielding estimate
ĥ(i)

j . One interesting advantage of this hierarchical information
structure is that,if Lj(i1) > Lj(i2), then transmitter i1 knows
exactly what is known by transmitter i2, i.e. ĥ(i2)

j , in addition
to its own estimate ĥ(i1)

j . On the other hand, transmitter i2 does
not know precisely what is decoded by transmitter i2 however
it does know that ĥ(i1)

j must belong to a certain subset of
codewords located in the Voronoi region centered at ĥ(i2)

j .

III. DECENTRALIZED BEAMFORMING

The N transmitters may be viewed as members of a team
which need to take decisions in order to attain a common
payoff, but who do not have access to the same informa-
tion. Each Transmitter i chooses Vi based on its local CSI,

Ĥ(i) 4=
[
ĥ(i)

1 ; . . . ; ĥ(i)
M

]
and the extra information stemming

from the hierarchical structure of the codebook. Thus the
decisions at the different transmitters are based on different
information; however, the performance (SINR, rate, BER for
example) depends on all of these decisions. This is taken into
account by the following Bayesian formulation.

A. Bayesian Formulation

We define the common goal of the considered team of N
transmitters as the maximization of the expected value of a
utility function, the sum rate for example. This utility function
U is a function of the true channel states h1, . . . ,hM , as well
as the decisions made at each transmitter, the beamforming
vectors wj , since linear precoding is considered. We can write
the objective function as:

U = E
[
U
(
H,V1

(
Ĥ(1)

)
, . . . ,VN

(
Ĥ(N)

))]
, (6)

where H
4
= [h1; . . . ; hM ], and the dependence of the decisions

at each agent (transmitter) as a function of his knowledge is
made explicit. Moreover, we assume that the objective function
may be decoupled as a sum of utilities over the users:

U
(
H,V1

(
Ĥ(1)

)
, . . . ,VN

(
Ĥ(N)

))
=

M∑
j=1

Uj

(
hj ,V1

(
Ĥ(1)

)
, . . . ,VN

(
Ĥ(N)

))
(7)

This limits the utility function within a subset of the general
class of utilities, but is not too restrictive: a weighted sum rate
fits into this model for example.

Restricting ourselves to deterministic decisions, in the sense
that there will be a single Vi corresponding to each state of
channel knowledge at transmitter i, Ĥ(i), U can be expanded
into:

U =
∫
. . .

∫
dHfH (H)U

(
H, Ṽ1 (H) , . . . , ṼN (H)

)
,

(8)

where

Ṽi (H)
4
= Vi

(
Ĥ(i)

∣∣∣H)
is the beamforming strategy at transmitter i given the local
knowledge at that transmitter corresponding to a true channel
H.

B. Global Optimization

A globally optimal set of beamforming decisions consists of
sets of beamforming matrices {Vi}, i = 1, . . . , N , (one set per
user, consisting of as many matrices as there are possible states
of knowledge at that user), which jointly maximize U . As
stated in [8], [10] for example, it is often intractable to find the
globally optimal strategies at the different team members. In
such cases, a suboptimal solution may be obtained by finding
strategies that are person-by-person optimal, as specified next.



C. Person-by-person Optimization

One can always find strategies which are person-by-person
optimal: this corresponds to a strategy which is optimal for
a given team member given that the other team members’
strategies are fixed. Clearly, the globally optimal strategies are
person-by-person optimal, but the converse is in general not
true. In our particular setup of distributed CSIT, an optimal
strategy for transmitter i, given that the other transmitters’
strategies are fixed may be characterized, for a local channel
knowledge equal to Ĥ(i), as follows:

V∗i
(
Ĥ(i)

)
= arg max

‖Vi‖2F≤P

∫
. . .

∫
dHfH|Ĥ(i)

(
H|Ĥ(i)

)
Ũ (H,Vi)

(9)

where

Ũ (H,Vi)
4
= U

(
H, Ṽ1 (H) , . . . ,Vi, . . . , ṼN (H)

)
. (10)

Since Ĥ(i) corresponds to a quantized version of the chan-
nel, we define R

(
Ĥ(i)

)
the Voronoi region corresponding to

this state of knowledge at transmitter i:

fH|Ĥ(i)

(
H|Ĥ(i)

)
=


1

Pr[R(Ĥ(i))]fH (H) H ∈ R
(
Ĥ(i)

)
0 H /∈ R

(
Ĥ(i)

) ,

(11)

where

Pr
[
R
(
Ĥ(i)

)]
=
∫
. . .

∫
R(Ĥ(i))

dHfH. (12)

Thus, (9) is equivalent to:

V∗i
(
Ĥ(i)

)
= arg max

‖Vi‖2F≤P

∫
. . .

∫
R(Ĥ(i))

dHfH (H) Ũ (H,Vi) . (13)

Such a person-by-person optimization approach may be
useful if the number of decisions to be determined is too large,
or if the knowledge at the different transmitters does not satisfy
our hierarchical assumption. For the case when M = N = 2,
which we consider next, we formulate the problem in a way
so as to try to find the globally optimal transmitter strategies.

D. Decentralized Beamforming, for M = N = 2
To simplify exposition of the solution to the problem,

we focus on the M = N = 2 case. The hierarchy in
the knowledge at the two transmitters, and as a result the
beamforming strategies to follow, fall into one of three cases,
which may be characterized as follows:
Common knowledge: In this case, L1(1) = L1(2) and
L2(1) = L2(2). It corresponds to the traditional assumption
under limited CSIT, where both transmitters have the same
knowledge. This corresponds, for instance, to users being at
the cell edge, as represented in Figure 3(a). This is equivalent
to having centralized beamforming decisions being made.

BS2

MS1 MS2

BS1

(a) Two users at edge of cell

BS2

MS1 MS2

BS1

(b) Two users in same cell

BS2

MS1 MS2

BS1

(c) Two users inside respective cells

Fig. 3. Different cell setups corresponding to different CSI hierarchies.

Degraded knowledge: In this case, L1(1) ≥ L1(2) and
L2(1) ≥ L2(2), or L1(1) ≤ L1(2) and L2(1) ≥ L2(2). In
other words, one of the transmitters has a better representation
of both channels, and will adapt its beamforming on a finer
scale than the other transmitter. Such a situation would arise,
for example, if the two users being served lie in the same
’cell’, as in Figure 3(b).
Symmetric knowledge: Here, L1(1) > L1(2) and L2(1) <
L2(2), or L1(1) < L1(2) and L2(1) > L2(2). So one of
the transmitters has a better representation of the channel of
a given user and a worse one for the other user, with the



reverse occuring at the other transmitter. This corresponds, for
instance, to the base stations serving users each situated within
their own ’cell’, as in Figure 3(c). As will be detailed below
one needs to jointly optimize sets of beamforming decisions at
the two transmitters corresponding to a given common coarse
state of channel knowledge.

We now focus on the symmetric case where L1(1) > L1(2)
and L2(1) < L2(2): this represents the more common setup
among the ones described and shown in figure 3 above and is
also the more challenging to formulate; the remaining cases
can be dealt with in a similar manner. We characterize each
user’s quantized CSI by a pair i1 = (i1,2, i1,1) for user 1, and
another i2 = (i2,1, i2,2) for user 2. The first index in each
pair corresponds to the coarse knowledge (hence is shared
by both users), i.e. the index of the codeword in the coarsest
codebook, to which the channel is quantized, Qmini Lj(i)(hj)
(see Figure 2), and the second index provides the missing
bits to locate the finer codeword around the coarsest one,
Qmaxi Lj(i)(hj). Given the structure of the distributed CSI, the
beamforming matrix decisions may be parametrized in terms
of these indices, so that V1 varies with (i1, i2,1), whereas V2

is a function of (i1,2, i2).
Taking this into consideration, we expand (8):

2L1(2)∑
i1,2=1

2L2(1)∑
i2,1=1

S (i1,2, i2,1) (14)

where S (i1,2, i2,1) is given by

I1∑
i1,1=1

I2∑
i2,2=1

∫
R1(i1)

∫
R2(i2)

dh1dh2

fH (H)U (H,V1 (i1, i2,1) ,V2 (i1,2, i2)) , (15)

where I1 = 2L1(1)−L1(2), I2 = 2L2(2)−L2(1), R1(i1) and
R2(i2) correspond to the Voronoi regions associated with the
indexed codewords.

It is easy to verify that the beamforming decisions for
each S (i1,2, i2,1) term may be optimized separately. For given
i1,2 and i2,1, we optimize the corresponding S (i1,2, i2,1). To
simplify notation we remove the dependence on i1,2 and i2,1

from the expressions. The problem is thus:

max.
I1∑

i1,1=1

I2∑
i2,2=1

∫
R1(i1,1)

∫
R2(i2,2)

dh1dh2

[fH (H)U (H,V1 (i1,1) ,V2 (i2,2))] (16)

s.t. ‖V1 (i1,1) ‖2F ≤ P, i1,1 = 1, . . . , I1 (17)

‖V2 (i2,2) ‖2F ≤ P, i2,2 = 1, . . . , I2. (18)

Recalling the separable nature of our utility function (refer

to equation (7)), this can be reformulated as:

max.
I1∑

i1,1=1

I2∑
i2,2=1

2∑
j=1

Pr
[
Rj̄(ij̄,j̄)

] ∫
Rj(ij,j)

dhj[
fhj

(hj)Uj (hj ,V1 (i1,1) ,V2 (i2,2))
]

s.t. ‖V1 (i1,1) ‖2F ≤ P, i1,1 = 1, . . . , I1
‖V2 (i2,2) ‖2F ≤ P, i2,2 = 1, . . . , I2, (19)

where j̄ = mod (j, 2) + 1 and

Pr
[
Rj̄(ij̄,j̄)

]
=
∫
Rj̄(ij̄,j̄)

dhj̄fhj̄

(
hj̄

)
, (20)

is the probability of user j̄’s channel being quantized to the
codeword indexed by the pair (ij̄,j , ij̄,j̄).

1) Application to sum rate maximization: The above prob-
lem may be approximately solved via a projected gradient
ascent method. Moreover, to avoid integration, we resort to
approximations. As we deal with sum rate maximization in our
illustrative examples, the following approximation is plugged
into problem formulation (19) above:∫

Rj(ij,j)

dhjUj (hj ,V1 (i1,1) ,V2 (i2,2))

=
∫
Rj(ij,j)

dhj log2

(
1 +

|hjwj (i1,1, i2,2) |2

σ2 + |hjwj̄ (i1,1, i2,2) |2

)

≈ log2

(
1 +

wj (i1,1, i2,2)H C(ij,j)
j wj (i1,1, i2,2)

σ2 + wj̄ (i1,1, i2,2)H C(ij,j)
j wj̄ (i1,1, i2,2)

)
,

(21)

where C(ij,j)
j = E

[
hjhH

j

∣∣∣hj ∈ Rj(ij,j)
]
, and wj (i1,1, i2,2),

j = 1, 2 is obtained from V1 (i1,1) and V2 (i2,2) by extracting
the appropriate entries as defined in our system model. A sim-
ilar approximation was used in [12] for example. The quality
of this approximation increases and becomes asymptotically
optimal with the size of the codebook.

E. Reference Schemes

Simple upper and lower bounds to the proposed schemes
correspond to joint beamforming based on the more accurate
(unachievable in a distributed CSIT system) and the least
accurate (achievable) CSIT. Another decentralized scheme
which attempts to use the local channel knowledge would be
for each base station to design its transmission assuming all
the other base stations share the same knowledge as itself. This
is much simpler than the proposed decentralized scheme, and
has similar complexity to joint beamforming design based on
the coarse CSIT.

IV. NUMERICAL RESULTS

To illustrate the gains from such decentralized scheme,
we show the average sum rates achieved for a symmetric
M = N = 2, Nt = 1 channel, where Rayleigh fading is
assumed and the covariance matrix of user 1’s channel is
given by [1 0; 0 β], that of user 2 by [0 β; 0 1], β being a



simulation parameter. We also vary the number of bits used
for the different quantization levels.

The hierarchical codebooks are designed using Lloyd’s
algorithm: the coarse codebook is initially designed, then for
each codeword in it, the corresponding finer codebook.

Figure 4 compares the proposed decentralized scheme to the
upper and lower bounds given in III-E for L1(2) = L2(1) = 2
and L1(1) = L2(2) = 6. We label the scheme which attempts
to use local channel knowledge as if it were shared ’myopic
beamforming (BF)’. Thus, the upper bound scheme would
require 2(L1(1) + L2(2)) = 24 bits of CSIT being shared,
whereas the schemes based on distributed CSIT would require
L1(1) +L2(2) +L1(2) +L2(1) = 16 bits. The benefit of the
second layer of CSI over the more coarse shared representation
of the channel depends on the SNR and on the value of
β. At low SNR and for β low, there is little use for the
extra information. The myopic BF’s performance, even though
it relies on more information that the joint beamforming
relying on coarse CSI, is significantly worse, highlighting the
importance of coordinated action. For reference, we also plot
the performance that would be obtained if the knowledge
at transmitter i, i = 1, 2 were indeed common to both
transmitters and joint beamforming would result; clearly this
yields more gain that joint beamforming based on coarse CSI.

V. CONCLUSION

In this paper, the problem of cooperation in the multicell
MIMO downlink under distributed CSI is formulated as a team
decision problem. The solution to this problem for the two-
cell two-user case is detailed and numerical results compare
it to upper and lower bounds.
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