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Adaptive Linear Receivers for DS/CDMA: Steady-State Performance

Analysis

Giuseppe Caire

Abstract|We present closed-form simple expressions for

the signal-to-interference plus noise ratio at the output of

well-known adaptive implementations of the linear minimum

mean-square error receiver for CDMA signals. A very ac-

curate Gaussian approximation of the resulting steady-state

bit-error probability at the receiver output is derived for

4PSK modulation with Gray mapping. Our results apply to

both data-aided and non-data aided algorithms of LMS and

RLS type. In agreement with previous works, we show that

non-data aided algorithmsmay su�er from poor steady-state

performance.
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I. Introduction

Multiuser detection has been a fruitful and rapidly grow-

ing research �eld for the last decade. Broadly speaking,

this is motivated by the fact that the techniques developed

for single-user communications, mostly devoted to com-

bat Gaussian white noise, fail to give near-optimal perfor-

mance if used in the presence of multiple-access interference

(MAI). Under the common name of multiuser detection we

�nd a broad range of receivers, which di�ers in complex-

ity and performance (see [1] for a complete survey and a

comprehensive list of references). We can distinguish be-

tween centralized and decentralized receivers. Centralized

receivers make use of side information about all interfering

users (spreading sequences, timing and propagation chan-

nels). These receivers are suited for base-station processing

(uplink), where all this side information is either available

or can be estimated consistently. Among centralized re-

ceivers we can mention the optimal multiuser receiver and

receivers based on decision feedback or on parallel inter-

ference cancellation [1]. On the contrary, decentralized re-

ceivers exploit the knowledge of the spreading sequence, of

the timing and of the propagation channel of the user of

interest only. Remarkably, this is the same information

necessary for a conventional matched �lter that ignores

the presence of MAI. Decentralized receivers are suited

for mobile-station processing (downlink), where informa-

tion relative to the other users is either di�cult to obtain

and/or forbidden, because of privacy reasons.

Because of the lack of side information about MAI, de-

centralized receivers treat the superposition of MAI and

background Gaussian noise as a random process, the statis-

tics of which must be learned from the received signal,

via some adaptive algorithm. In this paper, we are con-

cerned with decentralized adaptive linear receivers, i.e., re-

ceiver formed by the concatenation of an adaptive linear
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�lter with a suitable (non-linear) detection operation act-

ing on the �lter output. Algorithms that make use of a

known data sequence (training sequence) for adaptation

are referred to as data-aided (DA). Algorithms that do

not require a training sequence are referred to in the lit-

erature under di�erent names (e.g., \blind" [3] or \code-

aided" [4]). We shall refer to these algorithms as non-data

aided (NDA). In Section III we present closed form formu-

las for the steady-state output signal-to-interference plus

noise ratio (SINR) of the adaptive algorithms presented

in Section II. Also, we derive a Gaussian approximation

for the steady-state bit-error rate (BER) of these adaptive

receivers, in the case of 4PSK with Gray mapping. This

o�ers a rapid and accurate tool to predict the performance

of adaptive receivers. DA algorithm su�er from a SINR

degradation of at most 3 dB with respect to optimum. On

the contrary, NDA algorithms might be very far from the

optimum SINR.

II. Background

A. Discrete-time �nite-memory signal model

Consider a system with K users. The k-th user signal is

given by

uk(t) =
X
m

bk[m]sk(t�mT ) (1)

where sk(t) and bk[m] are the signature waveform and

the m-th information symbol of user k, respectively.

Users transmit individually and mutually uncorrelated se-

quences of unit-variance zero-mean complex symbols. In

DS/CDMA, the signature waveforms are given by sk(t) =PL�1
`=0 sk;` (t � `Tc), where sk = (sk;0; : : : ; sk;L�1)

T is the

k-th user spreading sequence, Tc = T=L is the chip inter-

val, L is the processing gain and  (t) is the chip pulse,

assumed to be bandlimited in [�W=2;W=2] and common

to all users. We assume normalized energy
R
jsk(t)j2dt = 1.

User k transmits with delay �k through a channel with

baseband equivalent impulse response ck(�). Without loss

of generality, we consider delays �k = qk=W + k where qk
is an integer and 0 � k < 1=W . The fractional part k
of the delay can be modeled as an e�ect of the propaga-

tion channel, while the integer part qk=W can be thought

as an e�ect of asynchronous transmission. Then, user k

signal contribution at the receiver is obtained by convolv-

ing uk(t � qk=W ) with ck(� � k). From the bandlimited

assumption, by using the sampling theorem we obtain

vk(i=W ) =
X
i

24X
j

ck[j]uk((i� j � qk)=W )

35 (2)
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where the coe�cients of the discrete-time channel im-

pulse response are given by ck[j] =
R
ck(j=W � k �

�)sinc(W�)d� . The overall received signal, given by the

superposition of all users' signals plus background noise, is

given by y(t) =
PK

k=1 vk(t) + �(t), where �(t) is a white

circularly-symmetric complex Gaussian process with power

spectral density N0.

The baseband receiver front-end is formed by an ideal

lowpass �lter with bandwidth [�W=2;W=2] and gain

1=
p
W followed by sampling at rate W = Nc=Tc with arbi-

trary sampling epoch. In order to obtain an approximated

�nite-memory signal model, we assume that the discrete-

time impulse responses ck[j] and the sampled chip pulse

 (j=W ) are negligible for j =2 [0; P ] and for j =2 [�Q;Q],
respectively, where P andQ are suitable integers. In partic-

ular, the k-th discrete-time channel impulse response is rep-

resented by the vector ck = (ck[0]; : : : ; ck[P ])
T . Moreover,

we assume that the receiver has a �nite-length processing

window, i.e., for each symbol time n it processes a window

of samples with indexes i 2 [nLNc�M1; nLNc+M2]. The

processing window size eL =M1+M2+1 is left as a design

parameter (notice that ifM1 > 0 andM2 > LNc�1 the re-
ceiver processing window is larger than one symbol interval

T ). Accordingly, we de�ne the n-th channel output vector

y[n] as the content of the receiver processing window at

symbol time n, i.e., y[n] = (y[nLNc+M2]; y[nLNc+M2�
1]; : : : ; y[nLNc�M1])

T and we let �[n] be the correspond-

ing vector of noise samples.

After a little algebra, we obtain

y[n] =

KX
k=1

B2X
m=�B1

Sk[m]ckbk[n�m] + �[n] (3)

where the matrices fSk[m] : m = �B1; : : : ; B2g, of size
(M1+M2+1)�P , are uniquely de�ned by qk and sk(t), and
can be easily calculated, and where the summation limits

B1 and B2 are explcitly found as functions of Nc; P;Q and

L. After suitable renumbering of the user symbols so that

(k;m) 7! u and bk[n�m] 7! bu[n], and by de�ning the mod-

i�ed normalized spreading sequences pu = Sk[m]ck=
p
Eu

where Eu = jSk[m]ck j2 is the average energy contribution

of symbol bu[n], we can rewrite (3) as

y[n] =

UX
u=1

p
Eupubu[n] + �[n] (4)

where U = (B1 + B2 + 1)K is the number of equivalent

users in the asynchronous CDMA channel and b1[n] is the

desired symbol of the desired user.

B. Linear decentralized receivers

We constrain the receiver to be linear, i.e., formed by a

linear FIR �ltering operation z[n] = h
H
y[n] followed by a

suitable (non-linear) processing with input sequence fz[n]g.
We can rewrite (4) by putting in evidence the useful signal

component, as

y[n] =
p
E1p1b1[n] +w[n] (5)

where w[n] collects noise+ISI+MAI. A relevant measure

of performance for the �lter h is its output SINR. In our

setting, this is de�ned by

SINR
�
=
E[jz(b1[n])j2]
E[�2z(b1[n])]

(6)

where z(b1[n]) = E[z[n]jb1[n]] and �2z(b1[n]) =

E[jz[n]j2jb1[n]] � jz(b1[n])j2 are the conditional mean and

the conditional variance of the �lter output z[n] given the

useful symbol b1[n], respectively.

Single-user matched �lter (SUMF). The baseline

linear receiver �lter is the SUMF h = p1, matched to the

useful signal component as if w[n] was a white noise vec-

tor. The SUMF requires the knowledge of user 1 signature

waveform s1(t), coarse timing q1 and channel vector c1, so

that p1 = S1[0]c1 can be calculated. The output SINR

achieved by the SUMF is given by

SINRsumf =
E1

pH1 Rwp1
(7)

where Rw = E[w[n]w[n]H ]. In the absence of ISI and

MAI, Rw = N0I so that SINRsumf = SNR1
�
= E1=N0.

Linear minimum MSE receiver (LMMSER). A

classical criterion for the design of the �lter h is the min-

imization of the MSE [2] J = E[jb1[n] � h
H
y[n]j2]. The

minimum MSE (MMSE) �lter vector is the Wiener �lter

hopt =
p
E1R�1y p1, where we let Ry = E[y[n]y[n]H ]. The

resulting output SINR is given by

SINRopt = E1pH1 R
�1
w p1 (8)

and it is the maximum SINR over all possible �lters h [2]

(this motivate the subscript \opt"). Notice that any two

�lter vectors h0 and h00 which di�er by a scalar (non-zero)

multiplicative term provide the same SINR (we shall write

h
0 / h

00). Then, any �lter h / hopt is also optimal in

terms of output SINR. Adaptive implementations of the

LMMSER are obtained from standard DA LMS and RLS

algorithms [7].

Constrained minimum MOE receiver (CM-

MOER). In [3], the receiver �lter h is designed in or-

der to minimize the mean output energy (MOE) �
�
=

E[jz[n]j2] = h
H
Ryh subject to the constraint hHp1 = 1.

The solution of this constrained minimization problem is

readily obtained as hmoe = �minR
�1
y p1 where �min =

E1
�
1 + 1

SINRopt

�
is the constrained minimum MOE. Since

hmoe / hopt, also the CMMOER attains SINRopt. Adap-

tive implementations of the CMMOER are obtained by us-

ing the NDA LMS and RLS algorithms described in [3],

[4].

Generalized constrained minimumMOE receiver

(GCMOER). An elegant generalization of the CMMOER

which avoids explicit knowledge of p1 has been proposed

in [8], [9]. This receiver, referred here as the GCMOER,

is the result of the min-max problem: choose (h;g) such

that the MOE is minimized with respect to h subject to
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the constraint S1[0]
H
h = g and maximized with respect to

g subject to the constraint jgj2 = 1. The resulting �lter

vector is given by [8] hgmoe = �1R
�1
y S1[0]u1 where 1=�1

is the minimum eigenvalue of the matrix S1[0]
H
R
�1
y S1[0]

and u1 is a corresponding unit-norm eigenvector. It is

easy to show that the resulting MOE is given by � = �1.

The GCMOER is well-de�ned if the minimum eigenvalue

of S1[0]
H
R
�1
y S1[0] has multiplicity 1. This is veri�ed un-

der the unique identi�ability condition of [9, Prop. 1]. In

the following we assume that this is always the case. The

GCMOER needs only the prior knowledge of q1 and s1(t)

in order to calculate S1[0]. Therefore, it requires even less

side information than the SUMF.

The output SINR achieved by the GCMOER is easily

obtained as

SINRgmoe =
1

�1=(E1juH1 c1j2)� 1
(9)

In this paper we consider the following straightforward

NDA adaptive implementation of the GCMOER based on

recursive estimation of R�1y [10]: 1

k[n] =
�
�+ y[n]HM[n� 1]y[n]

��1
M[n� 1]y[n]

M[n] =
1

�
(I� k[n]y[n]H )M[n� 1]

u1[n] = arg min
g

g
H
S1[0]

H
M[n]S1[0]g

gHg

�1[n] =
�
u1[n]

H
S1[0]

H
M[n]S1[0]u1[n]

��1
h[n] = �1[n]M[n]S1[0]u1[n] (10)

where � is the exponential forgetting factor andM[0] = I.

Because of the similarity with the NDA-RLS, the above

algorithm will be referred to as \generalized" NDA-RLS

(GNDA-RLS).

III. Steady-state performance analysis

For a given adaptive algorithm, h[n] is a random vector.

We assume the following convergence conditions:

1. Convergence of the

mean �lter vector: limn!1E[h[n]] = h, where h is

a given constant vector.

2. Convergence of the MSE: limn!1 J [n] = J , where

we de�ne J [n] = E[b1[n]� h[n� 1]Hy[n]j2] and J is a

given �nite constant.

The constants h and J depend on the speci�c algorithm

and on the channel parameters (user channels, spreading

sequences etc...). We are allowed to write h[n] = h + �[n]

where �[n] is an asymptotically zero-mean error vector.

It can be shown that, for a large class of adaptive algo-

rithms, �[n] is also asymptotically WSS [12]. We make this

assumption here. The steady-state MSE can be written

as [7] J = J0 + Jex where J0 = E[jb1[n] � h
H
y[n]j2] is

the MSE achieved by a non-adaptive receiver with deter-

ministic �lter vector h and Jex is the steady-state excess

1See [10], [11] for computationally-e�cient stochastic-gradient
adaptive GCMOER implementations.

MSE. Under the independence assumption [7], �[n � 1] is

treated as statistically independent of b1[n] and of y[n].

This allows us to write Jex = trace(RyR�), where R� =

limn!1 E[�[n]�[n]H ]. Closed-form expressions for Jex are

known for several adaptive algorithms [7], [13], [3], [4].

A. SINR analysis

We derive a general expression of the steady-state output

SINR in terms of h, J0 and Jex. Then, we evaluate it for

the DA-LMS, DA-RLS, NDA-LMS, NDA-RLS and GNDA-

RLS algorithms presented in SectionII. For the sake of

notation simplicity, we drop the time index. Then, all the

following expressions should be interpreted as limits for

n ! 1. Let h = h + �, where h is deterministic and

� is random with mean zero and independent of b1 and

y. From (4) we obtain immediately z(b1) =
p
E1(h

H
p1)b1

and E[�2z(b1)] = J�j1�
p
E1(h

H
p1)j2. Then, by using the

above expressions in (6) and by letting J = J0 + Jex, we

obtain the steady-state SINR of a general adaptive �lter as

SINR =
E1jh

H
p1j2

J0 + Jex � j1�
p
E1(h

H
p1)j2

(11)

DA algorithms. Both the DA-LMS and the DA-RLS

have the property that h = hopt [7]. We have

h
H
optp1 =

1
p
E1

SINRopt

1 + SINRopt

J0 =
1

1 + SINRopt

(12)

By substituting this into (11) and by using the fact that for

both DA-LMS and DA-RLS we have that Jex = �J0, where

� is referred to as MSE misadjustment and it is explicitly

given (see [7], [13]), we obtain

SINRDA =
SINRopt

1 + � + �=SINRopt

(13)

NDA algorithms. Both the NDA-LMS and the NDA-

RLS have the property that h = hmoe [3], [4]. Then, we

have

J0 =
E1

SINRopt

+ (1�
p
E1)2 (14)

By using this in (11) and by using the fact that Jex = ��min
(see [3], [4]), where � (the MOE misadjustment) is given

in [4], [3], we obtain

SINRNDA =
SINRopt

1 + � + �SINRopt

(15)

Now, we consider the GNDA-RLS algorithm. In [10] it is

shown that, as long as the GCMOER is well-de�ned, the

GNDA-RLS has the property that h = hgmoe. Then, we

obtain

h
H
gmoep1 = u

H
1 c1

J0 = 1�
p
E1RefuH1 c1g+ �1 (16)
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The evaluation of Jex for the GNDA-RLS algorithm is com-

plicated by the presence of the eigenvector computation

step in the recursion (10). Then, we approximate Jex by

the asymptotic excess MSE of the following modi�ed re-

cursion:

k[n] =
�
�+ y[n]HM[n� 1]y[n]

��1
M[n� 1]y[n]

M[n] =
1

�
(I� k[n]y[n]H )M[n� 1]

e�1[n] =
�epH1 M[n]ep1��1

h[n] = e�1[n]M[n]ep1 (17)

where we let ep1 = S1[0]u1. This is motivated by the fact

that, for large n, the inverse covariance matrix M[n] be-

haves like a quasi-deterministic quantity when eL(1��)� 1

(see [4] and references therein). Therefore, limn!1M[n] '
E[M[n]] = (1 � �)R�1y , which implies that, for large n,

u1[n] ' u1.

Recursion (17) is formally equivalent to the NDA-RLS

algorithm. Then, it is rather straightforward to duplicate

the derivation of [4] with the change p1 ! ep1 and obtain

Jex ' ��1 with the same MOE misadjustment as for the

NDA-RLS. We obtain:

SINRGNDA =
SINRgmoe

1 + � + �SINRgmoe

(18)

Remark 1. For SINRopt � 1, we have that SINRDA '
SINRopt=(1+�). In normal working conditions it is reason-

able to expect that the excess MSE due to adaptation does

not exceed the MMSE, therefore 0 < � < 1 and DA algo-

rithms at the steady-state are suboptimal by at most 3 dB.

On the contrary, NDA have SINRNDA � 1=�, which might

be much less than SINRopt. By comparing (15) and (18),

since SINRgmoe � SINRopt, we notice that the price for not

knowing the channel vector c1 is a decreased steady-state

SINR. However, in most cases this penalty is small [9].

B. Symbol-by-symbol error probability

It is customary to compare the receiver e�ciency also in

terms of symbol-by-symbol error probability. In order to

compare di�erent receivers in terms of their error probabil-

ity, we should discuss the issue of phase ambiguity of the

receiver �lter vector h. While multiplying h by a complex

non-zero scalar has no impact on the output SINR, it might

have a major impact on the error probability, depending on

the decision rule. In particular, it is well-known that blind

equalization schemes based on second-order statistics are

able to equalize the channel up to a phase rotation [14].

This is actually the case for the CMMOER and GCMOER.

Suppose that user 1 carrier phase is not known a priori by

the receiver. Then, the CMMOER makes use of a \ro-

tated" version ej�p1 of the nominal useful signal vector in

order to compute its �lter vector, where � is an arbitrary

phase o�set between transmitter and receiver. Similarly,

the minimal eigenvector u1 de�ning the GCMOER �lter

vector can be determined up to an arbitrary phase factor

ej�. The NDA adaptive implementations of CMMOER

and GCMOER are a�ected by analogous phase ambiguity.

In practice, this can be resolved in several standard ways,

as for example by non-coherent or di�erential (block) de-

tection or by explicit phase estimation. Phase acquisition

and tracking can be performed after �ltering and are fa-

cilitated by the fact that they operate at the �lter output

SINR, i.e., after interference rejection. By using (5) and

h = h+ �, we can the �lter output z = h
H
y in the form

z =
p
E1(h

H
p1)b1 + � (19)

where � is the residual interference plus noise at the �lter

output, and takes into account also the e�ect of the random

�lter error �. For the sake of space limitations, we cannot

investigate here the details of phase recovery. Then, in

order to make fair comparisons between di�erent receivers,

we assume that the phase of the deterministic useful signal

component (h
H
p1) is perfectly known to the receiver.

In this paper, we assume that the symbols bu belong to

a 4PSK signal set with Gray mapping, i.e.,

bu = (dIu + jdQu )=
p
2 (20)

where dIu and dQu are i.i.d. antipodal random vari-

ables taking on values in f�1g with equal probability

(the superscripts I and Q denote the in-phase and the

quadrature rails), and we consider the following sim-

ple suboptimal symbol-by-symbol threshold detection rule:bdI1 = sign(Refezg) and
c
d
Q
1 = sign(Imfezg), where ez =

��1(h
H
p1)

�
h
H
y is the phase-compensated �lter output

and where we let �
�
= jh

H
p1j. Because of the symmetry,

we can assume dI1 = 1. The detector input can be written

as

Refezg = �

r
E1
2

 
1 + �0 +

2U�1X
i=1

�idi + e�
!

(21)

where the di's are i.i.d., uniformly distributed over f�1g,e� � N (0; N0jhj2=(E1�2)), �0 = Re
�
�
H
p1p

H
1 h
	
=�2, �1 =

Im
�
�
H
p1p

H
1 h
	
=�2 and

�i =

� p
Eu=E1Re

�
h
H
pup

H
1 h
	
=�2 i = 2u� 2p

Eu=E1Im
�
h
H
pup

H
1 h
	
=�2 i = 2u� 1

(22)

for u = 2; : : : ; U . The �i's are random variables, since they

are functions of �. The BER conditioned on � is immedi-

ately obtained as [15]

P (ej�) =
1

22U�1

X
d1;:::;d2U�1

Q

 s
E1�2

N0jhj2

 
1 + �0 +

2U�1X
i=1

�idi

!!
(23)

where Q(x) =
R1
x

1p
2�
e�y

2=2dy is the Gaussian distribu-

tion tail function.

Methods for the evaluation of (23) have been extensively

studied in the framework of ISI channels, for which the

channel output samples is formally analogous to (21) for
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�xed (i.e., non-random) coe�cients �i. Here we use the

very e�cient and numerically accurate method based on

Discrete-Cosine Transform (DCT) is provided in [16]. In

order to compute the steady-state P (e) we should aver-

age (23) with respect to the steady-state distribution of

the �lter error vector �. This appears to be prohibitively

complex, since this distribution is not known exactly. The

desired steady-state error probability can be evaluated by

the semi-analytic Monte Carlo (MC) method, that is ex-

pensive in terms of computation. An e�cient alternative

to the MC method is the steady-state Gaussian approx-

imation (SSGA), which consists of modeling the residual

noise variable � in (19) as a Gaussian zero-mean random

variable. It is easy to check that, �2E1=E[j�j2] is equal to
the steady-state SINR of the adaptive �lter. Therefore we

can write P (e) � Q(
p
SINR) where SINR is provided by

Propositions 1,2 and 3, for the algorithms considered here.

IV. Results

In order to validate the analysis carried out in the pre-

vious section, we considered a system with K = 10 users

and processing gain L = 31. Each user is given a dis-

tinct sequence from a Gold set. Without loss of generality,

we let q1 = 0 and we generated independently the delays

qk for k = 2; : : : ;K, uniformly distributed over the inte-

gers in [�L=2; L=2), and k for k = 1; : : : ;K, uniformly

distributed over [0; Tc). We considered continuous-time

Rayleigh channel impulse responses in the form ck(�) =PP 0

p=0 gp�(� � �p), with gp � CN (0; �2p). The set of pairs

(�2p ; �p) de�nes the delay-intensity pro�le (see Table I). The

assignment of the delays qk, of the channel vectors ck and

of the spreading sequences sk is �xed throughout the simu-

lations. Therefore, we are not averaging over these param-

eters. The receiver processing window is chosen to span

two symbol intervals. with the useful symbol falling ap-

proximately in the middle of the processing window. We

considered two SNR assignments: (a) all users have the

same SNR= 13 dB (corresponding to Eb=N0 = 10 for un-

coded 4PSK); (b) users k = 1; : : : ; 5 have SNR= 13 dB and

users k = 6; : : : ; 10 have SNR= 28 dB. These situations are

representative of perfect power-control and of uncompen-

sated near-far e�ect.

Fig. 1 and 2 show BER vs. the number of symbol inter-

vals (i.e., algorithm iterations) for DA, NDA and GNDA

RLS algorithms in cases (a) and (b), respectively. The

curves are obtained by the semi-analytic MC method aver-

aged overN = 50 independent simulation runs. At each it-

eration step, (23) is evaluated via the DCT method of [16],

for the current value of the �lter error vector. The hor-

izontal lines indicate the steady-state BER obtained via

the SSGA. The BER of the ideal (non-adaptive) SUMF,

LMMSER and GCMOER are shown for comparison. These

BER values are again computed via the DCT method and

coincide with their exact value up to four signi�cant digits.

Fig. 3 and 4 show analogous results for DA and NDA LMS

algorithms.

V. Concluding remarks

The steady-state SINR analysis provided by Propositions

1, 2 and 3 is very accurate for all algorithms considered.

The results of Section IV show also that the SSGA for the

steady-state BER is very good. Actually, in all our exper-

iments we never found cases where the Gaussian approxi-

mation was accurate for the (non-adaptive) LMMSER and

convergence conditions were satis�ed but the SSGA was

not very close to the steady-state BER of adaptive algo-

rithms. Eventually, our analysis provides a useful tool for

performance evaluation of adaptive linear receivers, avoid-

ing heavy computer simulations.

It is intuitive to see that, for a reasonable choice of

the user spreading waveforms, the eigenvalue spread [7] of

Ry increases with the power unbalance between the users.

Then, in heavy near-far situations like case (b), the con-

vergence of LMS-type algorithms is very slow. On the con-

trary, RLS-type algorithms do not su�er from the near-far

e�ect, since, as it is well-known, their convergence rate is

almost independent of the eigenvalue spread of Ry. Hence,

we observe that even if an ideal (non-adaptive) receiver is

intrinsically near-far resistant [1], its adaptive implemen-

tation might converge so slowly to prevent any practical

utility. Driven by this consideration, we suggest an infor-

mal de�nition of near-far resistant adaptive receiver: an

adaptive receiver is near-far resistant if, for a given desired

steady-state performance, its convergence time is (almost)

independent of the interfering users SNR. With respect to

this de�nition, RLS-type algorithms are near-far resistant

while LMS-type algorithms are not.

The performance gap between DA and NDA algorithms

is evident. In our examples, the BER achieved by NDA

algorithms is about one order of magnitude larger than that

of their DA counterparts (a slightly larger degradation can

be observed for the GNDA-RLS).
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p �2p �p=Tc
0 1.0 0.0

1 0.5 1.2

2 0.2 3.4

3 0.1 5.6

TABLE I

Delay-intensity profile of the Rayleigh channel used in the

simulations.
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Fig. 2. BER vs. number of symbols for the RLS algorithms in
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