CAPTCHA Smuggling:
Hijacking Web Browsing Sessions to Create CAPTCHA
Farms

Manuel Egele
Technical University Vienna,
Austria
+43 58801-18318
manuel@iseclab.org

ABSTRACT

CAPTCHAs protect online resources and services from autna
access. From an attacker’s point of view, they are typicpdy
ceived as an annoyance that prevents the mass creationoofrasc
or the automated posting of messages. Hence, miscreawméstestr
effectively bypass these protection mechanisms, usirfintques
such as optical character recognition or machine learntigw-
ever, as CAPTCHA systems evolve, they become more resilient
against automated analysis approaches.

In this paper, we introduce and evaluate an attack that we de-
note asCAPTCHA smuggling. To perform CAPTCHA smuggling,
the attacker slips CAPTCHA challenges into the web browsess
sions of unsuspecting victims, misusing their ability tbvedhese
challenges. A key point of our attack is that the CAPTCHAs are
surreptitiously injected into interactions with benigntwapplica-
tions (such as web mail or social networking sites). As altghiey
are perceived as a normal part of the application and raisuso
picion. Our evaluation, based on realistic user experigesitows
that CAPTCHA smuggling attacks are feasible in practice.

Categories and Subject Descriptors

H.M [Information Systems]: Miscellaneous; D.2.09oftware]:
Software Engineering : General

General Terms
Security threats

Keywords

CAPTCHA, attack, real-world experiments

1. INTRODUCTION

Completely Automated Public Turing tests to tell Computerd
Humans Apart (CAPTCHAS) [18] are often the first line of de-
fense in many online services. Their purpose is to protegt ser-
vices and resources from automated misuse by maliciousgnty

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC' 10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Leyla Bilge, Engin Kirda
Institute Eurecom,
Sophia Antipolis, France

. +33493008100
{bilge,kirda}@eurecom.fr

Christopher Kruegel
University of California,
Santa Barbara
+1 (805) 893-6198
chris@cs.ucsb.edu

For example, free email providers frequently use CAPTCHAS t
prevent spammers from automatically creating disposatiaile
addresses that can then be used for spam campaigns. Similarl
blogging and forum sites make use of CAPTCHASs to prevent bot-
generated postings. These postings aim to lure reader®ifde-

ing links that may point to malicious pages where drive-ligicks

or other dangerous content might await them.

Note that CAPTCHAs may also be used to limit automated ac-
cess to search engines. For example, the Google searcheengin
requires a visitor to solve a CAPTCHA once it detects abnbrma
search behavior [13] (e.g., a high number of search quetées-s
ming from a specific IP).

Reliably breaking CAPTCHAS enables attackers to creagelar
numbers of fake email accounts, or simplify their spammictiya
ties on blog and forum sites. As the mail servers of the magir-w
based email providers (e.g., Microsoft LiveMail, Gmail YXathoo)
are commonly not included in spam blacklists, such accoargs
valuable to spammers. In fact, there was a large increasganf s
messages originating from LiveMail accounts immediatégrats
CAPTCHA system was reported to be broken [22].

Ever since CAPTCHAS have been used to prevent automated ac-
cess to specific online services, miscreants have triedr¢orok
vent these protection mechanisms. The possible attadegiga
are manifold, and include techniques that rely on opticarat-
ter recognition (OCR), mechanisms to identify distortedrels-
ters [24], machine learning techniques [6] to break CAPTGHA
and human “farms” where real people manually solve the chal-
lenges [14].

In this paper, we present a nhovel attack that we deGSTCHA
smuggling. In a CAPTCHA smuggling attack, user interactions
with legitimate online services (such as web mail or socéaork-
ing sites) are intercepted by the attacker (i.e., a malgmogram
executing on the victim’s computer) and put on hold until vie
tim solves a CAPTCHA challenge. The displayed CAPTCHA and
its surrounding browser window spoof the visual charasties of
the online service that the victim is using. Hence, it is diffi for
victims to distinguish between real CAPTCHAs displayed hy t
online service and CAPTCHAs smuggled into the session by the
attacker. As the CAPTCHA challenge is under the direct cbioff
the attacker, a malicious program that needs to solve a CARATC
can forward the challenge to a victim’s computer. The malisi
component on this computer then performs the CAPTCHA smug-
gling attack (and thus, gets the challenge solved by an pestiag
user). The premise of our attack is that users are so accedttom
solving CAPTCHASs while using online services that they wibit
notice extra CAPTCHAs that are smuggled in by a malicious ap-
plication running on their computer.

Note that malicious activity related to solving CAPTCHAssha
already been seen on the the Internet. Troj/CAPTCHA-A [fof],
example, displays a series of pictures of a woman who takes of
her clothes. In order to see the next picture, the user haslte s
a CAPTCHA. Similarly, certain adult web pages require a user
to solve a CAPTCHA before the actual content is displayed [7]
However, the inventors of CAPTCHAs [18] do not consider this
“pornography attack” against CAPTCHAS a concern as annoyed
visitors can easily switch to other offers. In contrast totsan at-
tack, CAPTCHA smuggling is performed seemingly as part of (pop-
ular) online services that the victim has been using overiagef
time. Thus, it is unlikely that, given a low enough level ohag-
ance (a low number of CAPTCHA puzzles per day), a user would
choose a different online service.

The typical attack scenario that we envision involves a &iotn
with bots that intercept user interactions and smuggle G2{RAs
into the victim’s active web browsing sessions. For example
Facebook CAPTCHA that is under the attacker’s control would
sometimes be displayed when the victim starts to composesa me
sage or send a friend request. Requiring a victim to solvg anl
few CAPTCHAs a day ensures that the manipulation stays unno-
ticed and is perceived as normal procedure. Note that a CAIATC
smuggling attack is very lightweight in terms of requiredaerces.
Therefore, it is trivial for the bot master to add the reqdifenc-
tionality to the existing bot program without limiting th&isting
functionality of the botnet.

To test the feasibility of our attack, we conducted realidior
user experiments. The results of these experiments sutigsst
CAPTCHA smuggling is feasible in practice and can be used by
attackers to make victims solve CAPTCHA challenges on their
half.

This paper makes the following contributions:

e We introduce theCAPTCHA smuggling attack, and we de-
scribe the implementation of a man-in-the-middle compo-
nent that performs such attacks.

We report on a bug in Firefox and a problem with Facebook
that made it easier for us to distribute our attack prototype
a stealthy fashion.

We describe the results of our real-world experiments in-
dicating that CAPTCHA smuggling attacks are feasible in

OCR programs [12] to accurately identify the charactersopypar
state-of-the-art, text-based CAPTCHA is reCAPTCHA [21heT
tests used by reCAPTCHA are derived from the attempt toidegit
old books. Clearly, words that cannot be recognized duraag-s
ning have already circumvented sophisticated OCR teclksiqe-
CAPTCHA makes use of these words and forms a challenge by
combining an unknown word with a control word whose content
is known. To further thwart programs that try to solve theleha
lenge, the words are distorted and aligned randomly. reGAPA
accepts a solution if the control word is submitted corsecihd
the text for the unknown word overlaps substantially witteatly
submitted solutions for the same challenge.

Recent advances in CAPTCHA systems resultddage-based
CAPTCHAs. Asirra [4], is an image-based CAPTCHA that re-
quires the user to distinguish between images of cats arsl doyg
Asirra challenge consists of 12 images, each showing eitlet
or a dog. A solution is accepted as correct if the user sufudbss
selects all the cat pictures, but none of the dog images. Uthes
argue that the underlying computer vision problem [5] igtipar
larly difficult to solve efficiently.

Current CAPTCHA systems such as reCAPTCHA suggest that
automatically breaking CAPTCHAs will become much more diffi
cultin the near future. Nevertheless, attackers are cothgtaying
to automatically break CAPTCHASs using botnets, and have suc
ceeded in breaking them in many cases (e.g., [22]). As boaret
already used to break CAPTCHAS, we believe that the nextfetep
attackers are CAPTCHA smuggling attacks where CAPTCHASs are
injected into legitimate web browsing sessions of victims.

3. CAPTCHA SMUGGLING ATTACKS

To perform a successful CAPTCHA smuggling attack, a mali-
cious component (such as a bot program) on the victims’ feesis
to intercept the user interactions with an online servicg.(€&ace-
book) and delay their execution until the victim succedgfsblved
a CAPTCHA challenge. Bear in mind that it is not necessaryéde ¢
ate a new botnet for CAPTCHA smuggling attacks. Existing bot
programs can easily be extended to perform such attacksdin ad
tion to their current behavior. This process is depictedigufe 1.

In a typical attack, the user first performs an action thatate
tacker wishes to delay (for example, sending a request tecfip
web server, or clicking a button on a web page). The malware on
the victims’ host intercepts the request and locally statkmfor-

practice. Based on these results we give an estimate howmation necessary to replay the request later on. This coemton

many CAPTCHASs a botmaster could solve using this attack.

The remainder of this paper is structured as follows: Se@io
gives an overview of existing CAPTCHA systems. Section Bint
duces the techniqgue @APTCHA smuggling. Section 4 describes
our prototype implementation. The setup for our user expenis
is detailed in Section 5, while the results of the experirméaat
presented in Section 6. Mitigation approaches against GAPY
smuggling attacks are described in Section 7. Section 8isk&s
research that is related to our work. Finally, Section 9 hales
the paper.

2. A BRIEF OVERVIEW OF CAPTCHAS

A CAPTCHA is a challenge-response test used to determine
whether the response is generated by a computer or a humese Th
tests are designed to be easily solvable by humans, bututtiffecc
decipher for automated programs.

Text-based CAPTCHAs are the most common. These consist of
a sequence of distorted characters rendered into an imaged-B
ing, rotating, or mutating colors further complicates thskt for

then retrieves a CAPTCHA challenge from the attacker’'s exerv
The attacker would forward a challenge that needs to be dafve
order to perform the desired action. He could, for exampe, f
ward a CAPTCHA that was encountered during the registraifon
an email account. Once the user has solved the challengmahe
ware replays the intercepted request from the stored irgtiam.

To the unsuspecting victim, it seems as if the web applioagize

is using is protected by a standard CAPTCHA mechanism. In re-
ality, however, the victim has just provided the attackethwihe
necessary information to continue his nefarious tasks.

In the remainder of this section, we discuss the design of our
prototype system that perforn@APTCHA smuggling attacks. In
order to have a flexible solution, we implemented a plugintter
popular Mozilla Firefox web browser. Table 1 lists the wetesi
that our prototype targets and the user interactions tliraeitcepts
(e.g., composing a new message).

Note that all web sites (online services) listed in Tableduiee
that a user solves at least one CAPTCHA during account regis-
tration. Moreover, the social networking site Faceboolpldigs
CAPTCHAs on different occasions even after an account hes be

Web Server Controlled
by the Attacker

3. Malware requests
CAPTCHA
2. Malware intercepts
request

4. CAPTCHA|
challenge

5. CAPTCHA solution

1. Victim initiates request
Victim

6. Malware
replays request

Legitimate Web Server

Figurel: CAPTCHA Smuggling

Facebook: Login, open Facebook application
send message, change profile settings,
comment on status messages, post to wall
Microsoft LiveMail: Send email

Twitter: Follow tweet

Flickr: Comment picture

Gmail: Send email

Table 1. User interactionsthat trigger CAPTCHAS

successfully created. For example, to become friends wibthar
user on Facebook, one has to send a so-called friend reqsést,
ing that user for permission to add her to one’s friend lignd@ng
many consecutive friend requests typically provokes a CBIRA
challenge, as Facebook tries to prevent automated frieqebsts
and spamming. Only after that challenge is solved, the =qae
permitted. In our attack, we smuggle CAPTCHA challenges int
an active web browsing session by creating an additiphalane
node in the DOM tree of the document, thus tricking the vidtito
solving our challenge.

4. PROTOTYPE IMPLEMENTATION

Firefox supports extensions as a means for third party dpvel
ers to extend the existing browser functionality. Populameples
include plugins that block advertisements on web pagesstene
sions that block the execution of all script content embdddeveb
sites, unless they are specifically permitted by the user.

Extensions for the Mozilla line of products are commonlytwri
ten in JavaScript. For Firefox, this implies that the richl Akt the
browser exports to the scripting engine is readily avadabl the
plugin developer. Modifying page contents, for examplguss as
easy as intercepting mouse clicks to elements (e.qg., tatlioks,
etc.) on a web site. The extension that we implemented madees u
of this functionality.

The actions that should trigger CAPTCHA challenges can be de
fined in two ways in our prototoype: (1) By uniquely identifgian
HTML element whose click event is hooked, or (2) by specifyin
regular expression that matches the URL of HTTP requests:

The identification of an HTML element can happen by specify-

ing the values of attributes, suchiag or cl ass properties. Once
a page is finished loading and rendered, the DOM tree of the cur
rent document is searched for elements that match the gdesi-s
fication. For each element that matches the descriptiompltigen
registers an additional click handler that intercepts ek @vent.
To intercept HTTP requests that match the specified regutaes-
sions, the plugin compares all outgoing requests with tattepn.
If the request matches the specification, the request isrphbta
and the CAPTCHA smuggling code is invoked instead.

When a certain user action triggers a CAPTCHA challenge (as
discussed in the previous paragraph), this action is iefecl. That
is, the plugin discards the event and keeps a record of tee- int
cepted action. This information is necessary to replay tiom
once the CAPTCHA challenge is solved. Then, the plugin adds
an HTML i f r ane tag to the DOM tree of the current document,
displaying a CAPTCHA challenge that is retrieved from ouwse
To avoid raising any suspicion, the CAPTCHA challenge mfmic
the target web site challenge as closely as possible. Teetids
we downloaded the HTML and CSS sources that define the dialog
windows of the targeted web sites (services) and modifiet the
cordingly. In addition, the label of the submit button is rifiza
to resemble the intercepted action. If the CAPTCHA chaléeisg
solved successfully, the plugin replays the previouslegrcepted
action from the stored information, which is then executéthout
further interference.

Once installed, the plugin applies several techniquesdse hs
presence on the infected system. First, the plugin remadse¥ i
from the list of installed add-ons in Firefox. That is, thevooon
method of uninstalling the plugin via the user interfaceds pos-
sible anymore. Second, for the first hour after its instaligtthe
plugin does not show any CAPTCHAs. We chose to implement this
feature as we believe that victims might get suspiciousghtrafter
installing a new plugin, they would see more CAPTCHA regsiest
then usual. Third, the plugin contains an adjustable tluiestinat
controls the frequency at which CAPTCHAs are displayed & th
victim. Initially, we set this value to display CAPTCHAs fonly
15% of the monitored actions.

5. DISTRIBUTING THEPLUGINTO REAL
USERS

As we did not have a botnet at hand to test-drive our implemen-
tation, and as such an experiment would have been unethieal,
had to distribute the plugin via other channels to test thsitsl-
ity of our idea. To this end, we recruited volunteers among ou
friends who would deliberately install the plugin. Besidssuring
the volunteers that no sensitive information (e.g., logedentials)
are stolen, we did not give them any further information rduey
the functionality of the plugin. Furthermore, we could cimoe
some of these volunteers to post links on Facebook that pmimt
page that performs a social engineering attack. More mltithe
page would ask its visitors to install our plugin, with themise
that this plugin is needed to see a video.

In addition to links and pictures, Facebook allows to shadew
clips with friends. During the sharing process, the useecisl
a thumbnail frame that represents the content of the viddas T
frame is then overlayed with a play button and shared amoag th
users’ friends. To watch the video, other users just havditk c

the overlayed frame. If the proper video codec is missing. (@0
Flash plugin present), the video is replaced by a messagenifg
the user of this situation. In addition, this message castaibutton
that allows to install the required plugin. In our attacke wsed
this standard Facebook behavior to disguise our sociahergi
ing attack. That is, we created a web page that imitates theeab
mentioned message to lure a visitor into installing our pludn
the following, we elaborate on two problems that we discestién
Facebook and Firefox, respectively, that allowed us tosase the
credibility of this page.

Cloaking Facebook: Cloaking is a technique commonly applied
in the field of search engine optimization [23]. This termersf
to a method where search engine spiders are served withetliffe
content than real visitors, thus making the page appeararcke
results for queries for which it does not provide any infotiora
Cloaking helped us to disguise the link to our plugin as aw®ide
This was achieved as follows:

Whenever a link to aresource is posted on a Facebook profde, t
Facebook server fetches a copy of that resource. This cdpghw
is stored on the Facebook server, is then displayed as a ttaimb
of that resource. The HTTP user-agent header field that i@ use
in this request identifies Facebook as the origin. Based on the
user-agent identifier, a real visitor can be distinguishednfthe
Facebook server, and different content can be presentedcto e
one. Therefore, we were able to return a fake image, mimicéin
video resource, to the Facebook server. When a real usezsesqu
the resource, however, we redirect her to the page that jaitseim
install the plugin. Once the user installs the plugin, hemser is
instructed to load the real movie.

Firefox disguisesthe origin of the plugin: Once a user is con-
vinced that she wants to see the video and clicks the fakeovide
thumbnail, the following happens: Instead of opening theteat
right away, Facebook loads a page with additional conttas al-
low the user to comment on, or share the content. The coptaye-
itself is embedded via anf r ame tag. In our case, this content-
page tries to install a browser plugin. This behavior triggesecu-
rity warning in Firefox and requires the user to agree toaithgihat
plugin. However, Firefox does not identify the source of phegin
correctly. In fact, the notification indicates that the smuof the
plugin iswww.facebook.com, while in fact the true source was our
own server (see Figure 2). We notified the Firefox developérs
this behavior, who confirmed that this is unintended. Of seuwe
added an appropriate bug report to the Mozilla bug trackystesn.

Clearly, one question that arises is if itis ethically adabpe and
justifiable to conduct such experiments with real usersd@sgly
considering the social engineering aspects). Similar éoettper-
iments conducted by Jakobsson et al. in [8, 9], we believe tha
realistic experiments are the only way to reliably estinmtecess
rates of real attacks. Hence, we chose to test our attackeabn r
users to evaluate the potential of CAPTCHA smuggling atack
Our work is in accordance with Jakobsson et al.’'s definitibatl-
ical fraud experiments. That is, we do not expose the ppéits
of our experiment to any risk. Furthermore, our CAPTCHA smug
gling system does not attempt to steal any sensitive infboma
from the user and consumes minimal additional resourcesring
of bandwidth, CPU cycles, and time of the user. Thus, thethega
impact on any infected victim is very low.

Of course, we included functionality that allows us to nptiie
user of the plugin’s existence after the experiment. Sihegtugin
requests the CAPTCHA challenge from our server, we can gimpl
substitute the challenge with a message that informs the Bee-

facebookexternalhit/1.0
(+http://lwww.facebook.com/externalhit_uatext.php)

thermore, the plugin has the capability to reverse its rehfvem
the list of installed add-ons. This allows the user to urilhgdhe
plugin from the Firefox add-on dialog.

6. EVALUATION

In this section, we present the evaluation of the data weegath
during our experiments. We began to distribute the plugirotan-
teers on May 15th 2009. Within 14 days, we counted 17 suadessf
installations. In addition, five volunteers agreed to pdstkato our
fake video page in their Facebook profile. This resulted iotlaer
7 people who installed the plugin. In total, our fake videgeaas
visited 56 times and we could achieve 24 successful insitatia
of our plugin. Note that two of these 24 users seem to usedxref
only on a non-regular basis. That is, they first tried to asthe
plugin with an unsupported web browser (i.e., not Firefa@nly
after the page indicated that the content is only availablEite-
fox users, these users revisited the site using the Firafowder.
Since, despite a successfully installed plugin, neithehe$e two
installations ever requested a CAPTCHA, the assumptidritieae
users rely on an other browser for every day work seems prbtifi

Of these 24 installations, 17 requested CAPTCHA challenges
from our server. The remaining 7 never requested any clygien
That is, these users did not perform any of the monitoredante
tions often enough to exceed the frequency limits and bespted
with a CAPTCHA. A possible explanation is that these usetg on
rarely use the online services we are monitoring with ougiplu
In addition, users that do not produce content, such as cotame
ing or posting to the service, will not see any of our CAPTCHAS
Furthermore, if a user makes use of the auto-login featurtheof
web site, our system will not display CAPTCHASs during theitog
procedure.

In total, these 17 infected users requested 167 CAPTCHAS. 12
were solved successfully. For 9 challenges the users sttt
wrong solution, and in 32 instances, the users did not suanyit
solutions (e.g., canceling the action). Note that a uséinato
submit any solution to a challenge does not pose a probletidor
attacker. The reason is that the same CAPTCHA can be fordarde
to another victim, once a timeout expires during which nailtes
is received. On average, a CAPTCHA was solved within 11 sec-
onds. Table 2 lists the monitored actions that triggeredests for
CAPTCHA challenges. Although we implemented the CAPTCHA
smuggling for many different actions and online servicedy the
Facebook and Gmail actions resulted in requests to our CARATC
server during our experiments.

Action # solved | # failed
Facebook login 68 2
Facebook Post to Wall 6 1
Facebook Open an Application 6 2
Facebook Send Message 5 0
Facebook Comment Wall-Post 35 4
Facebook Change Profile Settings 1 0
Gmail Send Email 5 0
[Total [126 | 9 |

Table2: Actionsthat triggered CAPTCHA requests

Table 2 indicates that most of the solutions submitted ipoase
to the spoofed CAPTCHA challenges were correct. In our exper
iment, we could observe an overall success rate, in termsref ¢
rectly solved CAPTCHASs, of 75%. Assuming that unanswered

o Firefox prevented this site (www.facebook.com) from asking you to install software on your computer.

Allow b4

Figure 2: Firefox warning indicateswrong origin of plugin

CAPTCHA challenges are forwarded to other victims this galu
increases to 93%.

During our experiments, we gradually increased the frequen
at which the user is prompted to solve CAPTCHAs. The ratio-
nale behind this was to learn at what level the users woulduget
noyed and just cancel the action instead of submitting Eoistto
the CAPTCHA challenges. From an attacker’s point of vieus th
value denotes the maximum output she can expect from pdrfgrm
a CAPTCHA smuggling attack. We varied the frequency between
15%, 25%, 35%, and 50%. Interestingly, not even setting e f
guency to 50% resulted in a noticeable reaction by the u3érat
is, even if the users are required to solve a CAPTCHA for every
second monitored action, they still submit valid solutiomable 3
presents a detailed breakdown of the gathered data. As ounlel wo
expect, the number of solved CAPTCHASs per day and user is di-
rectly proportional to the frequency at which the pluginptiys
CAPTCHA challenges.

Freq. | days| # users| # correct| # CAPTCHAs
solutions| per day per use
15 6 10 30 0.5
25 3 5 24 1.6
35 3 10 57 1.9
50 2 3 15 2.5

Table3: CAPTCHA smuggling successrates

Discussion.

Our premise is that the attacker already controls a botmet, a
hence, has access to the victim’s computer to perform CAPACH
smuggling that happens in addition to the already existivigde-
havior. Our experiment shows that even without such a pawerf
infrastructure, an attacker can achieve a considerabldeauaf in-
fections. In particular, exploiting the trust relatiorfshibetween
users on social networking sites together with social exgging
could allow an attacker to successfully infect many users. ei-
ample, extending our system with the ability to automalygalop-
agate the fake video content on an infected profile would baes
straightforward. Clearly, we did not wish to create a pluigiple-
menting worm-like propagation strategies in Facebook.

Also, we note that our experiment mainly focused on Facebook
Of course, a real attacker could extend CAPTCHA smuggling to
other online services as well.

7. MITIGATION APPROACHES

Although an attacker controlling a victim’s machine via & bo
program is a powerful enemy, this section introduces teples
that could improve current CAPTCHA systems to make them more
resilient against CAPTCHA smuggling attacks. As a first iayer
ment, we suggest CAPTCHA systems that make use of additional
forms of authentication towards the us8ite Keys, commonly ap-
plied in online banking systems to thwart phishing attacks, eas-
ily be adapted to raise the bar for attackers to perform CARAC
smuggling attacks. This technique uses visual informatisra
shared secret to indicate to the user that the content shewgg
is indeed from the site she is currently interacting withtfiis end,
the user can select a custom image that is included on thergont
produced by the service in question (e.g., an online bankigin
site authenticates itself to the user by including a uskyesed im-
age). In terms of CAPTCHA systems, this scheme can be applied
by letting the user choose the background for all CAPTCHA® T
user is then instructed to solve only such CAPTCHASs that liawe
chosen background set. A CAPTCHA challenge retrieved by the
attacker and forwarded to an infected user would not havedhe
rect background set, and the user can easily detect thepagem
attack.

Note that it is not impossible for an attacker to circumvenis t
additional protection. In theory, a sophisticated attackeld spoof
the Site Key as well. However, this simple addition consathéyr
raises the bar to successfully launch CAPTCHA smuggliracis.

Recall that the main purpose of CAPTCHASs is to tell computers
and humans apart. Hence, if an online service can tell witiaicey
that the current user is human, such tests are not requiyeadcae.
Identifying users with information that is not as easilyitalae as
email addresses fulfills this requirement. Facebook, fangle,
allows its users to register their phones with the serviserfwho
perform this registration can post news to their profilesfitheir
phones and, additionally, are exempt from solving CAPTCHAs
Educating users that registering their phone numbers wnaNgnt
further CAPTCHA challenges would make it easy for the vigtim
to recognize potential CAPTCHA smuggling attacks.

8. RELATED WORK

This section covers related work in the field of CAPTCHAs and
automated attempts on breaking them. Von Ahn et al. were the
first to introduce CAPTCHAs in the year 2000 [19]. Their later
work [20] elaborates on different techniques that can bd tséell
computers and humans apart automatically. Chew et al. édcois
challenges that are based on image recognition [2]. Theyose

To roughly estimate the monetary gain an attacker can expecta system where the a human user should describe the subgect in

from performing CAPTCHA smuggling attacks, we refer to the
Symantec Internet Threat Report for the year 2008 [16]. Adco
ing to these studies, email credentials are the third megugntly
offered information in the underground economy. The lovessit
mated value for such credentials is listed at 0.10%. Takimgdium
sized botnet of 10,000 infected machines as a basis and egsum
that each user can be tricked into solving only two CAPTCHAs
per day, this would result in 2,000$ daily revenue only foradm
account credentials. A botnet of this size is easily possi re-
cent studies [15] indicate that current botnets can reans sif
hundreds of thousands of infected machines.

picture, or recognize an interfering image from an otheewisher-

ent set of pictures. Making CAPTCHAs usable on mobile device
is the main contribution of [3] by Chow et al. Their system sloe
not rely on keyboard input, which can be annoying especiatly
mobile devices. Instead, they designed a CAPTCHA that can be
solved with touch screens or numeric keypads.

Kolupaev et al. [10] summarizes automatic techniques tiestib
text-based CAPTCHAs by applying OCR methods. Mori et al] [11
perform shape context matching allowing them to break the EZ
Gimpy CAPTCHA. This variant of a text-based CAPTCHA con-
sists of approximately seven words that are cluttered imzage.

The challenge is solved if three words in such a clutteredygraae
correctly recognized.

The Asirra CAPTCHA, introduced by Elson et al. [4] relies on
a mechanism where the user has to identify pictures of catsfou
a set of twelve pictures of cats and dogs. The authors argue th
this distinction is hard to make for computers even unddewtht
attack scenarios. This assumption is partially falsifiec@ioyle [6].
By leveraging machine learning techniques, it was possildeeak
this scheme with a probability of 10.7%.

Among the heavy users of CAPTCHAS are social networking
sites. These sites prevent automated crawling attacksduyrireg
the user to solve CAPTCHAs every once in a while. By targeting
social networks for impersonation attacks, Bilge et al.démon-
strated that the employed CAPTCHA techniques are not serffici
to prevent such automated attacks. The main reason forgheir
cess in automatically breaking CAPTCHAs is that the systém a
lows to request an arbitrary amount of CAPTCHAs for the same
challenge. Introducing a reasonable threshold for the mauxi
number of CAPTCHAS that can be requested would make such au-
tomatic attacks much more difficult.

Although many of the automated attacks have more or less rea-
sonable success rates (up to 10%), it is very unlikely thatates
will remain at this level once current CAPTCHA systems are up
graded and improved. As CAPTCHAs are intended to be solved
by humans (only)CAPTCHA smuggling allows to have constantly

(4]

(5]

(6]

(7]

(8]

El

10]

[11]

high success rates even for advanced CAPTCHA systems that su [12]

cessfully thwart automated attacks.

9. CONCLUSION

Improvements of automated attacks against current CAPTCHA
techniques drives the development of more robust CAPT Cldi-te
nigues. Once the computational effort of breaking CAPTClrg\s
liably becomes too high, attackers could try to misuse yvestts
ing victims to solve CAPTCHASCAPTCHA smuggling intercepts
user interactions and presents the victim with a CAPTCHAathe
tacker needs solved to continue his malicious tasks. Thénvic

(23]

[14]

[15]

is conned into believing that the CAPTCHA is displayed by the [16]

legitimate online service, and she has no easy way to disshg
between an authentic and a smuggled-in CAPTCHA.

We implemented a proof-of-concept plugin for the populaeFi
fox browser, and we evaluated our CAPTCHA smuggling attack
with realistic real-world user experiments. Our resultggast that
it is feasible for an attacker to launch such attacks in ppacnd
achieve high volumes and success rates for solving CAPTCHAs

Acknowl edgments

This work has been supported by the Austrian Science Foiamdat
(FWF) under grant P18764, SECoverer FIT-IT Trust in IT-8yss

2. Call, Austria, Secure Business Austria (SBA), and the WOM
BAT and FORWARD projects funded by the European Commis-
sion in the 7th Framework.

10. REFERENCES

[1] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All yowontacts are
belong to us: automated identity theft attacks on socialoes. In
WM’ 09: Proceedings of the 18th international conference on

World wide web, pages 551-560, New York, NY, USA, 2009. ACM.
M. Chew and J. D. Tygar. Image recognition captchagnfarmation
Security, 7th International Conference, ISC, pages 268-279, 2004.
R. Chow, P. Golle, M. Jakobsson, L. Wang, and X. Wang. Mgki
captchas clickable. IrRlotMobile ' 08: Proceedings of the Sth
workshop on Mobile computing systems and applications, pages
91-94, New York, NY, USA, 2008. ACM.

(2]
(3]

[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirraapgtcha that
exploits interest-aligned manual image categorizatioAGM
Conference on Computer and Communications Security, pages
366-374, 2007.

M. Everingham, A. Zisserman, C. K. I. Williams, and L. V&wool.
The PASCAL Visual Object Classes Challenge 2006 (VOC2006)
Results.
http://www.pascal-network.org/challenges/VOC/voc2@8sults.pdf.
P. Golle. Machine learning attacks against the asirgate. INCCS
'08: Proceedings of the 15th ACM conference on Computer and
communications security, pages 535-542, New York, NY, USA,
2008. ACM.

Heise Online. Cracking Google captchas with pdrht p:

/I ww. hei se. de/ engl i sh/ newsti cker/news/ 113336,
2008.

M. Jakobsson, P. Finn, and N. Johnson. Why and how to parfo
fraud experimentsSecurity & Privacy, |[EEE, 6(2):66—68,
March-April 2008.

M. Jakobsson and J. Ratkiewicz. Designing ethical phigh
experiments: a study of (rot13) ronl query featuresS"WWWV ' 06:
Proceedings of the 15th international conference on World Wide

Web, pages 513-522, New York, NY, USA, 2006. ACM.

A. Kolupaev and J. Ogijenko. Captchas: Humans vs. bBEE
Security and Privacy, 6(1):68-70, 2008.

G. Mori and J. Malik. Recognizing objects in adverskciatter:
Breaking a visual captcha. B003 |EEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
2003), 16-22 June 2003, Madison, W1, USA, pages 134-144, 2003.
S. Mori, C. Y. Suen, and K. Yamamoto. Historical reviehQCR
research and developmetocument image analysis, pages
244-273, 1995.

N. Provos. Google online security blog: The reason heltie
"we're sorry..." message.

http://googl eonl i nesecurity. bl ogspot.conf 2007/
07/ r eason- behi nd- wer e- sorry- nessage. ht nl ,2007.
B. Stone. Breaking google captchas for some extra cash.
http://bits. bl ogs. nyti mes. com 2008/ 03/ 13/

br eaki ng- googl e- capt chas- f or - 3- a- day/ , 2008.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, My8lowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my bbtne
Analysis of a botnet takeover. Technical report, Univgrsit
California, Santa Barbara, 2009.

Symantec Corporation. Internet security threat repaiume XIV.
http://eval . symant ec. com nkt gi nfo/ enterprise/
whi t e_paper s/ b- whi t epaper _i nternet _security_
threat _report_xiv_04-2009. en- us. pdf,2009.
Humans + porn = solved captcHdetwork Security, 2007(11):2 — 2,
2007.

C. M. University. The Official CAPTCHA Site.
http://captcha. net.

L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. Cagtch/sing
hard ai problems for security. BUROCRYPT, pages 294-311, 2003.
L. von Ahn, M. Blum, and J. Langford. Telling humans and
computers apart automaticallgommun. ACM, 47(2):56—60, 2004.
L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Btu
reCAPTCHA: Human-Based Character Recognition via Web
Security Measuresscience, September 2008.

Websense. Microsoft live hotmail under attack by stitaed
anti-captcha and mass-mailing operations.
http://securityl abs. websense. com content/

Bl ogs/ 3063. aspx, 2008.

B. Wu and B. Davison. Cloaking and Redirection: A Prefiary
Study. InAdversarial Information Retrieval on the Web, 2005.

J. Yan and A. S. El Ahmad. A low-cost attack on a microsafptcha.
In CCS’08: Proceedings of the 15th ACM conference on Computer
and communications security, pages 543-554, New York, NY, USA,
2008. ACM.

