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Abstract—Social networking sites such as Facebook,
LinkedIn, and Xing have been reporting exponential growth
rates and have millions of registered users.

In this paper, we introduce a novel de-anonymization attack
that exploits group membership information that is available
on social networking sites. More precisely, we show that
information about the group memberships of a user (i.e., the
groups of a social network to which a user belongs) is sufficient
to uniquely identify this person, or, at least, to significantly
reduce the set of possible candidates. That is, rather than
tracking a user’s browser as with cookies, it is possible to
track a person. To determine the group membership of a user,
we leverage well-known web browser history stealing attacks.
Thus, whenever a social network user visits a malicious website,
this website can launch our de-anonymization attack and learn
the identity of its visitors.

The implications of our attack are manifold, since it requires
a low effort and has the potential to affect millions of social
networking users. We perform both a theoretical analysis and
empirical measurements to demonstrate the feasibility of our
attack against Xing, a medium-sized social network with more
than eight million members that is mainly used for business
relationships. Furthermore, we explored other, larger social
networks and performed experiments that suggest that users
of Facebook and LinkedIn are equally vulnerable.

I. INTRODUCTION

Social networking sites such as Facebook, LinkedIn, Twit-
ter, and Xing have been increasingly gaining in popular-
ity [1]. In fact, Facebook has been reporting growth rates as
high as 3% per week, with more than 400 million registered
users as of March 2010 [2]. Furthermore, this site has more
than 260 billion page views per month, and it is reported
to be one of the largest photo storage site on the web with
over one billion uploaded photos. Clearly, popular social
networking sites are critical with respect to security and
especially privacy due to their very large user base.

Of course, social networking sites are not less secure than
other types of websites. However, the difference to other
sites lies in the amount of private and possibly sensitive data
that they store. Social networking sites are typically used to
contact friends, discuss specific topics in online discussion
forums and groups, establish new business contacts, or
simply to keep in touch with other people. Along with the
information about friendships and acquaintances, users often
provide a great deal of personal information that may be
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interesting for attackers. Although social networking sites
employ mechanisms to protect the privacy of their users,
there is always the risk that an attacker can correlate data or
abuse the structure of a social network to infer information
about registered individuals [3]-[6].

While there are several ways to effectively track browsers
on the Internet (e.g., third-party cookies, network latencies,
or browser characteristics [7]), these methods leave the user
pseudonymous and the real-world identity of a user cannot
be discovered in any known way. That is, tracking focuses
on identifying individual browsers rather than the persons
using the browsers. As a result, current tracking methods
only provide information which sites have been visited, but
not who the user behind these visits actually is. A user, thus,
has a certain degree of anonymity or at least pseudonymity
on the Internet. In this paper, we introduce a novel de-
anonymization attack against users of social networking sites
that enables us to determine the identity of the visitor of
a website. In particular, we show that information about
the group memberships of a user (i.e., the groups of a
social network to which a user belongs) is often sufficient
to uniquely identify this user. When unique identification is
not possible, then the attack might still significantly reduce
the size of the set of candidates that the victim belongs to.

To make the de-anonymization attack practical, we present
a way in which an adversary can learn information about
the group memberships of a user who is just browsing the
web. To do this, an attacker can leverage the well-known
technique of history stealing [8], [9]. More precisely, using
history stealing, an attacker can probe the browser history
of a victim for certain URLs that reveal group memberships
on a social network. By combining this information with
previously collected group membership data from the social
network, it is possible to de-anonymize any user (of this
social network) who visits the attacker’s website. In some
cases, this allows an attacker who operates a malicious
website to uniquely identify his visitors by their name (or,
more precisely, the names used on the corresponding social
network profiles).

Previous work in the area of de-anonymization was
mostly focusing on correlating information from several
independent data sets (datasets from different sources) or re-
identifying data records. For example, Griffith and Jakobsson



used public records such as marriage and birth information
to derive a mother’s maiden name [10]. Narayanan and
Shmatikov showed, in two recent papers, that informa-
tion from different data sources can be combined to de-
anonymize a user [5], [11]. In contrast, our attack uses infor-
mation from a single social networking site, and combines
it with intrinsic information that is generated while users
access the site. That is, our attack makes use of the fact that
the browser records the URLs of the social networking site
that a user visits (since browsers typically keep an access
history for some time). As a result, a website can use our
technique to learn the identity of its visitors.

To demonstrate that our attack is feasible, we performed
both a theoretical analysis and empirical measurements for
users of the Xing social network. The results suggest that
our attack can be used to potentially de-anonymize millions
of users. Due to the limited resources that were available to
us, we focused our empirical evaluation on Xing, a medium-
sized network that has eight million registered users. We
managed to extensively collect data for this network and
achieved a high coverage of its groups and members. How-
ever, to demonstrate that the attack is not conceptually lim-
ited to one social network, we also performed an empirical
feasibility study on two other, significantly larger networks:
Facebook and LinkedIn. Furthermore, we also briefly studied
five other social networks and found that they are also
vulnerable to our attack.

Our attack can also be generalized to other websites that
generate sparse datasets (i.e., the information about each
individual user covers only a small fraction of the overall
attributes) [11]. In the case of social networks, our attack
works because even the most active user is only a member
of a small fraction of all groups, and thus, the group mem-
bership information serves as a fingerprint. Sparse datasets
are common with websites that deal with user data. For
example, Amazon and eBay use concepts similar to groups
on social networks (“Customer Communities” and “Groups,”
respectively) and encode within the URL relevant informa-
tion, meaning that they are both potentially vulnerable to our
de-anonymization attack. Furthermore, sites like Twitter or
other micro-blogging sites might also be vulnerable to our
attack: such sites do not offer group functionality, however,
the “following” connection on these sites also discloses in-
formation about the relationship between individual profiles.

In summary, we make the following three contributions in
this paper:

« We introduce a novel de-anonymization attack, and
show how it can be applied to social networking sites.
The key idea of the attack is to exploit informa-
tion about specific users (in this case, membership in
groups) combined with the victim’s browsing history.

+ We demonstrate several techniques to scale our attacks
to real-world social networking sites. This is a chal-

lenging task since these websites often have tens of
millions of users.

« We provide both a theoretical analysis and empirical
measurements to demonstrate the feasibility of our
attack. The results indicate that about 42% of users in
the social network Xing that use groups can be uniquely
de-anonymized. Furthermore, we empirically show that
both Facebook and LinkedIn are also vulnerable.

II. BACKGROUND

In this section, we provide a brief introduction to the
background concepts to allow the reader to better understand
our attack. We first present a model of social networks,
define the terminology we use within this paper, and then
list our assumptions about the attacker. We continue with an
overview of the common structure of social networks and
discuss the aspects of this structure that we exploit. Finally,
we explain why social networks are commonly prone to
history stealing attacks and provide an overview of possible
attack scenarios.

A. Model and Definitions

Throughout this paper, we use the following models and

definitions to describe our de-anonymization attack.
Social Networks: A social network S is modeled as

a graph & = (V,E) containing nodes V representing
users, and undirected edges F representing the “friendship”
relation between two users. Furthermore, the social network
contains G groups. Each group g € G contains a set of users
from V: Vg € G : g C V. Social networks typically do
not allow empty groups without any user (and also actively
delete such groups). Thus, we can assume, without loss of
generality, that Vg € G : g # 0.

Each user v € V' is a member of n, groups, with n > 0.
We model this information as a vector I'(v) := (T'y(v))
such that:

geG

1 if v is a member of group g
Ly)=4 ! (1)
0 if v is not a member of group g

For each group ¢ in which v is a member, one dimension
of I'(v) is set to one. Otherwise, this dimension is set to
zero. For the case of n = 0 (i.e., the user is not a member
of any group), the vector I'(v) contains only zeros. This is
the worst case for our attack.

As we will show, the vector I'(v) can be used to de-
anonymize users within a social network. In particular, T'(v)
serves as the group fingerprint of a user, and we demonstrate
in our experiments that this fingerprint, in practice, is
characteristic for a given user.

Browser History: A building block that we use during
our attack is the browsing history 3, of a user v. A web
browser maintains a list of web pages that the user has
recently visited. Every time a user visits a page p, the
URL ¢, that was used to load this page is added to f3,.



Moreover, entries in 3, expire. That is, after a time interval
7 has elapsed, the URL related to p is removed from (,.
The timeout itself depends on the browser and user settings.
For example, Mozilla Firefox uses 7 = 90 days by default,
while Microsoft Internet Explorer only uses 7 = 20 days.
Apple Safari is between both browsers with 7 = 1 month
by default, whereas Google Chrome has an unlimited history
timeout 7 = co.

Attacker Model: We have two basic assumptions about
an attacker. First, we assume that the attacker can determine
which web pages, from a given set, a specific user v has
accessed in the recent past (within time 7). This means that
the attacker can determine whether or not a given URL ¢,
is in 3,. The attacker, thus, has a method to compute, for
a given victim v, the function o, (¢,), which is defined as

follows:
1 if ¢, € B, for the user v
Uv(¢p) = { g

. (2)
0 if ¢, € B3, for the user v

It is reasonable to assume that such a function exists and that
the attacker can perform the computation based on history
stealing, as we show in Section II-C.

The second assumption is that the attacker has a way
to learn about the members of groups for a given social
network S. As defined above, a group g is a non-empty
subset of the overall users of S. The attacker does not need
to have the membership information for all groups g € G.
However, knowledge about more groups makes the attack
more efficient. In Section III-C, we discuss how an attacker
can obtain the necessary group membership information.

We believe that our two assumptions about an attacker
can be (easily) satisfied in practice, and our empirical
experiments support this claim. Moreover, as we will discuss
in Section III, our attack is able to tolerate a certain amount
of inaccuracy. That is, even when the history stealing attack
does not produce a perfect group fingerprint I'(v) for a
victim v, or when the attacker’s view of the social network
is different than the network’s actual state (e.g., due to users
who join and leave groups), the attack can still be successful.
However, in such cases, it typically proceeds slower and
produces larger candidate sets.

B. Structure of Social Networking Sites

1) Overview: Most social networking sites share the
same basic structure. Each user v within the network has
a profile p, that contains (partially sensitive) information.
This information, for example, can be the user’s full name,
photographs, date of birth, relationship status, former and
current employers, and education. One of the core technical
components of a social network is its website, and the
underlying web application. The web application provides
the main functionalities of the social network. This function-
ality often comprises of features that allow a web visitor to
become a member, to edit personal profiles, to view other

user profiles, or to join groups. To become a member of a
social network, users can sign up at the website. This process
usually only requires a valid e-mail address for verification
purposes.

Since social networks can have millions of users, most
popular social networks (see Table I) include features that
allow users to be organized in groups. This feature al-
lows users of a social network to easily find other users
with whom they might share specific interests (e.g., same
hobbies), demographic groups (e.g., studying at the same
university), political or sexual-orientation, and even medical
conditions. Typically, there exists some kind of hierarchy
within a group. That is, particular members can hold the
role of administrators or moderators, which grants them
some special privileges (e.g., sending messages to the whole
group, or removing members). In general, two different types
of groups exist:

e Public groups: These groups allow all members of
the social network to join. Typically, members are
automatically added to the group when they wish to
join. Interestingly, we found that some social networks
even allow non-group members to list the members of
public groups (e.g., Facebook).

e Closed groups: On the other hand, closed groups re-
quire some sort of authorization before a member is
allowed to join. In practice, this means that a group
administrator or moderator needs to manually approve
each membership request.

The different social networks vary widely in the number
of available groups. Networks that target a general audience
typically have a large number of groups, and the average
user is a member of many groups. Social networks that target
business users, on the other hand, have a smaller number of
groups, and the average user is only a member in a few
groups (see Section V for more specific results).

2) Web Applications: The web applications for the most
popular social networks (see Table I) rely on hyperlinks and
HTTP GET parameters to implement the communication
between a user (more precisely, her browser) and the actual
web application. For example, Figure 1 shows six real-world
examples from different web applications that are represen-
tative for two groups of hyperlinks. The first link is used to
tell the web application of Facebook to display the currently
logged-in user’s “home” area. Since the hyperlink for this
operation is the same for every user of the social network,
we refer to links of this type as static hyperlinks. In contrast,
the other links are used to inform the web application of state
changes requested by a user. For example, the second link
sends a request to the web application that the user with the
ID userID wishes to upload a new profile picture. This link
contains a dynamic token (in this case, the ID of user v), so
we consequently call it a dynamic hyperlink. This type of
links explicitly contains information about a user since the



[ Name of social network | # users_| Focus | Alexa traffic rank [1] [ Supports groups |
Facebook 400,000,000+ | general audience, worldwide 2 v
MySpace 260,000,000+ music, worldwide 11 4
Friendster 90,000,000+ | general audience, worldwide 111 4
LinkedIn 50,000,000+ business, worldwide 53 v
StudiVZ 15,000,000+ students, Germany 179 4
Xing 8,000,000+ business, Europe 285 v
Bigadda 5,500,000+ teenage audience, India 3,082 4
Kiwibox 2,500,000+ | teenage audience, worldwide 74,568 4

Table 1

OVERVIEW OF POPULAR SOCIAL NETWORKING WEBSITES. THE DATA IS BASED ON INFORMATION PROVIDED BY INDIVIDUAL SOCIAL NETWORKS,
PUBLIC SOURCES SUCH AS ALEXA [1], AND OUR ANALYSIS.

http://www.facebook.com/home.php?ref=home
http://www.facebook.com/ajax/profile/picture/upload.php?id=[userID]
http://www.facebook.com/group.php?gid=[groupID]&v=info&ref=nf
https://www.xing.com/net/[groupID]/forums

o U W N

Figure 1.

link is unique for each user of the social network (i.e., this
link identifies a particular v € V).

Besides dynamic hyperlinks that contain information
about users, there also exist dynamic hyperlinks that contain
(or embed) information about groups. The third to sixth
link of Figure 1 show examples in which information about
a specific group (i.e., a groupID parameter) is encoded
within the hyperlink. Note that each link uniquely refers a
group g € G. Furthermore, this type of links is not specific
to social networks, but also other kinds of web applications
have these dynamic hyperlinks.

From the web application’s point of view, these hyperlinks
facilitate the “internal” state keeping and communication be-
tween the web application and the user’s web browser. Since
web browsers are agnostic to the semantic interpretation of
links, they simply add the URLs of all visited web pages
to the browsing history 3, of a user v. Note that since the
interesting information is already encoded in the URL itself,
it does not matter if the website is using security-enhancing
protocols such as HTTPS for protecting the actual content.
The URL is nevertheless added to the browser’s history.
From an attacker’s point of view, this behavior is interesting,
since it enables the attacker to identify groups a user has
visited, and even potentially identify a specific user. That is,
if the attacker is able to determine which pages are in the
victim’s browsing history (i.e., she can compute the function
o (¢p) for pages loaded via dynamic hyperlinks ¢,,), she can
use this information to de-anonymize a user v (as shown in
more detail later).

C. History Stealing

History stealing is a known attack in which a malicious
website can extract the browsing history of a visitor. One

http://www.amazon.com/tag/ [groupID]/
http://community.ebay.de/clubstart.htm?clubId=[groupID]

Examples of distinct types of web application hyperlinks for different social networks.

of the first descriptions of this attack dates back to the
year 2000 [12], and the technique was re-discovered sev-
eral times in the recent years (e.g., [13], [14]). The core
observation behind this attack is the fact that a web browser
treats hyperlinks differently depending on whether or not a
hyperlink was previously accessed by a user. This means
that a browser implements the function o, (¢,) (that is, the
browser implicitly checks whether a target URL ¢, is in the
browsing history (3,). Typically, hyperlinks to web pages
in the browsing history are displayed in a different color to
indicate to the user that this link has been clicked in the past.
An attacker can use various techniques to probe whether or
not a web page is in the browsing history:

o An attacker can create an HTML page with links to
target web pages of interest and use background image
tags in the a:visited style information. Since im-
ages can be referenced with URLSs, the user’s browser
will then access these URLs if a target web page is
in G,.

« Alternatively, an attacker can also use client-side script-
ing (for example, JavaScript) to generate and iterate
over a list of target links and programatically check for
the a:visited style to see if a link is present in [3,.

Note that an attacker has to probe for each URL (and
cannot simply access the full browsing history of a victim),
obtaining one bit of information per URL that determines
whether it is contained in 3, or not.

From a schematic point of view, each attack scenario is
the same (see Figure 2): First, the attacker sends a list of
URLs to the victim’s browser. Second, the attacker forces
the browser to check for each URL whether or not it is
contained in the browsing history using one of the methods
discussed above. Finally, a report is sent back to the attacker,
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Figure 2. Schematic overview of history stealing attack.

who then obtains a list of URLs that are contained in the
victim’s browsing history.

History stealing can be used for different kinds of attacks.
For example, it can be used for more effective phishing.
Jakobsson and Stamm presented a scenario where the at-
tacker checks the browsing history for various bank site
URLSs. If the attacker sees that the victim has visited a certain
bank, she can then launch targeted phishing attacks [9] that
target this bank. In the context of web applications, this
means that an attacker can apply this technique to reconstruct
knowledge on past interaction between the victim and the
web application. While this knowledge alone might not
be sufficient for many attack scenarios (e.g., an attacker
would still need the online banking credentials to withdraw
funds — requiring a phishing step), we show that we can
successfully improve this technique to de-anonymize users
of social networks.

All popular browsers (e.g., IE, Firefox, Safari) are vulner-
able to history stealing attacks in their default settings (i.e.,
when the browser keeps a history of visited pages). To date,
the problem has not been solved as it is often viewed as a
usability feature/design issue rather than a browser bug.

D. Possible Attack Scenarios

De-anonymizing website visitors allows an adversary to
launch targeted attacks against unsuspecting victims. We
have come up with a few scenarios to highlight the severity
of this abuse potential, apart from (possibly) legitimate uses
like targeted advertising. Attacks based on our technique
could be targeted phishing attempts [15], or could support
social engineering efforts to spread malware (e.g., a message
such as “Hello Mr. Gerald Stonart, we have discovered that
your computer is infected. Please download and install this
file.” might be displayed to Mr. Stonart). In addition, many
people in political or corporate environments use social
networks for professional communication (e.g., LinkedIn).
Identifying these “high value” targets might be advantageous
for the operator of a malicious website, revealing sensitive
information about these individuals. For example, a politi-
cian or business operator might find it interesting to identify

and de-anonymize any (business) competitors checking her
website. An additional attack scenario is displaying content
based on demographics. Furthermore, our attack is a huge
privacy breach: any website can determine the identity of
a visitor, even if the victim uses techniques such as onion
routing [16] to access the website — the browser nevertheless
keeps the visited websites in the browsing history (if no
specific countermeasures such as Torbutton are installed). In
contrast to tracking techniques such as third-party cookies
which only reveal a pseudonym of a user, our attack actually
enables an attacker to identify the visitor of a website.

Of course, analogous to the situation where attackers
compromise and abuse legitimate websites for drive-by
downloads, the de-anonymization technique presented in this
work can be used in a large-scale setup. That is, an attacker
could abuse several compromised (but otherwise legitimate)
websites as a vehicle for a de-anonymization attack.

III. DE-ANONYMIZATION ATTACKS

With the background concepts introduced in the previous
section, we now present our attack in more detail. We first
introduce a basic variation of the attack, which is not feasible
in practice. We then show how this basic approach can
be refined to work for real-world social networks. Finally,
we discuss how group membership information, a critical
component for the advanced attack, can be obtained with a
reasonable (limited) amount of resources.

A. Basic Attack

As mentioned in the previous section, certain dynamic hy-
perlinks contain explicit information about individual groups
g € G and users v € V within a given social network S.
An attacker can take advantage of this fact by using history
stealing to probe for URLs that encode user information. In
particular, the attacker can probe for a URL ¢ that contains
an identifier of user v. When a link is found that contains
this identifier for v, then the attacker can reasonable assume
that the browser was used by v in the past to access the
user-specific URL ¢.

To find a suitable URL ¢, an attacker would first perform
an information gathering step and join the target social
network. In particular, he would analyze the website and
look for dynamic hyperlinks that (a) contain identifiers that
are indicative for a specific personal profile (e.g., because
they contain a user ID) and (b) easy to predict for arbitrary
users. For example, the second link in Figure 1 satisfies
these properties: The user IDs are numerical and, hence,
easy to predict. Also, the link is indicative for a specific
user because the corresponding web application command
(i.e., modifying the profile image) can only be performed
by the owner of the profile. Thus, it is very unlikely that a
user other than v has this link in her history.

Of course, this basic attack is not feasible in practice.
The reason is that the attacker has to generate and check



one URL for every user in the social network, and each
potential victim’s browser would have to download all links
and process them. In the case of Facebook, this would mean
that more than 400 million links would have to be transferred
to each victim. Thus, using the basic attack technique, the
size of the search space (the candidate set) is far too large
to be practical. In the following paragraphs, we show how
group information can be used to to significantly reduce the
search space. Moreover, we need to keep in mind that the
basic attack is still a valuable tool to identify a specific user
among a (small) group of possible candidates.

B. Improved Attack

For our improved attack, we leverage the fact that many
social network users are members in groups. Social net-
works commonly provide special features for groups in
order to facilitate communication and interaction between
group members. Often, discussion forums or mailing lists
are provided. Since these features are incorporated into the
social network’s web application, they are also prone to the
history stealing technique. Similar to per-member actions,
dynamic hyperlinks are used to incorporate group features
into the web application. The main difference is that the
identifiers in these links are not related to individual users
within the group, but to the group itself. For example, the
URLs (3) and (4) in Figure 1 are used for opening the group
forums of two social networks.

An improved attack that leverages group membership
information proceeds in two steps: First, the attacker needs
to obtain group membership information from the social
network. That is, the attacker has to learn, for some (possibly
many) groups, who the members of these groups are. This
step will be discussed in detail in the next section.

In the second step, the attacker uses history stealing to
check the victim’s browser for URLs that indicate that this
user has recently accessed a page related to group g, and
hence, is likely a member of g. By preparing URLs for
a set of n groups, the attacker can learn a partial group
fingerprint of the victim I''(v). More precisely, the attacker
can learn the entry I'y(v) for each group k that is checked.
The remaining entries are undefined. Clearly, being able to
check more groups allows the attacker to learn more about
the group fingerprint of a victim (i.e., he can obtain a larger,
partial group fingerprint). This increases the chances that at
least one entry of the partial group fingerprint is non-zero,
which is necessary to be able to carry on with the attack.

Once the partial group fingerprint of a victim is ob-
tained, the attacker checks for the presence of entries where
T'x(v) = 1. Whenever such an entry is found, we assume
that the victim v is member of the corresponding group k.
At this point, the attack can continue in one of two ways.

A slower, but more robust, approach is to leverage the
group membership information and generate a candidate set
C' that contains the union of all members {u}j in those

groups k for which I'y(v) = 1. That is, C = U{u}y :
I'x(v) = 1. Then, we use the basic attack for each element
c in the candidate set C'. More precisely, we use the basic
attack to determine whether the victim v is one of the users
c € C. If so, then the attack was successful, and the user is
successfully de-anonymized.

A faster, but more fragile, approach is to leverage the
group membership information and generate a candidate set
C that contains the intersection of all members {u}; in
those groups & for which 'y (v) = 1. That is, C = N{u}y :
I (v) = 1. Again, the basic attack is used to check for each
user c¢ in the candidate set C. Since the second technique
uses set intersection instead of set union, it produces much
smaller candidate sets and thus, it is faster.

Robustness. To see why the first attack is more robust than
the second, we have to realize that the information that the
attacker learns might be not entirely accurate. There are two
reasons for this: First, the browsing history may contain
incomplete information about the victim’s past group activity
(e.g., a user might have deleted the browsing history at some
point in the past). Second, the group membership informa-
tion that the attacker has collected “degrades” over time,
deviating increasingly from the real group and membership
configuration as users join and leave groups.

As a result of inaccuracies, some entries I'y(v) in the
partial group fingerprint might be wrong. Two cases need to
be distinguished. The first case is that the entry I';,(v) for a
group k is O (or undefined), although v is a member of £. In
general, this is not a problem, as long as the attacker finds at
least one group k that the victim belongs to (and 'y (v) = 1).
The reason is the following. Since the entry for k is zero,
the first attack will not add the members of k (including
v) to the candidate set C'. However, we assume that there
is another group that contains v. This means that v will be
added to C, and the attack succeeds. For the second attack,
the candidate set C' can only shrink when a new group is
considered (since set intersection is used). Thus, the attacker
might need to check a larger candidate set, but he will still
find v eventually.

The second case describes the situation where the entry
Ty (v) for a group k is 1, although v is not a member of
k. This causes no problem for the first attack, which simply
adds additional users (all members from group k) to the
candidate set C'. However, it is a problem for the second
technique. The reason is that the intersection operation now
includes a group that does not contain the victim user v. As
a result, v will not be a part of the candidate set C, and
hence, the attack will fail to find the victim.

In practice, an attacker would first attempt to use the fast
(but fragile) approach based on set intersection. Only if this
fails, one fall-backs onto the slower, more robust approach
based on set union.



C. Efficiently Obtaining Group Information

To carry out the advanced attack, the adversary requires
information about groups and group memberships. In this
section, we demonstrate how an attacker can obtain this
knowledge with relatively little effort.

The number of groups is typically considerably smaller
compared to the number of users. Nevertheless, collecting
information about all groups and the members of each
group is a challenging task. Therefore, we now discuss two
techniques to efficiently obtain information about groups:
group directories and group member crawling.

1) Group Directory: Typically, groups within social net-
works aim at attracting members that share a common
interest with the group. To this end, social networks either
offer a search functionality to find groups with a specific
keyword, or they publish a list of the existing groups, called
a group directory, via their website. This directory can be
listed and searched by members of the social network to find
groups related to their interests.

In our attack, it is desirable for the attacker to have
knowledge on as many groups as possible. More specifically,
the attacker is interested in the group identifiers to construct
the hyperlinks for the history stealing attack. An attacker
can use standard web crawling techniques to download the
group directory, and then extract the group IDs from the
web page’s source code. Several social networks even allow
the group directory to be viewed by non-members, which
enables an attacker to use commercial crawling services for
this task (see Section IV-C for details).

Directory Reconstruction: Some social networks do not
publish a group directory or only do so partially (i.e., not
all information about groups can be accessed this way). We
implemented three methods to successfully circumvent this
obstacle in practice.

First, the group identifiers that we observed in our exper-
iments were either systematic (for example, numerical) or
names. If group IDs can be guessed by an attacker, the group
directory can be reconstructed by simply iterating over all
(or at least a large fraction of) the ID space. The presence of
the individual groups can be verified by trying to access each
group’s web page. In Section V, we show that this brute-
force technique can be used in practice effectively with a
relatively small effort.

Second, an attacker can use the built-in search function-
ality of social networking websites to expose the group
directory by listing all groups within a specific category of
groups. Group search results are usually ranked by member
size, which means that even if the result size is limited to a
fixed value, an attacker gains valuable information.

Finally, we found that social networks may provide special
“public” member profiles that can be accessed by non-
members (i.e., they serve as “virtual” business cards). For
privacy reasons, these profiles usually contain less personal
information than the original member profiles. However,

these public profiles typically reveal the groups for a specific
member. In this case, an attacker can reconstruct the group
directory (including the group members) by crawling the
public member profiles. Note that this technique is rather
costly, since it requires to crawl member profiles.

2) Group Member Crawling: In addition to group IDs,
an attacker needs to obtain the IDs of the group members
for a significant amount of groups to successfully de-
anonymize group members. This step can also be automated
and performed on a large-scale, as we discuss below.

If we deal with a public group, the easiest case is that the
social network allows all members of this group to be listed.
Then, we can use a standard crawling approach to discover
the group members and use them for our attack. As we show
in Section V, even tens of millions of group members can
be crawled with only a limited amount of resources.

Some social networks limit the size of the member list
that can be browsed. For example, Facebook only returns
the first 6,000 members of a group. Hence, this limits a
crawling attempt to only fully discover groups with up to
6,000 members. While this is still useful in practice, clearly,
we would like to also be able to crawl larger groups.

In order to overcome this limitation, we take advantage
of the fact that social networks typically allow searching
within groups for members. This limits the amount of
members returned per search, but we can efficiently extract
most group members by searching for common first or last
names. We use publicly available data from the U.S. Census
Bureau [17] to determine common names, and then utilize
this information to search within large groups to extract their
members.

If we are dealing with a closed group, we cannot easily
access the membership information for this group since only
members can access this information. Hence, we send a
request to join the group from a legitimate user account
by using a script (i.e., “I would like to become member
of this group”). If our application is accepted, we leave
the group after we have collected membership information.
Surprisingly, such a simple automated demand is successful
in practice as we show in Section V.

Note that, depending on the resources of an attacker,
the member crawling may optionally be performed on-
the-fly instead of offline before the actual attack. In an
online setting, the attacker would crawl the groups a victim
is a member of on demand, and then use the collected
information for performing the second round of history
stealing (i.e., verification step). From a conceptual point of
view, both attacks are similar. They just vary in the amount
of resources needed.

IV. CRAWLING EXPERIMENTS

In this section, we describe our empirical experiments to
extract group information from social networks and present
the results we obtained for three social networks.



A. Ethical and Legal Considerations

Crawling data in social networks is an ethically sensitive
area. Clearly, one question that arises is if it is ethically
acceptable and justifiable to conduct crawling experiments
in social networks. Similar to the experiments conducted
by Jakobsson et al. in [18], [19], we believe that realistic
experiments are the only way to reliably estimate success
rates of attacks in the real-world.

First, in the crawling experiments we conducted, we
only accessed user information that was publicly available.
Second, note that the crawler we wrote was not powerful
enough to influence the performance of any social network
we investigated. Third, the commercial crawling services we
used had misuse protection mechanisms such as bandwidth
throttling in place that prevented them from launching denial
of service-like attacks against the websites that they were
crawling (i.e., because of a higher crawling load).

We also consulted the legal department of our university
(comparable to the IRB in the US), and we were informed
that our experiments are approved.

B. Overview

For our experiments, we performed an in-depth analysis
of the Xing platform. Furthermore, we carried out feasibility
studies for Facebook [2] and LinkedIn [20].

We chose these networks as they are representative of the
different categories of popular social networks. For example,
Facebook aims at an audience that would like to maintain
and create friendships, whereas LinkedIn and Xing are more
focused towards business users who would like to maintain
and extend their professional networks. Furthermore, each
network has a unique way of representing its member
and group directories. Because of resource limitations, and
because we had access to more Xing users for real-world
user experiments, we chose to perform an in-depth analysis
of Xing (Xing’s size is considerably smaller than Facebook
or LinkedlIn, but it still has more than eight million users).

In the following, we discuss how an attacker can automat-
ically extract group information (i.e., which is a prerequisite
for the de-anonymization attack) from each of these social
networks.

C. Social Network Crawling Approaches

In order to access group information, an attacker can
either run crawlers on her machines, or use third-party crawl-
ing services. For our experimental evaluation, we followed
both approaches by implementing a custom web crawler,
and by using commercial crawling services.

1) Custom Crawler: We implemented a web crawler that
works by following the hyperlinks on a given starting public
web page and then continues to download the HTML source
code of each hyperlinked web page. To be able to also
access parts of the social network that are only restricted
to members, we added features that allow the crawler to

login using provided member credentials. To this end, we
manually registered three members to the social network
using valid registration data (e.g., e-mail for our lab, etc.).
To extract the desired data, the crawler matches a set
of regular expressions against the HTML source code. The
extracted data (for example, group IDs and group names) are
then stored in a database. To speed up the crawling process,
we ran up to four instances of our crawler simultaneously.
Anti-Crawling Techniques: Most social networks em-
ploy anti-crawling techniques to protect the data of their
members. Typically, if a member behaves suspiciously (for
example, if he tries to access an overly large amount of user
profiles in a short amount of time), this member’s account
will be temporarily, or permanently disabled. In contrast, no
similar restrictions are in place for group directories. We
believe that this mainly has two reasons:
1) The content is regarded as being public, and not
security-relevant.
2) As a means of promoting groups, it should be inten-
tionally easy to access the directory.

In addition, we observed that group directories often
contain additional information that is relevant for an attacker
(e.g., group size, or additional meta data). In our scenario,
an attacker benefits from these factors, as it allows her to
prepare the history stealing attack with relatively little effort.

2) Commercial Crawling Services: Attackers with lim-
ited computing or network resources might resort to com-
mercial crawling services instead of operating their own web
crawler. Such services allow customers to specify which
websites to visit. Typically, the crawling service might
accept a given list of web pages and regular expressions.
Such a service can be very cost effective. For example,
services such as 80legs [21] charge as low as $0.25 per one
million crawled URLs. In our experiments, we used such a
service provider to perform some of our experiments.

D. Crawling Experiments

We applied the two different crawling strategies to the
three social networks Xing, Facebook and LinkedIn. In the
following, we elaborate on how the group directories for
each network can be retrieved, and provide an overview of
the results.

1) Xing: We mainly concentrated our crawling exper-
iments on this network, as its smaller size allowed us
to fully crawl its public groups. By directing our custom
crawler to Xing, we could download the data of 6,574
groups containing more than 1.8 million unique members.
Xing claims to have about 8 million members in total (i.e.,
including members that do not use groups at all). Hence, the
users in these groups represent a substantial fraction of the
entire social network.

Closed Groups: On Xing, the largest groups are public.
That is, there are no restrictions on who is allowed to
join these groups. On the other hand, an attacker might



also be interested in crawling closed groups (that require
manual approval by a moderator) in order to increase the
effectiveness of the de-anonymization attack. To test how
restrictive these groups are, we sent automated member
requests from a legitimate account to the groups that had
a large number of members.

We automatically applied for membership in 1,306
groups, and were accepted to 108 groups (8.2%). This
allowed us, as an attacker, to see the user IDs of a total
of 404,331 group members. Note that membership was
denied by 1,199 groups (91.8%). However, despite the high
rejection rate, we believe that our test demonstrates that
a malicious user can successfully launch automated social
engineering attacks to become member of closed groups.
In practice, a real attacker would probably use fake fotos,
detailed fake information, and a corresponding application
text to increase her success rate. In our experiments, we
simply asked if we could become member of the group.

Interestingly, our success rate was higher for the larger
(i.e., more important from the attacker’s point of view)
groups. We were often instantly added to the group with-
out receiving any feedback. Hence, membership application
seems to be a formality for many large, closed groups.

2) Facebook: Recovering the group directory for Face-
book initially appeared straightforward. The network pub-
lishes a group directory on its website. Access to the direc-
tory is not restricted. As a result, everyone can download it
from the web. The directory itself is organized in a multi-
level hierarchical collection of alphabetically ordered lists
that provide pointers to individual web pages to make it
convenient for a human to navigate.

Due to the large size of the dictionary, we decided to
use a commercial crawling service to download it. In total,
the dictionary consisted of 7.1GB of HTML data in about
7,4 million files that contain 39,156,580 group IDs. The
crawling service cost us $18.47 and we received the data
after five days.

To enumerate Facebook’s group members, we extracted
the group IDs from the group directory, and then used our
custom crawler to enumerate the members for each group.
Facebook permits each logged-in user to search within the
member lists of arbitrary groups. This search can be used
to filter the member lists to only show members whose first
and/or last name fully matches the search token. Using an
empty string as the search token returns random sample of
the group members. The size of each search result is limited
to 6,000 members, and can be retrieved in chunks of 100
members per HTTP request.

Using Member Search Functionalities: Since most
Facebook groups have less than 6,000 members, this thresh-
old is high enough and often allows us to obtain full member
lists. An attacker can additionally use the search function-
ality to enumerate members in larger groups by searching
for common first or last names. For example, with only 757

first names (233 male, 524 female), an attacker would be
able to cover a cumulative percentage of more than 75% for
each gender. According to the public 1990 US census [17]
statistics, the most common first name, “James”, has a
3.318% probability among males, and 1.635% among the
overall population. Hence, for groups with about 367,000
members, an attacker could obtain all members with this
name (i.e., the search returns about 6,000 members for
each name) on average. An attacker could even refine this
approach by computing a more accurate name distribution
by downloading Facebook’s own (also publicly available)
member directory.

Note that enumerating very large groups that contain
millions of members only provides a limited benefit for
an attacker. Apart from the high crawling effort, the time
required to check for so many members via history stealing
would defeat the purpose of using groups as a means of
search space reduction in a realistic attack scenario (e.g.,
see throughput rates in Section V-C). However, an attacker
can also use the group member search functionality to verify
the membership of individual members.

Results: In total, we successfully crawled more than
43.2 million group members from 31,853 groups in a period
of 23 days using only two machines. While this is still only
a fraction of the overall Facebook groups and members, it
demonstrates the feasibility of the approach.

In general, we believe that an attacker could also use a
malicious botnet in real-life, or crawl for a longer period of
time, and collect significantly more data compared to our
effort with only limited resources.

3) LinkedlIn: Just like Xing, LinkedIn focuses on business
users. LinkedIn is a popular service and is widely-known.

Third-Party Crawling Use-Cases: LinkedIn does not
publish a full group directory, but provides a group search
functionality for logged-in users. Theoretically, this func-
tionality could be exploited in a similar fashion to the group
member search functionality of Facebook. However, this
requires a much larger effort due to the higher variation in
possible group names as opposed to first or last names of
individuals.

LinkedIn uses easy to predict group IDs. Specifically,
LinkedIn uses numerical group IDs that range from 0 (old-
est) to about 3,000,000 (the newest groups). In addition, the
group ID space seems to be sparsely populated, as according
to the network itself, it currently has only 442,434 registered
groups.

In a two-phase crawling scenario, we first started a crawl-
ing pass with a commercial service [21]. In a preparation
step, we first generated three million hyperlinks for the
observed group ID space, and then used these links as
“seed” for the commercial crawling service. The results of
the crawling service can be used to identify which group
IDs actually exist (i.e., a group profile page is returned if
the ID exists). The cost for this experiment was $7.49.
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After probing for the existing groups, we performed a
second crawling run to retrieve additional information for
each group such as its group size and group description. As
this operation requires a logged-in user, we had to use our
custom crawler.

While LinkedlIn restricts access to its group directory, we
found this not to be the case for its public member directory.
For privacy reasons, the public member profiles are much
less detailed than the regular profiles within the social net-
work. Surprisingly, though, they do contain the membership
status and group IDs for all groups that a member has
joined. Clearly, data on groups and group memberships does
not seem to be regarded as being security-relevant. As the
public member profiles can be freely accessed over the web,
an attacker can use automated legal third-party services to
fully “outsource” the information gathering phase of the de-
anonymization attack.

In a different crawling scenario, we performed an exper-
iment and used an external crawling service to crawl the
public profiles of three million members that we randomly
picked from LinkedIn’s member directory. The costs for
the crawling were $6.57. Assuming a linear cost model,
we estimate overall costs of about $88 for crawling all 40
million public profiles. This small investment would allow
an attacker to target all group members of LinkedIn in a
de-anonymization attack.

4) Other Social Networks: In order to find out how
generic the problem of group information disclosure is, we
manually analyzed five additional popular social networks
that share features with the three networks that we analyzed
in more detail.

Table I shows the features that are related to our de-
anonymization scenario for these networks. All networks
are vulnerable to history stealing and de-anonymization via
groups. While we did not conduct crawling experiments
for these networks, we expect the results and techniques
to be similar to the ones we described in this section. Our
empirical results demonstrate that group memberships are
generally not considered as being privacy-relevant in many
social networks.

V. EVALUATION

In this section, we evaluate the practical feasibility of the
de-anonymization attack.

A. Analytical Results

To assess the effectiveness of our de-anonymization at-
tack, we first perform an analytical analysis of Xing. For
this social network, we have a comprehensive overview.
More precisely, we have crawled all public and several
closed groups, together with all member information for
these groups. We start with an overview of the different
parameters of that network related to our attack scenario.

In total, we collected membership information for more
than 1.8 million unique users in 6,466 public and 108 closed
groups. From the claimed 8 million Xing users, at least 1.8
million are thus affected by our attack and we study them
in the following. Based on our data, the average Xing user
is a member of 3.49 groups. By using data from Xing’s
group directory, we found that for the whole network, the
sum of group member sizes (i.e., the number of membership
relations) for the 6,466 public groups totals to more than 5.7
million. In contrast, the 15,373 closed groups only contain
about 4.4 million membership relations. Furthermore, the
average size of public groups is 914 members, whereas it
is only 296 members for closed groups. The closed groups
that we crawled contain 404,548 unique users. However, of
these users, 329,052 (81.34%) were already covered by the
public groups in our dataset.

These figures indicate that an attacker can already collect
a substantial amount of information by only focusing on
public groups. The practical impact of closed groups appears
to be rather low, given the increased effort that is necessary
for gaining membership data for closed groups.

As mentioned in Section III, the improved de-
anonymization attack requires that the history stealing step
finds at least one group k that the victim is a member of
(that is, I'yv = 1 for at least one k). Thus, when probing
for an increasing number of groups, it is interesting to see
how the number of unique users grows that appear in at least
one of these groups. When this number grows quickly, the
attacker has a good chance to get a “hit” after inspecting a
small number of groups.

Of course, one also needs to consider the order in which
the history stealing step should probe for group membership:
Clearly, the attacker wants to optimize the process such that
he sees each user at least once after as few attempts as
possible. One approach is to perform a greedy search. That
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is, the attacker first probes the largest group, then the second
largest group, and so on. The problem is that this order
might not be optimal, since it does not take into account
group membership overlaps. An alternative approach is to
choose the groups by information gain (i.e., in each step,
test the group which has most members not seen before).
This might lead to a better probing procedure, since the
attacker covers in each step the largest possible number of
previously-unseen users.

Figure 3 shows the cumulative distribution for the number
of unique users seen after crawling a specific number of
groups. Besides considering all groups, we also studied the
effect of limiting the search space to groups with at most
50,000 and 20,000 members, respectively. This takes into
account that really large groups with hundreds of thousands
of members are too large to probe efficiently. Thus, we
restrict an attack to groups with an upper bound on the group
size. The results indicate that an attack is very effective in
practice: Even after testing only a few hundred groups, we
have seen a significant percentage of all users at least once
(i.e., a specific user is a member of at least one of the groups
we have tested so far). In fact, we have seen more than 50%
of the users after testing only 61 groups. After testing 1,108
groups, we have seen 90% of the users at least once. When
restricting the search space, we can observe that we do not
find each member at least once since some users are only
member of large groups. Nevertheless, we can find more
than 90% of the overall users when only considering groups
smaller than 20,000 members.

Figure 3 also shows that the difference between the
greedy and the information strategy is small. More precisely,
the overall shape is very similar, only the number of tested
group is significantly different: With the information gain
strategy, an attacker only needs to probe 6,277 groups until
he has seen each user at least once, whereas the brute-force
approach requires to test 6,571 of all 6,574 groups before

100%

80%

60%

40%

Total Number of Users

20%

0%

0 5,000 10,000 15,000 20,000 25,000
Number of Users in Candidate Set

Figure 4. Cumulative distribution for the size of candidate sets (Xing).
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the complete set of users (who are part of at least one group)
is covered.

For our next analysis, we assume that the attacker has
successfully launched a history stealing attack and has com-
puted an accurate group fingerprint I'(v) for a victim v. This
allows the attacker to use the fast de-anonymization attack
based on set intersection. To demonstrate the effectiveness of
this attack, we show in Figure 4 the cumulative distribution
of the candidate set sizes after set intersection. Each user
in the candidate set needs to be inspected by the basic
attack. Thus, a smaller size is favorable for the attacker.
Interestingly, for 42.06% of the users that use groups (=
753,357 users), the group fingerprint is exact. That is, only a
single user in the social network is a member of exactly these
groups. These users can be uniquely identified just based on
their group fingerprint, and no additional steps are required.
For one million users, we can narrow down the candidate set
to less than 32 users, and for 90% of all users, the candidate
set is reduced from initially ~1.8 million to less than 2,912
users. These results show that one can significantly narrow



N N
o (%]
= =

Total Number of Users
G
=z

—
o
=

v
=

=)

0 1000 2000 3000 4000 5000 6000
Number of Users in Candidate Set

Figure 6. Cumulative distribution for the number of users seen in the
candidate set (Facebook).

down the search space of candidates (who are then compared
against the victim, one by one, using the basic attack).

Extracting a partial group fingerprint for a victim v
might not always work flawlessly (for reasons discussed in
Section III). As a result, the fast de-anonymization attack
based on set intersection could fail. In this case, the attacker
needs to resort to the slower but more robust attack based
on set union. In Figure 5, we show the cumulative distribu-
tion of the candidate set sizes when performing set union.
Compared to the candidate sets from Figure 4, the union
sets are considerably larger due to the fact that we merge
each group for which we have a match. Second, there is
still a significant reduction in size compared to the overall
number of users in Xing for a larger fraction of victims.
For example, the set union attack still reduces the size of
candidate set to less than 50,000 for more than 72% of all
users on Xing.

We performed the same kind of analysis for Facebook.
Since we did not completely crawl this social network, the
results in Figure 6 provide an overview for the snapshot of
group information we obtained during our experiment. For
the 43.2 million users we have seen in 31,853 groups, 9.9
million have an exact group fingerprint I'(v). Furthermore,
for 25.2 million users, the size of the candidate set is smaller
than 1,000. The distribution of users in a candidate set of
a given size is different compared to the Xing experiment,
but we expect that the shape of the cumulative distribution
to also be similar for Facebook if an attacker has crawled
the complete network.

B. Real-World Experiments

To demonstrate the practical feasibility of our attack, we
created a website that performs a de-anonymization attack
against Xing. While there is no technical restriction that
limits our attack scheme to a specific network, we chose
to only implement it for Xing, as our crawling experiments

had covered the highest fraction of groups and members for
this network.

Before the actual de-anonymization process starts, a warn-
ing page explains the purpose of the experiment to visitors.
Then, the visitors need to explicitly acknowledge that they
would like to participate in the experiment. Once a visitor
decides to take part, she also needs to fill out a brief
questionnaire that asks her about how she uses the social
network, if she shares her computer or user account with
someone else, and how often she participates in social
networking groups.

Once the experiment starts, the visitor’s browsing history
is probed for the URL of the main web page of Xing. If
this URL is not present in the history, we assume that the
visitor has not used Xing recently, or that she has disabled
her browsing history (see the discussion in Section VI). In
this case, we abort the de-anonymization attempt, and do
not proceed.

If we do identify that a user has visited Xing before, we
then use history stealing to probe for the URLs of the groups
within Xing. That is, for each group, we check the visitor’s
browsing history for dynamic group links. We only expect
these links to be present in the browsing history of users
who are indeed members of these groups. We then perform
the analysis based on the obtained group fingerprint, and
present the result to the user.

Results for Control Group: In a first phase, we only
promoted this website to volunteers that we picked from our
personal contacts. This ensured that we had control over the
participants and also background information about them.
In total, we launched our attack on 26 volunteers from our
Xing contacts. For 11 of these visitors, we could not find any
dynamic links that indicated interaction with groups in their
browsing history. The reasons for this can be manifold, for
example only seldom usage of groups or regularly flushing
the browsing history.

For the remaining 15 visitors, we could determine group
fingerprints, and successfully launched de-anonymization
attacks. More precisely, we could leverage the faster group
intersection variant of the attack, and could compute in-
tersection sets for 11 visitors. The median size of these
intersection sets was only 570 members, thus a search
within this set can be performed easily. For 4 visitors, we
had to fallback to the more robust, but slower union set-
based variant of our attack. As expected, the union set is
significantly larger compared to the intersection set: the
median size was 30,013 members, which can nevertheless
be probed during a history stealing attack.

In summary, our experiment with a control group shows
that our attack works in practice. We managed to de-
anonymize 15 of 26 users who participated in this exper-
iment.

Results for Public Experiment: We also performed the
experiment with a larger user base: our attack was covered
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by several press reports, which also linked to the experimen-
tal website, and thus lead to many participants from all over
the world. In total, 9,969 persons participated in our test and
completed the de-anonymization attack against Xing. Note,
that we do not have any reliable background information
about these persons and, thus, the following evaluation
results depend on the answers given by the participants after
the test was carried out. Therefore, we do not have any
ground truth for this experiment, but we think that these
results are a valid, yet rough estimation of how the de-
anonymization attack would perform against random users
on the Internet.

Of the 9,969 participants, we found at least one group
hit for 3,717 users and of these, we were able to correctly
de-anonymize 1,207 individuals. This corresponds to 12.1%
of the overall participants, and to 37.3% of the users who
had at least one Xing-specific link in their browsing history,
and therefore are likely to be members of Xing. While this is
lower than the percentage that we achieved in our controlled
experiment, we think that this still shows the real-world
feasibility of the attack.

C. Run-Time and Throughput Rate

The runtime of the attack significantly influences its suc-
cess rate in practice. Recall that we perform an active attack,
and probe the victim’s browsing history. Thus, the victim
needs to interact with the attacker for a certain amount of
time. There are many techniques to convince a victim to stay
longer at the attacker’s website. These techniques range from
benign attempts such as showing a video or music clip, to
offensive techniques such as “hijacking” the user’s browser
with the help of JavaScript to prevent her from leaving the
site. In any case, from the point of view of the attacker, it
is desirable that the attack takes as little time as possible.

We measured the typical time it takes to perform a history
stealing attack in practice. We performed experiments with
the four major web browsers (i.e., Internet Explorer, Fire-
fox, Safari, Chrome) on different operating systems (i.e.,
Windows Vista, Ubuntu Linux, Mac OS X). We did not test
mobile browsers since social networks typically implement a
specific version of their platform for these browsers which
is not susceptible to our attack. The test machine was a
MacBook Pro with a 2.8 GHz Intel Core 2 Duo processor
and 4 GB RAM. We booted the operating system natively on
the machine, and used no virtualization software to prevent
side-effects. In each test case, we measured the time it takes
to perform a history stealing attack by checking a specific
number of URLs (i.e., we check if these URLs have been
visited or not): That is, we started with 1,000 URLs, and
we increased the number of URLSs to be checked in steps of
thousand until we reached 90,000. We performed each test
ten times, and calculated the mean values. These values are
shown in Figure 7. In order to increase readability, and since
the mean error between individual runs was always below
5%, we omit error bars.

Safari on both Mac OS X and Windows achieved the
best results in our experiments: A history stealing attack
with 90,000 tests can be performed in less than 20 seconds.
Chrome is about 25% slower, while Firefox requires between
48 and 59 seconds, depending on the operating system. The
slowest performance was measured for Internet Explorer,
which took 70 seconds to probe all pages. Nevertheless,
even for Internet Explorer, we could probe more than 13,000
URLS in less than 10 seconds. Together with the results from
Figure 3, this show that an attacker can detect many groups
of a victim in a small amount of time.

D. Fluctuation in Groups

Another aspect we need to consider is the fluctuation rate
in groups. From the viewpoint of an attacker, it is interesting
to understand how the groups and members in a social
network change over time.

First, it is unlikely that an attacker has access to the
networking and computing capacity that would enable her to
take a complete snapshot of a social network (i.e., permit her
to collect the necessary data for a de-anonymization attack
in a time span that is short enough to prevent any change
in both groups and members). In practice, depending on the
size of the network and the attacker’s resources, the duration
from start to end of crawling and the reconstruction of the
groups directory might take days, or even weeks.

Second, there will also be changes that are caused by
normal user behavior after the initial crawling phase. For
example, members will join or leave groups, or new groups
will be created. Over time, these changes cause the crawled
data to increasingly deviate from the real configuration of
groups and members in the network. Determining how stable
the group data is, is related to the question of how often
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Figure 8. Degradation of group data in Xing.

an attacker would have to recrawl parts or the entire social
network. Hence, this directly influences how much effort
an attacker has to invest for a de-anonymization attack. An
attacker can also develop iterative approaches for keeping
the collected information up-to-date, e.g. social networking
features that explicitly allow the listing of only new members
in groups and newly created groups can be used.

For measuring the fluctuation in groups, we conducted
experiments for Xing. Instead of repeatedly crawling the
entire network, we only downloaded the group directory and
the member size for each group. This permitted us to repeat
this operation every four hours over a period of 18 days.

Figure 8 shows the CDF for the changes in group size for
four different periods. Interestingly, while the results from
our measurements confirm that the quality of the collected
group and member data degrades over time, they also show
that the data stays relatively stable, significantly reducing
the necessary crawling effort for an attacker.

While we are aware of the possibility that the amount
of users that either join or leave a group might lead to the
same overall group size, we believe that the result of our
experiment is still accurate enough to give an indication
of the amount of change that affects the Xing’s group
configurations.

VI. POSSIBLE MITIGATION TECHNIQUES

The approach presented in this work allow a malicious
user to launch de-anonymization attacks against a large num-
ber of victims with relatively little effort. Whereas history
stealing by itself is often not enough to identify individual
users, combined with the misuse of group membership
information stored in social networks, it becomes a critical
weakness. In this section, we list mitigation techniques that
aim to thwart our attack.

A. Server-side Mitigation

As a server-side mitigation, web applications could use
dynamic hyperlinks that an attacker cannot easily predict.
For example, existing systems could be hardened against the
history stealing attack by automatically adding HTTP GET
parameters that contain random tokens to all hyperlinks.
Depending on the utilized web server, it might be possible
to retrofit existing web applications by using URL rewriting
to automatically add such tokens to each URL. Even adding
a simple, alphanumerical string of length 2 would increase
the attacker’s search space by a factor of 3844 (622). Hence,
the attack would effectively be prevented.

Also, web applications should preferably use HTTP POST
instead of HTTP GET in order to send parameters. This is
because only GET parameters are stored in the browsing
history. In fact, a server-side mitigation solution that random-
izes web-application links is presented in existing work [22].

Note that one difficulty with server-side mitigation is that
the usability of the web applications may be affected. For
example, it may become more difficult to bookmark parts of
the application, or links to certain groups may become more
difficult to remember. Furthermore, server-side mitigation is
also only effective if all (or at least many) social networks
implement it: if a user is a member of several social networks
and only some of them implement the mitigation strategy,
the user is still subject to the attack based on the information
collected on the social network that did not implement
countermeasures. Thus, a social network might not have an
incentive to deploy a countermeasure unless all other social
networks also participate.

B. Client-side Mitigation

On the client-side, history stealing is more difficult to
fix without sacrificing functionality. Obviously, the goal
is to prevent browsers from leaking sensitive and private
information via style information. As a solution, browsers
could generally restrict client-side scripts from accessing the
CSS properties of hyperlinks. Unfortunately, this could also
break existing websites that legitimately do so.

Jackson et al. offer a clever solution by extending the
same-origin concept of web browsers to visited links [8].
Unfortunately, so far, none of the published countermeasures
to history sniffing have experienced wide-spread adoption,
whether on the server, nor on the client-side.

Current web browsers only provide limited options for
protection against attacks that are based on history stealing.
Because the attack can be implemented without the need
for client-side scripting, turning off JavaScript, or using
browser add-ons that protect against script-based attacks (for
example, NoScript [23]) may only provide limited help. A
mitigation option could be to throttle the rate at which style
properties can be accessed (and limit the total number of
checks that can be performed on a single page), but we did
not explore this option in depth.



Users can also permanently, or at least temporarily, disable
the browsing history. Furthermore, they can, for example,
use the “private browsing modes” that are supported by sev-
eral current browsers (e.g., Firefox, Safari). Unfortunately,
all of these methods also require some effort on behalf of
the user, and reduce the usability of web browsers and web
applications.

C. Responsible Disclosure

We notified the affected social networks about our attack
and discussed possible mitigation strategies with them. Since
client-side mitigation was out of scope for them, we focused
on server-side mitigation as discussed above.

Within four days after our notification, Xing had added
a random number to all the relevant links on the platform
(i.e., links containing group information) [24]. The random
number takes the current date and a user-specific number
into account, thus it also changes every 24 hours. As a result,
the de-anonymization attack presented in this paper is not
effective against Xing anymore. At the time of this writing,
Facebook and LinkedIn are still investigating how this attack
can be mitigated best.

VII. RELATED WORK

Clearly, de-anonymization of privacy-sensitive data is not
a new concept. Research initially focused on anonymization
and de-anonymization of network level data. For example,
work by Pang et al. [25] presents techniques for anonymizing
network packet traces with the intent of sharing data be-
tween researchers. As a reaction to anonymization research,
Coulls et al. [26] introduced approaches that allow an at-
tacker to de-anonymize network traces, and recover sensitive
data on network topologies.

Information Leakage and Social Networks: Due to the
popularity of social networks and the large amounts of sensi-
tive data they store, the focus of de-anonymization research
has recently extended to this area. Several publications have
shown that seemingly non-sensitive data from publicly avail-
able sources can be used to recover private information about
individuals. For example, Griffith and Jakobsson [10] use
public records to infer individuals’ mothers’ maiden names,
and Heatherly et al. [27], as well as Zheleva and Getoor [6],
show how public data provided by social networks can be
used to infer private information.

In addition, several publications have analyzed and mea-
sured features of social networks that are privacy-related.
For example, Mislove et al. present a measurement study on
social networks [28] while Bonneau and Preibusch evaluate
the privacy settings and policies of a large number of social
networks [29]. Closely related to this context, several recent
papers focus on scenarios for malicious activity directed
against social networks. For example, Jagatic et al. evaluate
the success rates of phishing attacks [15], and Brown et al.
discuss context-aware spam [30]. Another study [31] by

Bilge et al. shows the feasibility of automated identity theft
attacks in social networks.

Our attack is passive, i.e., a user needs to visit a website
which then perform the attack. Ur and Ganapathy [32]
explored active attacks (e.g., injecting images into popular
MySpace profiles) and showed that such attacks can signif-
icantly increase the success rate. In the future, we might
study such attacks, but ethical and legal considerations need
to be taken into account.

Attacks on Browsing Privacy: The de-anonymization
scenario presented in this work leverages a browsing history
stealing technique that is based on CSS and has been known
since the year 2000. This technique has been discussed in
several browser bug reports [12]-[14], and has been shown
to be practical for targeted phishing attacks by Jakobsson and
Stamm [9]. Despite its malicious potential, browser history
stealing has not lead to any changes in browser software.

There are also other techniques that aim at exposing
private browsing information. Several systems use timing
properties to recover private information. For example, Fel-
ten and Schneider show an attack on web browsing history
by analyzing caching operations [33], while Bortz and
Boneh [34] use timing attacks to recover private information
from web applications.

De-Anonymization of Social Networks: Narayanan and
Shmatikov have shown that statistical methods can be
applied to de-anonymize micro-data by cross-correlating
multiple datasets [11]. They extend their approach to so-
cial networks in [5], and prove that it is possible to de-
anonymize members by mapping known, auxiliary informa-
tion on the (social) network topology. Diaz et al. present
a de-anonymization approach that uses information gained
from observing communication patterns between social net-
work members [35]. Backstrom et al. showed how to de-
anonymize a single social network [3].

In contrast to existing work, our attack uses only infor-
mation from a single social networking site, and combines it
with the browsing history of a user to identify individuals.
This enables us to learn the actual identity of the visitor
of a website. Furthermore, our attack is highly practical,
and works effectively in the real-world. In fact, as we
demonstrate in the paper, the attack has the potential to affect
the privacy of millions of registered social network users.

VIII. CONCLUSION

In this paper, we introduce a novel, practical de-
anonymization attack that makes use of the group infor-
mation in social networking sites. Using empirical, real-
world experiments, we show that the group membership of
a user in a social network (i.e., the groups within a social
network in which a user is a member), may reveal enough
information about an individual user to identify her when
visiting web pages from third parties.



The implications of the attack we present are manifold.
The attack requires a low effort, and has the potential to
affect millions of registered social networking users who
have group memberships. The theoretical analysis and em-
pirical measurements we present demonstrate the feasibility
of the attack on the Xing, Facebook, and LinkedIn social
networks. Furthermore, our investigations suggest that many
more social networks that support group memberships can
potentially be misused for similar attacks.
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